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ABSTRACT

Enhancing Deep Learning Classifiers for Dynamic Keystroke Authentication via
GANs

by Jonathan A. Bazan

Leveraging machine learning for biometric authentication is an area of research

that has seen a lot of progress within the past decade. Keystroke authentication based

on machine and deep learning classifiers aims to develop a robust model that can

distinguish a user from an adversary based on typing metrics (keystrokes). While

keystroke authentication started with static text, where people type the same data,

the shift has been to dynamic data where every user’s data varies. Recent literature

has shown that with enough data, deep learning classifiers have the capacity to

authenticate users with a low Equal Error Rate (EER).

However, popular deep learning classifiers are bottlenecked by the large amounts

of data needed to make it efficient. This work solves the problem of the data bottleneck

by utilizing Generative Adversarial Networks (GANs) to generate keystroke data with

a valid label. Furthermore, the synthetic data produced by the GANS are used to

train the Convolutional Neural Networks (CNN), attempting to push the EER rate

even lower and resolve the data bottleneck.
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CHAPTER 1

Introduction

As society’s reliance on technology is higher than ever before, nefarious actors

are frequently leaking and/or cracking passwords at increasing rates, enabling others

to gain unauthorized access and possibly cause irreparable damage to victims. Even

with additional layers of security such as 2 Factor Authentication (2FA), simply

stealing a smartphone can allow you to bypass this mechanism. Consequently, to

enhance current security protocols, vast research in keystroke authentication has been

undertaken. Keystroke authentication is a form of biometric authentication, where an

individual’s keystroke data, while typing, is collected by a computer and fed into a

machine learning model. The models capture specific details about keystroke patterns

to discriminate against unauthorized users. Moreover, as a user types their password

repeatedly, the metrics used to gather information about the patterns become more

stable, eventually reaching a point with minimal change in either direction. As a

result, if an adversary can figure out a user’s password, it is likely that their typing

habits will be distinct enough for a model to recognize, especially if it’s the adversary’s

first time typing the password. Essentially, with vast amounts of data, a computer

can recognize how a group of individual’s type and distinguish them from one another,

even if the individuals are typing different things.

A significant amount of recent work has been centered around exploring techniques

to extract features that are more representative of a user’s typing habits without losing

accuracy or increasing computational cost. Most of the work carried out analyzes

either static or dynamic behavior. The key distinction between static and dynamic

behavior are in the datasets. Static behavior is analyzed from a collection of individuals

typing the same phrase/password where the typing behaviors are virtually identical.

Since everyone types the same phrase, translating these metrics into a fixed-feature
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vector is straightforward. In contrast, dynamic behavior is extracted from dynamic

data which usually consists of a collection of users who typed very different things.

Consequently, working with dynamic data means that more thought must go into

the feature engineering, as variability in keystroke length as well as the keystrokes

themselves may impact the effectiveness of any model. Overall, both suffer the issue

of requiring a large amount of data, generally more than a user would be willing to

give up time for, and a relatively high false negative rate making it impractical to

apply as an extra security layer in a commercial environment.

This project builds upon recent robust deep learning architectures such as CNNs

with varying kernel sizes and cutout regularization that leverage novel feature engi-

neering techniques for dynamic keystroke authentication presented in [1]. We aim to

enhance the accuracy of these classifiers to investigate if the data bottleneck issue can

be mitigated through generated images by experimenting with the different Generative

Adversarial Networks (GAN) architectures of the Deep Convolution GAN (DCGAN),

Wassertertein GAN (WGAN), and Conditional GAN(CGAN). Additionally, this

paper uses novel feature engineering techniques to transform free-text data into fixed

feature vectors that can be trained on popular classical methods for static keystroke

authentication like Random Forest (RF), Support Vector Machines (SVM) and K-

Nearest Neighbors. We then contrast the performance of deep learning and classical

methods with previous literature, by reviewing the performance, and applicability in

a commercial environment. The contribution of this paper include the following:

• A novel feature engineering technique for transforming dynamic keystroke data

into fixed feature vectors

• Generating dynamic keystroke data for deep learning classifier with various

GAN architectures

• Using augmented data to enhance the performance of deep learning classifiers
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The rest of the paper is structured as follows: Chapter 1 discusses what keystroke

authentication is and the scope of the paper. Chapter 2 provides more depth into the

the various forms of keystroke authentication, the data collected, and the learning

techniques employed in the paper. Chapter 3 focuses on different feature engineering

techniques used to transform the data for training and testing. Chapter 4 highlights

the architectures hyperparameters that were selected for classification models and

generative models. Chapter 5 provides an analysis of the results collected from all the

experiments conducted. Lastly, Chapter 6 highlights the main goals achieved in the

paper and directions for future work.
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CHAPTER 2

Background
2.1 Related Work

Research in keystroke dynamics has been present for a long time, first explored in

1977 to investigate whether users could be distinguished based on the way they typed

their name by [2]. However, only recently has the field of keystroke-authentication

seen meaningful progress. The work of [3] has played a pivotal role in this field by

enabling succeeding research to be directly comparable by establishing a static-text

dataset that would serve as a benchmark. This data consisted of 50 users typing

the same password - “.tie5Roanl” - 400 times and leveraging various architectures

for their top performing detectors were K-Nearest Neighbors (KNN) and Support

Vector Machines (SVM) to achieve an Equal Error Rate of 6-7%. Other work such as

[4] sought to take keystroke authentication beyond the realm of the desktop/laptop

keyboard and explore its application on mobile devices. With more data gathered

through internal sensors such as fingers positioning, length, width, the models trained

achieved accuracy varying from 58-91% for each user.

Moreover, studies such as [5] [6] went beyond the realm of classical methods,

focusing on the utility in deep learning methods for keystroke-authentication. Con-

sequently, deep-learning centric literature used on fixed-data like those collected in

[3] revealed that these types of classifiers could outperform classical methods. [5]

experimented with deep learning methods achieving an overall accuracy of 92.6%,

outperforming classical methods by a considerable amount. Similarly, [6] experimented

with novel feature engineering techniques that entailed transforming fixed feature

vectors into multiple channeled digraphs - treated as images - into different classifiers

achieving accuracy anywhere from 90-95% defeating benchmark models.

Recently, the direction in this field has moved towards creating models that can
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learn and discriminate a person’s typing habits via free-text datasets. Consequently,

these solutions, if robust, are more practical and effective in a commercial environment.

Furthermore, since datasets will contain significant variation between the samples of

each user, feature engineering becomes more involved as free-text must be extracted,

categorized, normalized and transformed into fixed feature vectors for classical methods.

[7] uses a novel way of categorizing a sequence of keystrokes per user and majority-vote

technique for classical machine learning (ML) methods, achieving a perfect accuracy for

every user. However, these results are not comparable as their dataset and keystroke

extraction techniques are not available. Alternatively, [8] [1] take a different approach

by focusing on different keystroke features, lengths, and deep learning architectures

to improve model performance.

While both do achieve great results, the feature engineering technique and the

classifiers constructed in [1] achieve a considerably low EER rate that may be enhanced

to meet the the European standard for access-control systems (EN-5013301), that

states a detector must perform with a false negative rate of less than 1 with a false

positive rate of at most 0.001. Moreover, these classifiers require a vast amount of

keystroke data in order to meet the current standard, which is commercially infeasible.

This paper aims to explore several GAN architectures [9] [10] [11] in conjunction with

these deep learning architectures to see if the classifiers can be enhanced more, and if

the data generated can be leveraged for reducing the amount of user samples required

for training and testing (reducing data bottleneck).

2.2 Dataset

This paper consists of two open-source free-text datasets provided by SUNY

university, and will be discussed further in this section.
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2.2.1 Buffalo Keystroke Dataset

This dataset was gathered by the researchers at the University of Buffalo, con-

sisting of 148 subjects. The subjects participated in three different laboratory sessions,

spanning over a month, with 73 people using the same keyboard and 75 people using

different keyboards each session to complete two tasks. One task was completing

Steve Job’s commencement speech broken up into three parts, and the other was

completing free-text questions. The results were long text files recording the character

activated, if it’s pressed/released (KeyUp, KeyDown), and the timestamp of when it

was pressed. Overall, about 5,700 keystrokes are gathered per subject consisting of

static and dynamic responses.

2.3 Deep Learning Techniques

This section briefly highlights the deep learning techniques employed in the paper

and their applicability for the overarching goal.

2.3.1 CNN

A convolutional neural network (CNN) is a deep learning model that is aimed at

mimicking the human visual cortex and the way it processes information. Consisting

of multiple layers including convolutional, pooling, and fully connected layers, the

architecture enables the identification of spatial patterns and structures within images.

Subsequently, the ability to learn and extract useful information from these images

allows these classifiers to perform complex image classification tasks such image

classification, object detection, and even natural language processing. The capabilities

of a CNN are inherently due to its convolutional layers which allow for the classifier

in training to extract important aspects of the image (textures, lines, edges) through

the use of mathematical operations between a series of kernels and the input data.

Moreover [1] successfully applied CNNs to dynamic keystroke authentication achieving
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considerable accuracy with a low Equal-Error-Rate. This paper utilized the same

CNNs for testing the quality and efficacy of the generated data.

2.3.2 GAN

Generative Adversarial Networks are a recent advancement in deep learning that

has been a powerful tool for quality image generation across diverse and complex

datasets, is a Generative Adversarial Networks (GAN). A GAN contains a unique

architecture, consisting of a generator used to generate images and a discriminator

to distinguish between the real and generated images. Together, these two networks

go back and forth in a min-max game where the generator starts out with a random

noise vector that eventually transforms into the shape of the desired input, and the

discriminator evaluates the real samples against the generated and providing feedback

that the generator uses to enhance the quality of the images. While the original

GAN paper [12] employed Multilayer Perceptrons (MLP) in their networks and did

obtain images representative of those in the MNIST dataset. The following years have

produced new architectures such as a DCGAN, WGAN, and CGAN, all aimed at

mitigating limitations of its predecessors. By employing different GANs in dynamic

keystroke authentication, their ability to learn complex patterns and variations in

data to accurately can be leveraged to reproduce keystroke data representative of a

given user.

2.3.3 DCGAN

Deep Convolutional Generated Adversarial Network (DCGAN) is another deep

learning model that has influence from CNNs using convolutional layers in the

discriminator allowing it to extract features from images the same way a CNN does.

Conversely, the generator uses deconvolutional layers (also known as upsampling)

to take a low-resolution image and output a higher quality image that could fool
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the discriminator. The deconvolutional layers work opposite of convolutional layers,

performing mathematical operations between the input data and kernels, but producing

an output that is greater than the input. As seen in [9], realistic 3-D images that take

account of textures, shapes, and colors were produced from their GAN highlighting

its robustness to learn from diverse datasets. With a powerful underlying structure,

DCGANs are a popular choice for complex tasks such as high-quality image generation,

or in this case keystroke generation as GANs like this allow for multidimensional

input.

2.3.4 WGAN

Wasserstein Generative Adversarial Network (WGAN) is another GAN that was

implemented with the intention of improving the overall stability and convergence

during training - obstacles of previous architectures. WGAN achieves this by using a

different loss function known as the "wasserstein" loss rather than the common binary

cross-entropy loss. The Wasserstein distance is a powerful function as it measures the

difference between two probability distributions, computing the minimum amount of

work to transform one distribution into another like generated low-resolution images

to high-quality samples. Moreover, as the model has the discriminator and generator

alternate to update for a fixed number of iterations, this process enables the WGAN

to avoid instability, the vanishing gradient, and mode collapse. [10] demonstrates

these qualities by producing images on par with those generated from a DCGAN

(better in some instances) but with improved stability and convergence. As a result,

WGANs are a common approach when other architectures like DCGAN or CGAN

succumb to the common pitfalls during training.
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2.3.5 CGAN

Another recent and popular GAN architecture is the Conditional Generative

Adversarial Network (CGAN), developed with the intention of overcoming the previous

limitations such as generating data from a random noise input vector. Moreover,

this limitation is overcome with the introduction of conditional input, which is just

additional input such as a label or attribute that is concatenated with the random

noise vector. By leveraging these conditional inputs, generating images with labels

such ’happy’ or ’animal’ are not completely random as they will follow a pattern

based on the additional input, thus eliminating the lack of ability over the content

being generated in [12]. As seen in [11], the GAN conditioned with class labels was

able to produce visually hyper-realistic images similar to those in the MNIST dataset,

capturing a higher degree of coherence and specificity lacking in the original GAN.

For dynamic keystroke authentication, the CGAN’s ability to incorporate conditional

input could be particularly advantageous for generating keystroke patterns that are

specific to individual users typing habits.

2.4 Classical Learning Techniques

For this research, a limited scope of classical learning techniques was leveraged

in conjunction with bagging and boosting. We briefly go over these techniques in this

section.

2.4.1 Logistic Regression

Logistic Regression is a popular supervised learning technique for binary classifi-

cation that uses a statistical model to output the probability a sample X belong to

class Y. In contrast to linear regression which has a continuous output, the output of

the linear relationships in logistic regression are fed into a sigmoid function to covert

the output in a probability between 0 and 1. Overall, logistic regression are a good
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starting point for binary classification problems, but do suffer under the assumption

linear relationships exist between the features and label.

2.4.2 K Nearest Neighbors

KNNs are another form of supervised learning algorithm that uses a neighborhood

classification like other methods like decision trees. At its core, a KNN utilizes labeled

data and distance algorithm (Euclidean) to classify a set of X points based on the

K elements closest to X. Given a new input data point, the algorithm searches the

training data for the K data points that are closest to the input data, and assigns the

class based on those neighbors. Overall, KNN is a simple and intuitive method to

implement but struggle for the computational overhead as data increases and more

distances must be calculated.

2.4.3 Support Vector Machines

SVMs are powerful supervised learning algorithm are built on the fundamentals

on linear algebra and can be leveraged for tasks such as classification. In contrast, to

other techniques, the internal structure relies on using kernel functions to transform

the data into a higher feature space that may be linearly separable or close. Moreover,

this algorithm finds a hyperplane through margin maximization function, determining

the greatest margin - the minimum distance between the two classes - with the data

points plotted in the feature new space. Overall, SVM is a robust algorithm that can

be essential when dealing with data that tends to overfit.

2.4.4 Random Forest

RF are another popular form of supervised learning that build build on the

structure of decision trees to produce a model with better generalization and less

overfitting. This algorithm works by using an ensemble approach (Bagging) where,

during training, multiple decision trees are constructed based on a random subset of

10



the data and features. Moreover, this inherit randomness helps the model to generalize

the data better as the output of many decision trees are aggregated to achieve a

classification. Overall, is a powerful algorithm to use when dealing with noisy data or

non-linear relationships, but comes at a computational cost.
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CHAPTER 3

Data Preprocessing

As touched upon in the previous chapter, the two types of keystroke datasets

used for exploring ML-based keystroke authentication are static and dynamic. Each

involves different approaches for pre-processing the data, especially if both deep

learning and traditional techniques are employed. Since data gathered for this paper

consists of free-text data, this chapter will go more into depth of the process of feature

engineering.

3.1 Static and Dynamic Data

Although the paper uses dynamic data for keystroke authentication, it is worth

briefly mentioning how different the structure of static data is compared to dynamic

data, to observe why feature engineering is more involved. As the name suggests, static

data consists of metrics (features) extracted from users typing the same things. In the

case of [3], the participants had to type the same password ".tie5Roanl" 400 times,

where each attempt yields a feature vector containing the different timing metrics

extracted (31 features). As a result, the data pre-processing aspect is less intensive

as the input data collected from every user yield fixed-feature vectors. Conversely,

dynamic data is usually comprised of a long series of various keystrokes pressed (either

up or down) with a timestamp assigned next to them, as seen in the Buffalo Keystroke

dataset. Moreover, the words that people typed and the total length of keystrokes

used will vary, as there are significant underlying patterns in their typing habits.

For this reason, extra data pre-processing steps must be performed to transform the

dynamic data into fixed feature vectors for traditional models and tensors for deep

learning models like a CNN.
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3.2 Time Based and Touch Based Features

Similar to how keystroke authentication is separated into either static or dynamic

data, the type of features in most studies are also split between time and touch

based features. As the name suggests, time based features involve extracting features

produced from time based measurements. If a user is typing a password, the timing

of the press / release between two consecutive keys, "a" and "b", would be the

time based features for this pair of characters. Conversely, touch-based features are

measurements taken from an individual physically interacting with a touch-screen. In

the case of the same user typing their password, the touch-based features could be

the pressure of tapping a letter and how much of the screen is taken up by pressing a

letter. Given that most research is conducted with time-based features, studies like

[13] [14] [15] [16] have shown that adding touch-based data can enhance the detection

system on a smartphone.

However, there are various use-cases where touch based features selected could

have a negative impact on the model being trained. For example, the same user typing

the password on a hot and cold day, could produce dramatically different results that

will only confuse the model in the training. Similarly, other conditions like lack of

sleep, injury, sharing the same device, are all common use cases where taking touch or

time based measurements can lead to a poorly performing model. In the case of time

based measurements, even something simple as using a new keyboard, new keys, or a

new layout, can heavily influence the results produced. As the dynamic data from the

Buffalo dataset only consists of typed characters with a timestamp attached to them,

feature engineering with time based features will be explored.
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3.3 Dynamic Data Time Based Features

Similar to [7], time-based features will be extracted from each pair of consecutive

keystrokes. Each feature refers to some duration of an action (press or release) between

these two characters. The figure below depicts an example of typing two characters,

releasing a key will produce an "Up" event whereas pressing a key yields a "Down"

event. Altogether, the "Up" and "Down" events between the characters "A" and "B"

will produce 5 features that fall into one of the following categories.

Figure 1: Time Based Feature Extracted

• Up-Down - The time between the first key being released and the second key

being pressed

• Up-Up - The time between the first and second key being released

• Down-Up - The time between the first key being pressed and the second key

being released

• Down-Down- The time between the first and second key being pressed

• Duration - The time between a single key being pressed and released

3.4 Feature Engineering for Deep Learning Models

As mentioned in the prior chapter, this paper has significant influence from [7]

and will be using the same data preprocessing technique for transforming a sequence

of keystrokes collected into an image-like (5-D) tensor, called a Dynamic Keystroke
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Image (DKI) that can be used as input for a CNN. Moreover, the process of this

transformation will be discussed more thoroughly in this section.

3.4.1 Dynamic Keystroke Image

The novel feature engineering employed by [1] starts with taking a subsequence

of keystrokes from the total keystrokes types by a given user, and translating those

keystrokes being typed into a digraph. The most integral part of DKI revolves around

creating digraphs that will be used as an input channel for the DKI. Each digraph

consists of the top 42 most used characters on a keyboard and represents the duration

of an event happening between two keys typed. For example, typing "A" and "B"

would yield a digraph where the "AB" / "BA" position has been updated. With

this example in mind, each digraph will represent one of the 5 different time features

that will be extracted, resulting in 5 channels (matrices) or a 5-D image. Following

the previous example, typing those two characters would update the same position

in every digraph, but with different values. A more concise illustration is provided

below depicting what a plain DKI looks like. Since the average amount of keystrokes

per person in the dataset is 5,000+, by taking subsequences of keystrokes within the

interval [50,75,100], a reasonable amount of data can be captured and updated in the

DKI without adding too much noise. In the case of 50 keystrokes, a sequence of 49

could produce as many as 294 features. However, due to repeated character pairs and

other factors, the number of features is always less.

3.5 Feature Engineering for Classical Models

As traditional models typically work with fixed feature vectors, working with a

set of user DKIs would not be possible unless a way for transforming the DKI into a

fixed-feature vector was found. Moreover, fixed-feature vectors were produced from

the images, and were able to be trained and tested on robust classical models. This
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Figure 2: Dynamic Keystroke Image

section will further discuss how the key-pair mappings in the DKI were transformed

into a corresponding fixed feature vector.

3.5.1 Keyboard Feature Vector

[7] uses a unique technique for transforming free-text data into fixed feature

vectors. Their process relies on two critical aspects (1) the adjacency between two

characters typed (2) the side of the keyboard where the two characters are typed. By

combining these two components, a set of feature vectors that capture the underlying

pattern of the sequence of keystrokes typed is produced. The first component, the

adjacency between two characters, can be better visualized in the following figure.

The first letter typed in the figure is "G", and depending on the next character

typed the adjacency can be different. For example, if "F" is pressed after, then

there would be a first adjacency as the two characters are right next to each other.

Moreover, if "I" was pressed instead, a third adjacency would exist, and so on for

other characters. The second component is more straightforward, where each pair of
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Figure 3: Keyboard Adjacency Map

characters typed can fall into one of the following categories:

• Left Left (LL) - Both keys pressed are on the left side of the keyboard

• Right Right (RR) - Both keys pressed are on the right side of the keyboard

• Both (B) - The two keys pressed are on different sides

Going back to the previous examples with the letter "F" and "I", if "F" is pressed

after "G" then the resulting keyboard tag would be (LR), whereas "I" would produce

a (B) tag. Their process produced 15 possible categories a key-pair can be mapped

into, each of these categories containing five time-based features: Up-Down, Down-Up,

Up-Up, Hold1, Hold2. Altogether, these 15 categories with five values in each category,

are concatenated to produce a fixed-feature vector of length 75.

3.5.2 Mapping DKI

This paper follows a similar approach for mapping the DKI to fixed-feature

vectors. Even though these mappings can be directly performed on the free-text data

directly as it is processed, DKI were used as the input. We first captured all the unique

pairs in the digraphs (non-zero values), saving each of the timestamps corresponding

to a key-pair in a dictionary. An adjacency keyboard based on a MacBook was then

constructed and traversed with a breadth-first search (BFS) to compute the level of

adjacency for each pair of characters in the dictionary computed previously. However,

unlike [7], there are only 4 adjacency levels used as to reduce the amount of empty

(zero) features, these are 1,2,3, and None. Additionally, we modified the five time
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based features captured to:

• Up-Down

• Down-Up

• Up-Up

• Down-Down

• Hold

Nonetheless, we use the same keyboard side tags, LL, RR, or B. From our process, a

key-pair mapping can fall into one of 12 categories each containing five times based

features, altogether creating a fixed feature vector of length 60 once all the categories

have been concatenated. The table below lists all the possible categories a key-pair

can be mapped into.

Keyboard Side Category Feature Set
1st Adjacent Left Side AL-H AL-UU AL-DD AL-UD AL-DU
1st Adjacent Right Side AR-H AR-UU AR-DD AR-UD AR-DU
1st Adjacent Both Side AB-H AB-UU AB-DD AB-UD AB-DU
2nd Adjacent Left Side SL-H SL-UU SL-DD SL-UD SL-DU
2nd Adjacent Right Side SR-H SR-UU SR-DD SR-UD SR-DU
2nd Adjacent Both Side SB-H SB-UU SB-DD SB-UD SB-DU
3rd Adjacent Left Side TL-H TL-UU TL-DD TL-UD TL-DU
3rd Adjacent Right Side TR-H TR-UU TR-DD TR-UD TR-DU
3rd Adjacent Both Side TB-H TB-UU TB-DD TB-UD TB-DU
None Adjacent Left Side NL-H NL-UU NL-DD NL-UD NL-DU
None Adjacent Right Side NR-H NR-UU NR-DD NR-UD NR-DU
None Adjacent Both Side NB-H NB-UU NB-DD NB-UD NB-DU

Table 1: Table of the different timing features
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CHAPTER 4

Architecture

In this chapter, the paper will go more in-depth on the various classical and deep

learning models used for binary classification and the corresponding hyperparameters,

as well as the hyperparameter tuning involved for binary classification and generating

data.

4.1 Binary Classification

The buffalo dataset consists of 148 users, each containing a several thousand

keystrokes from doing the same tasks as the other users. Even though multi-

classification can be leveraged for authenticating users rather than a single binary

classification model, the implementation would be impractical for a commercial en-

terprise. Multi classification would involve more input from many different users,

and the increased computational cost and added noise from more data used would

produce a model that takes significantly longer to train and is less robust. Overall,

binary classification is more practical for this problem as the main focus of these

models is to uncover hidden typing patterns for a given user and detect whether

these patterns exist in a given attempt - a binary problem. The goal of these models

are to each take in a portion of a user’s positive data and select limited negative

samples from other users, and identify whether a given sample belongs to the user or

an intruder. Furthermore, as positive data imbalance is a common issue when working

with keystroke authentication, utilizing a Stratified K-Fold rather than the common

K-Fold Cross Validation because the dataset is partitioned based on the proportion

of one class to another. For example, a dataset with .3% positive and .7% negative

would have a training and testing dataset with these same ratios.
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4.2 Traditional Models

As mentioned earlier, this paper uses a novel feature engineering technique with

influence from [7] that transforms the DKI from [1] to create fixed feature vectors

traditional algorithms can train on. The paper uses these traditional algorithms as a

baseline for comparison with other studies that use classical methods for free-text data,

and to highlight the differences in performance between classical and deep learning

models.

4.2.1 Hyperparameter tuning

In order to create powerful and robust models, a reasonable amount of hyerpa-

rameter tuning is undergone to find the parameters that significantly improve the

model. This paper uses random grid search with the features in the table below to find

the optimal set of initial parameters for each model. Moreover, as each architecture

varies in the additional hyperparameters provided in the architecture, each model will

have an additional set of architecture related parameters that also undergo a grid

search.

The underlying principles and methodology behind KNN is explored in Section

2.4.1. This paper uses 3 parameters to optimize which are: the neighbors, the power

parameter p, and weights. By using different neighbors in KNN, the model can find

an optimal set of neighbors that preserves the local structure of the data without

overfitting, and generalize the data well without underfitting. Moreover, experimenting

with the power and weights parameter helps the model find a distance metric and

weight distribution between neighbors that improves itself. The figure below highlights

the different ranges for the parameters tuned and the resulting values.
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Parameter Search Space Result
neighbors [10,20,30] 20

p [1,2,3] 1
weights uniform, distance distance

Table 2: Best hyperparameters for K-Nearest Neighbors

4.2.2 SVM

The underlying principles and methodology behind SVM is explored in Section

2.4.1. This paper uses the following three parameters to optimize: the regularization

parameter C, the Kernel used, and the Gamma used. By modifying the C we can

adjust values to find a nice balance between low testing and low training error. A

similar process occurs with the gamma parameter to find a decision boundary that

does not overfit the data too much. Lastly, experimenting with different kernels

allows us to better understand which kernel best handles the data. The figure below

highlights the different ranges for the parameters tuned and the resulting values.

Parameter Search Space Result
C [.01, .1, 1, 10] 1

Kernel [3, 5, 7] 3
Gamma [.001, .01, .1] .1

Table 3: Best hyperparameters for Support Vector Machines

4.2.3 Random Forest

The underlying principles and methodology behind Random Forest is explored

in Section 2.4.1. This paper uses 3 parameters to optimize which are: the number

of estimators, the max features, the max depth, and the bootstrap. By exploring

the data with different numbers of estimators, the performance can improve, but

at a computational cost. Furthermore, using different thresholds for the number of

features and varying the depth of the trees allow us to capture some control over
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the randomness of the forest generated, striking an ideal balance between a simple

forest (potentially underfitting) and a complex forest (potentially overfitting). The

figure below highlights the different ranges for the parameters tuned and the resulting

values.

Parameter Search Space Result
estimators [10,50,100] 100

max features auto, sqrt sqrt
max depth [5,15,25] 25
bootstrap [True, False] True

Table 4: Best hyperparameters for Random Forest

4.2.4 Logistic Regression

The underlying principles and methodology behind logistic regression is explored

in Section 2.4.1. This paper uses the following three parameters to optimize: the

number of estimators, the learning rate, and the bootstrap variable. By exploring

the data with different numbers of estimators, the performance can improve at a

computational cost. Furthermore, we use various learning rate parameters to find a

balance between the rate of convergence and model generalization. The figure below

highlights the different ranges for the parameters tuned and the resulting values.

Parameter Search Space Result
estimators [10, 100, 150] 100

learning rate [.001, .1, 1] .1
bootstrap [True, False] True

Table 5: Best hyperparameters for Logistic Regression

4.3 Deep Learning Models

Since deep learning models are capable of achieving accurate results that are

comparable to traditional models as seen by [1] [5], this paper uses the deep learning
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models from the former as a baseline for highlighting the quality of the generated data

produced implemented.

4.3.1 Hyperparameter tuning

As mentioned previously this paper will be leveraging the deep learning models

that align with the structure presented in [1]. The following hyperparameters used be

viewed in the table below.

Parameter Result
epochs 200

learning rate .01
optimizer Adam

Table 6: Initial hyperparameters for CNN

Since the GAN architectures implemented were computationally expensive to

train, we provided a limited search space for the initial parameters as seen in the table

below that would be used for all GAN models. Additionally, we explore hyperparamter

tuning within the varying GAN architectures to find the most robust version.

Parameter Search Space Result
epochs [50, 100, 150] 50

Table 7: Initial hyperparameters for GANs

4.3.2 CNN

The underlying principles and methodology behind a CNN is explored in Section

2.4.1. This paper utilizes the (5x42x42) DKIs of each user as input for the CNN. The

CNN itself consist of two convolutional layers, max-pooling layers, fully-connected

layers, and a dropout layer, each working to help the model achieve a meaningful

representation of the keystroke data without overfitting. Ultimately, producing a
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probability (via sigmoid) of the likeliness a given sample is authentic or not. The

entire architecture can be viewed in the image below.

Figure 4: CNN Architecture

4.3.3 GAN

Varying GAN architectures such as WGAN, CGAN, and DCGAN are leveraged

in this paper to demonstrate the efficacy of these deep learning models for producing

quality positive data. Ultimately, we incorporate different architectures to identify

how the baseline models handle generated data, and how the generated data from

each GAN compares to one another. Generally speaking, each GAN utilizes the same

underlying structure which consists of a generator and discriminator. These two

networks are depicted in the figure below where the generator network is producing

images that are supposed to be similar to the discriminator, and the discriminator is

learning to distinguish the real and fake images. This results in an endless back and

forth until the fake data is indistinguishable from the authentic data in this case. Since

GAN architectures usually work with input of (64x64) and (128x128), we decided to

pad the DKIs of (42x42) to produce a new set of DKIs that are (64x64) and can be

used as input for GAN training. The next chapter will touch on how the generated

data of 64x64 is tested with the baseline CNNs. This section will go in-depth about

the various hyperparameters that were tuned and could be tuned in future works.
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Figure 5: GAN Architecture

4.3.4 DCGAN

The underlying principles and methodology behind a DCGAN is explored in

Section 2.4.1. The hyperparameters batch size, learning rate, were experimented

with as other parameters required modifying the internal structure of the model.

Furthermore, the batch size and learning rate are tuned in order to balance the trade-

off between faster convergence and more accurate gradient updates during training,

which can result in more stable and better quality synthetic data generated by the

GAN model. The following GAN architecture hyperparameters available can be seen

in the table below.

Parameter Search Space Result
learning rate [2e-6, 2e-5, 2e-4] 2e-6
batch size [16, 32, 64] 64

Table 8: Best hyperparameters for DCGAN

4.3.5 WGAN

The underlying principles and methodology behind a WGAN is explored in Section

2.4.1. For the WGAN hyperparameters, this paper experimented with the learning
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rate, critical iterations, and weight clipping. The learning rate is straightforward to

determine by finding a value that leads to optimal results without a significantly slow

convergence,similarly with weight clipping and critic iterations. Overall, a reasonable

amount of critic iterations, a small learning rate, and a tight weight clipping can lead

to a stable training process that converges and produces quality data.

Parameter Search Space Result
learning rate [9e-5, 9e-4, 9e-3] 9e-5

critic iterations [2, 5, 15] 5
weight clipping [.01] .01

Table 9: Best hyperparameters for WGAN

4.3.6 CGAN

The underlying principles and methodology behind a CGAN is explored in Section

2.4.1. Similar to the WGAN, and DCGAN, this paper will experiment with the learning

rate, critic iterations, and batch size. The optimal values for the CGAN can be found

in the table below.

Parameter Search Space Result
critic iterations [2, 5, 15] 5
learning rate [1e-4, 1e-5, 1e-6] 1e-5

Table 10: Best hyperparameters for CGAN

Moreover, it is worth noting that the CGAN architecture for this problem is

unique in comparison to the other GANs. Unlike the other architectures, the CGAN

also accepts class labels that are combined with the noise vector which helps generate

data belonging to a certain class. The figure below illustrates the critical difference

between the generator and discriminator with the original GAN architecture.
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Figure 6: CGAN Comparison with Original GAN
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CHAPTER 5

Experiments and Results

In this section this paper will retouch on the goals and intended objectives expected

while conducting different experiments. Moreover, this chapter will be divided into

two main sections (1) that evaluates the performance of traditional models on free-text

data that has has undergone feature engineering (2) that explores performance of

GANs for generating quality data, and the performance of CNNs trained with and

without GAN data.

5.1 Experiment Strategy

As mentioned in the prior chapter these experiments will be conducted with

free-text data that has undergone separate feature engineering techniques for deep

learning and traditional models. This data is first used with traditional models to

identify if any performance metrics are comparable to prior studies that also use

traditional methods, and as another baseline for the deep learning models that will be

implemented next. Secondly, the data is then fed to train CNN models that follow

the same structure as mentioned in section and achieve a very low EER. Lastly, the

original data the CNN has been trained is fed into the GANs which generates data

that removes the padding and compares it with the CNNs. The overall expectations

are that the traditional methods will be able to identify but will not outperform deep

learning methods, and that GANs will be able to produce quality data that the CNNs

can train on enhance their performance.

5.2 Experiment Metrics

With any machine learning model, in order to gain insight about the performance

of the model and how it handles the data, evaluation metrics must be incorporated

to provide different perspectives while assisting in identifying the strengths and

weaknesses. This paper utilizes three common evaluation metrics and a biometric
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evaluation metric. The three common metrics consist of accuracy, precision, and

recall. Accuracy refers to the percentage of correctly identified predictions. However,

this metric can be misleading, especially when there is data imbalance (as seen in our

data), since the accuracy can be skewed to be high but impractical in a commercial

setting. As a result, precision and recall are leveraged to gain more perspective about

the model where accuracy falls short. Precision gives us the accuracy of the positive

predictions while recall measures the completeness of the positive predictions. The

three metrics previously discussed rely on a set of variables for constructing the

formula: FN, FP, TP, TN. These variables are quite straightforward True Positive

(TP) instances correctly identified, True Negative (TN) instances correctly identified,

False Positive (FP) instances incorrectly identified, and False Negative (FN) instances

incorrectly identified. Altogether, the variables previously mentioned that form the

formulas for accuracy, precision, and recall can be seen in the figure below.

Figure 7: Traditional Evaluation Metrics

Moreover, the other biometric used is Equal-Error-Rate (EER) which refers to the

point on the False Acceptance Rate (FAR) and False Rejection Rate (FRR) curves

where the error rate is equal (i.e FAR == FRR). The figure below depicts the an

example of where the EER might be for a model that has similar FAR and FRR

curves. For this example if the EER rate is 5%, then this implies that adjusting the
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threshold at which points are identified could result in a FRR and FAR of 5%. As a

result, 95% of intruders and authentic users are identified correctly.

Figure 8: Biometric Evaluation Metric

5.3 Traditional Machine Learning Methods

This section will discuss the traditional machine learning methods leveraged for

dynamic keystroke authentication and the accompanying results.

5.3.1 Results for free-text

As mentioned previously, the traditional methods were trained and tested on

input data which consists of DKIs mapped into fixed feature vectors of length 60.

Moreover, while the general accuracy of the models are relatively well as seen in the

figures below, using other metrics such as the precision and recall uncover a different

story about the performance of the models. When evaluating the models through

precision and recall, the results clearly show that models are capable of identifying

the intruder (high precision) but are unable to identify the correct user (low recall).

For models evaluated with data consisting of keystroke sequences of 50 keystrokes,

traditional models such as SVMs and KNN produce a great accuracy and a low FAR

but a high EER, whereas logistic regression with boosting and Random Forest provide
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an even greater accuracy, a low FAR, and a relatively low EER. Overall, random forest

outperforms everyone with an accuracy of 95.74% and a EER 13.57%. These results

indicate that with more fine-tuning to reduce the FNR and EER, a commercially

feasible product capable of generalizing a user’s typing patterns to a high degree of

accuracy is possible.

Figure 9: Models Performance - Classical Methods - 50

Moreover, the performance of the models seen in figure 4 contrasted with those

in figures 5 and 6 illustrate how adding more data before producing the fixed-feature

vectors for training can be an obstacle. As seen in the results from figures 5 and 6,

as fixed-feature vectors are based on longer keystroke sequences like 75 and 100, the

inclusion of more data leads to a poorer performance in a model’s ability to distinguish

an authentic user from an intruder. In comparison to figure 4, the more data is

included the higher the EER and FAR increase, eventually leading to a KNN with a

4% FAR and an ERR of 68%. The results suggest that the addition of more keystrokes

introduces more variation and complexity into the data, resulting in more complex

data that the models cannot construct an accurate generalization of.
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Figure 10: Models Performance - Classical Methods - 75

Figure 11: Models Performance - Classical Methods - 100

While these model do under perform when contrasted to the performance of the

deep learning methods implemented, as the paper will discuss in the next section; the

EER results of the best model are comparable to other studies that also measured the

EER of their models on free-text data.
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5.4 Deep Learning Methods

This section will cover more depth about the performance of the varying CNN

architectures on DKIs derived from the free-text dataset and from the GANs. Addi-

tionally, the quality of the generated data and its impact on CNN architectures will

be explored.

5.4.1 Results of CNNs of dataset

As mentioned previously, the CNNs constructed were based off the architectures

in [1] and trained / tested using the same methodology. Moreover, results of these

classifiers align with those seen in the prior research. Highlighted in the figure below,

the CNNs trained on different keystroke sequence lengths achieve a high accuracy and

considerably low EER when contrasted to the traditional models. Even though the

results of all the CNNs are relatively similar, the CNN based on keystroke sequences

of length 75 achieve an average accuracy of 88% and an EER of .09%.

Figure 12: Classifier Performance - CNN

33



5.4.2 Results for GAN data and CNN

Several data generation experiments were conducted on different GAN architec-

tures to identify any key advantages / disadvantages for data generation and for data

quality. Moreover, the experiments produced a set of generated data (DKIs) that

were then unpadded and evaluated with positive data on the trained CNNs in the

prior section. The results of evaluating the CNNs with positive data, GAN data, and

both (augmented data) on a keystroke sequence of 50, are depicted figures below. The

GAN data is labeled as 1 for these experiments.

Figure 13: GAN Performance - 50

The figures demonstrate the impact varying GAN images produce on the classifier.

When it comes to keystroke sequences of 50 and 100, the results are relatively similar

with WGAN and CGAN producing images based on each individual user. On average

the CNNs identified the generated images with 86% accuracy. As intended each

classifier that is fed its positive data with negative data produces high accuracy since

the positive data is the data it was trained with. Interestingly, when the CNNs are

fed positive data that consists of the real and GAN data, the results do show that
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Figure 14: GAN Performance - 75

Figure 15: GAN Performance - 100

there is a slight increase in the accuracy as seen by the WGAN which improves the

accuracy from 94% to 94.6%. Even though the increase is within a 1%, the results

suggests classifier enhancement is possible. However, more experiments must be taken

to ensure the quality of the data generated as will be seen in the following section.
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5.4.3 Results for GAN data vs CNN

To provide more perspective about the quality of the data being generated, more

experiments were conducted which essentially invert the ones presented in the prior

section. The GAN data will be labeled 0, and the performance of CNN are recorded.

The results of the CNN against actual negative data, and GAN data are illustrated in

the figure below.

Figure 16: GAN Performance - 50

The results in the figure highlight that the CNNs perform poorly when treating

the GAN data as separate, as seen in figure above with accuracy of 60.79%. Accuracy

this low suggests that the data generated bears resemblance to the input data for a

given user. As a result, these classifiers struggle to distinguish between the real data

and generated data when treated separated. Moreover, the CNN with actual positive

data against negative data performs with similar accuracy to those presented in [1].

5.4.4 Results for GAN + Real data vs CNN

The last experiments tested treat the GAN data at valid and compare it with the

negative data. Moreover, the first test uses only GAN data and negative samples from
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Figure 17: GAN Performance - 75

Figure 18: GAN Performance - 100

other users, while the second test combines both real and generated data (augmented

data) and also compares it against the negative samples. The accuracy of each test is

highlighted in the figure below.

As anticipated when the CNN uses GAN data as valid vs. negative samples,
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Figure 19: GAN Performance - 50

Figure 20: GAN Performance - 100

the performance suffers by a negligible amount. Figure - illustrates this point as

the DCGAN data achieves an accuracy of 90.827% when evaluated with the CNN

in contract to ann accuracy of 93.827% for positive vs.negative data in figure -. In

other cases the accuracy actually increases slightly as seen WGAN in figure - with
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92.411% vs 91.169%. Moreover, the second experiments produces an accuracy similar

to those when the classifiers are tested against only positive data, and positive data

vs. negative data. These results are depicted in the figures above where the accuracy

differences are very minimal, emphasizing how well the data generated fits into a

classifier trained on the data it was generated on. Since, the generated DKIs were able

to perform well when evaluated by the CNNs, the next step was to retrain the CNNs

with the GAN generated user data labeled as positive, following the same process as

those in the first section.

Figure 21: Models Performance - Classical Methods - 100

5.4.5 Results for CNN trained with GAN Data

The last step to verify that effectiveness and quality of the DKIs generated by

the GANs was to retrain the CNNs. The classifiers at this step, in contrast with those

in the first section, leverage the GAN samples by also including them as positive

data. For the sake of ease, the CNNs for keystroke sequences 50, 75, and 100, were

tested with only one architectures generated data for different sequences. Since CGAN
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performed the best overall, the results presented in the figure below were based only

on the CGAN data.

5.5 Discussion

The results retrieved from all the experiments conducted produces a variety

perspective regarding the performance of classical vs. deep learning methods in user

authentication, and the utility of GANs to generate quality data while enhancing the

deep learning methods. When contrasting classical and deep learning methods, the

results clearly show that traditional methods can achieve a relatively high accuracy

with a reasonable FAR and EER as seen by the Boosted Logistic Regression model

on 50 keystrokes. However, these results obtained pale in comparison to the CNNs

that can achieve a greater accuracy with a lower EER, but these deep learning models

do still have an issue with the FNR. Moreover, when introducing GANs to resolve

the positive data bottleneck by creating synthetics data resembling user data, the

results illustrate the effectiveness. The GAN data by itself when evaluated produces a

relatively reasonable accuracy around 85%. Furthermore, figures 16 - 18 demonstrate

that treating the generated data as negative throws the classifier off producing low

accuracy, indicating that the generated data has resemblance to the user data it was

trained on. Finally, using the augmented data consisting of positive and generated

data, and retraining the CNNs results in slightly higher accuracy with an EER with

a negligible move in either direction. As mentioned before, this paper builds upon

the deep learning classifiers presented in [1], we demonstrate that the CNNs and data

used in the study can be further extended to generate more positive data and achieve

a greater accuracy and lower EER.
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CHAPTER 6

Conclusion

As technology continues to evolve and become more integrated with day-to-day

life, the concern for security breaches (hacks) across multiple mediums increases. As

a result, methods for incorporating and enhancing keystroke authentication must be

implemented to reduce the likelihood of hackers gaining unauthorized access. This

paper presents a comprehensive study utilizing traditional machine learning and

deep learning methods in dynamic keystroke authentication, and demonstrates the

potential of GAN techniques to create synthetic data to enhance the performance of

CNN classifiers. Moreover, as byproduct of successfully generating quality data, the

positive-data bottleneck presented in a data-driven commercial environment is further

mitigated..

The paper trains classical machine learning models using DKIs based of varying

sequence lengths that are transformed into fixed-feature vectors through feature

engineering influenced by [7]. While the traditional models do produce high accuracy

and reasonable EER in certain instances, these results still present an issue for the

authentic user and do not exceed the performance of the baseline CNNs. Moreover,

the CNNs in this paper follow the same architecture and feature engineering process as

those presented in [1], receive similar results from that study. Emphasizing that deep

learning models carry a higher capability for recognizing patterns from time-based

features and can provide a better generalization. The DKIs generated from different

GANs, are examined through different tests with the baseline CNN and are finally

used to retrain the CNNs. Overall, the synthetic user data generated resembles

the structure of those presented in the real dataset as is highlighted by the CNNs

performance enhacned after retraining and the CNN struggling to identify the GAN

data treated as negative before retraining.
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Eventhough this paper focuses on generating data based on time-based features

from dynamic keystroke dataset, the input data does not have to be limited to time

features. Touch-based features are another form of data that captures unique, mostly

static, individual characteristics like a user’s touch area and pressure when typing.

Furthermore, as CGANs requires additional conditional input to help construct more

precise images, dynamic keystroke authentication can be performed on a dataset

with touch-based features utilizing the touch-based metric as conditional input to

generate data more precise with the user’s time and touch patterns. Overall, this

study contributes to the growing body of literature on the use of GAN techniques for

data generation and highlights their potential to revolutionize the field of biometric

authentication and other data-driven applications.
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APPENDIX

Zorak Likes Beans
A.1 Oh Yes He Does

Appendices can have sections and subsections and so on.

A.2 Really

Sections, subsections, or whatever should come in pairs.
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