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We present a new mesoscale model for ionic liquids based on a low Mach number
fluctuating hydrodynamics formulation for multicomponent charged species. The low
Mach number approach eliminates sound waves from the fully compressible equations
leading to a computationally efficient incompressible formulation. The model uses a
Gibbs free-energy functional that includes enthalpy of mixing, interfacial energy, and
electrostatic contributions. These lead to a new fourth-order term in the mass equations and
a reversible stress in the momentum equations. We calibrate our model using parameters
for [DMPI+][F6P-], an extensively studied room temperature ionic liquid (RTIL), and
numerically demonstrate the formation of mesoscopic structuring at equilibrium in two
and three dimensions. In simulations with electrode boundaries the measured double-layer
capacitance decreases with voltage, in agreement with theoretical predictions and exper-
imental measurements for RTILs. Finally, we present a shear electroosmosis example to
demonstrate that the methodology can be used to model electrokinetic flows.

DOI: 10.1103/PhysRevFluids.5.093701

I. INTRODUCTION

An ionic liquid (IL) is a liquid salt with dissociated cations and anions such as molten NaCl.
Unlike conventional electrolyte solutions (e.g., seawater), an ionic liquid does not require a
polar solvent. Of particular interest are ionic liquids composed of complex hydrocarbons that
are high-viscosity liquids at room temperature. These room temperature ionic liquids (RTILs)
exhibit intriguing physical properties such as high charge density [1,2] and extremely low vapor
pressures [3]. Such properties make them attractive for energy technology applications such as
super-capacitors [4], batteries [5], and dye-sensitized photoelectrochemical cells [6]. RTILs also
have technological applications as designer solvents in areas such as lubrication of microelectrome-
chanical machines [7,8].

Room temperature ionic liquids exhibit a number of interesting physical features. Capacitance
measurements with RTILs show different behavior as a function of applied voltage than conven-
tional electrolytes, which reflects overcrowding at the electrode surfaces resulting from the large
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size of the ions [9]. At low voltages, short-range Coulomb interactions also lead to overscreening
in which the layer next to an electrode has excess charge relative to the electrode, resulting in the
formation of a subsequent, weaker layer of opposite charge [10]. Molecular dynamics simulations
[11–13] and experimental evidence [14–16] show that RTILs are heterogeneous at nanoscale levels,
exhibiting segregation of anions and cations on scales of a few nanometers [17].

Strong interionic correlations and structure render classical models such as Nersnt-Planck used to
describe dilute electrolytes inapplicable. Kornyshev and coworkers [9,18] address the impact of ion
size and enthalpy of mixing on the structure of the electrical double layer (EDL) in an ionic liquid.
Their model gives a diffuse double-layer capacitance that extends the classical Guoy-Chapman
theory and is in agreement with experimental measurements [19]. Bazant, Story, and Kornyshev [20]
develop a Landau-Ginzburg-like model that includes effects of ion size and overscreening that is
able to predict the structure of the EDL, and improves the prediction of the capacitance. Limmer [21]
introduces a mean-field model that incorporates short range repulsion between cations and anions.
The interplay of this short-range repulsion with electrostatic forces then determines the morphology
of the ionic liquid. Gavish and Yochelis [22] construct a model by adding a Flory-Huggins-like term
and an electrostatic term to the free energy of an ideal fluid. The resulting system is similar to the
Ohta-Kawasaki model [23,24] for diblock copolymers coupled to an electric field. They solve the
resulting diffusion equation coupled to the electrostatic equation to study structure in the bulk and
how the structure couples to the electric double layer.

Simulation models for ionic liquids generally fall into two categories: coarse-grained lattice
models [9,21,25] and detailed microscopic models such as molecular dynamics [11,12] and density
functional theory methods [26,27]. The former have the advantage of capturing qualitative features
of an ionic liquid while being computationally efficient. They have the disadvantage of omitting
many physical details required for quantitative predictions. However, microscopic models capture
molecular detail but they are computationally demanding and additionally require delicate tuning of
the potentials for the complex molecules in an ionic liquid.

This paper introduces a new mesoscopic simulation model for ionic liquids. Specifically, given
the success of fluctuating hydrodynamics (FHD) for modeling mesoscale fluid phenomena [28–32]
we develop a low Mach number FHD model that is similar to the work of Lazaridis et al. [33]. Their
model is based on a compressible isothermal formulation that has a more comprehensive description
of the fluid than in Gavish and Yochelis [22], albeit with a somewhat idealized thermodynamic rep-
resentation. The deterministic component of the model here is similar to the quasi-incompressible
Cahn-Hilliard fluid model of Lowengrub and Truskinovsky [34] coupled to an electric field. The
incorporation of stochastic terms allows our mesoscopic model to capture the effects of thermal
fluctuations which cannot be neglected at the nanometer scale, the length scale at which typical
structures form in ionic liquids.

There are two significant advantages to this mesoscale model over microscopic methods such as
molecular dynamics or density functional theory methods. The first is computational efficiency. The
low Mach number formulation analytically removes sound waves from the model equations based
on the assumption that they do not significantly affect the system dynamics. This eliminates the
acoustic time step restriction allowing for time steps that are two or more orders of magnitude larger
than the comparable compressible formulation, and significantly more computationally efficient
than MD simulations of a similar size. In molecular dynamics the numerical time step is typically
on the order of femtoseconds while our simulations’ time step was about a picosecond. Second,
microscopic methods require accurate models for molecular potentials, which have to be fine-tuned
for each ionic liquid and further adjusted for mixtures of liquids. There are many thermodynamic
and transport properties of interest (e.g., permittivity, chemical potential, diffusion coefficient,
viscosity) and models for molecular potentials rarely reproduce all of these accurately. However,
these physical properties are input parameters for mesoscopic models thus allow direct use of
experimental measurements for RTILs.

The outline of the paper is as follows: first, the Gibbs free-energy functional is defined and
the fluctuating hydrodynamic equations of motion are outlined in Sec. II. In particular the free
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energy contains “excess” and nonlocal contributions that model repulsive forces between cation and
anion and interfacial tension, respectively. These contributions are calibrated to roughly match the
feature size of a typical RTIL as determined from a stability analysis of the concentration equation.
After a description of the numerical methods used to discretize the equations of motion in Sec. III,
numerical results are presented in Sec. IV. First we show the bulk morphology in both two and
three dimensions. Then we discuss the dependence of capacitance on voltage, comparing with the
theoretical predictions of Goodwin et al. [18]. We show that the structure of the electric double layer
at the electrodes changes significantly if thermal fluctuations are omitted, as previously observed by
Lazaridis et al. [33]. Finally, we demonstrate the capability of modeling electrokinetic flows with a
simulation of electroosmotic shear. Section V concludes with a discussion of the results and their
implications for future work.

II. FORMULATION

Our goal here is to develop a low Mach number model for room temperature ionic liquids.
We introduce a free-energy functional similar to Gavish and Yochelis [22] that includes enthalpy
of mixing, interfacial energy, and electrostatic contributions. Based on that free-energy functional
we then develop a low Mach number FHD model for ionic liquids by extending the methodology
developed in a series of papers [32,35–38] for multispecies mixtures of charged ionic fluids. For
simplicity, we adopt an isothermal two-species approximation and assume that the two species,
the cation and the anion, have the same molecular mass m and equal but opposite charge. We
assume each species is incompressible and has the same density; hence, the velocity field satisfies
an incompressibility constraint.

We write the Gibbs free energy as

G(c,∇c, φ,∇φ) =
∫ [

ρ g(c,∇c) + ρz(2c − 1)φ − 1

2
ε|∇φ|2

]
dr, (1)

where c denotes the cation concentration, φ is the electric potential, ε is the (constant) static
permittivity, ρ is the density and z is the charge per mass of cation. The nonelectrical contribution
to the specific free energy is given by

g(c,∇c) = kBT

m

[
gid (c) + gex(c) + κ

2
|∇c|2

]
, (2)

where T is temperature, kB is Boltzmann’s constant, and κ is an interfacial parameter, which is
assumed to be constant. The entropy of mixing contribution is

gid (c) = c log(c) + (1 − c) log(1 − c), (3)

and gex is an excess free energy due to the enthalpy of mixing. Note that Lazaridis et al. [33] include
a contribution to the free energy G that depends on ∇ρ; however, the resulting term will vanish in
the low Mach number flow limit

For systems in which the characteristic fluid velocity is asymptotically small relative to the sound
speed, we can obtain the low Mach number equations from the fully compressible equations by
asymptotic analysis [39,40]. Taking density, ρ0, as constant the equations of motion are

(ρ0c)t + ∇ · (ρ0uc) = ∇ · F,

(ρ0u)t + ∇ · (ρ0uu) + ∇π = ∇ · τ + ∇ · σ + ∇ · R,

∇ · u = 0,

−ε∇2φ = q f ≡ ρ0z(2c − 1), (4)
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where u is the fluid velocity, π is a perturbational pressure, and q f is the charge density. Here, F ,
τ , σ, and R are the species flux, viscous stress tensor, Maxwell stress tensor, and the interfacial
reversible stress, respectively.

In the fluctuating hydrodynamics model, the dissipative fluxes, F and τ , contain both determin-
istic and stochastic terms, e.g., F = F + F̃ . The deterministic species flux can be represented in
Onsager form as [41]

F = L
∇T μ

T
, (5)

where μ is the difference in electrochemical potential between cations and anions, ∇T refers to
the gradient with T held fixed, and L is an Onsager coefficient. Differentiation of the specific free
energy with respect to c yields

μ(c) = kBT

m

[
log(c) − log(1 − c) + ∂gex(c)

∂c
+ κ∇2c

]
+ 2zφ. (6)

Inserting Eq. (6) into Eq. (5) then gives

F = L

[
kB

m

(
1

c
+ 1

1 − c
+ ∂2gex(c)

∂c2

)
∇c + kBκ

m
∇∇2c + 2z∇φ

]
. (7)

For a two-component mixture, the Onsager coefficient is given by [42]

L = ρ0m

kB
Dc(1 − c), (8)

where D is the Fickian binary diffusion coefficient. The species flux expressed in terms of D then is

F = ρ0D

(
∇c + c(1 − c)

∂2gex(c)

∂c2
∇c + c(1 − c)κ∇∇2c + 2zmc(1 − c)

kBT
∇φ

)
. (9)

The amplitude of the noise satisfies a fluctuation dissipation relation [43,44]

F̃ =
√

2kBL Z =
√

2ρ0mDc(1 − c) Z, (10)

where Z (r, t ) is standard, uncorrelated Gaussian white noise.
The viscous stress tensor is given by τ = τ + τ̃ where the deterministic component

τ = η[∇u + (∇u)T ], (11)

and η is viscosity. Here, bulk viscosity is neglected because it does not appear in the low Mach
number equations. The stochastic contribution to the viscous stress tensor is modeled as

τ̃ =
√

ηkBT (W + W T ), (12)

where W (r, t ) is a standard Gaussian white noise tensor with uncorrelated components,

〈Wi j (r, t )Wkl (r′, t ′)〉 = δikδ jlδ(r − r′)δ(t − t ′), (13)

and, again, the amplitude of the noise satisfies a fluctuation dissipation relation [43,44].
To complete the specification of the model we need to define σ and R. In the absence of a

magnetic field [45], the Maxwell stress is

σi j = εEiEj − 1

2
εE2δi j, (14)

where E = −∇φ. Assuming a constant static permittivity, ε∇ · E = q f , so the resulting force
density on the fluid is

∇ · σ = q f E = −q f ∇φ, (15)
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which is simply the Lorentz force. The interfacial reversible stress,

R = ρ0kBT κ

m

[
1

2
|∇c|2I − ∇c ⊗ ∇c

]
, (16)

is derived from a variational principle as detailed in the Appendix; see also Refs. [33,34,46]. Note
that since both σ and R are nondissipative fluxes, they have no corresponding stochastic fluxes.

For boundary conditions, in this paper we consider two types: periodic boundaries and no-slip
impermeable electrode walls. In the latter case, the velocity at the wall is zero and the electric
potential satisfies a Dirichlet condition. For concentration, we specify that both the normal derivative
and the total flux vanish at walls. Spatial discretization details for these boundary conditions are
described in Sec. III A.

III. NUMERICAL METHOD

The equations of motion Eq. (4) consist of species transport and momentum evolution with an
incompressibility constraint on the velocity field coupled to a Poisson equation for the electric
potential. The system is discretized in a structured-grid finite-volume approach with cell-averaged
concentrations and face-averaged (staggered) velocities. Integration in time is performed with a
predictor-corrector scheme. Below we summarize our spatial and temporal discretization, noting
that we are building off the explicit electrodiffusion approach used in Donev et al.[32], except here
we do not consider reactions. Here, the two primary additions are the inclusion of the excess free
energy and interfacial terms in the deterministic mass flux Eq. (9) and the reversible stress tensor in
the momentum Eq. (16).

A. Spatial discretization

As detailed in Refs. [35,47], the spatial discretizations of the equations for mass and momentum
transport are based on standard second-order stencils for derivatives and spatial averaging to ensure
a discrete fluctuation-dissipation balance. The electrodiffusion term in the species fluxes and the
Lorentz force in the momentum equation are computed from the electric potential. This potential
is obtained by solving Poisson’s equation with a cell-centered multigrid solver [38]. The multigrid
solver uses standard second-order stencils and supports user-specified Dirichlet conditions on the
potential for electrode wall boundary conditions. For velocity we set the velocity field to zero on
walls and use one-sided approximations to evaluate the viscous stress. The random numbers for the
stochastic contribution to the viscous stress tensor are generated on shifted control volumes about
each cell face. We note that for tangential velocities adjacent to no-slip walls, there is a stochastic
flux on the wall itself; this noise term has twice the variance of the noise in the bulk [48].

Since the interfacial tension term in Eq. (2) introduces a new, third-order term in the species flux
F and a reversible stress tensor in the momentum equation; their discretization is described in detail
here. The center of the cells in two dimensions are indexed by (i, j) and the faces along x, y as
(i + 1

2 , j), (i, j + 1
2 ), where i = 1, ..., Nx, j = 1, ..., Ny. The species diffusion fluxes are computed

on the faces of the grid based on Eqs. (9) and (10), and the divergence of the flux is approximated
with

(∇ · F )i, j ≈ x−1
[
F (x)

i+ 1
2 , j

− F (x)
i− 1

2 , j

] + y−1
[
F (y)

i, j+ 1
2

− F (y)
i, j− 1

2

]
. (17)

The new third-order term in the species flux Eq. (9) (i.e., the term proportional to κ∇∇2c) is
computed by first approximating ∇2c at cell centers. Here, 9- and 21-point stencils in two and
three dimensions, respectively, are used so that the discrete Laplacian is more isotropic numerically
and hence reflective of the isotropic contribution κ/2|∇c|2 to the free-energy density. Specifically,
if the undivided difference operator in two dimensions is defined as

δ2
x ci, j = ci+1, j − 2ci, j + ci−1, j
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(with δ2
y defined analogously), then the Laplacian is approximated by

∇2ci, j ≈
[(

I + δ2
y

6

)
δ2

x

x2
+

(
I + δ2

x

6

)
δ2

y

y2

]
ci, j . (18)

The generalization to three dimensions is then

∇2ci, j,k ≈
[(

I + δ2
y

6

)(
I + δ2

z

6

)
δ2

x

x2
+

(
I + δ2

x

6

)(
I + δ2

z

6

)
δ2

y

y2
+

(
I + δ2

y

6

)(
I + δ2

z

6

)
δ2

z

z2

]
ci, j,k .

(19)

Discrete gradients of the Laplacian are then computed at cell faces and added to the other terms
in the deterministic species diffusion flux. For cells adjacent to the boundary, the evaluation of the
Laplacian reflects the vanishing of the normal derivative of concentration. At impermeable walls
we also set the total species concentration fluxes to zero; i.e., the sum of deterministic flux and the
stochastic mass fluxes on walls is set to zero.

The other new term in the low Mach model is the reversible stress tensor Eq. (16) in the
momentum equation. The discretization here is somewhat more complex because of the use of
staggered velocities; terms appearing in the x velocity need to be evaluated a x faces, etc. The first
step is to compute the gradients of ci, j at grid nodes—in two dimensions these are(

Gn
xc

)
i+ 1

2 , j+ 1
2

= 1

2x

(
ci+1, j − ci, j + ci+1, j+1 − ci, j+1

)
, (20)(

Gn
yc

)
i+ 1

2 , j+ 1
2

= 1

2y

(
ci, j+1 − ci, j + ci+1, j+1 − ci+1, j+1

)
. (21)

The nodal gradients are then averaged to cell centers(
Gcc

x c
)

i, j = 1
4

[(
Gn

xc
)

i+ 1
2 , j+ 1

2
+ (

Gn
xc

)
i− 1

2 , j+ 1
2
+ (

Gn
xc

)
i+ 1

2 , j− 1
2
+ (

Gn
xc

)
i− 1

2 , j− 1
2

]
, (22)(

Gcc
y c

)
i, j = 1

4

[(
Gn

yc
)

i+ 1
2 , j+ 1

2
+ (Gn

y )ci− 1
2 , j+ 1

2
+ (

Gn
yc

)
i+ 1

2 , j− 1
2
+ (

Gn
yc

)
i− 1

2 , j− 1
2

]
. (23)

From this one can define a second-order approximation to ∇ · R by using conservative differences
of the nodal and cell averaged gradients as

(∇ · R)x,i+ 1
2 , j ≈ −ρ0kBT κ

m

1

y

[(
Gn

xc
)

i+ 1
2 , j+ 1

2

(
Gn

yc
)

i+ 1
2 , j+ 1

2
− (

Gn
xc

)
i+ 1

2 , j− 1
2

(
Gn

yc
)

i+ 1
2 , j− 1

2

]
+ρ0kBT κ

m

1

x

{
1

2

[(
Gcc

y c
)2

i+1, j − (
Gcc

x c
)2

i+1, j

]
− 1

2

[(
Gcc

y c
)2

i, j − (
Gcc

x c
)2

i, j

]}
, (24)

(∇ · R)y,i, j+ 1
2

≈ −ρ0kBT κ

m

1

x

[(
Gn

xc
)

i+ 1
2 , j+ 1

2

(
Gn

yc
)

i+ 1
2 , j+ 1

2
− (

Gn
xc

)
i− 1

2 , j+ 1
2

(
Gn

yc
)

i− 1
2 , j+ 1

2

]
+ρ0kBT κ

m

1

y

{
1

2

[(
Gcc

y c
)2

i, j+1 − (
Gcc

x c
)2

i, j+1

] − 1

2

[(
Gcc

y c
)2

i, j − (
Gcc

x c
)2

i, j

]}
. (25)

The reversible stress tensor in three dimensions is treated analogously.

B. Temporal discretization

The basic temporal discretization is a predictor-corrector scheme for both concentration and
velocity. Given the values cn and un at the beginning of time step t n, the method consists of a
preliminary step to obtain the concentration and velocity at t n+ 1

2 . Using these values, the concentra-
tion at t n+1 is then computed with a midpoint corrector, and the velocity un+1 is determined from
midpoint and trapezoidal source terms. More details can be found in Ref. [32], but the main steps
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are summarized here; note the discretizations for the spatial gradients are not included for ease of
presentation.
Step 1: Compute the predictor species fluxes as

F n = ρ0D

[
∇c + c(1 − c)

∂2gex(c)

∂c2
∇c + c(1 − c)κ∇∇2c

]n

+
[

2zmc(1 − c)

kBT

]n

∇φn

+
(√

2ρ0m

tV
Dc(1 − c)

)n

Zn, (26)

where Zn are the i.i.d. normal random variables and the electric potential is computed by solving
the Poisson equation

−∇ · (ε∇φn) = (q f )n, (27)

with a cell-centered multigrid solver. Compute the predictor reversible stress tensor as

Rn = ρ0kBT

m

[κ

2
|∇c|2I − κ∇c ⊗ ∇c

]n
. (28)

Step 2: Compute the predictor velocity and pressure, u∗,n+1 and π∗,n+ 1
2 , by solving the linear,

saddle-point Stokes system [49]:

ρ0u∗,n+1 − ρ0un

t
+ ∇π∗,n+ 1

2 = −∇ · (ρ0uuT )n + 1

2
(η∇2un + η∇2un+1,∗)

+∇ ·
√

ηkBT

tV

(
W + W T

)n + [∇ · (ε∇φ)∇φ]n + ∇ · Rn (29)

∇ · u∗,n+1 = 0, (30)

where V is the volume of a grid cell.
Step 3: Compute the predictor concentration c∗,n+ 1

2 from

ρ0c∗,n+ 1
2 = ρ0cn + t

2
(−∇ · F n) − t

2
∇ · ρ0cn

(
un + u∗,n+1

2

)
. (31)

Step 4: Compute the corrector species fluxes as

F ∗,n+ 1
2 = ρ0D

[
∇c + c(1 − c)

∂2gex(c)

∂c2
∇c + c(1 − c)κ∇∇2c

]∗,n+ 1
2

(32)

+
[

2zmc(1 − c)

kBT

]∗,n+ 1
2

∇φ∗,n+ 1
2 +

(√
2ρ0m

tV
Dc(1 − c)

)∗,n+ 1
2 ( (Z(1) )n + (Z(2) )n

√
2

)
,

where ∇φ∗,n+ 1
2 comes from the multigrid solution to

−∇ · (ε∇φ∗,n+ 1
2 ) = (q f )∗,n+ 1

2 , (33)

and compute the corrector reversible stress tensor as

R∗,n+ 1
2 = ρ0kBT κ

m

[
1

2
|∇c|2I − ∇c ⊗ ∇c

]∗,n+ 1
2

. (34)

Step 5: Compute the corrector concentration cn+1

ρ0cn+1 = ρ0cn + t (−∇ · F ∗,n+ 1
2 ) − t ∇ · ρ0c∗,n+ 1

2

(
un + u∗,n+1

2

)
, (35)
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TABLE I. RTIL properties of [DMPI+][F6P-] at standard conditions from NIST database
https://ilthermo.boulder.nist.gov/; ion diffusion coefficients from Refs. [3,50].

PubChem CID CAS ID Mass Density

2734174 174501-64-5 284.19 (g/mol) 1.38 (g/cm3)

Viscosity Conductivity Relative Permittivity Sound speed

272 (cP) 1.5 × 10−10 (C s2 g−1 cm−3) 10.2 ± 0.4 144000 (cm/s)

Cation D Anion D Melting T Entropy

5.5 × 10−8 (cm2/s) 4.3 × 10−8 (cm2/s) 282 (K) 493 [J/(mol K)]

Step 6: Finally, compute the corrector velocity and pressure, un+1 and πn+ 1
2 , by solving the Stokes

system

ρ0un+1 − ρ0un

t
+ ∇πn+ 1

2 = −1

2
∇ · [(ρ0uuT )n + (ρ0uuT )∗,n+1] + 1

2
(η∇2un + η∇2un+1)

+∇ ·
√

ηkBT

tV
(W + W T )n + [∇ · (ε∇φ)∇φ]∗,n+ 1

2 + ∇ · R∗,n+ 1
2 , (36)

∇ · un+1 = 0. (37)

IV. SIMULATION RESULTS

A. Parameter calibration

To calibrate the model parameters, we select a specific RTIL that has been studied extensively
both experimentally and with molecular dynamics, namely, 1-butyl-3-methylimidazolium hexafluo-
rophosphate or [DMPI+][F6P-]. Properties of [DMPI+][F6P-] (also known as [C4min+][PF−

6 ]) are
summarized in Table I. From the data in this table we can define the parameters needed by the code
as summarized in Table II.

To complete the specification of the model it remains to specify the excess Gibbs free energy,
gex(c), and the interfacial tension parameter, κ . Experimental measurements and molecular dynam-
ics simulations show that the repulsive forces between cations and anions are strong enough to
overcome the electrostatic forces and induce structuring, where the morphological details depend on
the specific ionic liquid under consideration [17]. In the model, this repulsive force is represented by
the excess free energy. From a mathematical perspective, segregation corresponds to an instability of
the system. To assess this instability, we consider the linearized form of the concentration equation.

For the case considered here, where the cations and anions are of equal mass, the concentration
equation linearized around c = 1

2 must be unstable for segregation to occur. The equation for a

TABLE II. Simulation parameters.

Density 1.38 (g/cm3)
Molecular mass (anion and cation) 2.4 × 10−22 (g)
Temperature 300 (K)
Charge per mass 6.8 × 102 (C/g)
Relative Permittivity 10.4
Binary diffusion coefficient 5. × 10−8 (cm/s2)
Viscosity 270 (cP)
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perturbation δc about one half is

δct = D

[(
1 + 1

4

∂2gex(c)

∂c2
|c= 1

2

)
∇2δc − 1

4
κ∇4δc + zm

2kBT
∇2φ

)
. (38)

Observing that

−ε∇2φ = 2ρ0zδc, (39)

we then obtain

δct = D

[(
1 + 1

4

∂2gex(c)

∂c2
|c= 1

2

)
∇2δc − 1

4
κ∇4δc − ρ0z2m

εkBT
δc

]
. (40)

Taking the Fourier transform of Eq. (40) gives

δ̂ct = D

[
−

(
1

4

∂2gex(c)

∂c2
|c= 1

2
+1

)
k2 − 1

4
κk4 − ρ0z2m

εkBT

]
δ̂c. (41)

where k is the magnitude of the wave vector. From this equation, one sees that both the electric field
and the fourth-order term inhibit the growth of perturbations and hence act to inhibit segregation. For
the system to be unstable, the coefficient of δ̂c on the right-hand side must be positive. In general,
this requires that the second derivative of gex be sufficiently negative and κ be sufficiently small for
there to be a range of unstable k. The gex term will then set the larger scale of the features, while the
k4 term will regularize finer scale features.

The excess Gibbs free energy can be expressed in polynomial form [51]; here we use

gex(c) = α[c(1 − c)]n. (42)

Experimental data indicates that the characteristic feature size of [DMPI+][F6P-] is approxi-
mately 2–3 nm [17,52]. Accordingly, gex and κ are chosen so that wavelengths λ = 2π/k in the
4–6 nm range (twice the feature size) are in the unstable range. From the parameters describ-
ing [DMPI+][F6P-], we can estimate the electric force term in Eq. (41) to be approximately
4 × 1016 cm−2. We choose α = 4.0 × 103 cm−1 s−1 and n = 2 in Eq. (42) so the coefficient of k2 in
Eq. (41) is approximately 1124 cm−1 s−1, so that, ignoring interfacial tension, wavelengths shorter
than approximately 10 nm are unstable. Finally, for κ = 1 × 10−11 cm−2 wavelengths between 3.3
and 9.4 nm are stable so we take this value as our baseline. It should be noted that we experimented
with different forms for gex (different values of α and n) while maintaining the value of the
second derivative at c = 1

2 and found that the specific form did not change the qualitative structure
significantly.

B. Bulk morphology

First we consider quasi-two-dimensional systems with periodic boundary conditions. All quasi-
two-dimensional simulations in this paper use 192 × 192 × 1 cells with grid spacings x = y =
z = 0.5 nm and time step t = 0.2 ps. As discussed in Sec. IV A, we take κ = 1 × 10−11 cm−2

for our baseline case; see Table II for other parameters. Figure 1 shows the development of patterns
that form in a simulation of the RTIL starting from a homogeneous initial condition of c = 1

2 . By
t = 5 ns, the morphology nearly reaches the final configuration we show at t = 10 ns. In fact, at a
later time of t = 50 ns (not pictured), the morphology is nearly identical to the t = 10 ns frame. This
stable feature size reflects the competition between electrostatic and short-ranged enthalpic forces
as discussed in Sec. IV A.

In Fig. 2 we show the analogous spinodal decomposition as in Fig. 1 but for the case of
uncharged species (z = 0); here the patterns coarsen quickly and increasingly with time. We repeat
the simulations, but in three dimensions (see Fig. 3) using a cubical domain of 192 × 192 × 192
cells with the same mesh spacing and time step as before. As in two dimensions, the case with
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FIG. 1. Time evolution of cation concentration profiles illustrating structural pattern formation at t =
1, 2, 5, and 10 ns for κ = 1 × 10−11 cm−2. (For a multimedia view, see the Supplemental Material Ref. [53].)

charges evolves to a pattern with fixed feature sizes and then stabilizes whereas the uncharged case
coarsens quickly and continues to coarsen over time.

Next we examine how the morphology depends on the interfacial tension parameter, κ . Figure 4
shows the patterns formed at four additional values of κ . As κ increases, the dynamic range of con-
trast in concentration decreases. For the largest value shown (κ = 2.5 × 10−11 cm−2) segregation is
almost completely suppressed.

In addition, as κ increases, the feature size in these patterns becomes larger. To quantify this
observation we measured the static structure factor, which is the Fourier transform of the equal time
covariance of the concentration,

S(k) = 〈(δ̂ck)(δ̂ck)∗〉, (43)

where the brackets 〈 〉 denote an equilibrium average over time and

δ̂ck(t ) =
∫

δc(x, t ) e−ik·xdx. (44)

In each case, we capture statistics for the structure factor by sampling at every time step for 1 ns
beginning at t = 50 ns. Figure 5 shows the structure factor for the κ = 1. × 10−11 cm−2 and κ =
2. × 10−11 cm−2 cases. For each value of κ , the structure factor has a maximum at a radius of
|k| = kr . We note that for κ = 2. × 10−11 cm−2, we see only a partial ring that reflects the fact that
most of the stripes in Fig. 4 are oriented in the same direction. The corresponding patterns feature
a length scale (i.e., the width of the red or blue structures) that can be found using � = π/kr . We
compute kr by considering S(k) to be a probability density function and computing its expected
value,

kr =
∑

kx

∑
ky

√
k2

x + k2
y S(kx, ky)∑

kx

∑
ky

S(kx, ky)
, (45)

FIG. 2. Time evolution of pattern formation as in Fig. 1 with uncharged species (z = 0) at t = 1, 2, 5, and
10 ns. In this case the regions will continue to coarsen.
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FIG. 3. Cation concentration profiles from three-dimensional simulations (interior cut-out image). The left
panel shows the stable pattern (t = 10 ns) reached by the RTIL; compare with the last frame in Fig. 1. The
other two panels show the evolution of pattern formation of the cation concentration in three dimensions for
the uncharged case at t = 2 ns and t = 5 ns; compare with the second and third frames in Fig. 2.

FIG. 4. Cation concentration profiles illustrating spinodal decomposition for the t = 50 ns configuration
for κ = 0.5, 1.5, 2.0, and 2.5 × 10−11 cm−2, respectively. Compare to final image in Fig. 1. We note that the
colorbar for the κ = 2.5 × 10−11 cm−2 case only has been changed to range from 0.4 to 0.6 to see the structure.

FIG. 5. Structure factor in logscale for the cation concentration, S(k) for κ = 1 × 10−11 cm−2 (left) and
κ = 2 × 10−11 cm−2 (right). The radius of the ring, kr , is inversely proportional to the morphological feature
size as � ∼ π/kr . The anisotropic ring in the right panel is consistent with the striped features favoring a single
orientation in physical space, as seen in the third panel in Fig. 4.
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TABLE III. The radius corresponding to the maximum value of the structure factor, kr , and the associated
pattern feature scale, � = π/kr as a function of κ .

κ [10−11 cm−2] kr [nm−1] � [nm]

0.5 1.35 2.33
1.0 1.14 2.76
1.5 1.03 3.05
2.0 0.96 3.27
2.5 0.92 3.41

where we only include points in the sum where S(k) is above 1% of the peak value, which effectively
acts as a white noise filter.

Table III lists the values of kr and � for all five values of κ that we consider (the cases not pictured
in Fig. 4 have rings similar to the κ = 1. × 10−11 cm−2 case). We note that the results for the
baseline κ = 1. × 10−11 cm−2 case with � = 2.9 nm are consistent with experimental measurements
[52,54,55] and molecular dynamics simulations [56,57] for the RTIL discussed in Sec. IV A; for a
review see [17]. As κ increases, the associated � increases as well, which is consistent with the
patterns in Figs. 1 and 4. Finally, our three-dimensional simulations using κ = 1. × 10−11 cm−2

show a spherical structure factor (not pictured) with kr ∼ 1.1 × 107 cm−1, which matches the
two-dimensional case.

C. Double-layer capacitance

Consider a charged fluid, either an electrolyte solution or an ionic liquid, confined in a parallel
plate capacitor with electrodes at y = 0 and y = L. The specific differential capacitance of the
double layer is defined as C = dσs/dV where σs is the surface-charge density and V is the overall
potential drop between the bulk of electrolyte and the electrode surface. By Gauss’ law, for the
electrode wall at y = 0,

σs = −ε
dφ

dy

∣∣∣∣
wall

(46)

With this,

C(V ) = −ε
d

dV

dφ

dy

∣∣∣∣
wall

(47)

From Gouy-Chapman theory, for a 1:1 electrolyte solution,

Ce = ε

λD
cosh � where � = eV

2kBT
(48)

and

λD =
√

εkBT

z2mρ0
(49)

is the Debye length.
To account for steric effects in ionic liquids Kornyshev [9] formulated a lattice model with a

lattice saturation parameter γ defined as the ratio of the total number of ions to the number of
available sites (0 � γ � 1). This formulation was improved [18] by accounting for the enthalpy of
mixing contribution to the free energy, which adds another parameter, α, to the model (0 � α � 1).
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FIG. 6. Cation concentrations for capacitance simulations. Electrode wall voltages (top and bottom) are
±2, 8, 32, and 128V.

For this model the capacitance of the double layer for an ionic liquid with equal size ions is

C = ε

λD

√
α cosh(α�)

1 + f

√
f

ln(1 + f )
where f = 2γ sinh2(α�) (50)

This reduces to the Gouy-Chapman result for α = 1 in the limit γ → 0. Qualitatively the capac-
itance C(V ) has the so-called “bell” curve shape for large γ while for small γ the capacitance
shows a dip near V = 0 (“camel” shape). The former case is typical of ionic liquids for which
the double-layer thickness increases with voltage. The latter case corresponds to dilute electrolyte
solutions, where dC/dV > 0 for small voltages and the thickness decreases with voltage until steric
effects become significant.

We measure the differential capacitance using a series of quasi-two-dimensional simulations.
Our simulations use a parallel plate capacitor geometry with no-slip, impermeable, fixed voltage
walls in the y direction, and periodic in the x direction. For each simulation, the voltage at the top
and bottom walls are equal in magnitude but opposite in sign; otherwise the parameters used were
identical to those used in the periodic simulations in Sec. IV B. We performed simulations using
±1, 2, 4, 8, 16, 32, 64, and 128 V at the walls for the baseline case of κ = 1.0 × 10−11cm−2.

Figure 6 shows the cation concentration after equilibration for several of the cases with varying
electrode voltages. The equilibration time depends on the voltage at the walls, with smaller electrode
voltages taking longer to fully form the double-layer structure, which is why for most of the
simulations the voltage was above the typical electrochemical window of 4.5–6.0 V for RTILs
[58]. The simulations ran until equilibration, where the patterns had reached a steady configuration
(80 ns for runs with |V | � 16 V, up to 400 ns for the |V | = 1 case). Note that for the largest voltage
presented (128V), the morphology features a vertical striped pattern parallel to the strong electric
field.

To calculate the capacitance from the simulation data we computed the surface charge density
−εdφ/dy by horizontally averaging φ and then approximating the normal derivative at the wall
using a second-order finite difference approximation using the boundary potential and two interior
values. In Fig. 7 we show plots of the horizontally averaged electric potential for the cases depicted
in Fig. 6. First, we see that the normal derivative of φ steepens with increasing voltage. The double-
layer thickness also clearly increases with voltage. We also observe that the amplitude of the patterns
a few nanometers away from the wall is similar for all voltages.

From these simulations we compute the differential capacitance using Eq. (47) by estimating the
derivative of the surface charge density with respect to voltage using a second-order finite difference
approximation. The measured differential capacitance as a function of electrode voltage is shown
in Fig. 8. The simulation data was curve fit to Eq. (50) and the parameter values for the optimal
fit were γ = 1.0 and α = 1.0; the corresponding curve is also shown in Fig. 8. For larger voltages
we are able to recover the predicted differential capacitance. For smaller potentials our simulations
under-predict the differential capacitance.
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FIG. 7. Horizontally averaged potential for the capacitance cases in Fig. 6.

Next we illustrate the effect of the thermal fluctuations in the fluctuating hydrodynamic model of
the RTIL. We consider two cases in which the simulations were performed with the stochastic fluxes
turned off: a deterministic simulation with a random initial perturbation (first running one time step
of the full stochastic algorithm and then turning off the noise terms); and a fully deterministic
simulation with a homogeneous initial condition. For the periodic systems considered in Sec. IV B
we found little difference between the fully stochastic and the randomly perturbed deterministic sim-
ulations. However, if we consider the steady state cation concentration in capacitance simulations
with ±8 V electrode potentials as shown in Fig. 9, we see that the results for the two deterministic
cases are very different from the results for the fully stochastic simulation. The initially perturbed
deterministic simulation has a similar morphology, except that horizontal stripes are preferred in the
vicinity of the walls. In the fully deterministic simulation, horizontal stripes quickly form across the
domain. These stripes do not have a consistent structure size; they are thinner at the center of the
domain and thickest near the walls.

FIG. 8. Differential capacitance as a function of electrode potential compared to theory Eq. (50).
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FIG. 9. Cation concentrations for ±8 V capacitance simulations. (Left) Stochastic simulation, (middle)
deterministic simulation with an initial stochastic perturbation, and (right) purely deterministic simulation.

In Fig. 10 we show horizontally averaged profiles of the electric potential for these same three
cases which further confirm these observations. The perturbed deterministic simulation shows a
slower decrease in the potential away from the wall due to the horizontal striping (constructive
interference in the horizontal averaging), and in the purely deterministic case the wavelength of the
oscillations is clearly smaller.

D. Electroosmotic shear flow

Electroosmotic flow occurs when an external electric field is applied parallel to the electric double
layer near an electrode wall. Since the double layer is not electroneutral the ions near the wall
experience a Lorentz force, which results in a body force on the fluid. For channel walls of equal
potential (or surface charge density) electroosmosis results in a plug flow for wide channels (L 
λD) and Poiseuille-type flow in narrow channels. For channel walls of equal potential (or surface
charge density) electroosmosis results in a plug flow when the channel width is much larger than
the double-layer thickness. Here we consider electrode walls of opposite potential, as in the parallel
plate capacitor geometry described in the previous section, which results in electroosmotic shear

FIG. 10. Horizontally averaged potential for the cases in Fig. 9. The perturbed deterministic case has a
large amplitude near the walls due to the horizontal striping, but the same wavelength as the stochastic case.
The purely deterministic case has striping features with smaller wavelength.
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FIG. 11. Time evolution of the cation concentration in the RTIL under electroosmotic shear; images are at
t = 0, 2, 5, and 20 ns. (For a multimedia view, see Supplemental Material Ref. [59].)

flow. Specifically we consider electrodes with potentials of ±8 V and impose an external electric
field in the x direction corresponding to a 500 V potential drop across the domain. The double-layer
thickness is a few nanometers (see Fig. 7) and the channel width is 96 nm. The resulting shear
rate from the electroosmotic flow is about 0.4 ns−1. The temporal evolution of the resulting sheared
system is shown in Fig. 11. For the strong imposed electric field considered in this example, the
shearing first destroys the serpentine patterns and then structure is restored, developing a striated
pattern parallel to the imposed electric field with a few long-lived defects. Molecular dynamics
studies also indicate that nanostructures in RTILs persist in the presence of a strong shear [60,61].

V. CONCLUSIONS

The computational model presented here is the first step toward a mesoscale simulation capability
for room temperature ionic liquids that includes both hydrodynamics and thermal fluctuations.
The fluctuating hydrodynamics formulation for RTILs is a useful intermediary, mesoscale theory
bridging microscopic models, such as molecular dynamics, and macroscopic models. The low Mach
number formulation avoids the severe time step restriction associated with previous compressible
formulations. We have demonstrated in both two and three dimensions that resulting methodology
reproduces the microscopic structuring observed in RTILs. We also used the methodology to show
that the differential capacitance decreases with applied voltage which is a characteristic of ionic
liquids. The morphology patterns observed in this capacitance geometry were significantly different
depending on whether the simulations included or excluded thermal fluctuations. Finally, the shear
electroosmosis example shows that the methodology can be used to model electrokinetic flows.

The present model can be enhanced and extended in several important directions in the future.
In this paper we considered a two-component ionic fluid with symmetric ions; however, the
RTIL model can be generalized to arbitrary multi-component mixtures. (See Ref. [38] for a more
general FHD model of multicomponent electrolyte solutions.) This will allow us to consider RTILs
composed of dissimilar ions as well as investigate the effect of a polar solvent on the structural,
thermodynamic, and electrical properties.

As is commonly assumed in RTIL modeling we assumed the permittivity to be a constant. A
more realistic version of the model makes the permittivity a function of concentration, which is
important for the study of RTIL mixtures. The implementation requires modifying the calculation
of the Poisson equation and the Maxwell stress tensor; a greater challenge is determining an accurate
functional form of ε(c). A related extension is to include dielectric relaxation [62] by treating the
local permittivity (or equivalently, the local polarization density) as a stochastic quantity whose
dynamics are given by a Langevin equation.

The increased time step associated with the low Mach number FHD model makes it possible
to investigate long time dynamics and three dimensional effects. Many ionic liquids tend to have
glassy behaviors [63,64] that make the equilibration of molecular dynamics simulations particularly
challenging. Our fluctuating hydrodynamics model permits numerical explorations of RTIL regimes
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with slow dynamics. The capability to perform three dimensional simulations is particularly impor-
tant for future investigations of the structure and dynamics of the double layer. The transitions
between lateral arrangements of counter and co-ions at electrified interfaces greatly affects the
capacitance and dynamics of the double layers, and this is related to the three-dimensional nature of
the double layer in ionic liquids [65]. As part of this type of investigation, more physically realistic
boundary conditions that can capture wetting effects at electrode-RTIL interfaces will need to be
introduced.

Generalization of the methodology to more complex boundary conditions and geometries would
allow us to explore capacitance enhancement in nanopores [66], which are important in the devel-
opment of supercapacitors based on nanostructured electrodes. The treatment of electrochemical
effects at electrode boundaries would be a topic for future work.

Finally, the FHD methodology presented here lays the foundation for hybrid, or “heterogeneous”
methods [67–69] that couple a continuum hydrodynamic description to a more detailed microscopic
model, e.g., molecular dynamics. For these types of “adaptive algorithm” hybrids, the continuum
model needs to include thermal fluctuations to correctly capture the behavior in the region being
modeled with the microscopic model [70]. This type of hybrid model would enable simulations to
use a microscopic representation locally where molecular-level accuracy is desired, such as near
electrode surfaces, while using a less expensive continuum-based model in the remainder of the
domain.

The data that support the findings of this study are available from the corresponding author upon
reasonable request. The source code is publicly available on github at Refs. [71,72].
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APPENDIX: DERIVATION OF INVISCID HYDRODYNAMIC EQUATION

Here we derive the inviscid form of the momentum Eq. (4) using the calculus of variations. It
will be useful below to introduce the notation

Du
t f := ft + u · ∇ f (A1)

for the advective derivative of scalar f with respect to the velocity field u. For the case when f is a
vector of functions, Eq. (A1) is understood component-wise, so that in Einstein notation,

(
Du

t f
)

i = ( fi )t + u j
∂ fi

∂x j
. (A2)

Starting from the action

S =
∫

dt
∫

dr
1

2
ρ0|u|2 −

(
ρ0g(c,∇c) + ρ0z(2c − 1)φ − 1

2
ε|∇φ|2

)
, (A3)

which is simply the space-time integral of the kinetic energy of the fluid minus the time
integral of the free-energy functional G [see Eq. (1)], we add the constraints that the flow
u is divergence free and that the concentration c is advected by the flow. The action then
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becomes

S =
∫

dt
∫

dr
1

2
ρ0|u|2 −

[
ρ0g(c,∇c) + ρ0z(2c − 1)φ − 1

2
ε|∇φ|2

]
+ ρ0χ (∇ · u) + ρ0λ[ct + ∇ · (uc)], (A4)

where χ and λ are the Lagrange multipliers. These extra constraints are necessary for nontrivial
dynamics for the velocity field; enforcing that the action S is stationary with respect to variations in
u results in

u = c∇λ + ∇χ (A5)

after integrating by parts and assuming the space of trial functions is such that the boundary terms
vanish. This is the well-known Clebsch representation [73,74]. Variations with respect to φ and χ

result in the Poisson equation of electrostatics and the divergence-free constraint

−ε∇2φ = ρ0z(2c − 1) = q f , (A6)

∇ · u = 0. (A7)

Variations with respect to λ and using Eq. (A7) result in the constraint

Du
t c = 0. (A8)

Consider now the advective derivative of the Clebsch representation Eq. (A5), and note that Du
t is a

linear operator that obeys the standard product rule of differential calculus Du
t ( f g) = gDu

t f + f Du
t g,

as well as the commutation relation

Du
t (∇ f ) = ∇(

Du
t f

) − ∇u∇ f , (A9)

where the second term is a matrix-vector product and (∇u)i j is defined as ∂ui/∂x j . Hence,

Du
t u = Du

t (c∇λ) + Du
t (∇χ ) (A10)

= cDu
t (∇λ) + (

Du
t c

)∇λ + Du
t (∇χ ) (Eq. (A9), (A11)

= c∇(
Du

t λ
) − c∇u∇λ + ∇(

Du
t χ

) − ∇u∇χ
(
Du

t c = 0
)
, (A12)

= c∇(
Du

t λ
) + ∇(

Du
t χ − |u|2/2

)
(u = c∇λ + ∇χ ). (A13)

The term c∇(Du
t λ) will be the source of the Lorentz force density Eq. (15) and the divergence of

the interfacial reversible stress Eq. (16).
It remains to consider variations of the action S with respect to the concentration c. Grouping

together the contributions to the specific free-energy modeling the enthalpy and entropy of mixing
into a single term,

gloc(c) := kBT

m

[
gid (c) + gex(c)

]
, (A14)

Eq. (2) becomes

g(c,∇c) = gloc(c) + kBT

m

1

2
κ|∇c|2. (A15)

Variations with respect to c then result in

Du
t λ = −∂gloc

∂c
+ kBT

m
κ∇2c − 2zφ (A16)

⇒ c∇(
Du

t λ
) = −c∇

(
∂gloc

∂c

)
+ kBT

m
κc∇(∇2c

) − 2zc∇φ. (A17)
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After manipulating the three terms on the right hand side of Eq. (A17), we will insert them into
Eq. (A13). The third term can be written as

−2zc∇φ = −z(2c − 1)∇φ − z∇φ (A18)

= −
(

1

ρ0

)
q f ∇φ − z∇φ (A19)

= 1

ρ0
∇ · σ − z∇φ, (A20)

using the definition of the Maxwell stress tensor Eq. (15). The second term can be written by
combining the two product rule identities:

c∇(∇2c
) = ∇(

c∇2c
) − ∇2c ∇c (A21)

and

∇2c ∇c = ∇ · (∇c ⊗ ∇c) − 1

2
∇(|∇c|2) (A22)

= ∇ ·
(

∇c ⊗ ∇c − 1

2
|∇c|2I

)
, (A23)

so that

kBT

m
κc∇(∇2c

) = ∇
(

kBT

m
κc∇2c

)
− kBT

m
κ∇ ·

(
∇c ⊗ ∇c − 1

2
|∇c|2I

)
(A24)

= ∇
(

kBT

m
κc∇2c

)
+ 1

ρ0
∇ ·

(
ρ0kBT κ

m

[
1

2
|∇c|2 − ∇c ⊗ ∇c

])
(A25)

= ∇
(

kBT

m
κc∇2c

)
+ 1

ρ0
∇ · R (A26)

by definition of the interfacial reversible stress tensor Eq. (16). Last, the first term on the right-hand
side of Eq. (A17) can be rewritten using the Gibbs-Duhem relation of thermodynamics [41], which
says for our isothermal, two-component mixture,

∇p = ρ1∇μ1 + ρ2∇μ2, (A27)

where p is the thermodynamic pressure and μk = ∂gloc/∂ck . Since ρk = ρ0ck , c = c1, and c2 =
1 − c1,

∂gloc

∂c2
= −∂gloc

∂c1
, (A28)

and hence the Gibbs-Duhem relation reduces to

∇p = ρ0(2c − 1)∇
(

∂gloc

∂c

)
(A29)

⇒ −c∇
(

∂gloc

∂c

)
= −1

2

∇p

ρ0
− 1

2
∇

(
∂gloc

∂c

)
. (A30)

Inserting the relations Eqs. (A30), (A26), and (A20) into the c∇(Du
t λ) term in Eq. (A13) then results

in

Du
t u = c∇(Du

t λ) + ∇(
Du

t χ − |u|2/2
)

(A31)

= 1

ρ0
∇ · R + 1

ρ0
∇ · σ + ∇

(
Du

t χ + kBT κ

m
c∇2c − 1

2
|u|2 − 1

2

1

ρ0
p − 1

2

∂gloc

∂c
− zφ

)
, (A32)
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and after identifying

π := −
(

ρ0Du
t χ + ρ0kBT κ

m
c∇2c − 1

2
ρ0|u|2 − 1

2
p − 1

2
ρ0

∂gloc

∂c
− ρ0zφ

)
(A33)

as a perturbational pressure, we arrive at the inviscid form of the momentum Eq. (1),

(ρ0u)t + ∇ · (ρ0uu) + ∇π = ∇ · σ + ∇ · R, (A34)

as desired. �
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