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ABSTRACT

RelationalNet using Graph Neural Networks for Social Recommendations

by Dharahas Tallapally

Traditional recommender systems create models that can predict user interests

based on the user-item relationships. However, these systems often have limited

performance due to sparse user behavior data. To address this challenge, researchers

are now exploring models for social recommendation that can account for both user-

user and user-item relationships based on social networks, and user past behavior,

respectively. These models aim to understand each user’s behavior by considering

their trusted neighbors and their influence on each other. Specifically, the potential

embedding of each user is influenced by their trusted neighbors, who are, in turn,

influenced by their own trusted neighbors and social connections. Users’ interests

evolve over time as social influence propagates recursively in the social network.

In this project, we propose the RelationalNet model, which creates graphs not only

for the user-item and user-user relationships but also for the item-item relationships.

We learn the user interest predictions by using Graph Neural Networks(GNNs). By

incorporating social influence into recommendation models, we can capture more

accurate user interests, especially when traditional methods fall short due to data

sparsity. Such models improve the accuracy and effectiveness of recommendation

systems by leveraging social connections and interactions. Moreover, we perform ex-

periments that demonstrate that incorporating the item graph information into GNNs

produces better results compared to the current cutting-edge social recommendation

models.[1, 2, 3, 4].
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CHAPTER 1

Introduction

With the tremendous increase in digital data, recommender systems provide

a unique experience to users for personalizing content and services. Recommender

systems (RS) play a crucial role in numerous domains for providing personalized

recommendations to individual users, such as product recommendations in e-commerce

platforms (e.g., Amazon, Walmart, Target), curated playlists in streaming platforms

(e.g., YouTube, Spotify), targeted ads in online advertising and many others. The

primary purpose of recommender systems is to recommend a product or service to a

user, and recommender systems do this by consuming the users’ historical data to

find patterns, learn users’ preferences, and predict the likelihood of the user liking the

product or service. Users’ historical data is available in many formats, e.g., purchase

history, travel locations, likes and followers in the social app, rating and reviews of

products, and browsing activity. Recommender systems analyze a specific part of users’

data based on the goal of recommendations through model training. Researchers have

published many research papers on recommender systems in the past decade. Still,

with the latest technologies and advances, researchers are learning new techniques

and ideas to optimize and provide better recommendations to users. Graph Neural

Network(GNN) models have recently gained much traction in social recommendations.

The later part of the project discusses a new approach for a recommender systems

model using GNN for social recommendations.

To tackle the recommendation problem, it is often necessary to forecast ratings

for items a user has yet to encounter. One approach to accomplish this is to estimate

a user’s possible ratings for all unrated items and suggest the ones expected to receive

the highest ratings. A simple example of a recommender system with five users and
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five items is provided in Table 1. The table represents the rating profiles of each

user, where each row gives a user’s ratings for a subset of available Songs. User

preferences for songs are quantified using discrete numerical values ranging from 1-5,

with 5 representing a high liking for the corresponding item. It should be noted that

these ratings are subjective and may be interpreted differently by different users.

Our process for recommending songs to Alice involves initially approximating her

prospective ratings for the unrated songs and then proposing the songs that are

projected to receive the highest ratings.

Song-1 Song-2 Song-3 Song-4 Song-5
Alice 5 ? 3 ? ?
Bob 4 4
John 3 2 1
Mike 3 3 2

Wayne 5 3 4 2
Table 1: Example recommender systems’ rating table for user-items.

The example given above uses explicit ratings, which are ratings that users

directly provide for songs. These ratings are considered a strong source of information

because users can precisely convey their feelings about a specific item. On the other

hand, implicit ratings refer to ratings that are deduced by analyzing a user’s actions

and behavior. A case in point of an implicit rating could be deducing a user’s interest

in an item by the length of time they spend reading its online description, which

might suggest that they view it as valuable. However, this inference can sometimes be

incorrect, as the user may have been interrupted or distracted. Implicit ratings can be

collected from various sources, including usage frequency, bookmarking, and printing.

It’s worth noting that our research work in this project does not differentiate between

explicit and implicit ratings. Nonetheless, the data sets we used for our experiments

only included explicit ratings. In future studies, we may further explore using implicit
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Figure 1: Example top-level pipeline of Netflix recommender system[5]

ratings to enhance recommendation models.

In the pursuit of providing enhanced recommendations to users, researchers have

proposed and developed various variations of recommender systems. One prevalent

approach is item-based neighborhood methods, which recommend items to users based

on their similarity to previously interacted items. These methods directly leverage

the historical item-user interactions to identify items that exhibit similarities, thereby

facilitating personalized recommendations.

Another prominent direction in recommender systems is representation learning-

based methods, which aim to encode both users and items as continuous vectors or

embeddings in a shared space. By mapping users and items to a common latent space,

these models enable direct comparisons and similarity computations. The popularity

of representation-based models surged after the Netflix Prize competition [7], where

matrix factorization models showcased their superiority over classic neighborhood
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methods in terms of recommendation quality.

In recent years, deep learning models have emerged as the dominant methodology

for recommender systems, garnering substantial interest in both academic research

and industrial applications. The allure of deep learning lies in its ability to capture

complex and non-linear relationships between users and items. By leveraging sophisti-

cated neural architectures, deep learning models excel at capturing intricate user-item

dynamics, thus enhancing the accuracy and relevance of recommendations. Addition-

ally, these models offer the flexibility to seamlessly integrate diverse data sources,

such as contextual information, textual data, and visual cues, thereby enriching the

recommendation process with a wealth of information.

The integration of deep learning techniques into recommender systems has paved

the way for significant advancements in recommendation research and has found

wide-ranging applications across various domains. The inherent capacity of deep

learning models to capture intricate user-item relationships and effectively incorporate

diverse data sources has positioned them as a key enablers in the pursuit of more

accurate and comprehensive recommendation systems.

Within the realm of deep learning algorithms, there exists a distinct category

known as graph learning-based methods, which offer a unique perspective on infor-

mation processing in recommender systems. In these methods, recommender system

data is represented and analyzed through the lens of graph structures. Specifically,

the interactions between users and items can be depicted as interconnected nodes

in a graph, where the links reflect the relationships between them. By leveraging

graph-based representations, recommender systems gain the advantage of incorporat-

ing structured external information, such as social relationships among users, into
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the recommendation process. This integration of graph learning provides a unified

framework for modeling the diverse and abundant data present in recommender

systems.

Early explorations in graph learning-based recommender systems have focused

on utilizing graph embedding techniques to capture the relationships between nodes.

These techniques can be further categorized into factorization-based methods, dis-

tributed representation-based methods, and neural embedding-based methods [8].

These approaches aim to learn meaningful representations of nodes in the graph that

capture their inherent relationships and characteristics.

Recently, there has been a surge of interest in employing Graph Neural Networks

(GNNs) for recommendation tasks, owing to their exceptional ability to learn from

graph-structured data. GNN-based recommendation models have attracted significant

attention due to their capacity to effectively capture the complex relationships and

dependencies among users, items, and other relevant features within the graph struc-

ture. By leveraging the expressive power of GNNs, these models hold great promise

for enhancing the accuracy and effectiveness of recommender systems.

The utilization of graph learning techniques in recommender systems provides

a valuable avenue for leveraging the rich and interconnected nature of user-item

interactions. By incorporating graph structures and employing advanced methods like

GNNs, recommender systems can effectively harness the power of heterogeneous and

interconnected data sources to generate more accurate and personalized recommenda-

tions. As the field continues to advance, graph learning-based methods are poised to

play a pivotal role in the evolution of recommender systems, offering novel approaches

to address the challenges posed by diverse and interconnected data.
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Figure 2: Representative graph structures in recommender systems[6]

Training graph learning-based recommender systems necessitate access to datasets

that offer comprehensive information about users and items. However, not all publicly

available datasets possess the necessary level of detail to construct the required graphs

for training these models. In the context of this project and the development of the

RelationalNet model, we employed the Yelp dataset, which proved to be a valuable

resource in constructing the diverse graphs essential for our model’s training. By

leveraging the Yelp dataset, we were able to derive the necessary information and form

various graphs that underpin the RelationalNet model’s architecture and functionality.

In Chapter 3, we delve into a comprehensive exploration of the different graphs

employed within the RelationalNet model, shedding light on their significance and

contribution to the overall recommendation process.
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CHAPTER 2

Related Work

With the widespread adoption of online social platforms, the social recommenda-

tion has emerged as a highly promising approach that leverages the social networks

among users to enhance recommendation performance [9, 10]. In fact, researchers

have long recognized the influence of social connections on individuals, highlighting

the phenomenon of similar preferences among social neighbors as information diffuses

within social networks[11, 10, 12, 13, 14, 2, 15]. Empirically, social regularization [10]

has been demonstrated to be effective in social recommendation scenarios, operat-

ing under the assumption that users with similar preferences exhibit shared latent

preferences within popular latent factor-based models [16].

In the realm of social recommendations, graph neural networks (GNNs) have

emerged as a powerful tool for capturing the intricate relationships between users,

items, and other contextual features such as time and location[2, 3, 4, 14]. By

leveraging the expressive capabilities of GNNs, personalized recommendations can be

generated by considering not only the user-item interactions but also the influence

and information propagation within the social network. The incorporation of GNNs

into social recommendation models allows for a comprehensive understanding of

the complex dynamics present in social networks, resulting in more accurate and

contextually relevant recommendations.

In this chapter, we provide a comprehensive overview of recent studies that have

explored the application of GNNs in the field of social recommendations. These studies

investigate various aspects, such as modeling user-item interactions, capturing social

influence, incorporating contextual information, and addressing scalability challenges.
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By summarizing these advancements, we aim to present a holistic view of the current

state-of-the-art approaches that utilize GNNs in social recommendation systems.

Through a deeper understanding of these developments, researchers and practitioners

can gain insights into the potential benefits and challenges associated with integrating

GNNs into social recommendation frameworks, thereby fostering further innovation

and advancements in this exciting research area.

Ying et al. [14] introduced PinSage, a novel framework based on Graph Neural

Networks (GNNs), designed specifically for personalized feed recommendations. The

motivation behind PinSage stems from the scalability limitations observed in tradi-

tional Collaborative Filtering (CF) methods. PinSage revolutionizes the landscape of

personalized feeds(news) recommendations by constructing a graph representation that

encompasses both items and users. Leveraging the expressive power of GNNs, PinSage

efficiently learns personalized feed representations for each individual user. This

graph-based approach enables the model to capture the complex relationships between

items and users, thereby facilitating accurate and relevant pin recommendations.

One of the key advantages of PinSage lies in its ability to scale seamlessly to

web-scale graphs. By leveraging the power of GNNs, PinSage efficiently processes

and learns from large-scale graph data, making it well-suited for handling the massive

amounts of information present in news recommendation scenarios. This scalability

feature allows PinSage to handle the complexities of web-scale datasets, ensuring an

effective and efficient solution for personalized news recommendations.

The integration of GNNs within the PinSage framework signifies a significant

step forward in personalized news recommendation research. By leveraging the

inherent structure and interconnections within the news graph, PinSage brings about

8



improvements in recommendation quality and scalability, paving the way for more

accurate, personalized, and efficient news recommendation systems.

Figure 3: Model architecture of GraphRec for Social Recommendations [2]

In their paper, Fan et al. [2] presented GraphRec, an innovative recommendation

algorithm that leverages the power of graphs, as depicted in Figure 9. The authors

highlight the limitations of traditional recommendation techniques, particularly in

dealing with the cold-start problem and effectively capturing intricate user-item

connections. GraphRec aims to overcome these challenges by introducing a graph

neural network (GNN) to model user-item interactions in the form of a diverse graph.

The constructed graph incorporates nodes representing both users and items,

with edges symbolizing their interactions and relationships. By employing a GNN,

GraphRec effectively learns compact representations, referred to as embeddings,

for both users and items within this graph structure. These learned embeddings
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capture rich information about users’ preferences and item characteristics, enabling

the algorithm to provide personalized and context-aware recommendations.

The GNN component of GraphRec undergoes training to refine its ability to

extract meaningful patterns and relationships from the user-item interaction graph.

By optimizing the embeddings, the model can capture the underlying structure and

dynamics of the user-item ecosystem. These learned representations serve as the

foundation for generating recommendations tailored to individual users, taking into

account their preferences and the intricate interplay between users and items.

Through its utilization of graph-based modeling and the integration of GNNs,

GraphRec offers a promising approach to recommendation systems, addressing the

limitations of conventional techniques and effectively tackling the cold-start problem.

By leveraging the power of graphs and learning compact embeddings, GraphRec opens

up new avenues for providing accurate and personalized recommendations to users in

diverse domains.

Wu et al. [3] proposed Diffnet, a neural influence diffusion model for social

recommendation. Diffnet utilizes a user’s social network data to provide personalized

recommendations. Its neural architecture comprises four main components: the

embedding layer, the fusion layer, the layer-wise influence diffusion layers, and the

prediction layer.

The embedding layer takes relevant inputs and generates embeddings for users and

items. The fusion layer combines a user’s (or item’s) free embedding with associated

features, resulting in a hybrid user (or item) embedding. This fused embedding

is then fed into the influence diffusion layers. The influence diffusion layers are

structured hierarchically to capture the iterative social diffusion process within the

10



Figure 4: Model architecture of Neural Influence Diffusion Network (Diffnet)[3]

social network, which is a fundamental aspect of Diffnet. Once the influence diffusion

process reaches stability, the output layer predicts the final preference for a user-item

pair, as illustrated in Figure 4.

Compared to existing social recommendation models, which often rely on shallow

network structures that struggle to capture complex diffusion patterns, the Diffnet

model aims to overcome these limitations. Leveraging both user-item interaction data

and social network information enhances recommendation accuracy.

In subsequent research work, Wu et al. [4] introduced an enhanced version of

the Diffnet model [3], called Diffnet++. This advanced model builds upon the neural

influence diffusion framework for social recommendations. In addition to learning

user embeddings through influence diffusion from their social network, Diffnet++

incorporates user interest embeddings acquired through interest diffusion from user-

item interactions.

Figure 5 provides a visual representation of Diffnet++’s approach. At the top

of the figure, the user is connected to their social connections, forming a user-user

graph used to learn the user influence embeddings. Similarly, at the bottom part

11



Figure 5: Influence and Interest Diffusion Network (Diffnet++)[4]

of the figure, the user is connected to items, enabling the learning of user interest

embeddings from item interactions, represented as user-consumed-items graphs.

Figure 6: Model architecture of Neural Influence and Interest Diffusions (Diffnet++)[4]

Diffnet++ incorporates a neural architecture consisting of five essential com-

ponents: the embedding layer, the fusion layer, the layer-wise influence diffusion

layers, the layer-wise interest diffusion layer, and the prediction layer, as illustrated

in Figure 6. To ensure the efficacy of the user embeddings in both influence and

interest diffusion graphs, a node attention layer is employed to selectively emphasize

the most relevant information from the surrounding connections. Subsequently, after
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training the user influence embeddings and user interest embeddings separately, they

are aggregated in a graph attention layer to generate the final user embeddings from

the influence and interest perspectives.

As depicted in Figure 6, the model predicts the final preference for a user-item

pair once the influence and interest diffusion processes have reached a stable state.

This comprehensive architecture empowers the model to effectively capture both

influence and interest dynamics. Through extensive evaluation of diverse benchmark

datasets, Diffnet++ consistently demonstrates superior performance compared to the

original Diffnet model and other cutting-edge recommendation methods.

The fundamental concept behind the Diffnet [3] and Diffnetplus [4] models

revolves around training user embeddings through diffusion from graph relations.

In the original Diffnet, only the influence graph (user-user) is utilized to learn user

embeddings, whereas Diffnetplus incorporates both the influence graph and the interest

graphs (user-item) for training user embeddings. In this project, we propose a novel

model called RelationalNet, which builds upon the ideas of Diffnet++. However, in

addition to the user-user and user-item graphs, we introduce an item-item graph and

an item-consumed-users graph.

By incorporating item relations, the RelationalNet model places emphasis on both

user and item influences and interests. This extension enables the model to capture

and leverage the complex relationships between users and items. Consequently, the

model aims to provide enhanced user recommendations by considering the individual

interests of users and the intricate interplay between users and items.

The inclusion of the item-item graph and the item-consumed-users graph in

RelationalNet further enrich the modeling capabilities, allowing for a more compre-

13



hensive representation of the user-item ecosystem. Through the integration of these

additional relational graphs, the RelationalNet model aspires to deliver more accurate

and contextually relevant recommendations to users, considering a broader spectrum

of influences and connections.
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CHAPTER 3

Methodology

The current chapter presents the problem statement and the proposed architecture

of the RelationalNet model for social recommendations utilizing graph neural networks.

3.1 Problem Statement

Within all recommender systems, there exist two groups of entities:

• Users set: 𝑈 with 𝑀 users denoted as |𝑈 | = 𝑀

• Items set: 𝑉 with 𝑁 items denoted as |𝑉 | = 𝑁

Users interact with items to show their preferences in many forms, e.g., like/dislike,

ratings, and purchasing an item. In our approach, we consider a user interaction with

items as 𝑟𝑢𝑖 = 1 if user 𝑢 liked item 𝑖; otherwise, it is equal to 0.

Social recommender systems differentiate themselves from other recommender

systems by using user-user relations. A user-user directed graph 𝐺𝑆 = [𝑈,𝑈𝑆 ∈ 𝑅𝑀×𝑀 ]

where 𝑆 represents the social connections between users, i.e., for user 𝑢, 𝑢𝑠 are the

users’ neighbors. If a user 𝑎 follows or trusts user 𝑏 then 𝑠𝑎𝑏 = 1; otherwise, it is equal

to 0.

Similar to the user-user social connections, item-item relations are defined as

graph 𝐺𝑇 = [𝑉, 𝑉𝑇 ∈ 𝑅𝑁×𝑁 ] where 𝑇 represents the item-item connections between

items, i.e., for item 𝑖, 𝑖𝑡 are the similar item neighbors. if a item 𝑝 is similar to item 𝑞

then 𝑡𝑝𝑞 = 1; otherwise, it is equal to 0.

Every user is also associated with real-valued embedding denoted as 𝑥𝑎 in the

user embedding matrix 𝑋 ∈ 𝑅𝐷1×𝑀 where 𝐷1 is the number of embedded features(or
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dimensions) for each user 𝑎. Every item is also associated with real-valued embedding

denoted as 𝑦𝑖 in the item embedding matrix 𝑌 ∈ 𝑅𝐷2×𝑁 where 𝐷2 is the number of

embedded features(or dimensions) for each item 𝑖.

3.1.1 Definition

The objective is to predict the preferences of users towards unknown items,

represented by matrix 𝑅̂ with dimensions 𝑀 ×𝑁 , given a rating matrix 𝑅 consisting

of users (𝑀) and items (𝑁). Additionally, there is user-user social network data (𝑆),

item-item network data (𝑇 ), and two associated real-valued embedded matrices for

users (𝑋) and items (𝑌 ). The goal is to achieve this prediction through a function

𝑓(𝑅, 𝑆, 𝑇,𝑋, 𝑌 ).

𝑅̂ = 𝑓(𝑅, 𝑆, 𝑇,𝑋, 𝑌 ) (1)

3.2 RelationalNet Model Architecture

Figure 7: RelationalNet Model

The following subsections will describe the proposed RelationalNet model in
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Figure 8, highlighting how each layer is interconnected to produce the final rating for

a given user and item. The functionality of each layer and the flow of information

between them will be discussed in detail in the following sections.

3.2.1 Relations

Figure 8: Graphs used in RelationalNet model

The proposed RelationalNet model incorporates four distinct graph structures to

facilitate the training process for predicting unknown items, as illustrated in Figure 8.

These graph structures encompass the following:

• User-User Graph: The User-User graph captures the social interactions

between users by establishing links between them. This graph emphasizes

the significance of user preferences influenced by their social connections. For

instance, within the Yelp dataset, if user A follows users B and C, we create

directed graph edges (links) from user A to user B and user A to user C.

• User-Consumed-Items Graph: The User-Consumed-Items graph is formed

based on the interactions between users and items derived from each user’s past

behavior. It represents the items that a user has interacted with. For example, if

user A watches movies Avengers and Avatar, connections (links) are established

between user A and the movie Avengers, as well as between user A and the

movie Avatar.
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• Item-Consumed-Users Graph: The Item-Consumed-Users graph connects

items with the users who have interacted with them. It signifies the users who

have engaged with a particular item. For instance, if the movie Avengers is

watched by users A and B, links are created between the Avengers movie and

user A, as well as between the Avengers movie and user B.

• Item-Item Graph: The Item-Item graph establishes links between items that

exhibit similarities to each other. This graph captures the relationship between

items based on shared characteristics. For example, within the Yelp dataset, if

two restaurants serve similar food categories, a link is established between these

restaurants.

Compared to existing models, the RelationalNet model introduces the incor-

poration of item relations through the item-item graph and item-consumed-users

graph. Similar to how users learn from their neighboring users in the user-user graph,

items also have the ability to learn from their neighboring items. This inclusion of

item relations enhances the model’s capacity to capture complex item-item dynamics,

thereby improving the quality of recommendations generated by the RelationalNet

model.

3.2.2 Embedding Layer

The utilization of embedding layers is commonplace in the field of Natural

Language Processing (NLP), as evidenced by numerous works such as [17, 18, 19].

The embedding layer is part of the hidden layers in a deep neural network, taking

high-dimension input and outputs into a lower dimension. Recommender systems

utilize this technique to represent users and items with respective free vector encodings.
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• Let 𝑃 ∈ 𝑅𝑀×𝐷 represents the free latent embedding matrices of users with

𝐷-dimensions. The embedding layer executes an index selection operation to

generate the unrestrained latent vector of the user 𝑝𝑎 for user 𝑎 at 𝑎𝑡ℎ row.

• Similarly, Let 𝑄 ∈ 𝑅𝑁×𝐷 represents the free latent embeddings matrices of items

with 𝐷-dimensions. The embedding layer executes an index selection operation

to generate the unrestrained latent vector of the item 𝑞𝑏 for item 𝑏 at 𝑏𝑡ℎ row.

Figure 9: Embedding Layer example for users’ free latent embedding matrix

3.2.3 Fusion Layer

The fusion layer merges the latent free vector with the real-valued embedding

vector to capture diverse initial interests from the input data. The combination of

these two vectors is essential for effective information integration.

• The fusion layer processes latent free vectors 𝑝𝑎 from the embedding layer and

real-valued embedding vectors 𝑥𝑎 from input data 𝑋𝑀*𝐷 for each user 𝑎. The

output is the users’ initial interests 𝑢0
𝑎 across various input types.

𝑢0
𝑎 = 𝑔(𝑊1 × [𝑝𝑎, 𝑥𝑎]) (2)
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Where 𝑊1 is a trainable weights matrix and 𝑔(𝑥) is a function of the transfor-

mation matrix.

• For each item 𝑖, the inputs are the latent free vector 𝑞𝑖 and the real-valued

embedding vectors 𝑦𝑖, and the output is the initial interests 𝑣0𝑖 of the items.

𝑣0𝑖 = 𝑔(𝑊2 × [𝑞𝑖, 𝑦𝑖]) (3)

Where 𝑊2 is a trainable weights matrix and 𝑔(𝑥) is a function of the transfor-

mation matrix.

Figure 10: Fusion Layer example

3.2.4 Node Attention Layer

Graph neural networks (GNNs) consist of nodes with connections to other nodes,

forming a graph. These connected nodes are referred to as neighboring nodes. In GNNs,

each node receives and combines features from its neighboring nodes to represent the
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local structure of the graph. Different types of GNN layers use various aggregation

techniques for this purpose.

The social recommendations user-user graph employs attention from neighboring

nodes to enhance each user’s training. This attention can be computed in various ways,

such as taking the mean, concatenating it into vectors, or selecting the maximum

value from neighboring values. By repeatedly diffusing users’ preferences through

propagation in the graph, their preferences are effectively spread out as shown in

figure 11.

• Let each user 𝑎 has ℎ𝑎
𝑘 as latent embedding at 𝑘𝑡ℎ layer, then the user 𝑎 latent

embeddings for the neighboring nodes at layer 𝑘 + 1 is

ℎ𝑘+1
𝑆𝑎 = 𝑔(ℎ𝑘

𝑏 |𝑏 ∈ 𝑆𝑎) (4)

Where 𝑔(𝑥) is an attention function. The user 𝑎 latent embeddings can be

trained for layer 𝑘 + 1 with combination of ℎ𝑘
𝑎 and ℎ𝑘+1

𝑆𝑎 neighboring latent

embeddings:

ℎ𝑘+1
𝑎 = 𝛼(𝑊 𝑘 × [ℎ𝑘+1

𝑆𝑎 , ℎ𝑘
𝑎]) (5)

where 𝛼(𝑥) is non-linear transformation function.

• Let each item 𝑖 has 𝑙𝑖𝑘 as latent embedding at 𝑘𝑡ℎ layer, then the item 𝑖 latent

embeddings for the neighboring nodes at layer 𝑘 + 1 is

𝑙𝑘+1
𝑇 𝑖 = 𝑔(𝑙𝑘𝑏 |𝑏 ∈ 𝑇𝑖) (6)

Where 𝑔(𝑥) is an attention function. The item 𝑖 latent embeddings can be trained

for layer 𝑘 + 1 with combination of 𝑙𝑘𝑖 and 𝑙𝑘+1
𝑇 𝑖 neighboring latent embeddings:

𝑙𝑘+1
𝑖 = 𝛼(𝑊 𝑘 × [𝑙𝑘+1

𝑇 𝑖 , 𝑙𝑘𝑖 ]) (7)
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where 𝛼(𝑥) is non-linear transformation function.

Figure 11: Diffusion at Node attention layer

The RelationalNet model trains the social graph for user-user and item-item

connections and incorporates a graph of additional items consumed by each user and

the users consumed by each item. Like the user neighbor attention network, consumed

items by each user and those consumed for each item are trained for 𝑘 layers.

• Let each user 𝑎 has ℎ̃𝑎
𝑘 as latent embedding at 𝑘𝑡ℎ layer, then the user 𝑎 latent

embeddings for the consumed item nodes at layer 𝑘 + 1 is

ℎ̃𝑘+1
𝑉 𝑎 = 𝑔(ℎ̃𝑘

𝑏 |𝑏 ∈ 𝑉𝑎) (8)

where 𝑉𝑎 represents the items consumed by user 𝑎 and 𝑔(𝑥 is a transformation

function. The user 𝑎 latent embeddings can be trained for layer 𝑘 + 1 with

combination of ℎ̃𝑘
𝑎 and ℎ̃𝑘+1

𝑉 𝑎 consumed items latent embeddings:

ℎ̃𝑘+1
𝑎 = 𝛽(𝑊̃ 𝑘 × [ℎ̃𝑘+1

𝑉 𝑎 , ℎ̃𝑘
𝑎]) (9)

where 𝛽(𝑥) is non-linear transformation function.

• Let each item 𝑖 has 𝑙̃𝑖𝑘 as latent embedding at 𝑘𝑡ℎ layer, then the item 𝑖 latent

embeddings for the consumed user nodes at layer 𝑘 + 1 is

𝑙̃𝑘+1
𝑆𝑖 = 𝑔(𝑙̃𝑘𝑏 |𝑏 ∈ 𝑆𝑖) (10)
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Where 𝑆𝑖 represents users who consumed item 𝑖 and 𝑔(𝑥) is an attention function.

The item 𝑖 latent embeddings can be trained for layer 𝑘 + 1 with combination

of 𝑙̃𝑘𝑖 and 𝑙̃𝑘+1
𝑆𝑖

consumed users latent embeddings:

𝑙̃𝑘+1
𝑖 = 𝛽(𝑊̃ 𝑘 × [𝑙̃𝑘+1

𝑆𝑖 , 𝑙̃𝑘𝑖 ]) (11)

where 𝛽(𝑥) is non-linear transformation function.

3.2.5 Graph Attention Layer

The graph Attention Layer generates the latent embeddings for each user and

item using the node attention layer’s at every layer by a combination of suited graph

embeddings.

• For user 𝑎, using graph attention layer at 𝑘 + 1 layer to combine the latent

embeddings learned from neighbour users ℎ𝑘+1
𝑎 and from item consumed users

𝑙̃𝑘+1
𝑖 ] for each item 𝑖 and item latent embeddings from 𝑘𝑡ℎ layer i.e. 𝑣𝑘𝑖 is

𝑢𝑘+1
𝑎 = 𝑀𝐿𝑃2([ℎ

𝑘+1
𝑎 ,𝑀𝐿𝑃1([𝑙̃

𝑘+1
𝑖 , 𝑣𝑘𝑖 ])]) (12)

where 𝑀𝐿𝑃1,𝑀𝐿𝑃2 are the multi-layer perceptions used to learn the complex

relationship between social relations and item embeddings.

• For item 𝑖, using graph attention layer at 𝑘 + 1 layer to combine the latent

embeddings learned from neighbour items 𝑙𝑘+1
𝑖 and from users consumed item

ℎ̃𝑘+1
𝑎 ] for each user 𝑎 and item latent embeddings from 𝑘𝑡ℎ layer i.e. 𝑢𝑘

𝑎 is

𝑣𝑘+1
𝑖 = 𝑀𝐿𝑃2([𝑙

𝑘+1
𝑖 ,𝑀𝐿𝑃1([ℎ̃

𝑘+1
𝑎 , 𝑢𝑘

𝑎])]) (13)

where 𝑀𝐿𝑃1,𝑀𝐿𝑃2 are the multi-layer perceptions used to learn an understand-

ing of the intricate connections between item relations and user embeddings.
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Figure 12: Graph Attention at 𝑘 + 1 Layer for user embeddings example

3.2.6 Prediction Layer

To predict a user’s liking for an item, we consider the latent embedding of each

user 𝑎 from the final graph attention layer [12] denoted as 𝑢𝑘
𝑎 at the 𝑘𝑡ℎ layer after

repeated diffusion of neighbors from eq.4. Similarly, for every item 𝑖 latent embeddings

from graph attention layer [13] denoted as 𝑣𝑘𝑖 .

𝑟𝑎𝑖 = (𝑣𝑘𝑖 )
𝑇 × 𝑢𝑘

𝑎 (14)

3.2.7 Loss Function

Our focus is on the implicit feedback of users. In line with the commonly used

ranking-based loss function in Bayesian personalized ranking[20], we have designed a

loss function based on pairwise ranking for optimization purposes:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝐿(𝑅, 𝑅̂)) =
𝑀∑︁
𝑎=1

𝑁∑︁
𝑖∈𝐷𝑎

𝜎(𝑟𝑎𝑖 − 𝑟𝑎𝑖) (15)
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Figure 13: Prediction Layer

where 𝜎(𝑥) is a sigmoid function. 𝐷𝑎 represents the known rated items of user 𝑎.To

implement it, we utilize TensorFlow to execute the suggested model. We optimize

the model parameters using a mini-batch Adam optimizer.
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CHAPTER 4

Results

4.1 Dataset

The Yelp dataset is a vast collection of information on businesses, reviews, users,

check-ins, and tips accessible for research purposes. It contains data on various

types of businesses, including restaurants, bars, and cafes. These details include

their names, addresses, phone numbers, categories, ratings, operational hours, and

reviews. Individuals have the ability to provide a rating of 1-5 stars and compose

written evaluations for businesses. Moreover, the dataset incorporates social network

information, such as the followers of each Yelp user and the quantity of fans subscribed

to a business. The Yelp dataset can be downloaded from the Yelp website, but users

must abide by the Yelp Dataset License Agreement[21].

Yelp reviews are valuable for gaining insight into businesses, as they provide

star ratings and user-written feedback. To analyze this data, a preprocessing step

is performed by converting star ratings of 3 or higher to a rating of 1, indicating

a positive sentiment towards the business, and ratings below 3 are converted to 0,

indicating negative sentiment. In order to obtain insights from the written reviews,

the gensim tool and Word2vec model are employed to capture the embedding of each

word. By doing so, it becomes possible to produce a feature vector for each user by

computing the mean of the trained word vectors that are correlated to their reviews.

A similar process is employed to create feature vectors for every business. The feature

vectors for both users and items serve as inputs to the model, denoted as 𝑋 and 𝑌 ,

respectively.

The Yelp dataset contains user followers’ information, creating a user-user graph.
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In this graph, a link is established between user 𝑎 and user 𝑏 if user 𝑎 follows user 𝑏,

and the link is assigned a weight of 1 which is used in input as 𝑆 in problem definition.

The dataset also contains information on businesses and their categories. Businesses

with at least seven common categories are considered similar, and a link is formed

between them to create a business-business graph. The user-user and business-business

graphs are used as inputs 𝑠 and 𝑇 respectively for the neural network to capture graph

relationships.

During the training and testing process, the dataset is filtered to exclude infor-

mation that may not be reliable or useful. Users with inadequate information, such as

those with less than ten reviews or ten followers, are removed from the dataset. Users

with certain conditions that may skew the results are also excluded. By applying these

filters, the dataset is refined to ensure that only relevant and reliable information is

utilized for the analysis.

Dataset Yelp
Users 1,987,897

Businesses 150,346
Reviews 6,990,280

Filtered Users 15,519
Filtered Business 24,648
Filtered Reviews 815,777

Social Links (user-user) 836,186
Item links (business-business) 196,010

Reviews Sparsity 0.213%
Table 2: Yelp Dataset.

4.2 Training Settings

The Yelp dataset, after being preprocessed, is divided into three distinct subsets

- the training, validation, and test datasets, respectively. These subsets are created

using a ratio of 7:1:2. At the initialization of the model, there are fixed input values
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provided for various parameters such as the user feature matrix, items feature matrix,

user-consumed items, item-consumed users, user-user graph data, and item-item graph

data. The fixed input values are utilized in various layers of the training model. In

the training process, the hyperparameters are fine-tuned using the validation dataset.

During each epoch, different mini-batches of users with varying sizes (100, 250,

500, 1000) are tested, and it is found that a batch size of 500 yields comparatively

better results than other batch sizes. The Adam optimizer is utilized to optimize

the model, with an initial learning rate of [0.001,0.0025,0.005] and a decay learning

rate to minimize the loss function given by Equation (15). To train the model to

be unbiased, a certain number of false negative ratings are added for each user from

randomly selected unrated items.

The GCN models utilize the depth parameter 𝐾 to gauge the impact of diffusion

on the overall model (as shown in Eq.(12, 13)). To evaluate the performance of the

model, it is trained with different values of 𝐾 = 2, 3. The size of the user and item-free

embeddings, denoted as 𝐷, is determined by the number of dimensions in the fusion

layer as well as the subsequent diffusion layers. For the fusion layers, we use a sigmoid

function as the non-linear function 𝑔(𝑥) to transform each value into the range (0, 1)

(as shown in Eq.(2, 3)). The output size of each layer is set to 𝐷 = 64 dimensions.

4.3 Performance Metrics

The models’ effectiveness is evaluated using top-N recommendation metrics, which

are specifically designed to measure the system’s ability to predict the items that a

user may find interesting. The two main metrics used for this purpose are Hit Rate

(HR) and Normalized Discounted Cumulative Gain (NDCG).
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4.3.1 Hit Rate (HR)

HR is a metric used to evaluate the performance of the model by calculating the

percentage of times at least one item from the test set of a user was recommended in

the top-N recommendations suggested by the model. Essentially, HR assesses whether

the model is able to recommend at least one relevant item to the user.

The Hit Rate (HR) at N is calculated as follows:

𝐻𝑅@𝑁 =
Number of users with at least one hit in top-N

Total number of users

where a "hit" is defined as the recommended item being among the ground truth

items for a user, and "top-N" refers to the top N recommended items for each user.

For example, let’s consider a test set of 100 users and their corresponding ground

truth sets of movies. The recommender system generates a list of top-5 movie

recommendations for each user. After evaluating the recommendations, it is found

that 30 users have at least one recommended movie in their ground truth sets. In this

case, the hit rate would be calculated as 30/100 = 0.3 or 30%.

A higher hit rate serves as an indicator of a recommender system’s effectiveness,

as it suggests that the system is successfully recommending items that match users’

preferences. However, it is essential to recognize that the hit rate metric solely

focuses on whether the recommended items are present in the user’s ground truth set,

without considering their ranking or relevance. As a result, it is common practice to

complement the hit rate with other evaluation metrics to obtain a more comprehensive

assessment of the recommender system’s performance. By incorporating additional

metrics, the evaluation process gains insights into the system’s ability to provide
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accurate and highly relevant recommendations to users.

4.3.2 Normalized Discounted Cumulative Gain (NDCG)

Normalized Discounted Cumulative Gain (NDCG) evaluates the quality of the

recommended items’ ranking. This metric accounts for the relevance of items based

on their position in the recommendation list, with items at higher positions being

deemed more relevant. The metric is normalized based on the ideal DCG (Discounted

Cumulative Gain). The ideal DCG represents the cumulative gain of the perfectly

ordered items that are most relevant to each user.

𝑁𝐷𝐶𝐺@𝑘 =
𝐷𝐶𝐺@𝑘

𝐼𝐷𝐶𝐺@𝑘

where k represents the position in the recommendation list. Discounted Cumula-

tive Gain (DCG) is defined as:

𝐷𝐶𝐺@𝑘 =
𝑘∑︁

𝑖=1

2𝑟𝑒𝑙𝑖 − 1

log2(𝑖+ 1)

where 𝑟𝑒𝑙𝑖 is the score that indicates how relevant the item recommended at

position i is, and IDCG (Ideal Discounted Cumulative Gain) is the DCG score of the

ideal (perfectly ordered) list of recommended items.

For example, let’s consider a scenario where a user is looking for movie recom-

mendations. The recommender system generates a list of recommended movies based

on the user’s preferences. The relevance of each recommended movie is assessed based

on factors such as the user’s past interactions, ratings, or explicit feedback.

Suppose the system recommends a list of movies with their corresponding relevance
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scores:

Movie Relevance Score
Movie A 0.9
Movie B 0.6
Movie C 0.8
Movie D 0.4
Movie E 0.7

Table 3: Relevance score for movies from recommender system

The ideal or perfect ranking of the movies, according to the user’s preferences,

would be:

Movie Relevance Score
Movie A 0.9
Movie C 0.8
Movie E 0.7
Movie B 0.6
Movie D 0.4

Table 4: Ideal Relevance score for movies from recommender system in order

To calculate NDCG, we take the relevance scores of the recommended movies

and discount them based on their positions in the ranking. The discounted relevance

scores are then summed up and normalized.

In this example, the NDCG would be calculated as follows:

𝐷𝐶𝐺 = 0.9 + 0.8/𝑙𝑜𝑔2(3) + 0.7/𝑙𝑜𝑔2(4) + 0.6/𝑙𝑜𝑔2(5) + 0.4/𝑙𝑜𝑔2(6)

𝐷𝐶𝐺 = 0.9 + 0.8/1.585 + 0.7/2 + 0.6/2.322 + 0.4/2.585

𝐷𝐶𝐺 = 0.9 + 0.505 + 0.35 + 0.258 + 0.154

𝐷𝐶𝐺 = 2.167

𝐼𝑑𝑒𝑎𝑙𝐷𝐶𝐺(𝐼𝐷𝐶𝐺) = 0.9 + 0.8/𝑙𝑜𝑔2(2) + 0.7/𝑙𝑜𝑔2(3) + 0.6/𝑙𝑜𝑔2(4) + 0.4/𝑙𝑜𝑔2(5)
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𝐼𝐷𝐶𝐺 = 0.9 + 0.8 + 0.7/1.585 + 0.6/2 + 0.4/2.322

𝐼𝐷𝐶𝐺 = 0.9 + 0.8 + 0.441 + 0.3 + 0.173

𝐼𝐷𝐶𝐺 = 2.614

𝑁𝐷𝐶𝐺 = 𝐷𝐶𝐺/𝐼𝐷𝐶𝐺 = 2.167/2.614 ≈ 0.828

In this case, the NDCG score is approximately 0.828, indicating the quality of the

recommended list based on both ranking and relevance. The higher the NDCG score

(closer to 1), the better the recommender system is performing in terms of providing

relevant and well-ranked recommendations.

In this project, HR and NDCG are evaluated on the test data to determine how

well the models perform. By utilizing these top-N metrics, we can effectively gauge the

ability of the model to make accurate recommendations and compare the effectiveness

of different models.

4.4 Observations

We conducted several experiments to evaluate the effectiveness of our proposed

RelationalNet model, where we trained the model using various sets of hyperparame-

ters, as described in the training settings section. We aimed to find the hyperparameter

settings that would yield the best performance for the model. To compare our Relation-

alNet model results, we used the Diffnet++ model[4], which is the latest recommender

system for social recommendations. The Diffnet++ model has demonstrated superior

performance compared to other existing models in this field.

To ensure fairness in our experiments, we employed the identical datasets and

evaluation metrics used by the Diffnet++[4] paper. Specifically, we used the Yelp
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datasets and evaluated our model using HR and NDCG metrics. Our findings indicate

that our RelationalNet model outperformed the Diffnet++ model to a small extent,

with respect to all the evaluation metrics mentioned above.

Model HR(5) HR(10) HR(15)
Diffnet++[4] (GNN Layers K=2) 0.2700 0.3112 0.3650
Diffnet++[4] (GNN Layers K=3) 0.2455 0.2824 0.3359

RelationalNet Model (GNN Layers K=2) 0.2914 0.3255 0.3718
RelationalNet Model (GNN Layers K=3) 0.2749 0.3123 0.3608

Table 5: Results metrics: Hit Rate(HR) for top 5,10 and 15 recommendations

Table 5 presents the results obtained by training our RelationalNet model with

various combinations of hyperparameters, as outlined in the training settings section.

The RelationalNet model, consisting of 2 GNN layers, demonstrated better performance

in terms of hit rate metrics for top-k=[5,10,15] recommendations. Our analysis revealed

that increasing the number of layers led to a decrease in metrics, indicating a potential

negative impact on both our RelationalNet model and the Diffnet++ model.

Model NDCG(5) NDCG(10) NDCG(15)
Diffnet++[4] (GNN Layers K=2) 0.4773 0.5124 0.5242
Diffnet++[4] (GNN Layers K=3) 0.4644 0.4979 0.5090

RelationalNet Model (GNN Layers K=2) 0.5040 0.5328 0.5407
RelationalNet Model (GNN Layers K=3) 0.4911 0.5217 0.5303

Table 6: Results metrics: Normalized Discounted Cumulative Gain(NDCG) for top
5,10 and 15 recommendations

Furthermore, Table 6 shows the NDCG metrics for different models, including the

RelationalNet model with 2 GNN layers. Our analysis revealed that the RelationalNet

model demonstrated promising results and outperformed other NDCG metrics for

top-k recommendations. The findings indicate that our RelationalNet model may

improve the precision of recommendations in social recommendation systems.
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Model MAE RMSE
SocialMF[16] 0.3697 2.1990
GraphRec[2] 0.5442 0.6640

Diffnet++[4] (GNN Layers K=2) 0.0283 0.1685
Diffnet++[4] (GNN Layers K=3) 0.0273 0.1654

RelationalNet Model (GNN Layers K=2) 0.0283 0.1684
RelationalNet Model (GNN Layers K=3) 0.0273 0.1653

Table 7: Results metrics: Mean Average Error(MAE) and Root Mean Square Error
(RMSE)

Table 7 shows a comparison between SocialMF[16], GraphRec[2], Diffnet++[4],

and RelationalNet model in terms of their mean average error (MAE) and root mean

square error (RMSE) values. It is worth mentioning that there are considerable varia-

tions between the metrics obtained by GraphRec and the other models. Specifically,

while GraphRec predicts ratings on a scale of 1-5, the other models predict whether

the user likes an item or not, with binary values of 1 or 0. Hence, comparing the

performance of these models based on the same metric can be challenging due to

significant differences in the metrics obtained by GraphRec and the other models.

Nevertheless, we can observe that the RelationalNet model and Diffnet++ outperform

GraphRec[2] and SocialMF[16] which is a social recommender system without GNNs

on both MAE and RMSE metrics. The RelationalNet model with 3 GNN layers

achieved the best performance among these two models, with the lowest MAE and

RMSE values.

The outcomes from our experiments presented in the above tables illustrate the

efficacy of our RelationalNet model in tackling the social recommendation problem.

Our model has achieved accurate user preference prediction and outperformed existing

models in multiple evaluation metrics. The outcomes indicate that integrating GNN

layers to facilitate interest and influence diffusion has led to an enhancement in
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Figure 14: Training loss of the Diffnet++ model[4]

recommendation precision. The RelationalNet model can potentially enhance the

recommendation accuracy in social recommendation systems and can be effectively

used in real-world applications. In general, our findings emphasize the practicality

and efficiency of the model we introduced in tackling the difficulties encountered in

social recommendation systems.

Figures 14 and 15 illustrate the comparison of the proposed RelationalNet model’s

training loss with different learning rates to analyze its performance under various

hyperparameters. The visual representation of the loss function enables us to evaluate

the model’s convergence rate. The figures reveal that a learning rate of 0.0025 leads to
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Figure 15: Training loss of RelationalNet model

a smoother decrease in training loss than a learning rate of 0.005, indicating that the

former results in better convergence. Moreover, the RelationalNet model outperforms

the Diffnet++ model in terms of training loss for most learning rates, indicating its

ability to learn from input data effectively and suggesting that it can achieve higher

accuracy than the Diffnet++ model.
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CHAPTER 5

Conclusion

This project introduced an improved version of the neural influence and diffusion

model for social recommendations, named RelationalNet based on the foundation of

the Diffnet++[4] approach. Our model utilized social connections to create a user-user

graph. To further enable the learning of user and item embeddings using graph

neural networks, we created item-item graphs by linking similar items. We created

a multi-layer diffusion network that employs graph attention to combine graph and

node-level representations, with the aim of enhancing user and item modeling.

Our experiments using the Yelp dataset showed that our RelationalNet model

achieved impressive results, indicating its effectiveness in addressing the social rec-

ommendation problem. However, there is still significant scope to explore different

mechanisms for forming connections between items and investigating graph reasoning

models to learn users’ preferences better.

Overall, our RelationalNet model provides a significant step forward in social

recommendation systems by taking advantage of social connections and leveraging

the power of graph neural networks. We hope our work will inspire further research

and development of even more powerful and effective recommendation systems for

social networks.
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