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ABSTRACT

Resource Coordination Learning for End-to-end Network Slicing Under Limited State
Visibility

by Xiang Liu

This paper discusses a resource coordination problem under limited state visibility

to realize end-to-end network slices that are hosted by multiple network domains.

We formulate this resource coordination problem as a special type of the multi-

armed bandit (MAB) problem called the combinatorial multi-armed bandit (CMAB)

problem. Based on this formulation, we convert the problem to a regret minimization

problem with a linear objective function and solve it by adapting the Learning

with Linear Rewards (LLR) algorithm. In this paper, we present a new hybrid

approach that incorporates state reports, which include partial resource information

in each domain, into the existing LLR algorithm. Our experiment results show that

the proposed algorithm performs significantly better than other baseline learning

algorithms. Furthermore, the proposed algorithm outperforms the LLR algorithm

especially when the traffic patterns of network slices are more dynamic and unstable.
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CHAPTER 1

Introduction
1.1 5G Network Slicing

As a step up from the 4G system, it is anticipated that the 5G system will support

a variety of new use cases. One of the key enabling technologies that will facilitate the

deployment of these applications is network slicing. Network slicing, in essence, allows

for the creation of multiple virtual networks on a shared infrastructure, thus providing

separate and isolated environments for different types of traffic or applications [1].

Through network slicing, each virtual network can be tailored to a specific use case,

such as low-latency communication for critical applications or high-speed internet

for consumers. As shown in Figure 1, three different types of customized network

slices are built on the same physical infrastructure. Software-Defined Networking

(SDN) and Network Functions Virtualization (NFV), which collectively provide

flexible control and management of communication and computing resources, are

the enablers of network slicing. SDN refers to the network architecture capable of

separating the control plane from the data plane and providing programmability for

the development of network application [2]. This separation allows for centralized

network management and control, which results in more efficient network operations

and better network performance. SDN has gained popularity in recent years due to its

ability to simplify network management, reduce costs, and improve network security.

NFV is a technology that allows network functions to be extracted from the underlying

hardware by utilizing virtualization technologies and off-the-shelf hardware [3]. NFV

can reduce both capital and operational expenses and offer horizontal scalability due

to the fact that only inexpensive commodity hardware is required.
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Figure 1: 5G Network Slicing Architecture based on [4].

1.2 Project Statement

In this research, we are particularly interested in end-to-end (E2E) network slicing

that spans multiple administrative domains. Even though resource allocation problems

for network slicing in single domains have been widely discussed in recent literature

[5, 6, 7], the coordinated resource reservation among multiple network domains to

compose E2E network slices still poses many challenges [8].

Based on the generic architecture of E2E resource coordination in the next-

generation networks [9], we propose a resource reservation function of a centralized

global slice coordinator that communicates with the domain orchestrators and stitches

a set of domain-level services to compose E2E network slices. A major technical

challenge in this global resource coordination is the limited visibility of domain-level

topology and the associated performance. Due to its administrative independence,
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each resource orchestrator, which would be a composite of an SDN controller and NFV

MANO [10], is assumed to only reveal limited information about its domain states

to the global coordinator. The selective information revealing enhances security and

scalability by limiting the information passed outside of each domain. However, at the

same time, it makes the global resource coordination task more complex with the latent

states of underlying domain infrastructure, especially with stringent Service-Level

Agreement (SLA) of E2E network slices [11].

Hence, this paper discusses a resource allocation problem of a global slice co-

ordinator for E2E network slicing. The problem assumes limited domain visibility

where the coordinator has access to only a list of aggregated domain-level services

and their expected performance metrics such as delay. The allocation problem is

solved by a multi-armed bandit (MAB) algorithm that learns the performance of

domain-level services by combining semi-bandit feedback from the actual performance

measurement and the expected service performance reported by domain orchestrators.

Our evaluation experiment demonstrates that the proposed approach outperforms

other baseline MAB algorithms in terms of regret.
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CHAPTER 2

Background
2.1 Multi-Armed Bandit Problem

The multi-armed bandit problem is a classic decision-making problem that is

first initiated by Lai and Robbins [12]. It involves a situation in which a gambler

must choose between multiple slot machines with varying payout rates. The goal

is to maximize the total payoff over time. To maximize reward, the agent must

strike a balance between exploration (attempting new arms to learn about their

rewards) and exploitation (selecting the arm with the highest expected reward based

on current knowledge). Several algorithms, including the 𝜖-greedy algorithm, the

Upper Confidence Bound (UCB) algorithm, and Thompson Sampling, have been

developed to address the multi-armed bandit problem. This chapter will primarily

focus on the first two algorithms which are employed in our experiment. Then we

will explain the concept of a super arm and discuss related works. To begin with, we

will discuss regret and the action-value function.

2.1.1 Regret

In reinforcement learning, particularly in the multi-armed bandit problem, regret

is used to describe the difference between the expected cumulative reward of the

optimal policy and the actual cumulative reward obtained by the agent’s policy. As

previously stated, our goal is to maximize the overall reward. In other words, we want

to minimize regret. As a result, regret is a crucial metric for evaluating reinforcement

learning algorithms and is often used as a benchmark for comparisons between different

methods. In our research, we use the concept of cumulative regret which sums up

regret over a fixed time horizon (see Figure 2).
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Figure 2: Cumulative Regret.

2.1.2 Action-value Function

An action-value function (also known as Q-function) is a function that measures

the expected return of a action in a given state. More specifically, it informs us

whether or not we should take a particular action in a given state. The action-value

function is mostly used in a Markov decision process. It is also utilized in the context

of the MAB problem, as the stochastic MAB problem can be interpreted as a Markov

decision process without the state 𝑆. We will explain more about the stochastic

MAB problem in the next section. Mathematically, the action-value function can be

expressed as:

𝑄(𝑎) = 𝐸 [𝑅𝑡 | 𝐴𝑡 = 𝑎] , (1)

where 𝑅𝑡 is the reward received at time step t after taking action 𝑎.

2.1.3 Stochastic Multi-Armed Bandit Problem

Based on the characteristics of the reward generation process, the bandit problem

can be further divided into three categories: stochastic, adversarial, and Markovian

[13]. Our problem formulation belongs to the stochastic MAB problem. Here are the

5



basic definitions of the stochastic MAB problem. There are 𝐾 independent arms.

Each arm 𝑖 = 1, ..., 𝐾 corresponds to an unknown probability distribution for the

reward. At each time step 𝑡, we choose an arm 𝐼𝑡 and observe the reward 𝑋𝐼𝑡,𝑡 based

on its probability distribution. Thus the pseudo-regret after n plays can be defined as:

𝑅𝑛 = max
𝑖=1,...,𝐾

𝑛∑︁
𝑡=1

𝑋𝑖,𝑡 −
𝑛∑︁

𝑡=1

𝑋𝐼𝑡,𝑡. (2)

As stated previously, our objective is to minimize this regret.

2.1.4 Epsilon-Greedy Approach

The 𝜖-greedy approach is a simple algorithm for balancing exploration and

exploitation in the multi-armed bandit problem. At each time step 𝑡, the agent

chooses a random action with probability 𝜖 (the exploration rate) and chooses the

action with highest estimated reward 𝑄(𝑎) with probability (1 - 𝜖) (the exploitation

rate).

Notably, 𝜖 is typically set to a small constant (e.g., 0.1) to encourage exploration

in the early stages of learning. It then gradually decreases over time as the agent gains

more experience and converges on more accurate action-value function estimates. This

technique is called decayed 𝜖-greedy which we have adopted in our implementation.

Specifically we used a decay function for 𝜖 which is shown in Figure 3. This decay

function combined with the 𝜖-greedy algorithm will enforce the agent to explore in the

beginning phase and smoothly transition to exploiting in later episodes. The 𝜖-greedy

approach provides a simple and effective solution for the MAB problem and can be

easily implemented in practice. However, it has some major drawbacks. For example,

we may still choose those arms that we have confirmed are bad for exploration, thus

not maximizing our potential overall reward.
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Figure 3: The Decay Function for 𝜖.

2.1.5 Upper Confidence Bound

The UCB algorithm proposed by Agrawal [14] is another popular technique for

solving the multi-armed bandit problem based on the principle of optimism in face of

uncertainty. It does not assume any prior knowledge on the reward distribution and

can avoid the drawbacks of the 𝜖-greedy approach. The basic idea behind the UCB

algorithm is to estimate the potential reward of each option and choose the one with

the highest expected reward while also taking into account for the uncertainty in the

estimates. Furthermore, the UCB algorithm balances exploration and exploitation

by choosing actions with higher uncertainty (as reflected by the upper confidence

bound) more frequently early on, and gradually shifting towards exploiting actions

with higher estimated values as more data is collected. The formula for UCB can be

represented as:

𝐴𝑡 = argmax
𝑎

[︃
𝑄𝑡(𝑎) + 𝑐

√︃
log 𝑡

𝑁𝑡(𝑎)

]︃
. (3)
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• 𝑄𝑡(𝑎) represents the estimated value of action a at current timestep t.

• 𝑁𝑡(𝑎) represents the number of times that action a has been selected prior to

current timestep.

• 𝑐 is a constant that controls the confidence interval.

The action-value function 𝑄𝑡(𝑎) is the exploitation part. Using this part alone, we

will choose the action with the highest expected reward at the moment which is a

greedy approach. The second half of the formula represents the exploration part. In

other words, if an arm has not been drawn frequently enough, this value will increase

over time to encourage exploration. In our research implementation, we used UCB1

which belongs to the UCB family. The formula for UCB1 is shown here:

𝐴𝑡 = argmax
𝑎

[︃
𝑄𝑡(𝑎) +

√︃
2 log 𝑡

𝑁𝑡(𝑎)

]︃
. (4)

Note in UCB1, we don’t have the constant c found in the original UCB formula.

Instead, we have the factor of 2 in the numerator.

2.2 Super Arm

In our model, each domain-level service can be considered as an arm of the

MAB problem. We choose a set of arms for every round from an ordered set of

domains. Chen et al. [15] consider such a group of arms as a super arm because

they are played together. By treating every super arm as an arm, we can apply the

classical MAB framework as desired. We will go into more depth about how we

generate these super arms as a preprocessing step in the experiment section. There

are a couple of well-studied methods as mentioned above to solve the MAB problem.

However, this super arm approach has some limitations. According to Chen et al. [15],

the number of super arms grows exponentially as the number of domains increases

due to combinatorial explosion and hence classical MAB algorithms may require an

exponential number of steps only to traverse all super arms. Additionally, distinct

8



super arms may have some underlying dependencies because they share some common

arms in each domain. These dependencies are not taken into account in the traditional

MAB framework.

2.3 Related Work

As the resource coordination problem for E2E network slicing deals with the

optimization of combinatorial resources, we survey several existing techniques in

combinatorial MAB problems and related network optimization problems in the

existing literature. Our work in this paper is based on the work by Gai et al. [16],

which studied stochastic combinatorial multi-armed bandits with linearly weighted

rewards. They presented a new efficient policy called the Learning with Linear

Rewards that has been shown to produce regret that grows logarithmically with time

and polynomially with the number of unknown variables [16].

While the study mentioned above assumes a network-structured action set, Chen

et al. [15] proposes a similar approach, CMAB, with a more general action set. The

CMAB framework improves the regret bound and includes both general linear and

non-linear reward functions. However, the paper assumes that the expected outcomes

from base arms determine the expected reward of playing a super arm. The work

by Chen et al. [17] allows a general nonlinear reward function and does not require

the assumption on the expected rewards. In the CMAB problem, there are three

categories of feedback: the semi-bandit, the full information, and the bandit types.

As will be discussed later, our resource coordination problem belongs to the semi-

bandit type, where the outcomes of selected arms in each round can be observed.

The full information type implies that the outcomes of all arms are revealed in each

round, which is not realistic for our network setting where the domain orchestrators

only reveal limited information. As a natural application of the CMAB problem,

9



stochastic online shortest path routing with end-to-end feedback was studied by

Zhu and Modiano [18]. Their end-to-end feedback refers to the bandit type where

the aggregated outcome of all selected arms is observed while the outcome of each

individual arm is not observable. They designed efficient algorithms that can utilize

the network structure to achieve nearly optimal regrets for the problem.

The same problem was addressed by Liu and Zhao [19], where they proposed

an adaptive shortest-path routing algorithm. However, their approach requires a

brute-force search over the action space. Kovacevic et al. [20] presented another

framework where the delay requirements on each network domain can be redefined

depending on the conditions in the rest of the network. This differs from our network

setting.

10



CHAPTER 3

An Global Resource Coordination Architecture

This chapter introduces a global resource coordination architecture. Section 3.1

describes the network architecture as well as the coordination mechanism between

the global slice coordinator and domain orchestrators. Section 3.2 defines the slice

request format and discusses about its generality. Finally, section 3.3 concludes with

an explanation of domain reports.

3.1 Network Domains and Slice Coordination

An E2E network slice is instantiated over multiple control network domains

spanning access, transport, and core networks. The physical infrastructure of each

part of the network would have different types of resources. For example, access

networks cover relatively small areas and hold capacity-limited computing resources

like edge servers. In contrast, transport and core networks cover wider areas and

sustain larger computing facilities including cloud data centers. Such network domains

are operated by different infrastructure operators who do not share information, such

as topology and routing policy, with each other. Such domain-specific information is

usually monitored and managed by domain orchestrators.

Therefore, the instantiation of E2E slices is coordinated by a global slice coordi-

nator who communicates with the domain orchestrators. In this paper, we assume a

communication model where the global coordinator has a more active role in planning

slice deployments, while the domain orchestrators focus on maintaining a resource

status view and mapping requests that are communicated from the global coordinator

onto the actual infrastructure (See Figure 4). More precisely, domain orchestrators

report available resource information, such as available domain-level services and

their expected delay, to the global coordinator. Each domain-level service can be

characterized by a pair of ingress and egress nodes, but the global coordinator does

11



Figure 4: An Global Resource Coordination Architecture based on [9].

not know how the two endpoints are connected internally in the domain. While

domain orchestrators may choose different routing policies to provide the domain-level

services, a general assumption is that a logical service link between a pair of ingress and

egress nodes within each domain is supported by technologies like MPLS tunnels over

IP/MPLS. Therefore, even when two links on network slices use the same domain-level

service, the associated traffic does not necessarily travel the same physical path in the

domain. Also, traffic patterns of network slices mapped on the service would have an

influence on the performance metrics of the services.

The global coordinator also serves the role of the entry point of user slice requests.

A slice user sends service specification, which includes E2E end-nodes and an E2E delay

requirement, to the coordinator, and the coordinator translates the E2E requests into

domain-level deployment requests. Each domain orchestrator reserves an appropriate

set of resources in its corresponding domain to satisfy the domain-level requests when

receiving them from the global coordinator.

12



3.2 Slice Request

Each slice request consists of requirements for communication. In general, these

requirements are carried over from the slice user’s SLA with the provider. These

requirements include data throughput, traffic capacity, number of users, latency,

reliability, and availability.

In this paper, we represent an E2E request in the following format:

𝑟 = (𝑠, 𝑡, 𝐶𝑟), (5)

where 𝐶𝑟 represents the upper bound for the sum of edge weights on a selected path 𝑝

from node 𝑠 to 𝑡. To put it simply, the following path weight requirement needs to be

satisfied:

∑︁
𝑒∈𝑝𝑠,𝑡

𝑤(𝑒) ≤ 𝐶𝑟, (6)

where 𝑤 is an edge weight function. The simplest interpretation of the request format

is the delay requirement. Each communication link on a path incurs a delay, and

the total delay needs to be less than the requested E2E delay bound. In contrast,

many other metrics and their combinations can be represented as edge weights. For

example, the availability metrics can be represented as edge weights after taking the

logarithm of availability probability [21]. Therefore, this representation in our paper

still holds some level of generality though we discuss the simplest scenario with the

delay constraints in the rest of this paper.

3.3 Domain Report

Each domain orchestrator manages communication and computation resources.

It is reasonable to assume that the orchestrators do not reveal all the internal details,

including domain topology and individual resource capacity, while they provide the

resources in the domain as a service. Hence, it can be assumed that the domain

13



orchestrators periodically report only the essential information about the domain

state, so slice users (through the global coordinator) can select a set of appropriate

services from multiple domains to realize E2E slices. We assume that the domain

reports from domain orchestrators include available domain-level path services and

their expected delay performance. The delay performance is the expected one-way

latency for a domain-level service based on past data, which can be inaccurate due to

the network’s dynamic nature and other administrative factors.

14



CHAPTER 4

Problem Formulation

The global slice coordinator can be interpreted as a request interface between

slice users and domain orchestrators, who actually own the infrastructure. From the

domain orchestrators’ perspective, the global coordinator bridges them and multiple

slice users. This request delegation to the global coordinator by slice users suggests

a view that the global coordinator becomes a pseudo-user for domain orchestrators.

Therefore, the deployment problem of E2E slices can be formulated as an optimization

problem solved by the global coordinator, given partial domain state views from the

domain orchestrators. For each slice request, the global coordinator needs to solve the

following problem: How should it select a set of available services from these domains

to meet the requirements?

The whole network, including access, transport, and core networks, is denoted as:

𝐺 = (𝑉,𝐸). (7)

A network domain in 𝐺 is denoted as:

𝑑𝑖 = (𝑉𝑖, 𝐸𝑖). (8)

• 𝑉𝑖 represents a set of communication nodes.

• 𝐸𝑖 represents a set of communication links in the domain.

• The end nodes of an edge must be in 𝑉𝑖 for the edge to belong to 𝐸𝑖.

The node set 𝑉𝑖 is partitioned into two subsets; namely, internal nodes 𝑉 internal
𝑖 and

border nodes 𝑉 border
𝑖 that have direct links to border nodes in other domains. A set

of available domain-level services 𝑃 (𝑑𝑖) in each domain 𝑑𝑖 is reported in the form of

pairs of border nodes (ingress and egress nodes) as the pair specifies an underlying

15



transit path. It can be represented as:

𝑃 (𝑑𝑖) = {(𝑠, 𝑡)𝑚}, (9)

where 𝑠, 𝑡 ∈ 𝑉 border
𝑖 and 𝑚 is an index.

Suppose that each domain orchestrator proposes a set of candidate paths within the

corresponding domain (including communication resources), 𝑃 (𝑑𝑖) = {(𝑠, 𝑡)𝑚} ∀𝑑𝑖 ∈ 𝐷.

When receiving an E2E request 𝑟𝑘, the global slice coordinator selects a set of domain

paths from the candidate paths to satisfy the request. The selected E2E path needs

to be a path instance 𝑝(𝑟𝑘) := ⟨(𝑠(0), 𝑡(0)), (𝑠(1), 𝑡(1)), ..., (𝑠(𝑛), 𝑡(𝑛))⟩ ∈ 𝑃 (𝑑𝑖)× 𝑃 (𝑑𝑗)×

· · · × 𝑃 (𝑑𝑚) spanning a subset of domains 𝑑𝑖, 𝑑𝑗, ..., 𝑑𝑚 ∈ 𝐷(𝑟𝑘) ⊆ 𝐷, where 𝐷(𝑟𝑘) is

an ordered set of domains that are selected to host the requested E2E slice. Note

that the superscript (𝑥) indicates the ordinal number of the domain path in the E2E

path instance. The ordered set of domains could be generated by many different

path-finding algorithms. For example, in this paper, we generate the ordered set by

running Dijkstra’s algorithm on a snapshot of a global abstract network graph that is

constructed based on the collection of domain service reports. After finding a shortest

path between a given pair of end nodes of an E2E network slice, we can order the

domains according to the order in which they appear on the path. To guarantee

the connectivity as an E2E path, an edge (𝑡(𝑥), 𝑠(𝑥+1)) ∀𝑥 ∈ [𝑛− 1] must exist in 𝐸.

The edge does not belong to any domain ({𝐸𝑖} ∀𝑖) since it is a communication link

between two domains. After deploying the E2E slice using the path 𝑝(𝑟𝑘), the global

coordinator monitors the actual performance during the slice holding time.
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CHAPTER 5

Combinatorial Multi-Armed Bandit with Augmented Semi-Feedback

In this chapter, we briefly talk about our methodologies. Section 5.1 explains the

general settings for the CMAB framework. Section 5.2 introduces the Learning with

Linear Rewards algorithm and explains how it fits in our scenario. Finally, section

5.3 explains our hybrid approach and its advantages.

5.1 Combinatorial Multi-Armed Bandit

In this paper, we introduce a version of the CMAB framework. We have a set of

domains 𝐷 = {𝑑𝑖} where 𝑖 ∈ {1, ..., 𝑁} and 𝑁 is the maximum number of domains in

this network. At each decision period 𝑡 with a newly arriving E2E slice request, an

𝑁 -dimensional action vector 𝑎(𝑡) is selected. Each element 𝑎𝑖(𝑡) in this vector 𝑎(𝑡) is

binary (0 or 1). When 𝑎𝑖(𝑡) = 1, a service in the corresponding domain 𝑑𝑖 is selected

at time step 𝑡.

When a service is selected within a domain, its actual delay performance will

be revealed. We refer to this type of feedback as semi-bandit feedback because the

coordinator only examines the outcomes of selected services in a selected subset of

domains in a single round of play. We denote the actual observed delay performance

for the selected service in the domain 𝑑𝑖 as 𝑋𝑖(𝑡). Thus, the cumulative delay is

defined as:

𝐿(𝑡) =
𝑁∑︁
𝑖=1

𝑎𝑖(𝑡)𝑋𝑖(𝑡). (10)

The global coordinator is trying to choose the optimal set of services at round 𝑡

to satisfy the request 𝑟𝑘 from a predefined set of domain-level services based on the

measured delay of previously selected services from previous rounds, without knowing

the whole network topology and their delay metrics.

When observing the actual delay incurred by each domain-level service at time 𝑡,
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the regret of the global coordinator’s service selection 𝑎(𝑡) can be represented as:

𝑅𝑡 =

(︃
𝑁∑︁
𝑖=1

𝑎𝑖(𝑡)𝑋𝑖(𝑡)

)︃
− 𝐿*(𝑡), (11)

where 𝐿*(𝑡) := max𝑎{
∑︀𝑁

𝑖=1 𝑎𝑖(𝑡)𝑋𝑖(𝑡)} represents the optimum path with the minimum

delay, which can be obtained only when the global coordinator has access to full

information of the entire topology and actual delay.

5.2 Learning with Linear Rewards (LLR) in the Domain-level Service
Stitching

When the global coordinator stitches a set of domain-level services to compose

an E2E network slice, the delay of the E2E path and individual links only can

be estimated based on historical patterns. Since each communication link would

host multiple slices on it, the delay of domain-level services, which are composites

of the communication links, could change very dynamically over time. However,

it is reasonable to assume that the delay follows a certain statistical pattern or a

distribution as the relative popularity of each domain-level service should be relatively

stable. From this perspective, we can treat the delay of each domain-level service as

a random variable with an unknown mean 𝜃. In our context, estimating the mean

accurately is equivalent to knowing the average delay performance of each domain-level

service. Thus, slice resource optimization can be statistically solved based on the

average performance.

Gai et al. proposed the Learning with Linear Rewards (LLR) algorithm that fits

the aforementioned property of domain-level service stitching. The LLR algorithm

makes use of the UCB1 policy, which employs the Chernoff-Hoeffding bound [16]. We

have the following formula in the LLR algorithm:

𝜃𝑖 +

√︃
(𝐿+ 1) ln𝑛

𝑚𝑖

, (12)
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Figure 5: The Learning with Linear Rewards Algorithm by Gai et al. [16].

which is essentially an adaptation of the UCB1 formula that we have shown before.

Note that in step 11 of the LLR algorithm, the maximization problem needs to be

solved in polynomial time in order for the algorithm to have polynomial computation

at every step [16]. In our research setting, we aim to minimize the overall latency

rather than maximize the rewards. Thus the formula is modified into:

𝜃𝑖 −

√︃
(𝐿+ 1) ln𝑛

𝑚𝑖

. (13)

Additionally, the maximization problem is converted into a minimization problem and

is solved with the shortest path algorithm during implementation. By maintaining

the moving average 𝜃, the observed times 𝑚𝑖 and the uncertainty value, like the

Upper Confidence Bound (UCB) value, during MAB rounds, the LLR estimates the
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true average in an environment with semi-bandit feedback. Unlike other super arm

approaches where each arm corresponds to an E2E path, the LLR scales better by

avoiding the enumeration of an exponentially large set of paths.

5.3 Our Hybrid Approach

Our hybrid approach augments the efficient LLR algorithm with additional

information, the domain report, as extra feedback. Even though the expected delay

values included in the domain reports are not necessarily accurate, the augmented

feedback with them changes the CMAB problem from the semi-feedback type to

pseudo-full feedback type in which a part of feedback is derived from the actual delay

and the rest of it includes partial information about the actual delay. Using the

additional report-based weights in the LLR algorithm, we try to further improve the

performance to estimate the true means of each delay random variable.
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CHAPTER 6

Experiment

We conduct experiments on both a realistic network topology and randomly

generated network graphs to validate the performance of the Hybrid approach. The

proposed approach is compared against the 𝜖-greedy algorithm, the UCB1 algorithm,

a report approach, and the LLR algorithm in terms of total regret over time.

6.1 Network, Control Domains and E2E Slice Requests

Our network simulator was implemented with Python with the NetworkX package

[22].

6.1.1 ATT North America

To test the performance of the proposal in a practical network topology, we

utilized a network graph constructed based on the ATT North America (See Figure

6).

Figure 6: The ATT North America (2007 and 2008) Network Graph by the Internet
Topology Zoo Network [23].

6.1.2 Synthesized Topology

In addition to the realistic graph, our simulation uses randomly generated undi-

rected graphs to evaluate the performance of the algorithms in larger networks with
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more domains. The graph generator takes two parameters, the number of nodes and

the probability of edge creation. An experimental graph is configured to 100 nodes

with an edge generation probability of 0.018 (See Figure 7).

Figure 7: A Synthesized 100-node Network Typology 𝐺.

6.1.3 Domain Assignment

Control domains for both the ATT North America network and the synthesized

network graph are determined by a clustering algorithm based on node proximity.

Note that for both types of graphs, the initial weight of every edge is set to a random

integer in the range of 5 to 15. We need to assign nodes in the network into different

groups (control domains). This is a classic community detection problem. A number

of methods have been developed that return good results in practical situations. In

our case, we use the Clauset-Newman-Moore algorithm which mainly considers greedy

modularity maximization [24]. Applying the community detection algorithm to a

given network graph G, we are able to identify control domains which are represented

by sets of vertex numbers. Figure 8 illustrates four different control domains defined
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Figure 8: The ATT North America Typology with Domains.

for the ATT North America network graph. Figure 9 is a visualization of different

domains for the synthesized network graph. Nodes in a control domain are colored

with the same color. The domains automatically define the inter-domain links, which

are represented in gray lines.
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Figure 9: The Synthesized Network Typology with Domains.

6.1.4 E2E Slice Request Generation

A set of E2E requests are also randomly generated. A pair of source and

destination nodes (𝑠, 𝑡) are uniformly randomly selected from the border nodes in two

district domains in a given graph 𝐺. When it comes to decomposing an E2E request

into domain-level requests, we compute the weighted shortest path between 𝑠 and 𝑡

and extract the domains on the shortest paths as candidate domains.

6.2 Periodic Domain Reports and Traffic Observation

A domain-level service graph is created based on the selected candidate domains

(See Figure 10). In the service graph, all nodes are border nodes from the domains,

and other internal nodes will be aggregated. Therefore, an edge in the service graph

could be a path in the underlying domain.

All edge weights are derived from the network graph 𝐺 by employing the shortest

path algorithm. By running Dijkstra’s algorithm between the service end nodes

(ingress and egress border nodes), each weight will be computed as the sum of edge
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weights on the shortest path. This service graph is what we refer to as the abstract

view of domain services. The steps involved in creating a service graph are illustrated

in Figure 10.

Figure 10: Composition of a Domain-level Service Graph for Slice Requests between
Node 𝐴 and 𝐽 .

First, we have a randomly generated E2E request (A, J). After decomposing this

E2E request, we have determined that domain 1, 2 and 3 are candidate domains.

Based on this information, we then construct the corresponding domain-level service

graph.

To simulate the dynamics of the delay and traffic pattern of each communication

link, the weights of a service graph are updated every round. For each edge, we use

the Gaussian distribution that produces its weight based on its edge weight from

the moving average from the previous round and a standard deviation parameter 𝜎1.

The value of 𝜎1 simulates the network’s stability. When 𝜎1 is small, the delay of

domain-level services is more stable. In contrast, the delay fluctuates dynamically

when 𝜎1 increases.
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The domain reports are generated by adding a random noise value to the true

delay value on the service graph. In practice, even a domain orchestrator does not

know the true delay and needs to estimate the expected delay to report. Also, in some

scenarios, it is possible to assume that a domain orchestrator intentionally reports

inaccurate expected delays to manipulate the service selection phase. The noise values

added to produce the simulated domain reports represent these scenarios. The noise

is generated based on Gaussian distribution where its mean is the true delay in the

service graph and its standard deviation is a parameter 𝜎2. Similar to 𝜎1, the value

of 𝜎2 indicates the accuracy of the domain reports as the increase in 𝜎2 more likely

diverts the report from the true delay values.

6.3 Baseline Comparison

The performance of the Hybrid approach is evaluated against the 𝜖-greedy al-

gorithm, the UCB1 algorithm, a report approach, and the LLR algorithm in terms

of total regret. The 𝜖-greedy algorithm and the UCB1 algorithm both adopt the

super arm approach, where each arm is a predefined path. In the initialization phase

of these two algorithms, sampling-based uniform exploration is executed to obtain

a set of valid paths. Then, the algorithms choose their service path selection from

the set of valid paths and update the weights accordingly, utilizing the feedback of

selected services. These algorithms only get their service path selections from a set of

these pre-computed paths. For the Report approach, we select the shortest path from

the service graph in each time slot using the state reports, assuming the reports are

completely accurate. Note that here we assume the global coordinator has access to

the service graph’s typology but not its actual edge weights. For the LLR algorithm,

we store and use feedback for each domain-level service (an edge in a service graph)

instead of a pre-computed path. The weights of each domain-level service is computed
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by:

𝜃𝑖 −
√︀

(𝐿+ 1) ln𝑛/𝑚𝑖, (14)

where 𝐿 refers to the number of edges in the service graph, 𝜃𝑖 is the average of all

the observed values for the edge up to the current time slot, and 𝑚𝑖 is the number

of times this edge has been observed up to the current time slot. Lastly, our Hybrid

approach incorporates the LLR algorithm’s method. We also take advantage of the

domain reports to update the weights of domain-level services that are not selected.

6.4 Results

The experiments in both the ATT North America and synthesized graphs demon-

strate quite similar results. As the problem is inherently more difficult in larger

networks with more domains, we show the results in the synthesized graphs in this

paper. Figure 11 shows the results of total regret over time for networks with different

levels of delay fluctuations. As discussed above, the stability of the network (or the

link delay metric) is tuned by a parameter, 𝜎1. The experiment was executed over

10,000 time steps with 𝜎2 set to 4.

Our Hybrid approach performs the best, while the 𝜖-greedy algorithm performs

the worst in all cases. The simple report approach, however, eventually catches up

to the UCB1 algorithm and surpasses it as our network is becoming more unstable.

This is anticipated for several reasons. First, applying the UCB1 algorithm directly to

super arms is a relatively naive strategy. We compute the uncertainty value for each

super arm based on its moving average and frequency of play. The moving average

in this case cannot capture the true mean of each super arm because the network is

highly unstable and each basic arm may fluctuate considerably throughout each round.

Secondly, as stated in the background chapter, the super arm approach disregards the

interdependencies between super arms. Thus, when updating in each round, only one
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(a) 𝜎1 = 2 (b) 𝜎1 = 4

(c) 𝜎1 = 8 (d) 𝜎1 = 10

Figure 11: Total Regret Under Different Levels of Network Stability.

super arm is updated, whereas in the LLR, a collection of arms that can be used to

compose other super arms is updated. Lastly, the straightforward report approach

implies access to the service graph’s typology, which the UCB1 approach does not

have.

The results of total regret over time for different domain report accuracy are

shown in Figure 12. The simulation was executed over 10,000 time steps with 𝜎1 set

to 2. Each plot point is obtained by averaging the result from 10 different requests.

Our Hybrid approach achieves the best results, while the 𝜖-greedy algorithm

achieves the lowest levels of performance in every scenario. When 𝜎2 = 0, the

performance of the report approach, the LLR, and the Hybrid approach are all
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(a) 𝜎2 = 0 (b) 𝜎2 = 2

(c) 𝜎2 = 4 (d) 𝜎2 = 8

Figure 12: Total Regret with Different Levels of Domain Report Accuracy.

comparable. This is to be expected due to the fact that, when the network is relatively

stable and the report accuracy is high enough, the report approach and the Hybrid

approach will gain the most from the domain reports. It is worth mentioning that even

if the report accuracy is 100%, we still receive a positive regret since the service graph

does not necessarily represent the weights of the next time step but does represent

the average performance.

A surprising result is that our hybrid method outperforms the LLR even in

situations where the report accuracy is relatively worse, as demonstrated in Figures

12(c) and 12(d). This result indicates the potential benefit of incorporating extra

report information in the bandit algorithm. According to this result, some information
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useful to estimate the overall performance of domain-level services can be extracted,

even when the domain report does not quite reflect the delay of the next time step.

30



CHAPTER 7

Conclusion

The resource coordination problem for E2E network slicing is computationally

intractable. In particular, resource coordination under the limited visibility posed

by the independent administrative network domains demands a new learning-based

approach to realize efficient resource utilization across multiple domains. In this paper,

we present a new hybrid approach that incorporates abstract domain reports into

the existing Learning with Linear Rewards algorithm. Experiment results show that

our proposed algorithm performs significantly better than other algorithms. In recent

years, machine learning algorithms, particularly graph neural networks (GNNs), have

been proposed to solve the scalability issue of combinatorial optimization problems

[25, 26]. To improve the scalability of our method, we plan to employ GNNs in future

research to encode complex network structures. We are also interested in determining

whether the technique developed in this study can be applied to combinatorial bandits

with general nonlinear reward functions. In addition, we wish to empirically validate

and demonstrate the efficacy of our algorithm in practice.
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