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ABSTRACT

Airport Assignment for Emergency Aircraft using Reinforcement Learning

by Saketh Kamatham

The volume of air traffic is increasing exponentially every day. The Air Traffic

Control (ATC) at the airport has to handle aircraft runway assignments for landing and

takeoff and airspace maintenance by directing passing aircraft through the airspace

safely. If any aircraft is facing a technical issue or problem and is in a state of

emergency, it requires expedited landing to respond to that emergency. The ATC

gives this aircraft priority to landing and assistance. This process is very strenuous as

the ATC has to deal with multiple aspects along with the emergency aircraft. It is

the duty of the ATC to direct the aircraft to the place that is equipped with handling

the aircraft. If the ATC does not have immediate answers to the requests from the

pilots, then it might result in an aircraft crash and loss of life. This project aims to

solve this problem by building a model using Reinforcement Learning that can map

an emergency aircraft to the airport in the shortest amount of time.

Keywords: Reinforcement Learning, Air Traffic Control, Assignment,

Airport Assignment, Deep Reinforcement Learning
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CHAPTER 1

Introduction

The responsibility of air traffic control (ATC) is to ensure the safe and efficient

movement of airplanes in the airspace. In the case of an emergency, ATC must be

able to route the aircraft to the nearest airport while also ensuring the safety of the

airspace. The process is very stressful on the ATC as it involves managing a lot

of aircraft both on the ground and in the air. An Emergency aircraft adds on top

of this stress as it requires priority assistance and any mistake from the ATC can

result in catastrophic results. There is a need for a more intelligent system that can

automate the handling of the airspace to ensure that all aircraft reach their intended

destinations safely. In this project, I propose employing reinforcement learning (RL)

to create an ATC agent capable of guiding an emergency aircraft to the airport while

ensuring airspace safety.

RL is a form of artificial intelligence that involves an agent interacting with an

environment and learning to attain a goal through trial and error. The agent would

be in charge of directing an emergency aircraft to the airport while avoiding any

obstacles in the setting of ATC. Based on its actions, it would receive feedback in the

form of rewards or penalties, such as successfully guiding the emergency aircraft to

the airport going out of bounds.

The intricacy of the environment is a significant barrier in designing an RL agent

for ATC. To avoid accidents, the agent would need to assess various aspects in real

time and make decisions swiftly. As a result, complex algorithms and advanced

machine learning techniques would be required to effectively navigate the airspace

and lead the emergency aircraft to the airport.

The ability of RL to learn from experience is a big advantage of employing it for

this problem. RL algorithms can adapt to changing environments and optimize their
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decision-making. This means that the RL agent’s performance may increase with

time, making it more efficient and successful in directing emergency planes to the

airport. Another benefit of adopting RL for ATC is its capacity to assess numerous

parameters at the same time. Traditional rule-based systems frequently rely on a

predefined set of rules that might be restrictive and inflexible. RL agents, on the

other hand, can consider several variables in real-time, allowing them to make more

informed judgments that take into account all relevant factors.

Finally, using reinforcement learning for ATC can potentially increase airspace

safety and efficiency in emergency situations. We can save lives and effectively manage

crucial situations by designing an RL agent that can guide emergency planes to the

airport while avoiding any obstacles. While developing such an agent is difficult, the

benefits it may give are substantial, making it a potential field of research for the

future of aviation.

In summary, the main target of this project is to route an emergency aircraft to

the nearest airport in the least amount of time without causing loss of separation with

obstacles using reinforcement learning.
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CHAPTER 2

Background

Machine learning, which is a sub-field of artificial intelligence is one such ad-

vancement that is improving every day. Machine learning itself has various sub-fields

like supervised learning which basically means we are training a model with data that

is labeled and the correct output is available when the model trains, unsupervised

learning which mainly focuses on unlabeled data and tried to detect patterns among

them, and reinforcement learning which is an incentive-based agent training approach

which vast range of applications.

Figure 1: Three Categories in Machine Learning

2.1 Reinforcement Learning

Reinforcement learning is a subset of Machine Learning (ML) that relies on the

output given by the environment to take certain actions. The reinforcement learning

model gives us information about the action that would produce the highest reward

if taken. In reinforcement learning, the actions that we take not only affect the

immediate rewards but also have an effect on the scenario that arises. The agent

is not given any information regarding which action to be taken, instead, the agent

in reinforcement learning observes the state of the environment and takes actions
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intending to maximize the long-term reward. This interaction between the agent

and the environment is modeled in a Markov Decision Process (MDP). A way to

solve optimal control problems was given by Richard Ernest Bellman. He called it

dynamic programming [11]. This approach used reinforcement learning for solving

MDPs. Apart from the environment and the agent, reinforcement learning has various

other sub-components.

Figure 2: Reinforcement Learning Steps

2.1.1 Policy

In simple words, we can define 𝑝𝑜𝑙𝑖𝑐𝑦 as the way any agent will behave at any

time. In a reinforcement learning environment, we have certain perceived states and

actions that we can take. A 𝑝𝑜𝑙𝑖𝑐𝑦 is a mapping between these states and actions that

we can take when we are in those states. The complexity of the policy depends on the

scenario. It can be a simple function as well as a computation-extensive calculation

based on the problem. The policy is considered very vital in reinforcement algorithms
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as using policy alone, we will be able to determine the agent’s behavior [8].

2.1.2 Reward Signal

In reinforcement learning, the agent takes an 𝑎𝑐𝑡𝑖𝑜𝑛 in the 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 and

received a 𝑟𝑒𝑤𝑎𝑟𝑑 from the environment. This receiving of the reward is called the

𝑟𝑒𝑤𝑎𝑟𝑑 𝑠𝑖𝑔𝑛𝑎𝑙. This reward signal is vital in deciding what the goal of the algorithm

is. The main goal of the agent is to achieve maximum reward in the long run. Defining

what actions will be ’bad’ and ’good’ for the problem can be conveyed by the reward

signal.

2.1.3 Value Function

Using the 𝑟𝑒𝑤𝑎𝑟𝑑 𝑠𝑖𝑔𝑛𝑎𝑙, the agent will know what is ’good’ in an immediate

sense but to understand what is ’good’ in the longer run, we use a 𝑣𝑎𝑙𝑢𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛.

The value of the state can be defined as the total reward the agent can expect in the

long run when it starts from that state.

2.1.4 Model

Using the model, we can understand how the environment will behave. In a

broader sense, we can use a model to plan after which we can decide what our actions

will be. When we use models to learn, we call it 𝑚𝑜𝑑𝑒𝑙 − 𝑏𝑎𝑠𝑒𝑑 learning.

To understand reinforcement learning, one can consider the following example

where a chess grandmaster makes a move. This move is decided based on factors like

planning, analyzing what the possible next move might be, and then planning for a

reply to counter this. In another example, consider a newborn calf. Initially, just after

birth, the calf struggles to stand up but after a few hours, it can walk and run. In

both these cases, there is an interaction between an agent who makes decisions and

the environment [8].

Agent training has experienced a lot of breakthroughs. One example is Deep
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Q-Learning [DQN] which incorporates deep neural networks with the aim to model the

state-action function accurately. This report aims to use this technique to implement

a deep learning model that is able to map an emergency aircraft to the nearest airport

in the least time.

2.2 Drawbacks of Reinforcement Learning

Reinforcement learning is an effective technique for teaching machines to learn

and develop through trial and error. However, there are several disadvantages

to this strategy. One significant issue is the distinction between exploration and

exploitation. To learn the best policy, the agent must experiment with various actions

and investigate its surroundings. However, this exploration can be time and money

intensive. However, if the agent only uses its current knowledge, it may lose out on

finding better solutions [8].

The problem of reward shaping is another disadvantage of reinforcement learning.

Only the reward signal given by the environment allows the agent to learn. If

the reward indication is insufficient or misleading, the agent may have difficulty

learning the best policy. Furthermore, designing a reward function can be difficult

and time-consuming, and poorly designed rewards can result in unintended behaviors

[8].

Finally, reinforcement learning has the potential to be computationally costly.

Many iterations of trial and error are required to train an agent to execute a task,

which can be time-consuming and resource-intensive. Furthermore, as the task’s

complexity grows, the state space and action space can become prohibitively big,

making it difficult to find an optimal policy [8].
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2.3 Neural Networks
2.3.1 Perceptron

A perception, which was developed in the 1950s by Frank Rosenblatt is a type of

artificial neuron.

Figure 3: A simple Perceptron

A perceptron will take binary inputs to give a single binary output. From Figure

3, we can see that 𝑥1, 𝑥2, and 𝑥3 are the binary inputs that give out a single binary

𝑜𝑢𝑡𝑝𝑢𝑡. Using the inputs, we determine the output. But there were cases where

some inputs had more significance towards the output than others. For this, Frank

Rosenblatt used 𝑤𝑒𝑖𝑔ℎ𝑡𝑠. These 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 are real numbers that convey how important

each input is.

𝐿𝑒𝑡 𝑡 = 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (1)

and

𝐿𝑒𝑡 𝑤1, 𝑤2, 𝑤3 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 (2)

then,

output =

⎧⎪⎪⎨⎪⎪⎩
0 if

∑︀
𝑗 𝑤𝑗𝑥𝑗 ≤ threshold

1 if
∑︀

𝑗 𝑤𝑗𝑥𝑗 > threshold
[1] (3)
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This is a very basic neuron and it is evident that a more complex network is

required when working on high-intensity or human-level data.

2.3.2 Neural Network

A neural network is a collection of multiple neurons arranged in multiple layers.

Figure 4: Neural Network Architecture [1]

The layer that is the most to the left is called as input layer followed by the

hidden layer/s to its right and then the output layer which is the right-most layer.

Neural networks have various applications and advantages when used. One such

application is Deep Learning. A neural network that has a lot of hidden layers can

be called a Deep neural Network. By using deep neural networks, complex tasks like

image analysis, speech recognition, AI gaming, Natural language processing, etc can

be done very easily. Neural networks are very flexible when it comes to the kind of

data they can work with. They are known to work easily with almost all kinds of data.

Because of this, the use cases for neural networks can range from a simple prediction

to a self-driving car.
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CHAPTER 3

Related Works

Air transport is one of the most used modes of transport in modern times. Air

traffic is a term used to refer to the movement of aircraft in the airspace. This

movement includes the aircraft taking off from the airport, the aircraft landing at the

airport, and the in-between movement of the aircraft during the flight. In recent times,

there has been substantial growth in the volume of air traffic. With this exponential

growth in traffic, it brought many changes in the way people travel around the

world. Air traffic also has a significant role in the transportation of necessary goods,

emergency assistance, medical supply delivery, and many more.

The reason that there is an exponential growth in air traffic is because there has

been an exponential growth in population. As per the data given by the International

Aviation Transport Association (IATA), an organization that handles air travel around

the world, about 178 million passengers traveled using an aircraft in the year 2022 and

it is increasing every day. With this increase, there is an increase in traffic congestion,

safety concerns, and accidents and it is up to the air traffic control to handle all these

and ensure safe passage to all aircraft in a timely manner. The current air traffic

control operations extensively depend on human controllers [3]. Maintaining the loss

of separation is an important aspect that all air traffic controllers consider.

3.1 Loss of Separation

Loss of separation is a phenomenon defined when, in airspace, two aircrafts

come too close the each other which violated the minimum separation distance that

is decided by the authorities. This is a major safety aspect that every air traffic

controller considers. The minimum separating distance is in place so that the safety of

the aircraft and in turn, the airspace is maintained. Various aspects like errors by the

pilot, errors by the controller, failure in communication systems, and mechanical or
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technical errors can cause loss of separation. It is very vital for air traffic controllers

to constantly check the positions of each aircraft and make sure the separation is not

lost.

Both in manned and unmanned aircraft, there is a need for an early warning for

safety incidents as airspace congestion is increasing. for this problem, M. Hawley and

R. Bharadwaj [3] utilized machine learning to detect statistical, safety anomalies within

national airspace(NAS). This is particularly challenging as there is less availability of

labeled anomaly data and using unsupervised learning would result in hard-to-interpret

results.

In their research, they focus on multiple aircraft anomalies. For their framework,

an anomaly is defined as a possible loss of separation event. Their model works from

an air traffic controller standpoint. They used the Aviation Safety Reporting System

(ASRS) data which has data pertinent to anonymous safety incidents. They also

used the FAA SWIM sources such as ASDE-X and TBFM data. They considered

self-separation and a calculation between the aircraft to identify these anomalies.

They also used the Traffic Collision Avoidance System (TCAS) in the aircraft to

identify loss of separation events. TCAS usually issues two distinct advisories, one

is the Traffic advisory (TA) and the other is Resolution Advisory (RA). If an RA is

issued, it means a critical collision event is imminent and if a TA is issued, it means

that a collision might be possible.

Using a machine learning model, three common situations where the aircraft came

under the separation threshold were identified. They used a reinforcement learning

algorithm to detect potential loss of separation events and the model was successful.

Another aspect that is very vital in airspace management is runway assignment.

There have been improvements in arrival management and optimal runway assignment

strategies around the world. Optimizing the runway assignment will increase the
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Figure 5: United States Separation Standards [2]

Figure 6: TCAS Envelopes [3]

utility of the airport but this in turn will also increase stress and workload on the

air traffic controller. N. Yoichi et al [4] used a neural network approach to take on
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this problem. They have used the data from Tokyo International Airport (RJTT) for

their work. Based on the direction of the wind, the RJTT airport uses two of its four

available runways. To determine which runway to be assigned to the aircraft, the air

traffic controller considers the direction of the aircraft’s destination. But, sometimes

due to the presence of traffic, non-nominal or non-optimal runways are also assigned.

Figure 7: RJTT Airport Runways [4]

Runway changes are a practice among air traffic controllers to assign the runways

more efficiently. One of the main reasons for runway swapping is traffic congestion. N.

Yoichi et al [4] interviewed multiple air traffic controllers and according to them, the

departure information is not taken into account because it is very difficult to estimate
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the traffic in 30 minutes. In their approach, they used a neural network-based model.

Figure 8: A Runway Swapping Scenario at the RJTT airport [4]

3.2 Multi-Layer Perceptron

In their approach, N. Yoichi et al [4] use a basic neural network model called as

a multi-layered perceptron. In this, every unit receives an input designated as 𝑥. The

output is denoted as 𝑧 which is equal to the sum total of the weighted inputs and bias.

𝑙𝑒𝑡 𝑢 =
𝐼∑︁

𝑖=1

((𝑊𝑖 𝑋𝑖) + 𝑏) (4)
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𝑙𝑒𝑡 𝑧 = 𝑓(𝑢) (5)

For the runway assignment problem, the entire data is classified either into

swapped or non-swapped classes. From this, the posterior probability is derived as

𝑦𝑘 = 𝑝(𝑑𝑘|𝑥) = exp(𝑧𝑘)
∑︁
𝑗

exp(𝑧𝑗) (6)

Figure 9: Inputs and Output of one unit [4]

Figure 10: Multi Layered Perceptron [4]

The model divides the aircraft into two types: swapped denoted by 1 and non-

swapped denoted by 0. There are four types of projected and actual assignment
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combinations that were predicted. they are: [0 0], [0 1], [1 0], and [1 1]. Both the [0

0] and [1 1] findings indicate that the model can accurately predict. When they define

accuracy as the number of [0 0] and [1 1] divided by the total number of airplanes, the

accuracy is expected to be very high in this scenario because the number of swapped

aircraft is small when compared to the number of unswapped aircraft. They tried the

same approach with four different types of input data and they found that terminal

preference has an important role in runway assignment.

Ng, K.K.H, Lee, C.K.M [5] focused on the Aircraft Sequencing and Scheduling

Problem (ASSP). ASSP is one of the most critical aspects of air transport management.

This problem deals with Landing, takeoff, and aircraft movement in the airspace. The

problem contains two main aspects which are Aircraft Landing Problem (ALP) and

Aircraft Takeoff Problem (ATP). The main motive for the ASSP problem is that the

airport ensures on-time travel or has a minor impact on airport operations. Initially,

the ASSP used a First Come First Serve (FCFS) approach to decide which aircraft

took off or landed.

The ALP is used to determine the optimal aircraft landing time and which

runway the aircraft lands. They have a separation constraint that needs to be followed

and this is essential to maintain airspace safety. While trying to land the aircraft,

meeting the safety constraints, there is a change in actual landing time and it is

stressful and hard for controllers to do this manually. They proposed a novel method

called Modified Variables Neighborhood Search (MVNS). Their approach had a better

exploration ability. The traditional VNS algorithm, though efficient may fall into the

local optimum trap when performing a single swap of two variables.

To provide variation along the search space, the algorithm begins with a ran-

domized solution. The number of unsuccessful updates by neighborhood structure

operators is represented by the adaptive control parameter. A randomized recon-
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Figure 11: Modified Variables Neighborhood Search (MVNS) Algorithm [5]

struction of a neighbor solution preserves solution diversity. The static model does

not accurately reflect real operations, but it does provide useful insight into aircraft

scheduling. Landing of the aircraft is not limited to time, but rather in space. As flight

travel time increases, the main concern in aircraft landing is the reliable arrangement

of the landing and maintaining a minimal turnaround time before the next departure.

Figure 12: Flowchat for the MVNS Algorithm

The task of selecting how to land airplanes closing in on an airport entails

allocating each aircraft to an optimal runway, calculating a sequence for landing for

each runway, and arranging each aircraft’s landing time. Each aircraft’s runway
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allocation, sequencing, and scheduling must guarantee that the scheduled landing

time falls within a set time window and that it meets separation time requirements

with other aircraft. The goal is to maximize runway utilization. For this problem,

Xiangwei et al [6] proposed a unique algorithm that is based on receding horizon

control. This algorithm is called as sliding window algorithm.

In their work, Xiangwei et al [6] look at the ATC segment. The stressful task of

allocating the runway to an aircraft and making sure that the aircraft lands safely and

within an allocated time is dependent on the air traffic controller. This is stressful

and challenging because the arriving aircraft flow is not uniform; it contains a variety

of aircraft types. Wake vortices are created at the rear of all aircraft in flight. These

vortices evolve chaotically and can produce severe turbulence to a closely following

aircraft, even resulting in a collision. To maintain an aircraft’s aerodynamic stability,

the duration between one plane landing and the next plane landing must be longer

than a predetermined minimum (the separation time), which varies depending on the

planes involved. For solving this, they use their sliding window Algorithm.

They consider the aircraft landing problem as a multi-period decision problem

and use the RHC strategy to counter this problem. RHC can be defined as a 𝑛-step

ahead iterative online optimization strategy. Based on the information available,

RHC optimizes the problem for the 𝑁 intervals in the future but only implements the

solution that is pertinent to the current interval. Based on the updated information,

RHC works the same way for the next 𝑁 intervals in the future. They used the RHC

to determine the scheduling time and runways step by step. They found that the

execution time for this RHC algorithm can’t be predicted because the number of

aircrafts during a congested time and a non-congested time varies. To bypass this, in

their algorithm, they used a fixed size of aircrafts.
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3.3 Sliding Window Algorithm

Sequence aircraft waiting to land in FCFS order in terms of their target times.

Denote the ordered set of aircraft as 𝐹{𝑖|𝑖 = 1, ...𝑁}. A widow of aircraft W is defined,

along with an incremental step size S, both in terms of the number of aircrafts. Here,

𝑟 is step count, 𝐹 (𝑟) shows the aircrafts that have not been swept by sliding window,

𝐹𝑜(𝑟) symbolises aircrafts swept by sliding window. 𝑄(𝑛|𝑟) record the 𝑛𝑡ℎ aircraft in

the optimized arrival sequence for 𝐹0(𝑟), i.e., 𝑄(𝑛) = 𝑖 means that aircraft 𝑖 in 𝐹𝑜(𝑟)

turns out to be the nth aircraft in the optimized arrival sequence 𝐹1(𝑟) represents the

set of aircraft that have been swept by the sliding window and have their landing

times fixed at step 𝑟.

Figure 13: Decision Variables in SLiding Window Algorithm [6]

For the simulation, they used data from 500 aircrafts and 4 runways and compared

their results with previous results. In terms of execution durations and solution values,

the sliding window approach surpasses the scatter search algorithm and the bionomic

algorithm given in earlier research.

All these research works help understand the aircraft landing problem more
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efficiently and prompted more research into reinforcement learning to solve the airport

assignment problem to ease the stress of the air traffic control and to direct aircrafts

to the airport as soon as possible and also make sure the safety of the airspace and

other aircrafts are not put into risk. All these researches explore various approaches

to solving different aspects of the airport and aircraft assignment problem. More

extensive research and the use of reinforcement learning by which we can train the

agent of the airspace under a particular airport can help us with aircraft assignments

with more efficiency.
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CHAPTER 4

Problem Formalisation
4.1 Problem Definition

An emergency aircraft needs immediate and priority attention from the ATC.

any delays from the ATC may have a direct impact on the safety of the aircraft. It

becomes very strenuous for the ATC as it has to manage the airspace and give priority

to the emergency aircraft. As the nature and the position of the emergency is random,

we can use reinforcement learning to train an agent that will guide the emergency

aircraft.

In this project, we aim to deploy a reinforcement learning agent for controlling

emergency aircraft in a dynamic environment. The primary objective is to navigate

the emergency aircraft to the airport in the shortest amount of time. I aim to train

an agent that can navigate the emergency aircraft to the airport in the least time.

4.2 Variables
4.2.1 Distance

let 𝐷 be the distance between the initial point (𝐼𝑒) of the emergency aircraft and

the airport (𝐴𝑐). Where,

𝐼𝑒 = (𝑋𝑒, 𝑌𝑒), (7)

and

𝐴𝑐 = (𝑋𝑎, 𝑌𝑎), (8)

So, the Distance between the initial point of the aircraft and the airport is

𝐷 =
√︀

(𝑋𝑎 −𝑋𝑒)2 + (𝑌𝑎 − 𝑌𝑒)2 (9)

The distance between the position of the aircraft and the airport changes as the

aircraft moves.
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4.2.2 Position

In the real world, the position of the aircraft usually comprises three factors

that are extracted using Global Position System (GPS). These factors are latitude,

longitude, and altitude above sea level. All this information is relayed to the ATC by

the aircraft and this helps the ATC to safely navigate an aircraft safely.

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡 = (𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒, 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒, 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒) (10)

In this project, a few assumptions are made in establishing the position of the

aircraft. The entire environment is a 2-Dimensional grid and altitude is not considered

for this project. This representation is simplified compared to the real world and it

will allow the agent to learn and navigate in the environment more easily.

4.2.3 Heading

The direction in which the aircraft is looking at is called the heading. In the real

world, the heading is calculated by using the inertial navigation system (INS) and the

aircraft’s compass. The INS calculates the rotation of the earth and the acceleration

by using the aircraft’s equipment which gives the current position of the aircraft. Now,

using the compass we get the magnetic heading which is the direction the aircraft is

currently looking at with respect to the magnetic north. Using these two factors, we

calculate the true heading of the aircraft.

𝐻 = atan2
(︀
sin(∆𝜆) · cos(𝜑2), cos(𝜑1) · sin(𝜑2)− sin(𝜑1) · cos(𝜑2) · cos(∆𝜆)

)︀
(11)

here, 𝐻 is the heading of the aircraft. 𝜑1 and 𝜑2 are latitudes of the initial and

final positions. ∆𝜆 is the difference between the longitudes of the initial and final

points.

21



In this project, I am calculating the heading using the positions of the aircraft and

the airport. The heading of the aircraft is a unit vector that represents the direction

in which the aircaft is facing.

𝐻 =
(𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛− 𝑎𝑖𝑟𝑝𝑜𝑟𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)

||𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛− 𝑎𝑔𝑒𝑛𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛||
(12)

here , ||𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑎𝑔𝑒𝑛𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛|| is the Euclidean Norm. The Eu-

clidean Norm is a way to measure the magnitude of a vector in Euclidean Space.
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CHAPTER 5

Approach
5.1 Emergency Aircraft Assignment
5.1.1 Airspace

Every country and every airport within has a designated section of the atmosphere

above it that is under the control and supervision of the country’s government. This

designated section is called airspace. The main use of the airspace is so that the

authorities can monitor all the aircrafts that are flying to ensure safe aircraft mobility.

Airspace is divided into many classes and each of these classes has different rules. The

designations to the airspace are done keeping in mind various aspects like air density,

air volume, the traffic in that area, and if the airspace is purely used for military or

civilian purposes [7].

The airspace is primarily classified into two distinct categories, controlled and

uncontrolled. In uncontrolled airspace, the pilots are in charge of handling their

own movement and safety in the airspace whereas in controlled airspace, Air Traffic

Control (ATC) services are available and all pilots must have or obtain clearance for

movement in that airspace. Along with being divided into classes, the airspace is also

divided into six altitude zones or levels.

5.1.2 Aircraft Emergency

Managing the airspace effectively is an important aspect to make sure flight

delays are minimized and passenger safety is ensured. The task of managing the

airspace in a controlled environment is done by the ATC. There are many problems

or challenges that the ATC faces when handling airspace. One of the main issues is

air traffic. In a high air traffic scenario, managing the airspace becomes increasingly

difficult for the ATC, and more air traffic leads to airspace congestion and delays.

One other aspect that increases the strain and challenge for the ATC is an emergency

aircraft. An emergency aircraft is an aircraft that is facing an emergency and may
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Figure 14: The Airspace Classification [7]

require immediate help and priority service from the ATC. The need for immediate

service and priority increases the complexity involved in handling the airspace for the

ATC.

These emergencies that occur in the aircraft are random and unpredictable. These

situations can arise at any time and suddenly which requires the ATC to be swift and

efficient in their response. In a case where they have multiple emergencies to deal

with, handling the airspace becomes even more challenging. The ATC has to consider

various aspects like weather and airport situations while handling the emergency

which increases a significant amount of stress on the ATC.

5.1.3 Reinforcement Learning in Emergency Aircraft Assignment

The use of reinforcement learning in this scenario can help improve the efficiency

and safety pertinent to the ATC system. The ATC system agent can learn from

experience which could help in making better decisions without delay. For instance,

the ATC agent can be used to improve the emergency aircraft route assignment to

the airport and make sure that the aircraft reaches the airport quickly and safely.

In airspace, there are multiple aspects to consider before building a model. The
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first thing to consider is the emergency aircraft itself. The emergency aircraft has a

current heading and an initial position. This initial position and initial heading are

generated randomly in the environment. This is done to ensure that the agent does

not overfit but just learns one particular route to the airport. The position of the

airport is also generated at random after every episode thus giving the agent a chance

to explore the entire state space and associate actions and states with outcomes.

5.2 State Space

The State space in reinforcement learning refers to the environment or space that

the agent can see. It refers to the set of all possibilities of states the agents could

encounter when interacting in the environment. The State Space usually conveys all

the information that the agent needs to make a decision of which action to pick to

reach the intended target.

The state Space can be either continuous or discrete. If the number of com-

binations possible is finite then the state space is discrete and in a case where the

combinations are infinite, the state space is continuous.

For the air traffic environment, the state space can be defined as a dictionary

containing three main components.

In a 500x500 Grid,

1. Airport position - a two-dimensional circle that represents the position of the

airport.

2. Aircraft Position - a two-dimensional point that represents the position of the

aircraft

3. Aircraft heading - a unit vector representing the direction the aircraft is facing.

4. Obstacle Position - a two-dimensional circle that represents the position of the
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obstacle.

The airport, aircraft, and obstacle position can take values ranging between 0

and 500 and the heading is a unit vector.

5.3 Action Space

The action space in reinforcement learning refers to the collection of all feasible

actions that an agent can do in a given environment. The agent’s policy and the

present state of the environment influence the action taken at each phase. Depending

on the sort of problem being solved, the action space can be continuous or discrete.

The set of available actions in a discrete action space is finite and discrete, such as

choosing from a set of predefined activities. A continuous action space, on the other

hand, entails picking a value from a continuous range of values, such as the amount

of force to be applied in a robotic arm. The action space’s size and complexity can

have a major impact.

in the air-traffic scenario, the action space is

𝐴𝑡 = {0, 1, 2} (13)

here,

𝐴𝑡 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 for 𝐴𝑖𝑟𝑐𝑟𝑎𝑓𝑡 𝑡𝑢𝑟𝑛𝑠 𝑙𝑒𝑓𝑡 𝑏𝑦 90

1 for 𝐴𝑖𝑟𝑐𝑟𝑎𝑓𝑡 𝑖𝑠 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡

2 for 𝐴𝑖𝑟𝑐𝑟𝑎𝑓𝑡 𝑡𝑢𝑟𝑛𝑠 𝑟𝑖𝑔ℎ𝑡 𝑏𝑦 90

5.4 Reward Function

A reward function is an important notion in reinforcement learning, a sort of

machine learning in which an agent is trained to make decisions based on the results

of its actions. The reward function sets the agent’s target and gives feedback in the

form of a numerical value or score to the agent. The agent’s task is to achieve the
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greatest possible score over time by choosing actions that end up resulting in high

rewards. The reward function can be programmed to reward desired conduct while

discouraging undesired behavior. Designing an effective reward function, on the other

hand, might be a difficult process because the agent may learn to exploit gaps in the

function rather than behave optimally. The design of the incentive must be carefully

considered.

In the air traffic scenario, we follow certain rules to decide the rewards. they are :

1. The Aircraft is not allowed to fly out of the sector.

2. The aircraft should not collide with obstacles

3. The aircraft should land at the airport as fast as possible.

𝑅𝑡 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

100 if 𝐴𝑖𝑟𝑝𝑜𝑟𝑡 𝑙𝑎𝑛𝑑𝑒𝑑 𝑎𝑡 𝑡ℎ𝑒 𝑎𝑖𝑟𝑝𝑜𝑟𝑡

−100 if 𝐴𝑖𝑟𝑐𝑟𝑎𝑓𝑡 𝑓𝑙𝑖𝑒𝑠 𝑜𝑢𝑡 𝑜𝑓 𝑠𝑒𝑐𝑡𝑜𝑟

−100 if 𝐴𝑖𝑟𝑐𝑟𝑎𝑓𝑡 𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑠 𝑤𝑖𝑡ℎ 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒

−100 if 𝐴𝑖𝑟𝑐𝑟𝑎𝑓𝑡 𝑔𝑜𝑖𝑛𝑔 𝑜𝑢𝑡 𝑜𝑓 𝑠𝑡𝑒𝑝

−0.1 for 𝐸𝑎𝑐ℎ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 𝑡ℎ𝑒 𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑙𝑎𝑛𝑑𝑒𝑑 𝑎𝑡 𝑡ℎ𝑒 𝑎𝑖𝑟𝑝𝑜𝑟𝑡.

5.5 Q-Learning

Q-learning is an off-policy Temporal Difference control reinforcement learning

algorithm. In the algorithm, the policy will be modeled as an 𝑎𝑐𝑡𝑖𝑜𝑛 − 𝑣𝑎𝑙𝑢𝑒 function.

𝑄(𝑠, 𝑎) 𝑏𝑒 𝑡ℎ𝑒 𝑎𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (14)

The action-value functions gives us the information about the willingness of the agent

to take an action 𝑎 given a state 𝑠 [9]. The Q-learning algorithm is defined as:

𝑄(𝑆𝑡, 𝐴𝑡) < −𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼[𝑅𝑡 + 1 + 𝛾𝑚𝑎𝑥𝑎𝑄(𝑆𝑡+1, 𝑎)−𝑄(𝑆𝑡, 𝐴𝑡)] (15)
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Figure 15: Q-Learning Equation [8]

Figure 16: Q-Learning [9]

5.6 Deep Q Learning

Recent advances in computer vision and speech recognition have depended on

training deep neural networks effectively on very large training sets. The most

successful approaches use updates that employ stochastic gradient descent to train

directly from raw inputs. It is often feasible to learn more accurate representations

than manually created features by feeding sufficient information to a deep neural

network [12] Using this approach, V. Mnih et al [12] came up with an approach

that connected a reinforcement Learning Algorithm to a deep neural network. To

28



Figure 17: Q-Learning Algorithm [8]

begin the testing approach, they considered Tesauro’s TF-Gammon architecture.

The parameters that are used to estimate a value function are updated using this

architecture.

To contrast the architectural approach of the TD-Gammon, V. Mnih et al [12]

used a method called 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 𝑟𝑒𝑝𝑙𝑎𝑦

5.6.1 Experience Replay

Let 𝑒1, 𝑒2, ..., 𝑒𝑛 be episodes, where 𝑒𝑡 is an episode at a time-step 𝑡. In the RL

environment, a state, action, and reward at time-step 𝑡 are denoted as 𝑆𝑡, 𝑎𝑡, and 𝑟𝑡,

respectively.

In the experience replay, we store

𝑒𝑡 = (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1). (16)
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Hence, a data-set 𝐷 is defined as

𝐷 := {𝑒1, ..., 𝑒𝑛}. (17)

This information is pooled and stored in a 𝑟𝑒𝑝𝑙𝑎𝑦 𝑏𝑢𝑓𝑓𝑒𝑟. After the experience

replay step, we apply the Q learning updates and the agent will select actions following

a 𝜖 greedy policy. This complete procedure is called the Deep Q Learning Algorithm.

Figure 18: Deep Q-Learning Algorithm [10]

5.7 Approach

The agent in the environment iterates over the number of episodes to select

actions and based on the reward it updates the Q-Values of the state action pair.

According to its current policy, the agent observes the states and takes action. After

the action is done, the agent moves to a new state and a reward is received. based on

this, the agent will update the Q-value of the current state-action pair.

Initially, at the beginning of each episode, the positions of the aircraft and the

airport along with the aircraft’s heading are generated at random in the environment.
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Figure 19: Deep Q-Learning Architecture [9]

The agent then calculates the optimal heading based on its current position and the

position of the airport and takes action to change the heading towards the airport.

At the end of every step, the agent’s heading is again randomized so that the agent is

not stuck in a sub-optimal policy.

For this project, the altitude of the aircraft is not considered and the speed is

always constant.
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Algorithm 1 Airport Assignment
1: for Number of Episodes do
2: for Step Count != step limit do
3: Increment the step count by 1
4: Initiate the position of the aircraft randomly
5: Initiate the position of the airport randomly
6: Initiate the position of the obstacles randomly
7: Using the position of the aircraft and the airport, calculate the relative

heading between them.
8: Based on the relative heading, take action and update the heading of the

aircraft
9: if the next state = Airport then

10: reward = 100
11: done = true
12: End Episode
13: if the next state = out of bound then
14: reward = -100
15: End Episode
16: if the next state = obstacle then
17: reward = -100
18: End Episode
19: reward = -0.1 for event step not at an end state.
20: Reset the heading randomly
21: if Step Count = Step limit then
22: reward = -100
23: Done = true
24: End Episode

5.8 Exploration Method

Exploration means reaching out to states that have not been explored yet so that

the environment is learned more. Deep Q-Learning has many learning exploration

strategies that can be used to tell the agent how to explore.

5.8.1 Epsilon-Greedy Policy

In reinforcement learning, the Epsilon Greedy Policy is a policy that is commonly

used to employ an exploration approach. This policy’s fundamental tenet is to choose

the action that maximizes the Q-value with probability 1-epsilon and a random
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action with probability epsilon. The ratio of exploration to exploitation in the policy

is based on the value of epsilon. The policy gets more predictable and the agent

depends more on its learned Q-values as epsilon goes down. On the other hand, it gets

more exploratory as the epsilon rises, and the agent is more prone to choose random

behaviors. This strategy may be useful when we want to balance Exploitation and

Exploration and we want a simple implementation. [13]

5.8.2 Boltzmann Q Policy

It is also an exploration-based approach that works on the Boltzmann Distribution.

In this policy, the action probabilities are proportional to the exponential of the Q-

values divided by a temperature parameter. The temperature or Tau handles the

degree of exploration. As the tau value is close to zero, the agent relies more on the

learned Q values and vice versa. Boltzmann Policy naturally encourages exploration.

This policy can be used when we want to choose actions problematically. In situations

where we need to shape rewards, have a continuous actions space. or we need to tune

the exploration sensitivity, this strategy is useful.[13]

5.8.3 Random Exploration

In this simple exploration strategy, the agent chooses its course of action entirely at

random and without taking the Q-values into account. The agent randomly explores

the state-action space without regard for the perceived quality of the acts. This

strategy is very useful during initial exploration, situations where we have stochastic

environments, and sparse reward environments.

5.8.4 Upper Confidence Bound (UCB)

This strategy is commonly used in Reinforcement learning and Bandit Problems.

It considers both the average reward and the uncertainty associated with it. The

fundamental tenet of UCB is choosing behaviors with high expected rewards while
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considering their exploration potential. Using the reward and the exploration count,

the strategy maintains an upper confidence bound associated with each activity. The

action with the highest UCB is used throughout the process. This strategy is very

useful in situations where the environment dynamics are unknown, have continuous

action space, or in bandit problems.[13]

5.8.5 Thompson Sampling

In this strategy, exploration and exploitation are balanced by maintaining a

distribution over the action values using a Bayesian technique. Thompson Sampling

selects the action with the highest sampled value by randomly selecting an action

from the distribution. The fundamental principle is to give activities that are more

likely to result in larger rewards a higher probability based on the observed data.

Thompson Sampling uses Bayesian inference to update the action value distribution

as it learns. The action values are first modeled using prior distributions, and the

posterior distributions are updated when the agent engages with the environment

and gathers rewards. This method is very useful where the reward distribution is

uncertain, the environment is not stationary or have a small-medium action space.

[13]

For the context of this problem, I have employed two very common strategies in

Reinforcement learning. They are :

• Epsilon Greedy Policy

• Boltzmann Q Policy
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CHAPTER 6

Environment and Simulation

For testing out the algorithm, we need an environment with all out requirements

i.e the non emergency aircraft, the emergency aircraft, the airport and the airspace.

For this purpose, I used open AI GYM and Python to design the environment.

6.1 OpenAI - Gym

OpenAI Gym is a toolkit that can be used in developing and later testing various

reinforcement algorithms. This has a certain set of testing problems or environments

that we can use to test our reinforcement learning agent. The main purpose of gym is

the enablement of rapid development and experimentation pertinent to reinforcement

learning algorithms. Some examples of famous open AI Gym environments are atari

games and robotics games [14].

One of OpenAI Gym’s primary characteristics is its standardized interface, which

enables easy integration with multiple reinforcement learning methods. This interface

provides a standard set of methods for interacting with the environment, such as

resetting the environment, performing an action, and monitoring the subsequent state

and reward. This common interface allows researchers and developers to concentrate

on designing unique reinforcement learning algorithms rather than worrying about

environment peculiarities.

OpenAI Gym contains tools for displaying and monitoring the performance of

reinforcement learning algorithms in addition to a standardized interface. These tools

can be used to track an algorithm’s development during training and to compare the

performance of various algorithms in the same environment. This enables identifying

areas for improvement and iterating on the design of reinforcement learning algorithms

simple. Overall, OpenAI Gym is a valuable resource for everyone interested in creating

and comparing reinforcement learning algorithms, from researchers and academics to
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hobbyists and enthusiasts. One other important aspect of openAI gym is that we can

also creatre custom environments using it.

We must define a class that implements the Gym environment interface in order to

create a custom environment. This entails creating a collection of methods that allow

an agent to interact with the environment, such as a way for resetting the environment,

a method for performing an action, and a method for retrieving the current state and

reward. Developers can utilize the environment class to test and evaluate various

reinforcement learning algorithms once it has been defined. OpenAI Gym provides

visualization tools for these algorithms’ performance, allowing developers to iterate

and tweak their solutions as needed.

6.2 Airspace Environment

I created a custom environment using OpenAI’s Gym. For this, we first import

the required packages

import gym

from gym import spaces

After importing, we create a 𝐴𝑖𝑟𝑝𝑜𝑟𝑡 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 Class. In this class, we use the

__𝑖𝑛𝑖𝑡__ method. The __init__ method in the Gym environment is a particular

method used to initialize the environment when an instance of the environment is

created. Specifically, __init__ configures the environment’s initial state and any

parameters or configurations required for the environment to work effectively. It

may, for example, initialize variables that track the current state of the environment,

specify the action and observation spaces, or load any required data or models. We

declare the initial size of the environment grid, the observation spce, the action space

and any other information that we need when the environment is generated. The

other functions that are in the environment are
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6.3 reset ()

The 𝑟𝑒𝑠𝑒𝑡() method is used in a reinforcement learning environment to reset

the environment to the initial state and return the initial observations. During an

episode, the agent interacts with the environment and receives feedback. As soon as

the episode ends, the 𝑟𝑒𝑠𝑒𝑡() method is called to reset the environment and prepare

for the next episode. The 𝑟𝑒𝑠𝑒𝑡() method’s main responsibility is to return the initial

environment observations to the reinforcement agent so that it can start its exploration

and environment observation anew [14]. We are resetting the agent’s position and

heading to the initial state which in this case is random at the start of any episode.

Another important method in the environment class is the 𝑠𝑡𝑒𝑝() method.

6.4 step()

The 𝑠𝑡𝑒𝑝() method contains the entire business logic of the senario. When an

episode is running, the agent takes a predefined number of steps where it performs

various 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 and receives 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 from the environment. One the feedback is

received, the step function returns the following tuple [14]

( observat ion , reward , done , i n f o ) .

1. Observation - a new observation that we get from the environment after an

action is taken.

2. Reward - This is the reward the agent receives from the environment for an

action it took from its current state.

3. Done - This is a boolean value that tells us if the episode is terminated when

the agent in the current state.

4. info - This has additional information and can be used when debugging.

Another important method in the environment class is 𝑟𝑒𝑛𝑑𝑒𝑟()
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6.5 render ()

This method is used to visualize the current state and the environment. This is

very useful when you want to see what’s happening in the algorithm and can be very

helpful when debugging. The exact behavior of 𝑟𝑒𝑛𝑑𝑒𝑟() changes as the environments

change. There are various environments that have multiple 𝑟𝑒𝑛𝑑𝑒𝑟() methods that

can be used to display various visualizations

(a) (b)

(c)

Figure 20: Aircraft and Airport
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(a) (b)

(c)

Figure 21: Aircraft, Airport and Obstacles

For the current problem, the environment is a

1. 500 X 500 grid

2. Has an airport and the airport region (The area the aircraft reaches to successfully

land the aircraft) is designated in the color green.
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3. Has 1 emergency aircraft designated in a yellow circle whose job is to find the

path to the airport.

4. Based on the running scenario, has 2 obstacles designated in red triangles.

Figure 20(a) represents a scenario showing the airport and the aircraft at a

random position. Figure 20(b) represents a scenario where the airport and aircraft

are at different positions in different episodes. Figure 20(c) shows a case where the

aircraft has reached the airport. Figures 21(a) and 21(b) show a case We have the

airport, the aircraft, and 2 obstacles in different positions. Figure 21(c) shows a case

where the aircraft is heading towards an obstacle.
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CHAPTER 7

Results
7.1 Evaluation Metircs

We evaluate the RL agents based on two metrics: the number of successful

landings at the airport (Success) and the mean episode reward, which can be translated

into the time duration from the emergency incident and the landing.

7.2 Hyper-parameter Tuning

Hyperparameters have a direct effect on how the model will perform. Tuning

these hyperparameters cannot be learned using existing data. Hyperparameters can

be tuned by systematically searching from a range of different hyperparameters.

7.2.1 Emergency Aircraft and Airport Senario
7.2.1.1 Epsilon Greedy Policy

For the Epsilon Greedy Policy, we can change the value of Epsilon to see how

the performance of the model is varying. For this scenario, I have considered the

following Epsilon values.

𝜖 = {0.1, 0.3, 0.7, 0.9} (18)

(a) Episodes vs Reward (b) Episodes vs Step Count

Figure 22: Epsilon - 0.1 for 50 Episodes
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(a) Episodes vs Reward (b) Episodes vs Step Count

Figure 23: Epsilon - 0.3 for 50 Episodes

(a) Episodes vs Reward (b) Episodes vs Step Count

Figure 24: Epsilon - 0.7 for 50 Episodes

(a) Episodes vs Reward (b) Episodes vs Step Count

Figure 25: Epsilon - 0.9 for 50 Episodes
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Figure 26: Airport Reached vs Epsilon for 50 Episodes

From the following graph, it can be inferred that the epsilon value that gave the

best result was 0.7. The success rate increased from 0.1 to 0.7 and started decreasing

after. Based on this, further experimentation was done on more episodes for Epsilon

0.7

(a) Episode vs Step-Count for 100
Episodes (b) Episode vs Reward for 100 Episodes

Figure 27: Epsilon - 0.7 for 100 Episodes
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(a) Episode vs Step-Count for 500
Episodes (b) Episode vs Reward for 500 Episodes

(c) Episode vs Step-Count for 1000
Episodes (d) Episode vs Reward for 1000 Episodes

Figure 28: Epsilon - 0.7 for 500 and 1000 Episodes

7.2.1.2 Boltzmann Q Policy

For the Boltzmann Q Policy, we can change the value of temperature to see how

the performance of the model is varying. For this scenario, I have considered the

following Temperature values.

𝜏 = {0.1, 0.3, 0.7, 0.9} (19)

(a) Episodes vs Reward (b) Episodes vs Step Count

Figure 29: Temperature - 0.1 for 50 Episodes
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(a) Episodes vs Reward (b) Episodes vs Step Count

Figure 30: Temperature - 0.3 for 50 Episodes

(a) Episodes vs Reward (b) Episodes vs Step Count

Figure 31: Temperature - 0.7 for 50 Episodes

(a) Episodes vs Reward (b) Episodes vs Step Count

Figure 32: Temperature - 0.9 for 50 Episodes
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Figure 33: Airport Reached vs Temperature

From the following graph, it can be inferred that the temperature value that

gave the best result was 0.7. The success rate increased from 0.1 to 0.7 and started

decreasing after. Based on this, further experimentation was done on more episodes

for Temperature 0.7

(a) Episode vs Step-Count for 100
Episodes (b) Episode vs Reward for 100 Episodes

Figure 34: Temperature - 0.7 for 100 Episodes
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(a) Episode vs Step-Count for 500
Episodes (b) Episode vs Reward for 500 Episodes

(c) Episode vs Step-Count for 1000
Episodes (d) Episode vs Reward for 1000 Episodes

Figure 35: Epsilon - 0.7 for 500 and 1000 Episodes

7.2.2 Emergency Aircraft and Airport with 2 Obstacles
7.2.2.1 Epsilon Greedy Policy

For the Epsilon Greedy Policy, we can change the value of Epsilon to see how

the performance of the model is varying. For this scenario, I have considered the

following Epsilon values.

𝜖 = {0.1, 0.2, 0.3, 0.5, 0.7, 0.9} (20)

(a) Episodes vs Reward (b) Episodes vs Step Count

Figure 36: Epsilon - 0.1 for 50 Episodes 2 Obstacles
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(a) Episodes vs Reward (b) Episodes vs Step Count

Figure 37: Epsilon - 0.2 for 50 Episodes 2 Obstacles

(a) Episodes vs Reward (b) Episodes vs Step Count

Figure 38: Epsilon - 0.3 for 50 Episodes 2 Obstacles

(a) Episodes vs Reward (b) Episodes vs Step Count

Figure 39: Epsilon - 0.5 for 50 Episodes 2 Obstacles

(a) Episodes vs Reward (b) Episodes vs Step Count

Figure 40: Epsilon - 0.7 for 50 Episodes 2 Obstacles
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(a) Episodes vs Reward (b) Episodes vs Step Count

Figure 41: Epsilon - 0.9 for 50 Episodes 2 Obstacles

Figure 42: Airport Reached vs Epsilon for 50 Episodes

From the following graph, it can be inferred that the epsilon value that gave the

best result was 0.1. The success rate has an overall decreasing trend from 0.1 to 0.9.

Based on this, further experimentation was done on more episodes for Epsilon 0.1

(a) Episode vs Step-Count for 100
Episodes (b) Episode vs Reward for 100 Episodes

Figure 43: Epsilon - 0.1 for 100 Episodes and 2 Obstacles
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(a) Episode vs Step-Count for 500
Episodes (b) Episode vs Reward for 500 Episodes

(c) Episode vs Step-Count for 1000
Episodes (d) Episode vs Reward for 1000 Episodes

Figure 44: Epsilon - 0.1 for 500 and 1000 Episodes with 2 obstacles

7.2.2.2 Boltzmann Q Policy

For the Boltzmann Q Policy, we can change the value of temperature to see

how the performance of the model is varying. For this project, I have considered the

following Temperature values.

𝜏 = {0.1, 0.2, 0.3, 0.5, 0.7, 0.9} (21)

(a) Episodes vs Reward (b) Episodes vs Step Count

Figure 45: Temperature - 0.1 for 50 Episodes with 2 obstacles
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(a) Episodes vs Reward (b) Episodes vs Step Count

Figure 46: Temperature - 0.2 for 50 Episodes with 2 obstacles

(a) Episodes vs Reward (b) Episodes vs Step Count

Figure 47: Temperature - 0.3 for 50 Episodes with 2 obstacles

(a) Episodes vs Reward (b) Episodes vs Step Count

Figure 48: Temperature - 0.5 for 50 Episodes with 2 obstacles
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(a) Episodes vs Reward (b) Episodes vs Step Count

Figure 49: Temperature - 0.7 for 50 Episodes with 2 obstacles

(a) Episodes vs Reward (b) Episodes vs Step Count

Figure 50: Temperature - 0.9 for 50 Episodes with 2 obstacles

Figure 51: Airport Reached vs Temperature

From the following graph, it can be inferred that the temperature value that gave

the best result was 0.5. The success rate has an overall wavy trend from 0.1 to 0.9,
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with peak performance at 0.5. further experimentation was done on more episodes for

Temperature 0.5

Episode vs Step-Count for 100
Episodes (a) Episode vs Reward for 100 Episodes

Figure 52: Temperature - 0.5 for 100 Episodes with 2 Obstacles

(a) Episode vs Step-Count for 500
Episodes (b) Episode vs Reward for 500 Episodes

(c) Episode vs Step-Count for 1000
Episodes (d) Episode vs Reward for 1000 Episodes

Figure 53: Epsilon - 0.5 for 500 and 1000 Episodes with 2 obstacles
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7.3 Performance on Reaching an Airport
7.3.1 Emergency Aircraft and Airport Scenario

Figure 54: Airport Reached vs Episodes for Airport and Aircraft Scenario

Figure 55: Mean Episode Reward vs Episodes for Airport and Aircraft Scenario
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Figure 56: Average Step Count vs Theoretical Best Step Count for Airport and
Aircraft Scenario for Epsilon Greedy

Figure 57: Average Step Count vs Theoretical Best Step Count for Airport and
Aircraft Scenario for Boltzmann Q Policy
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7.3.2 Emergency Aircraft and Airport with 2 Obstacles

Figure 58: Airport Reached vs Episodes for 2 obstacles Scenario

Figure 59: Mean Episode Reward vs Episodes for 2 obstacles Scenario
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Figure 60: Average Step Count vs Theoretical Best Step Count for 2 obstacles Scenario
for Epsilon Greedy

Figure 61: Average Step Count vs Theoretical Best Step Count for 2 obstacles Scenario
for Boltzmann Q Policy

Figures 54 and 58 illustrate that the Epsilon Greedy policy performed better in

learning an optimal ATC navigation behavior to direct the aircraft to the airport.

Accordingly, Figures 55 and 59 indicate that the Epsilon Greedy Policy’s Mean episode

reward is higher than that of the Boltzmann Q Policy, meaning that under the Epsilon

Greedy exploration, the learned agent directed the aircraft to the airport in less time.
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Comparing the Average step count vs the Theoretical best step count, Figure 56

and Figure 60 show that the average step count for Epsilon Greedy is closer to the

theoretical best compared to Boltzmann Q policy shown in Figure 57 and Figure 61.

When comparing the performance of Boltzmann and Epsilon Greedy policy, it can

be inferred that the Epsilon Greedy policy performed better both in success rate, mean

episode reward, and average step count. One reason why the Epsilon-Greedy policy

performed better might be because of its simplicity. Epsilon Greedy policy is also

more robust to any changes in the Q-Values. Unlike Boltzmann’s Q-Policy, Epsilon

Greedy Policy is less sensitive to small changes in Q value. Epsilon greedy policy is

also quicker to converge to an optimal policy because of its exploration-exploitation

trade-off. Due to these reasons, I believe Epsilon Greedy Policy is more suitable to

this scenario considering the large state space and the reward signals used.
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CHAPTER 8

Conclusion

Routing of emergency aircraft is one of the most stressful situations that the

ATC faces and it needs the utmost attention and priority. If the ATC is not able to

provide the required details to the airplane in time, it might result in catastrophic

results. Reinforcement learning (RL) is one approach that can be used to create an

ATC agent to help route the emergency aircrafts to the airport as quickly as possible.

In this project, I have implemented a Deep Q Network (DQN) agent to successfully

navigate an emergency aircraft to the airport in the airspace as fast as possible. The

effectiveness of the DQN algorithm is demonstrated by the trend of increasing mean

episode reward and decreasing trend of a number of steps, which is a glaring indication

of the potential advantages of RL in this area.

Additionally, I have used two commonly used reinforcement learning exploration

strategies. The strategies are the Epsilon-greedy policy and the Boltzmann Q policy.

After testing on various episodes, it was observed that the Boltzmann Q policy was

outperformed by the Epsilon greedy policy both in time and reward. It can be inferred

that choosing a correct exploration strategy can have a significant impact on the

outcome of the model. This research can be taken further by incorporating obstacles

that are moving in the airspace to navigate the emergency aircraft to the airport. We

can also add multiple emergency aircraft and multiple airports to make the scene close

to the real world. We can also consider introducing the altitude of the aircraft and

model in 3-D state space.
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