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ABSTRACT

Location and Environment aware mmWave Beam Selection using Vision Transformer

by Srajan Gupta

5G networks explore mmWave technology to achieve faster data transfer and

higher network capacity. The reduced coverage area of mmWaves creates the need

to deploy large antenna arrays. However, beam sweeping across a large number

of antenna arrays typically involves high overhead and latency. In a vehicle-to-

everything (V2X) system, beam selection becomes a frequent process in the case when

vehicles are moving at high speed, leading to frequent connection delays. Modern-day

vehicular systems are integrated with advanced sensors like global positioning system

(GPS), light detection and ranging (LIDAR), radio detection and ranging (RADAR),

etc. Machine learning models can be trained using data from these sensors to help

predict the optimal beam pair. This paper proposes a novel Vision Transformer (ViT)

machine-learning model for beam selection using GPS and LIDAR data. We also

introduce a GPS-based Virtual Environment Capture (GVEC) solution to overcome

the noise in the LIDAR data. The proposed solution outperforms previous approaches

when tested on noisy LIDAR data, achieving an accuracy of 92% while searching

among the top 10 beams.

Index Terms: Beam-selection, Vision Transformer, mmWaves, vehicle-

to-everything, LIDAR, GPS



ACKNOWLEDGMENTS

I want to express my deepest appreciation to my project advisor, Dr. Navrati

Saxena, for her expertise, continuous guidance, and valuable support throughout this

project and the rest of my academic journey. I’m also immensely grateful to Dr.

Abhishek Roy for his meticulous and detailed review of my work, using his extensive

field expertise and time. His insightful feedback and suggestions have greatly improved

the quality of my work. I would also like to extend my gratitude to Dr. Robert Chun

for his invaluable input and suggestions that have played a critical role in shaping

my work. In addition, I would like to take this opportunity to thank my family and

friends for their unwavering support and encouragement throughout my academic

journey. Their love and support have been a constant source of motivation, and I’m

grateful for their belief in me.

v



TABLE OF CONTENTS

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Using Sub-6GHz Channel Information . . . . . . . . . . . . . . . . 4

2.2 Using GPS Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Using LIDAR Data . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Using Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 System Model And Problem Formulation . . . . . . . . . . . . . 8

4 Our Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1 Vision Transformer Architecture . . . . . . . . . . . . . . . . . . . 11

4.2 Vision Transformer Encoder . . . . . . . . . . . . . . . . . . . . . 12

4.3 Vision Transformer Multi-Headed Self-Attention . . . . . . . . . . 14

4.4 Our Final Model - Combining GPS data to ViT . . . . . . . . . . 16

4.5 Our Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . 18

4.6 Vision Transformer(ViT) vs Convolutional Neural Network (CNN) 19

5 GPS-BASED Virtual Environment Capture (GVEC) . . . . . . 20

5.1 Using Grid-Based Representation . . . . . . . . . . . . . . . . . . 21

5.2 Using Horizontal Lane Number and Vertical Coordinates . . . . . 22

5.3 Using Angle and Straight Line Distance . . . . . . . . . . . . . . . 23

6 Our Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 25

6.1 Dataset Generation Process . . . . . . . . . . . . . . . . . . . . . 25

vi



vii

6.2 Dataset Files and Column Description . . . . . . . . . . . . . . . 27

6.3 LIDAR Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . 30

6.4 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7 Simulation Experiments and Results . . . . . . . . . . . . . . . . 33

7.1 Original Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.2 Noisy Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.2.1 Noise Reduction using Grid-Based Representation . . . . . 36

7.2.2 Ensemble Model using Horizontal Lane Numbers and
Vertical Coordinates . . . . . . . . . . . . . . . . . . . 39

7.2.3 Ensemble Model using Angle and Straight Line Distance . 41

7.3 Resource Consumption . . . . . . . . . . . . . . . . . . . . . . . . 43

7.4 Comparison of different GVEC Encoding Schemes . . . . . . . . . 44

8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



LIST OF FIGURES

1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Vision Transformer Architecture . . . . . . . . . . . . . . . . . . 12

3 Transformer Encoder Architecture . . . . . . . . . . . . . . . . . 14

4 Multi-headed Self-Attention Architecture . . . . . . . . . . . . . . 15

5 Attention Mechanism example [1] . . . . . . . . . . . . . . . . . . 16

6 Multi-headed Attention Mechanism example [1] . . . . . . . . . . 16

7 Final Model Block Diagram . . . . . . . . . . . . . . . . . . . . . 17

8 GPS-BASED Virtual Environment Capture (GVEC) . . . . . . . 21

9 Encoding Scheme: Grid Based Representation . . . . . . . . . . . 22

10 Embedding Scheme: Horizontal Lane Number and Vertical

Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

11 Encoding Scheme: Angle and Straight Line Distance . . . . . . . 24

12 Raymobtime data generation process . . . . . . . . . . . . . . . . 25

13 Scenes and Episodes in Data generation timeline . . . . . . . . . . 26

14 2-dimensional grid representation of LIDAR data . . . . . . . . . 30

15 RGB image representation of LIDAR data . . . . . . . . . . . . . 31

16 Breaking image into patches before input to ViT . . . . . . . . . 31

17 Accuracy vs Top k beam pairs curve on Original dataset . . . . . 34

18 Throughput vs Top k beam pairs curve on Original dataset . . . 35

19 Test Loss vs Epoch curve on Original dataset . . . . . . . . . . . 35

20 Accuracy vs Top k beam pairs curve on Noisy dataset - GVEC

Grid-Based Representation . . . . . . . . . . . . . . . . . . . . . 37

viii



21 Throughput vs Top k beam pairs curve on Noisy dataset - GVEC

Grid-Based Representation . . . . . . . . . . . . . . . . . . . . . 38

22 Test Loss vs Epoch curve on Noisy dataset - GVEC Grid-Based

Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

23 Accuracy vs Top k beam pairs curve on Noisy dataset - GVEC

Horizontal Lane Numbers and Vertical Coordinates . . . . . . . . 40

24 Throughput vs Top k beam pairs curve on Noisy dataset - GVEC

Horizontal Lane Numbers and Vertical Coordinates . . . . . . . . 41

25 Accuracy vs Top k beam pairs curve on Noisy dataset - GVEC

Angle and Straight Line Distance . . . . . . . . . . . . . . . . . . 42

26 Throughput vs Top k beam pairs curve on Noisy dataset - GVEC

Angle and Straight Line Distance . . . . . . . . . . . . . . . . . . 43

ix



LIST OF TABLES

1 Parameters used for training ViT . . . . . . . . . . . . . . . . . . 18

2 RayTracing file column description . . . . . . . . . . . . . . . . . 27

3 LIDAR file column description . . . . . . . . . . . . . . . . . . . 28

4 GPS file column description . . . . . . . . . . . . . . . . . . . . . 29

5 Top k Accuracy comparison for proposed ViT vs CNN [2] on

Original dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Top k Throughput comparison for proposed ViT vs CNN [2] on

Original dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7 Top k Accuracy comparison for proposed ViT vs CNN [2] on Noisy

dataset - GVEC Grid-Based Representation . . . . . . . . . . . . 36

8 Top k Throughput comparison for proposed ViT vs CNN [2] on

Noisy dataset - GVEC Grid-Based Representation . . . . . . . . . 37

9 Top k Accuracy comparison for proposed ViT vs CNN [2] on Noisy

dataset - GVEC Horizontal Lane Numbers and Vertical Coordinates 39

10 Top k Throughput comparison for proposed ViT vs CNN [2] on

Noisy dataset - GVEC Horizontal Lane Numbers and Vertical

Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

11 Top k Accuracy comparison for proposed ViT vs CNN [2] on Noisy

dataset - GVEC Angle and Straight Line Distance . . . . . . . . 42

12 Top k Throughput comparison for proposed ViT vs CNN [2] on

Noisy dataset - GVEC Angle and Straight Line Distance . . . . . 42

13 Resource Consumption by ViT vs CNN [2] . . . . . . . . . . . . . 44

x



CHAPTER 1

Introduction

The latest cellular wireless technologies, such as 5G and the upcoming 6G [3], rely

heavily on millimeter waves (mmWaves). These waves are narrow in nature resulting

in more precise targeting of signal, this helps in achieving improved capacity, low

interference, and energy efficiency [4]. The usage of narrow mmWaves requires large

antenna arrays to achieve sufficient coverage [5]. Unfortunately, in large antenna

arrays, the beam sweeping process required for beam selection becomes time-consuming,

incurring additional latency that negatively impacts user experience. Furthermore,

in order for narrow beams to work properly, it is necessary to have accurate beam

alignment between the base station and the user equipment (UE), which is referred to

as beam management [6, 7]. Beam management involves selecting the best beam pair,

consisting of a transmitter-side beam and a corresponding receiver-side beam, that can

offer the best connectivity. One way to select a beam pair is through beam sweeping

or beam computing, which involves thoroughly searching through all available beam

pairs to identify the one that provides the strongest signal. This process becomes

time-consuming, causing connection slowness and delays that negatively impact the

user experience. This calls for an efficient beam selection approach. Moreover, modern

vehicles require continuous network connectivity for their many essential features,

but their mobility makes frequent connection establishment challenging, resulting in

frequent disruptions due to beam sweep.

Multiple kinds of research have been done over the last few years on utilizing

the sensor data from vehicles namely LIDAR, GPS, RADAR, and cameras to train

deep-learning models to predict the best beam. Many milestones in getting higher

accuracy with reduced beam sweep time have been achieved as an outcome. But,

there still exist some open issues. Unfortunately, most of these existing works rely
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on error-prone LIDAR data, which does not consider long-range dependencies and is

ineffective in heavy rain, snow, and fog [8, 9]. It is because this kind of weather leads

to the attenuation phenomenon of the return signal’s power and the emergence of false

targets, resulting in inaccurate LIDAR data. Given that foggy weather is common in

certain regions, an efficient solution for accurate prediction in all weather conditions

is needed. This motivates us to look into efficient beam management over noisy data,

across all weather conditions. Therefore, new data pre-processing techniques and

newer machine-learning models must be explored. In this regard, Google’s vision

transformer (ViT) model [10] shows promise as a potential solution. ViT is robust to

errors in the dataset, as it is designed to capture long-range dependencies in the data

through the multi-headed self-attention mechanism [11]. Compared to convolutional

neural networks (CNNs), which are highly sensitive to small variations in input data,

especially when handling long-range dependencies, Vision Transformer (ViT) models

prioritize the most relevant parts of the input sequence while suppressing irrelevant

and noisy information. ViT has demonstrated good performance on datasets with noisy

or incomplete labels, making it a viable choice for real-world applications where data

is often noisy like our case with LIDAR data. We aim to develop a novel approach to

the Vision Transformer neural network to train on LIDAR and GPS data to predict

top k beams.

The major contributions of this project are as follows:

• We use a novel approach of using a ViT for training on LIDAR and GPS data

for beam selection.

• To introduce real-time challenges faced by LIDAR, we have added 25% of

records to our test dataset with random noise in LIDAR data.

• To maintain high prediction accuracy irrespective of LIDAR data corruption, we

have proposed a novel solution to replace these noisy data records with records
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generated using GPS-based Virtual Environment Capture (GVEC).

• We use a novel data preprocessing technique to interpret 3D LIDAR point cloud

data as 2D image data.

• We have compared our work with existing works using different metrics and

graphs.

The rest of the paper is organized as follows: Section II talks about related work

done in the field of mmWave beam selection involving different sensors and different

machine-learning approaches. Section III gives details about how our problem setup

looks in the real world and also frames the beam selection problem into solving

a mathematical problem. Section IV describes our proposed solution and model

architecture. Section V talks about GPS-based virtual environment capture (GVEC)

which discusses various techniques for capturing environmental details without the

use of LIDAR. Section VI gives details about our experimental setup including our

selection of dataset, preprocessing approach, and evaluation criteria. Section VII

shows the simulation experiments and results of our proposed model based on some

reliable metrics and also shows a comparison of our model to the previous works.

Finally, Section VIII concludes the paper.
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CHAPTER 2

Related Works

To provide context for our proposed approach, we begin with a brief overview of

prior research in the field.

2.1 Using Sub-6GHz Channel Information

These techniques focus on using the information extracted from the sub-6 GHz

channel to select the best mmWave beam pair. Although sub-6GHz channels and

mmWave channels have different characteristics, under some conditions, they have

a strong temporal coherence to mmWaves and their information can be mapped to

mmWaves. [12] frames the beam selection problem as a multiple measurement vector

(MMV) sparse recovery problems. mmWaves have a limited scattering nature and

this can be exploited to perform a compressed beam selection. In compressed beam

selection, a technique called weighted sparse recovery can be used. [13] used sub-6GHz

channel information to train a deep neural network for beam selection. This study

employs numerous radio frequency links on the user side and employs digital domain

processing techniques to reduce the interference between links. It also uses parallel

DNN training techniques to utilize the transfer learning capabilities to reduce the

training overhead and delays. [7] uses Power Delay Profile (PDP) which is one of the

channel state information available in sub-6GHz channels. One of the advantages of

using PDP was this information was available even before the mmWave links were

established which will be the case in real-time.

2.2 Using GPS Data

Given the surrounding and the road side units (RSUs) are fixed, the best beam

pair for a specific position will remain constant. The position data can be obtained

using a GPS sensor. GPS sensors are available in all UE’s, be it our cellular phones

or vehicles. [14] uses the GPS coordinates of the UE to predict the best beam pair.
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It feeds the location data obtained using GPS to different models and compares

the accuracy of all models. Lookup tables, k-nearest neighbors (KNN), and neural

networks were the three different algorithms used. Lookup tables are nothing but

mapping table, which maps every uniform square region to the best beam pair that

was calculated previously using exhaustive beam search. For every square region, the

beam selected most frequently for the cells within that region using exhaustive search

is assigned as the optimal beam pair in the lookup table for that region. But machine

learning algorithms like KNN and neural networks were more smart and learned from

patterns rather than some static table for prediction. The results showed that the

neural networks algorithm performed the best followed by KNN, and the lookup table

performed the worst. But this approach was only useful for line-of-sight (LOS) based

conditions and does not take into account the reflections from the environment, also in

the case of cellular phones it does not take into account the orientation of the people

using them which might lead to the wrong best beam pair selection. [15] uses both

the position as well as the orientation of the user to train the deep neural network

for beam selection. But there still exists the open issue of the reflection from the

dynamically changing environment.

2.3 Using LIDAR Data

LIDAR stands for light detection and ranging and is a complex sensor available

in modern vehicles used to capture the 3D image of the environment. LIDAR emits

laser beams when these beams hit some obstacles and reflect back, it captures the

reflection time, and using this it generates a 3D image of the surrounding environment

also known as the 3D point cloud. If this LIDAR data is combined with GPS data

to train deep learning algorithms, both position and surrounding reflections will be

taken into account during predictions leading to better accuracy in both LOS and
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Non-LOS conditions. [16] uses LIDAR and GPS for training recurrent neural network

(RNN) models for beam selection. [17] uses CNN and a distributed LIDAR-based

architecture. In this architecture instead of every vehicle having its own expensive

LIDAR sensor, we have a centralized LIDAR at the base station which captures the

environment including the vehicles in its vicinity. The accuracy of this work was less

compared to other works where LIDAR is mounted on each vehicle, but its setup

cost is much lower requiring just one LIDAR. [2] uses CNN along with a non-local

attention mechanism, it also uses a novel knowledge distillation loss function which

helped it in getting higher accuracy. [18] uses a federal learning approach to train the

CNN model. In federated learning, all the vehicles collect the sensor data periodically

and send it to the base station, which uses this data to further train and fine-tune

the model. The model weights after fine-tuning are sent back to the vehicles. During

normal operation, the vehicles can use these weights to predict the best beam pairs

locally. Thus, the training is done in a live and distributed manner while predictions

are done locally. While previous research using LIDAR sensors has yielded promising

results, these studies assume that LIDAR data is free of noise. In reality, LIDAR

sensors often struggle to function accurately in adverse weather conditions such as

rain, fog, and snow [8, 9]. Given that these weather conditions are quite common in

many parts of the world, this can limit the effectiveness of LIDAR-based systems.

Additionally, LIDAR sensors are unable to detect reflections from shiny surfaces,

which can further limit their accuracy. Finally, the cost of LIDAR sensors remains a

significant factor to consider. To address these challenges, researchers must develop

solutions that can improve the accuracy of sensor-based systems, even in adverse

weather conditions.
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2.4 Using Camera

[19] uses RGB images from the camera mounted at the RSUs for the beam and

blockage prediction. First, it uses transfer learning to train the ResNet-18 model to

detect the user in the scenario, if detected it returns the best beam pair for that user

location using the pre-defined codebook. If the user is not detected it classifies it as

a blockage. This approach can predict blockage but did not have the capability to

select the best beam pair in case of blockage. [20] proposes a similar approach but

adds GPS information to get a more accurate position of the user in a non-blockage

situation. [21] uses the image taken from ordinary cameras to build a panoramic

point cloud view using a 3D scene reconstruction technique. This way it can take into

account the buildings and other obstacles in the surroundings while training using

the Deep Neural Network. But this being an offline approach works only when the

environment remains static like buildings and does not work for dynamically changing

environments like roads with running vehicles. [22] uses RGB images to detect the

UEs and then uses an angle prediction model to detect the angle between the UEs and

the RSUs. Finally, it combines the angle information with the code book information

to predict the best beam pairs. Camera based systems are not as accurate as LIDAR

in capturing environment, also any blockage to the sight of the camera lens can lead

to failure in capturing the sight of the environment.
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CHAPTER 3

System Model And Problem Formulation

Fig. 1 shows the system model for our problem. There are two major components

in the system, one is the roadside units (RSUs), which are the base stations located

on the curbside of every street, and another one is the vehicles which are the user

equipment here with the antenna mounted at the center on the roof. The RSU is

connected with all vehicles in its area using 5G mmWave orthogonal frequency division

multiplexing (OFDM) subcarriers. Antennas are assumed to be analogous in nature.

Figure 1: System Model
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We assume the codebook to be fixed in nature and these are denoted as

𝒞𝑡 = {f𝑖}𝐶𝑡

𝑖=1 𝑎𝑡 𝑡ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑟 𝑒𝑛𝑑

𝒞𝑟 = {w𝑗}𝐶𝑟

𝑗=1 𝑎𝑡 𝑡ℎ𝑒 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑒𝑛𝑑

There are (i, j) ∈ 𝒞𝑡 × 𝒞𝑟 pairs of the precoder and the combiner vectors. H𝑘 is a

matrix representing the channel between the transmitter and the receiver over the

kth subcarrier [23] calculated as

H𝑘 =
√︀

𝑁𝑡𝑁𝑟

𝐿∑︁
ℓ=1

𝛼ℓa𝑟

(︀
𝜑𝐴
ℓ , 𝜃

𝐴
ℓ

)︀
a*
𝑡

(︀
𝜑𝐷
ℓ , 𝜃

𝐷
ℓ

)︀
,

Here 𝛼ℓ is the complex path gain, 𝑁𝑡 is the number of antennas at the transmitter,

and 𝑁𝑟 is the number of antennas at the receiver. 𝜑𝐷
𝑟 , 𝜑

𝐴
𝑟 are the azimuth angle for

departure and arrival respectively. 𝜃𝐷𝑟 , 𝜃
𝐴
𝑟 are the elevation angle for departure and

arrival respectively. For each pair, we need to estimate the channel gain [23]. The

channel gain at the kth subcarrier is given by:

𝑦(𝑖,𝑗) = w𝐻
𝑗 H𝑘f𝑖

For some specific pair (i,j) the sum of channel gains over all subcarriers is given by:

𝑦(𝑖,𝑗) =
𝐾−1∑︁
𝑘=0

⃒⃒
w𝐻

𝑗 H𝑘f𝑖
⃒⃒2

Here y is the channel gain, which is the received signal power at the receiver. w𝐻
𝑗 is the

complex conjugate transpose of a vector w𝑗 represents the weights used by the receiver

to combine the signals received from different antennas. H𝑘 is a matrix representing

the channel between the transmitter and the receiver. f𝑖 is a vector representing the

weights used by the transmitter to transmit the signal from its multiple antennas.

Here the beam selection problem can be said to choose the receiver-transmitter pair

that maximizes the above channel gain. This is represented by the below equation

(̂𝑖, 𝑗) = argmax
(𝑖,𝑗)

𝑦(𝑖,𝑗)
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The beam sweeping method requires searching through a vast number of pairs 𝒞𝑡 ×𝒞𝑟,

causing significant connection delay. To improve user experience, we can use metadata

from sensors like LIDAR and GPS to predict the top k pairs, among which the optimal

beam pair will likely be found. This reduces the search to only k pairs, saving time.
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CHAPTER 4

Our Proposed Solution

4.1 Vision Transformer Architecture

The 2021 ICLR conference research paper titled ”An Image is Worth 16*16 Words:

Transformers for Image Recognition at Scale” introduced the vision transformer (ViT)

model [10]. This model can be used for various image recognition tasks, such as object

detection, image segmentation, image classification, and action recognition. ViTs

are able to do this by converting images into sequences of patches, which are then

flattened into vectors and projected to the desired input dimension. This allows the

model to learn image structure independently, which can improve its performance on

these tasks. In addition, ViTs are also able to learn long-range dependencies between

different parts of an image, which can also improve their performance.

There are multiple steps in a vision transformer architecture as shown in Fig. 2.

1. Split the input image into fixed-size patches, These patches resemble the word

tokens in NLP problems.

2. Flatten the patches to form a linear sequence.

3. Embed the flattened patches to create low-dimensional linear embedding.

4. After this, in order to retain the positional information, positional embedding is

added to the patch embedding. The positional embedding can be done in 1D or

2D but we did not observe any significant performance difference between the

two therefore we will stick to using 1D.

5. Feed the sequence generated by this embedding as an input to the transformer

encoder.

11



6. Pre-train the ViT model on a large dataset with output labels in case of a

classification task.

7. Fine-tune the model.

Figure 2: Vision Transformer Architecture

4.2 Vision Transformer Encoder

The encoder part of the transformer is one of the most important components,

and we will discuss here the internals of it in more detail. It consists of three main

components as seen in Fig. 3:

1. Layer Normalization

There might be variations present in the input images present in training data.

The normalization layers help to stabilize the model during the training process.
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2. Multi-headed self-attention

Multi-headed self-attention is the main component of the ViT encoder block. It

helps the model to focus more on the relevant parts of images and learn more from

them. For finding the relevant parts of the image an attention map is created.

An attention map is a matrix that assigns weights or scores to every element or

token in the input sequence during the computation of the self-attention layer.

These weights determine the relative importance of each element or token to

the final output of the layer. In a normal self-attention mechanism, each vector

within an image interacts with all other vectors to capture dependencies between

them. But in ViT we have multi-heads in self-attention which means that it can

assign each head to work on different parts of the image instead of a single head

working on the whole image. This leads to more effective learning of the heads.

3. Multi-layer perception (MLP)

After the self-attention layer, the MLP component is applied to each encoder

block. Using this, the representations learned by the multi-head attention block

are transformed into higher-level abstraction. These higher-level abstractions

are more useful for downstream tasks.
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Figure 3: Transformer Encoder Architecture

4.3 Vision Transformer Multi-Headed Self-Attention

The architecture diagram of the Multi-Headed Self-Attention layer can be seen in

Fig. 4. The Self-Attention layer in a ViT starts by converting the input images into

three components: queries, keys, and values denoted by 𝑄, 𝐾, and 𝑉 respectively..

Formally for input 𝑧 containing 𝑁 images of dimension 𝐷, 𝑄 = 𝑧𝑊𝑞, 𝐾 = 𝑧𝑊𝑘 and

𝑉 = 𝑧𝑊𝑣. Here 𝑊𝑞, 𝑊𝑘 and 𝑊𝑣 are learnable matrices. After this, an attention

score 𝐴 is calculated which signifies how much correlation exists between two input

sequences and their respective queries and keys [10]. The softmax function is used

here to bring the attention score values in the range of 0-1.
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Figure 4: Multi-headed Self-Attention Architecture

𝐴 = softmax
(︁
QK⊤/

√︀
𝐷ℎ

)︁
Finally, we add up the weighted sum across all positions after multiplying the attention

score with value embedding to obtain the output of the self-attention block [10].

SA(z) = 𝐴V

The multi-head attention mechanism as seen in Fig. 6 is a further extension of self-

attention seen in Fig. 5 that allows the ViT to simultaneously focus on various regions

of the image, and to learn the intricate relationships between these regions. It is

obtained by concatenating the self-attention matrices and multiplying them by another

linear transformation, 𝑈𝑚𝑠𝑎, to produce the final output of the MSA mechanism [10].

In Fig. 5 we can see attention mechanism focuses more on the person in the picture,

whereas in Fig. 6 we can see that, there are three heads of the Multi-headed attention,
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each one of them focuses on different parts, first one focuses on the person, the second

one focuses on the clouds, and the third one focuses on the mountains.

MSA(z) = [SA1(𝑧); SA2(𝑧); · · · ; SA𝑘(𝑧)]U𝑚𝑠𝑎

Figure 5: Attention Mechanism example [1]

Figure 6: Multi-headed Attention Mechanism example [1]

4.4 Our Final Model - Combining GPS data to ViT

After the layers comprising the ViT architecture, we add the GPS data. GPS

is 3-dimensional data containing the X, Y, and Z coordinates of the current vehicle.
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The Z coordinate was not much helpful in improving our model accuracy, therefore

we dropped it to reduce the number of features. Once GPS data is appended, a few

linear layers are added along with the ReLU activation function to train on the GPS

data, followed by a final dense layer to create the final output of dimension 256x1

denoting the predicted channel gains for each beam pair. The block diagram of the

final model can be seen in Fig. 7.

Figure 7: Final Model Block Diagram

17



4.5 Our Model Parameters

Table 1: Parameters used for training ViT

Index Hyperparameter Name Value

1 Input image dimension 20,200,3

2 Reshaped Input image dimension 72,72,3

3 Dimension of Patches 6,6,3

4 Number of Patches 144

5 Type of Positional Embedding (1D or 2D) 1D

6 No. of Heads 4

7 Transformer Layers 4

8 Loss Function KL Divergence

9 MLP layer Dimension 64, 32

10 Learning Rate 0.001 (Adam Optimizer)

11 Epochs 200
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4.6 Vision Transformer(ViT) vs Convolutional Neural Network (CNN)

Vision Transformers, introduced in 2020 by [10], revolutionized image classification

tasks due to their multi-headed self-attention concept, precise understanding of data

embedding, and tolerance to noisy data compared to traditional CNN models. CNNs

treat all pixels equally, but transformers calculate varying importance for each pixel,

making them better suited for tasks where different parts of the input data have

varying importance. In mmWave beam selection using LIDAR, foreground objects

like other vehicles and obstacles are more important than background objects like

buildings, trees, and empty streets. However, CNNs apply the same filters to all pixels,

leading to less accurate detection. Moreover, CNNs can only capture short-range

dependencies, while the relationship between vehicles at a larger distance can be lost.

ViT, which can capture long-range dependencies, is a better choice in this scenario.

Having Multi Heads in self-attention is particularly beneficial for mmWave beam

selection using LIDAR as it allows the model to attend to multiple input features

simultaneously, combining them for better decisions. In contrast, regular attention

can only focus on one feature at a time, potentially leading to suboptimal results.

So specifically in our case where there will be noise present in LIDAR data, all the

above-discussed properties of ViT will make it perform better than CNN.
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CHAPTER 5

GPS-BASED Virtual Environment Capture (GVEC)

As we have discussed previously the 5G mmWave beams are directional and

narrow in nature. Therefore the beam alignment should be proper between the RSUs

and the UEs for good connectivity. In a stable environment, it is easy to establish this

alignment. But in streets where a lot of cars, trucks, ambulances, and pedestrians, the

beam path gets hindered by all these obstacles making the alignment process complex.

Further adding up to the complexity, many vehicles will have reflecting surfaces, so

the beam will not only be hindered but also reflected in another direction creating

new beam trajectories. Among all these obstacles some would be stationary like

buildings, signboards, etc., and won’t make any effect on pre-learned beam paths. But

surrounding vehicles will be moving and can be of different sizes and shapes, therefore

their dynamic positions must be taken into consideration. To record the surroundings

one way is to use sensors like LIDAR. The LIDAR sensor is an expensive device that

may not be available in all vehicles, and it does not perform well in inclement weather

conditions such as extreme fog, snow, and rain [8, 9]. Therefore there is a need to

find a solution that can record the surroundings without using LIDAR. To improve

the realism of our experiment we increased our test dataset size by adding 25% (2400)

additional records that have random noise present in the LIDAR data. These new

records were randomly sampled from our existing test data, and the LIDAR data

was made noisy by overwriting it with randomly generated 0s or 1s using a Python

random number generator function. To address the problem of errors in the data, we

proposed a novel solution called GPS Based Virtual Environment Capture (GVEC).
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Figure 8: GPS-BASED Virtual Environment Capture (GVEC)

Fig. 8 shows a GVEC scenario. In GVEC all the vehicles that are close to each

other are assumed to be connected to the same base station. These vehicles on a low

bandwidth channel can share their GPS coordinates, type, size, etc. with the base

station. The base station can use this information to create a virtual image of the

environment. There are different encoding schemes in which this information can be

recorded. Our system is a four-lane road environment but the schemes we will be

discussing below are equally eligible to other road environments too.

5.1 Using Grid-Based Representation

GVEC Grid-Based Representation involves three steps:

1. First, we calculate the relative positions of nearby vehicles in quantized dimen-

sions of [20, 200, 1].

2. Next, we mark the empty matrix with 1’s at the positions where the neighboring

vehicle may be present in the [20, 200, 1] grid. The given environment is a 4-lane
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road, we assume each vehicle captures 5 points (= 20/4) across rows and 21

points across columns in a 2-dimensional grid. A sample representation can be

seen in Fig. 9.

3. Finally, we convert the 2D grid into an RGB image. Later ViT converts images

into patches as seen on the right side in Fig. 8. These steps aid our proposed

framework to replace noisy LIDAR data with GVEC data.

Figure 9: Encoding Scheme: Grid Based Representation

5.2 Using Horizontal Lane Number and Vertical Coordinates

Since we are talking of a laned road scenario, the horizontal position of a vehicle

can be shown using a lane number (0,1,2,3) and the vertical position within the lane

can be shown using the cartesian y coordinate relative to the current vehicle. So each

neighboring vehicle is represented as (lane number, relative vertical location) as shown

in Fig. 10. Example: (0, 110), (1,-20).
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Figure 10: Embedding Scheme: Horizontal Lane Number and Vertical Coordinates

5.3 Using Angle and Straight Line Distance

Here we assume that the origin is located at the center of the current vehicle. We

can measure the angle of the neighboring vehicle with respect to the current vehicle as

the origin. The next thing we need to know is how much distance is the neighboring

vehicle located in that direction. We can use a straight line distance between the

neighboring vehicle and the current. So each neighboring vehicle is represented as

(angle, straight line distance) as shown in Fig. 11. Example: (87.4 degrees, 110.11),

(270 degrees, 20).
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Figure 11: Encoding Scheme: Angle and Straight Line Distance
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CHAPTER 6

Our Experimental Setup
6.1 Dataset Generation Process

Applying machine learning to communication system challenges becomes hard

due to the non-availability of appropriate datasets which resemble real-life data and

also due to the need for data from different sensors in our problem statement. We

need a dataset that has GPS sensor data for location information, LIDAR data for

information regarding the environment, and ray tracing data for getting network

parameters to calculate channel gain. Such datasets which contain all this information

in one place are called multimodal datasets. We chose Raymobtime [23] as our dataset.

Raymobtime is a simulation technique that makes use of a traffic simulator with

ray-tracing (RT) to provide realistic datasets for communication systems, particularly

millimeter (mmWave) MIMO systems. The 3-dimensional scenario is integrated into

Wireless InSite [24] after being exported from Cadmapper [25]. SUMO [26] is used to

create the traffic simulation, which combines data from the Cadmapper 3D model

and the locations of streets from OpenStreetMaps. Fig. 12 shows a diagrammatic

representation of the data generation process. The Raymobtime dataset is a credible

dataset that has been used previously in ITU AI/ML in 5G Challenge for various

problem statements including the beam selection problem [2, 18].

Figure 12: Raymobtime data generation process
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The timeline for capturing data is divided into episodes and scenes as seen in

Fig. 13. Each episode consists of multiple scenes. The periodic sampling method was

used to record scene data with a time interval of 0.1 seconds. At the start of every

episode, 10 random cars are selected and the receivers are mounted at the top center

of the cars. Each receiver also known as User Equipment (UE) is assigned a unique

number that remains constant throughout the episode. When the new episodes begin,

this assignment process happens again and these numbers might change. The RSU

also known as the base station has a fixed position and is located on the curbside of

every street.

Figure 13: Scenes and Episodes in Data generation timeline
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6.2 Dataset Files and Column Description

For our use case, there are three files of importance:

1. ray tracing data s008 carrier60GHz.hdf5: This contains the channel information,

it will be used in calculating the channel gain for each beam pair. The description

of each column within this file can be seen in Table 2.

Index Column Name Unit Description

1 Received power dBm Power level of the
received signal

2 Time of arrival seconds Time when the
signal arrives
at receiver

3 Elevation angle
of departure

degrees Angle of signal
departure from

horizontal

4 Azimuth angle
of departure

degrees Angle of signal
departure from

reference direction

5 Elevation
angle of arrival

degrees Angle of signal
arrival from
horizontal

6 Azimuth an-
gle of arrival

degrees Angle of signal
arrival from

reference direction

7 LOS Binary ‘1’ or ‘0’ Flag ‘1’ for a line
of sight, ‘0’ for
non-line of sight:
Indicates signal
transmission
path type

8 Ray phase degrees The phase of
the signal at
the receiver

Table 2: RayTracing file column description

2. lidar data s008.npz: This contains the LIDAR 3D point cloud data, which will
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be used to capture the environment. The description of each column within this

file can be seen in Table 3.

Index Column Name Unit Description

1 PCD(X, Y, Z) Float These coordinates
represent the
location of

the point in a
3D Cartesian

coordinate system.

Table 3: LIDAR file column description

3. CoordVehiclesRxPerScene s008.csv: This contains the GPS coordinates of the

current vehicle and all the surrounding vehicles on the scene. The description of

each column within this file can be seen in Table 4.
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Index Column Name Unit Description

1 Val Char Indicates if
a channel is
Valid[V] or
Invalid[I].

2 EpisodeID Int Unique iden-
tifier for an

episode in the
network scenario.

3 SceneID Int Unique identifier
for a scene within

an episode.

4 VehicleArrayID Int Number of
receivers in
a vehicle.

5 VehicleName String Name of the
vehicle in the

network scenario.

6 X Float X coordinate of
a point in space.

7 Y Float Y coordinate of
a point in space.

8 Z Float Z coordinate of
a point in space.

9 LOS Binary ‘1’ or ‘0’ Indicates if a
signal has a line of
sight path or not.

Table 4: GPS file column description

We will be using the s008 dataset of Raymobtime for training and the s009

dataset for testing. Both of them are generated for the Rosslyn, Virginia location.

The position for the base station is fixed as (746.0, 560.0, 4.0). The number of valid

records in s008 and s009 is 11194 and 9638 respectively. For generating the noisy

dataset we have added 25% i.e. 2400 extra records with noisy LIDAR values to the

test dataset, making the test data set the size 12038 records.
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6.3 LIDAR Data Preprocessing

LIDAR which stands for Light Detection and Ranging uses the laser light reflected

from the surroundings to measure the distance of obstacles in the surroundings.

LIDAR data is represented by a 3D point cloud 𝑃 = (𝑋𝑝, 𝑌 𝑝, 𝑍𝑝). To reduce feature

dimensionality, the data is mapped to a 2-dimensional grid of size [20, 200, 1] as seen

in Fig. 14. Here each position is assigned the value of 1 if there is an obstacle in the

corresponding location, or 0 if it is empty. The RSU and vehicle locations are marked

as -1 and -2 respectively. The 2-dimensional grid size is decided based on the range of

𝑋𝑝 and 𝑌 𝑝 values, this process is called quantization.

Figure 14: 2-dimensional grid representation of LIDAR data

This is then converted to an RGB image-based representation, with obstacles

shown in black (0, 0, 0), blank cells in white (255, 255, 255), the RSU in red (255, 0, 0),

and the vehicle in green (0, 255, 0). This makes data appropriate to give as input to

ViT, which requires image data. The corresponding RGB representation for Fig. 14

can be seen in Fig. 15.

30



Figure 15: RGB image representation of LIDAR data

Before giving it as input to ViT this image data is converted into patches of smaller

dimensions to reduce the number of features. The corresponding patch representation

for the RGB image in Fig. 15 can be seen in Fig. 16.

Figure 16: Breaking image into patches before input to ViT

6.4 Evaluation Criteria

One of the metrics to evaluate the model is top-k accuracy [18]. Top-k accuracy

is defined as the expectation that the best beam pair (𝑖*, 𝑗*) lies in the top-k beam

pairs set 𝒮𝑘 returned by our model. Mathematically it can be written as

𝐴(𝑘) = E [{(𝑖*, 𝑗*) ∈ 𝒮𝑘}]
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Another useful metric is top-k throughput [2], which is mathematically defined as

𝑅 =

(︃
𝑇∑︁
𝑡=1

log2
(︀
1 + 𝑦𝑖̃𝑗̃

)︀)︃
/

(︃
𝑇∑︁
𝑡=1

log2 (1 + 𝑦𝑖*𝑗*)

)︃

where T is the number of records in test data, (̃𝑖, 𝑗̃) is the best beam pair within

top k predicted beam pairs, and (𝑖*, 𝑗*) is the best actual beam pair. It’s hard to

pinpoint single beam pairs i.e. top 1 accuracy, but it is more feasible to predict top

5 and top 10 beam pairs. Searching among 10 beam pairs is still much faster than

searching 256 beam pairs in our case, therefore we will calculate results for top 1, top

5, and top 10 accuracies and throughput while evaluating our model and comparing it

with the previous works.
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CHAPTER 7

Simulation Experiments and Results

We have used the benchmark dataset named Raymobtime [23] to train and test

our model. Within Raymobtime we have used dataset s008 for training and s009 for

testing. Both these sets are multimodal and consist of Raytracing, GPS, LIDAR,

and camera image data. The training dataset s008 consists of 11194 data records,

the original test dataset s009 consists of 9638 data records and the noisy test dataset

generated using s009 contains 12038 records.

7.1 Original Dataset

This experiment is conducted on the original dataset where there is no noise in

LIDAR data. Results are compared across our proposed model (ViT) and CNN. Our

test results can be seen in Table 5, and Table 6. On the original dataset, ViT achieved

an accuracy of 92.23% percent, 86.13%, and 59.87% for the top 10, top 5, and top 1

beam pairs respectively. We also got a throughput of 97.22%, 94.22%, and 79.29%

for the top 10, top 5, and top 1 beam pairs respectively. Both the accuracies and

throughputs are within the 1% range of previous CNN approaches [2]

Table 5: Top k Accuracy comparison for proposed ViT vs CNN [2] on Original dataset

Model Name Top K Accuracies

T1 T5 T10

Proposed
Model (ViT)

59.87% 86.13% 92.23%

CNN [2] 59.16% 87.01% 92.13%
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Table 6: Top k Throughput comparison for proposed ViT vs CNN [2] on Original
dataset

Model Name Top K Throughputs

T1 T5 T10

Proposed
Model (ViT)

79.29% 94.23% 97.22%

CNN [2] 77.98% 94.32% 97.45%

The graphs in Fig. 17 display the accuracy vs Top k beam pairs curve. Our

model performs similarly to [2] for T1-T2, while [2] performs slightly better for T3-T6,

and they both give the same performance for T6-T10.
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Figure 17: Accuracy vs Top k beam pairs curve on Original dataset

The graphs in Fig. 18 display the throughput vs Top k beam pairs curve. Our

model performs slightly better to [2] for T1-T2, while [2] performs slightly better for

T3-T6, and they both give the same performance for T7-T10.
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Figure 18: Throughput vs Top k beam pairs curve on Original dataset

The graphs in Fig. 19 display the Test loss vs Epoch curve for the original dataset.

Our model initially had slower convergence compared to [2]. However, after 75 epochs,

our model’s convergence increased and it was able to achieve better loss reduction

than [2] after 200 epochs.
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Figure 19: Test Loss vs Epoch curve on Original dataset

All these observations indicate that our proposed approach is as good as any
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state of art models proposed in previous works when tested on the original dataset.

7.2 Noisy Dataset

In this experiment, we first introduced noise in our data by adding 2400 records

having random noise in LIDAR test data. These extra records are randomly extracted

from test data s009, and the LIDAR part of these records is overwritten by randomly

generated 0s and 1s after extraction. Finally these extra records are appended back to

the test data s009. Then we used the GVEC techniques discussed above to improve

the model performance and compared it with previous works.

7.2.1 Noise Reduction using Grid-Based Representation

To reduce the noise, we have replaced the noisy LIDAR records with the LIDAR-

like records generated using GVEC Grid-Based Representation. This will bring back

noise down to a level our models can tolerate. After this, we train ViT and CNN on

this noise-reduced dataset and compare their performance. Our test results can be

seen in Table 7 and Table 8. Working with a noisy dataset, our model beats previous

work [2] by 17.31%, 7.07%, and 4.96% for T1, T5, and T10 accuracy respectively.

Also in terms of throughput, it beats the previous work [2] by 15.38%, 5.33%, and

3.44% for T1, T5, and T10 throughput respectively. Our model was able to maintain

nearly identical accuracy and throughput despite the presence of noise.

Table 7: Top k Accuracy comparison for proposed ViT vs CNN [2] on Noisy dataset -
GVEC Grid-Based Representation

Model Name Top K Accuracies

T1 T5 T10

Proposed
Model (ViT)

59.33% 85.82% 92.19%

CNN [2] 42.02% 78.75% 87.23%
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Table 8: Top k Throughput comparison for proposed ViT vs CNN [2] on Noisy dataset
- GVEC Grid-Based Representation

Model Name Top K Throughputs

T1 T5 T10

Proposed
Model (ViT)

78.80% 93.38% 97.19%

CNN [2] 63.42% 88.65% 93.75%

The graph in Fig. 20 displays the accuracy vs Top k beam pairs curve. Our

model curve is continuously above the curve for [2], beating it for the entire T1 to

T10 accuracies.
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Figure 20: Accuracy vs Top k beam pairs curve on Noisy dataset - GVEC Grid-Based
Representation

The graph in Fig. 21 displays the throughput vs Top k beam pairs curve. Our

model curve is continuously above the curve for [2], beating it for the entire T1 to

T10 throughputs.
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Figure 21: Throughput vs Top k beam pairs curve on Noisy dataset - GVEC Grid-
Based Representation

The graphs in Fig. 22 display the Test loss vs Epoch curve. We can see that our

proposed model curve continues to converge until 200 epochs and minimizes loss to

the same point as on the original data. However, [2] diverges after 30 epochs, causing

an increase in loss.
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Figure 22: Test Loss vs Epoch curve on Noisy dataset - GVEC Grid-Based Represen-
tation
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7.2.2 Ensemble Model using Horizontal Lane Numbers and Vertical Co-
ordinates

In this experiment, we have used an ensemble model, in which model 1 is trained

using the GPS+LIDAR data, and the other model 2 is trained using GPS + GVEC

(Lane Number, Relative Vertical Y Coordinate) data. For the non-noisy part of the

data, predictions from Model 1 are used, and for the noisy part predictions from Model

2 are used. The experiment is performed using both ViT and CNN as model 1 and

the results are compared.

Table 9 shows the results for accuracy for T1, T5, and T10. Working with a

noisy dataset, our model beats previous work [2] by 3.63%, 0.35%, and 0.41% for T1,

T5, and T10 accuracy respectively. Table 10 shows the results for throughput for T1,

T5, and T10. In terms of throughput, it beats the previous work [2] by 2.76%, 0.02%,

and 0.33% for T1, T5, and T10 throughput respectively. Our model showed a slight

improvement in terms of both accuracy and throughput compared to previous work

[2].

Table 9: Top k Accuracy comparison for proposed ViT vs CNN [2] on Noisy dataset -
GVEC Horizontal Lane Numbers and Vertical Coordinates

Model Name Top K Accuracies

T1 T5 T10

Proposed
Model (ViT)

57.05% 83.82% 91.11%

CNN [2] 53.42% 83.47% 90.70%
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Table 10: Top k Throughput comparison for proposed ViT vs CNN [2] on Noisy
dataset - GVEC Horizontal Lane Numbers and Vertical Coordinates

Model Name Top K Throughputs

T1 T5 T10

Proposed
Model (ViT)

77.19% 93.04% 96.75%

CNN [2] 74.43% 93.02% 96.42%

The graphs in Fig. 23 display the accuracy vs Top k beam pairs curve for this

experiment. Our model curve is above the curve for [2] for T1-T3, it is coincident

with the curve for [2] for T4-T6, and beats [2] again between T7-T10.
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Figure 23: Accuracy vs Top k beam pairs curve on Noisy dataset - GVEC Horizontal
Lane Numbers and Vertical Coordinates

The graphs in Fig. 24 display the Throughput vs Top k beam pairs curve for this

experiment. The Throughput curve looks much like a replica of the accuracy curve.

Our model curve is above the curve for [2] for T1-T3, it is coincident with the curve

for [2] for T4-T6, and beats [2] again between T7-T10.
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Figure 24: Throughput vs Top k beam pairs curve on Noisy dataset - GVEC Horizontal
Lane Numbers and Vertical Coordinates

7.2.3 Ensemble Model using Angle and Straight Line Distance

In this experiment, we have used an ensemble model, in which model 1 is trained

using the GPS+LIDAR data, and model 2 is trained using GPS + GVEC (Angle

Straight Line Distance) data. For the non-noisy records prediction from model 1

are used, and for the noisy part of the data predictions from model 2 are used. The

experiment is performed using both ViT and CNN as model 1 and results are compared.

Table 11 shows the results for accuracy for T1, T5, and T10. Working with a

noisy dataset, our model beats previous work [2] by 4.56%, 1.35%, and 0.87% for T1,

T5, and T10 accuracy respectively. Table 12 shows the results for throughput for T1,

T5, and T10. In terms of throughput, it beats the previous work [2] by 3.19%, 0.75%,

and 0.53% for T1, T5, and T10 throughput respectively. Our model showed a slight

improvement in terms of both accuracy and throughput compared to the previous

work [2].
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Table 11: Top k Accuracy comparison for proposed ViT vs CNN [2] on Noisy dataset
- GVEC Angle and Straight Line Distance

Model Name Top K Accuracies

T1 T5 T10

Proposed
Model (ViT)

58.41% 84.07% 91.58%

CNN [2] 53.85% 82.72% 90.71%

Table 12: Top k Throughput comparison for proposed ViT vs CNN [2] on Noisy
dataset - GVEC Angle and Straight Line Distance

Model Name Top K Throughputs

T1 T5 T10

Proposed
Model (ViT)

78.01% 93.11% 96.77%

CNN [2] 74.82% 92.36% 96.24%

The graphs in Fig. 25 display the Accuracy vs Top k beam pairs curve for this

experiment. Our model curve is continuously above the curve for [2] for the entire

T1-T10, showing a slight improvement in accuracies.
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Figure 25: Accuracy vs Top k beam pairs curve on Noisy dataset - GVEC Angle and
Straight Line Distance
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The graphs in Fig. 26 display the Throughput vs Top k beam pairs curve for this

experiment. Our model curve is continuously above the curve for [2] for the entire

T1-T10, showing a slight improvement in throughput.
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Figure 26: Throughput vs Top k beam pairs curve on Noisy dataset - GVEC Angle
and Straight Line Distance

7.3 Resource Consumption

The resource consumption by the proposed ViT model and previous CNN model

[2] can be seen in Table 13. We can see our proposed model uses 0.7 GB more system

random access memory (RAM), while the previous CNN model [2] uses 0.2 GB more

graphics processing unit (GPU) RAM. Overall there is not a significant difference in

resource consumption between both models. In terms of training time, ViT model

being more complex due to presence of multi-headed self-attention takes more time to

train than CNN model [2]. But since most training is done offline here, models can

be trained in advance and used. For online training scheme, training time for ViT

should be reduced further.
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Table 13: Resource Consumption by ViT vs CNN [2]

Model
Name

System
RAM

GPU RAM Disk Offline
Training
Time

Proposed
Model (ViT)

10.6 GB 4.5 GB 31.6 GB 23 Min

CNN [2] 10.8 GB 3.8 GB 31.6 GB 6 Min

7.4 Comparison of different GVEC Encoding Schemes

After extensive testing of various GVEC-based encoding schemes and solutions,

our research has shown that using a Grid-Based representation of GVEC for noise

reduction performs better than other encoding schemes. This method replaces noisy

LIDAR data with virtually generated records, reducing the level of noise. We compared

ViT and CNN models on noisy data and found ViT to outperform CNN. This is because

ViT can handle this reduced noise level and perform well due to its multi-headed

self-attention mechanism, while CNN cannot. ViT maintains similar accuracy and

throughput even with noisy data as it would have done on original no-noise data. Thus,

we can clearly observe that our proposed approach is more reliable and accurate than

previous methods, especially in noisy environments, making it a promising method for

mmWave beam selection.

44



CHAPTER 8

Conclusion

This research paper presents a novel approach in machine learning that combines

LIDAR and GPS data for beam selection, utilizing the vision transformer (ViT)

model instead of conventional convolutional neural networks (CNNs). The primary

focus is on addressing real-time challenges and introducing a solution to correct

noisy LIDAR records using GPS-based Virtual Environment Capture (GVEC). The

proposed approach not only demonstrates comparable performance to the state-of-

the-art methods on the original dataset but also it outperforms these methods on

the noisy dataset, achieving a favorable balance between accuracy, throughput, and

resource utilization. These promising results make the approach highly suitable for

practical applications.

Nevertheless, there are several open issues that require further research. Firstly,

extensive testing on a large-scale dataset is necessary to fully explore the true potential

of the ViT model. Currently, the solution only caters to user equipment (UE) equipped

with LIDAR sensors. However, there are various UE types, such as cellular phones

and older vehicles, which lack LIDAR sensors. Therefore, alternative solutions must

be developed for these devices. It is also essential to investigate whether GVEC alone

can be used as a complete replacement for LIDAR sensor. Furthermore, deploying

such a system in a real environment requires establishing agreements between network

providers and vehicle manufacturers to facilitate data sharing. Addressing this issue

is crucial for the practical implementation of the proposed approach.
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