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ABSTRACT

BASE STATION LOAD PREDICTION IN 5G-V2X HANDOVER

by Madhujita Ranjit Ambaskar

5G V2X networks transmit large amounts of data with low latency, allowing

for real-time communication between vehicles and other infrastructure. In 5G V2X

networks, handover is a process that allows a connected vehicle to transfer its con-

nection from one base station to another as it moves through the network coverage

area. Handover is critical to maintaining the quality of service (QoS) and ensuring

uninterrupted communication. The base station load is a critical factor in ensuring

reliable and efficient 5G V2X connectivity. Prediction of traffic load on base stations

ensure resource optimization and smooth connectivity during handovers. This research

predicts the load of a base station using recurrent neural networks on a dataset of

traffic loads of base stations spanning over a week. Recurrent neural networks can be

used for time series data as they can capture complex patterns in the data, including

seasonality, trends, and cyclical patterns. The predicted dynamic load value is then

used in a handover algorithm and its effect on the handover performance is measured.
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CHAPTER 1

Introduction

5G V2X networks refer to the fifth generation (5G) of wireless communication

technology that enables vehicle-to-everything (V2X) communication. It is a technology

that enables communication between vehicles and other entities. The entities could

be pedestrians, infrastructure, and other vehicles. [1] Various combinations of cellular

network technologies, such as millimeter-wave (mmWave), sub-6GHz, and massive

multiple-input and multiple-output (MIMO) antennas are used by these networks to

enable faster and more reliable communication. To serve numerous V2X use cases,

such as improved traffic efficiency, increased road safety, and vehicle automation, these

networks are anticipated to offer low latency, high bandwidth, and high reliability

communication services. Various modes of V2X networks enable different types of

communication scenarios, such as collision avoidance, traffic management, and remote

vehicle diagnostics. 5G V2X networks to play an important role in enabling the

deployment of connected and automated vehicles. This can help in creating safer,

more efficient, and more sustainable transportation systems.

Handover is a critical feature of 5G V2X networks, because seamless connectivity

and uninterrupted communication depends on it. When a vehicle moves between

different coverage areas, handover is required to be done between base stations. A

base station is a communication device that connects wireless devices to a central

network and acts as a hub for wireless communication. It provides coverage over a

specific geographic area, known as a cell. Handover in 5G V2X networks involves

transferring the ongoing communication session from one base station or access point

to another while maintaining the quality of service and minimizing the disruption

of the communication. To perform a handover in 5G V2X networks, many factors

are considered. These include signal strength of the serving cell and neighbouring
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cells, network capacity, network congestion and interference, traffic loads and network

topology, and so on.

The load of a base station refers to the amount of traffic or data that the base

station is handling at any given time. The load can vary depending on various factors,

such as the number of connected devices, the type of communication, the quality of

service (QoS) requirements, and the network capacity. This load can be measured

using various metrics, such as the number of active connections, the data throughput,

and the resource utilization. If the load of a base station exceeds its capacity, the

network may experience congestion, leading to degradation in the quality of service

and communication latency. In order to develop efficient handover algorithms, load

prediction of base stations can be immensely useful and can help in optimal resource

allocation.

Wireless network traffic has significantly increased recently and has been ex-

panding exponentially. In the past year, 5G subscriptions reached 1 billion, with

the average data consumption per smartphone to be more than 19 GB according

to [2]. The main causes of this growth are the growing use of smartphones and

the introduction of data use in many smart gadgets. As a result of this increased

data usage, more base stations are needed to support more devices, which raises

energy consumption significantly. The majority of the energy used by the network

infrastructure is consumed by base stations, hence energy conservation is essential.

Predicting base station traffic can have several important uses, including:

• Energy conservation: By accurately predicting the traffic on base stations, base

stations can be turned off stations when they are not required during low-load

times. This can lead to saving a lot of energy.

• Capacity planning: Predicting base station traffic can help network operators
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plan and optimize their network capacity. By understanding how much traffic

is expected on each base station, they can allocate resources more efficiently

and ensure that the network is capable of handling the expected load.

• Quality of service: Predicting base station traffic can also help improve the

quality of service for users. By ensuring that base stations are properly sized

and located, network operators can reduce congestion and provide faster and

more reliable connectivity to users.

• Cost reduction: Predicting base station traffic can help network operators reduce

costs by avoiding over-provisioning of resources. By accurately predicting traffic,

they can avoid investing in unnecessary infrastructure and equipment.

Base stations in a network can have varying traffic loads, with some having low

traffic and others experiencing high traffic. The traffic load on a base station can

also fluctuate over time. When using time series forecasting, having a larger amount

of training data can improve performance. However, if the data exhibits different

behaviors, a larger dataset may not lead to better performance and could even harm

it. Therefore, it is necessary to train base stations with similar traffic loads together.

We employ clustering to group base stations with comparable traffic loads, which

helped address this issue.

There are different ways to carry out load forecasting, with the most frequently

used approach involving statistical techniques such as simple moving average (SMA),

exponential smoothing (ES), and autoregressive integrated moving average (ARIMA).

However, in recent years, researchers have shifted towards using machine learning and

deep learning methods. Of these, recurrent neural networks have gained significant

attention as a means of performing load forecasting.

Recurrent Neural Networks (RNNs) are a type of neural network that is commonly
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used for processing time series data. Time series data refers to data that is collected

over time, such as stock prices, or traffic loads at base stations. They process sequential

data by maintaining an internal memory that allows them to capture the temporal

dependencies in the data. They do this by using a hidden state that is updated at

each time step based on the input and the previous hidden state. The output at each

time step is then determined based on the updated hidden state [3]. LSTM (Long

Short-Term Memory) is a type of RNN, which are commonly used in time series

analysis due to their ability to handle long-term dependencies and avoid the vanishing

gradient problem that can occur in Simple RNNs. The input data is typically fed

into the network in sequences or windows, where each sequence or window represents

a subset of the time series data. The output of the network can be used to make

predictions about future values in the time series.

The use of deep learning and recurrent neural networks in 5G V2X can help

improve traffic management and reduce congestion. By predicting traffic load, traffic

management systems can dynamically adjust traffic signals and routing to optimize

traffic flow and reduce congestion. It allows for better quality of service and better

connectivity.
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CHAPTER 2

Related Work

As the world rapidly transitions to V2X networks, the infrastructure of these

networks becomes more crucial and has significant implications. The need for optimized

handover algorithms is more than ever. The quantity, regularity, and duration of

handovers, as well as dwell time on a certain base station, are examples of optimization

parameters [4]. Significant research has already been done on handovers in 5G-V2X

networks, and this literature can help guide suggested handover techniques.

[1] proposes a dwell time estimation (DTE) scheme, a cell selection strategy based

on Vehicle-to-Everything (V2X) communications. To reduce handover (HO) rate, it

chooses small cells that have the longest dwell duration in the vehicle’s direction. Two

datasets, the 5G small cell and the vehicles datasets, are used to evaluate the proposed

DTE method. The cell selection task can be carried out intelligently and with less

computations using machine learning (ML) approaches. ML-modeling methods such

as recurrent neural networks (RNN) and convolutional neural networks (CNN) can

be used to forecast the ideal base station to be connected with.

[5] discusses techniques for choosing base stations for platoons. There are small

base stations and large base stations in the 5G V2X architecture. Small base stations

are utilized to reduce dead angles in the areas that large base stations cover because

they have shorter ranges. The findings of simulations of communication between

base stations and vehicles, signals, vehicle velocity, and platooning are used to create

an effective handover algorithm. They build a model that optimizes handoffs for

platoons using deep learning. The research in [6] discusses key components of 5G

NR V2X. These include physical layer, QoS and resource management, and mobility

management for V2N. It discusses coexistence of 5G NR V2X and LTE V2X. The

system architecture of 5G NR V2X is also reviewed.
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[7] gives an overview of deep learning while discussing deep learning models,

frameworks and applications in detail. The paper discuss great ability of unsupervised

learning, owing to the high amount of data available in the world today and in future.

Fundamentals of recurrent neural networks and long-term short memory networks

are talked about in [8]. The paper shows that the canonical formulation in RNN can

be done with sampling delay differential equations. The article in [9] proposed a DL

model that utilizes unidirectional LSTM for V2X traffic forecasting. This model allows

for more accurate predictions by predicting future values based on past values and

remembering values over a long time. Simulation results showed that the model had

the highest prediction accuracy when 4 packets were transmitted per second. This

outperformed other models and demonstrated excellent performance. Conversely, the

models with a prediction of 14 packets per second had the lowest prediction accuracy

compared to the others. The model that predicted 12 packets per second had the

fastest processing time, while the models with a prediction of 14 packets per second

had the slowest processing time compared to their competitors.

In [3], research was done to predict network traffic load where the prediction

was modeled as a time series forecasting problem. Various clustering techniques

were applied on a public dataset [10] to get highest accuracy. Different statistical

methods, machine learning and deep learning methods were applied and the results

were compared to conclude that recurrent neural networks had the best performance.

The study explored various clustering techniques with different distance metrics to

determine the most effective approach and the optimal number of clusters with the

least error. It was found that Timeseries KMeans using Soft-DTW as the distance

metric produced the least error. The base stations were then grouped to train and

test each group separately. The dataset was analyzed using statistical methods,

machine learning, and recurrent neural networks (RNNs) commonly used in time
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series forecasting. The performance of each algorithm was evaluated using root mean

square error, and the results indicated that RNNs outperformed both statistical

methods and machine learning algorithms. These findings suggest that using clustered

base stations is more effective than using all base stations. The authors used Amazon

DeepAR, an online tool designed specifically for time series forecasting, as a benchmark

to compare the performance of the tested algorithms.

[4] proposes an optimized algorithm that can reduce the frequency of handovers

and improve dwell times in 5G-V2X networks, specifically in vehicular networks. The

simulation includes building models and path loss considerations that account for

real-world obstacles, distances, and other factors. The proposed approach involves two

phases. In the first phase, vehicle destination is predicted based on current location,

vehicle speed, and time of the day. In the second phase, this information is used to

create a trajectory for the vehicle and select the most optimal base stations based on

their proximity to the trajectory. The baseline approach uses RSRQ values to make

the handover decision. Compared to the baseline approach, the proposed approach

shows significant improvement in the number of handovers as well as the average

dwell time.

This research aims to calculate the dynamic traffic load of a base station at a

given time by performing time series forecasting using recurrent neural networks,

and evaluates how dynamic load improves results in 5G V2X handovers. The steps

followed are:

2.1 Dynamic load prediction

• Choosing a public dataset that can be applied to the task of predicting base

station traffic.

• Dataset analysis and preprocessing.
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• Grouping base stations in clusters based on their behavior.

• Training and testing the model using LSTM networks.

2.2 Using dynamic load during handover

• Handover simulation using SUMO and NS3.

• Utilizing dynamic load values of candidate base stations during handover.

• Comparing dynamic load results with static load performance.
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CHAPTER 3

Dynamic Load Prediction on Base Station

In order to implement a handover algorithm, it is crucial to have a realistic value

of traffic load on base stations. This enables the algorithm to efficiently evaluate

candidate base stations that could be used for handovers as a vehicle moves from its

starting location to the destination. Various statistical and machine learning methods

have been used to calculate the traffic load on a base station. However, the Long

Short-Term Memory variety of Recurrent Neural Networks predicts the load with

very high accuracy [3]. This is because the data of traffic loads on base stations are of

multivariate time-series nature. Dynamic prediction of load on a base station during

a user’s journey improves the 5G V2X handover performance by efficiently selecting

base stations with lighter loads along the route of a vehicle.

3.1 Data Preprocessing

The data obtained from [10] is a public dataset used in this research. This dataset

is a city cellular traffic map of China. The data spans over the time of one week. It

provides traffic load data per hour on approximately 13,300 base stations. The given

data provides the longitude and latitude of the base station location. It is observed

that the load on base stations generally increases during the peak time between 5 AM

to 3 PM and 6 PM to 11 PM. This is observed because of the rush hour traffic of

devices during these times. The load during the day tends to be higher than at night.

Figures 1 and 2 depict these spikes in traffic load.

Several data preparation steps were implemented to effectively use this dataset

for forecasting, including feature engineering consisting of 2 steps, and data cleaning

consisting of 3 steps.
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Figure 1: Average load per hour on base station #12

Figure 2: Average load per hour on base station #18
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3.1.1 Feature Engineering

Feature engineering is the process of selecting and transforming raw data into

useful features that can be used for training. It involves identifying features that can

be made more meaningful, extracting them, and transforming them into a format that

can be used for model training.

• UNIX epoch time: The dataset contains a field ‘time_hour‘ that is a UNIX epoch

timestamp. We derive the fields ‘month‘, ‘day‘, and ‘hour‘. Furthermore, using

the ‘day‘ field, we generate a new binary feature ‘week_day‘ that represents 1

(true) when the day is a weekday and 0 (false) when the day is a weekend.

• Haversine Distance: Haversine distance is a formula used to calculate the great-

circle distance between two points on a sphere, such as the Earth. It takes

into account the curvature of the Earth’s surface and provides a more accurate

distance measurement than simple Euclidean distance. The formula uses the

latitude and longitude coordinates of two points and calculates the distance

between them by taking into account the Earth’s radius. The origin point is

taken as (0,0). We measure the Haversine distance between the latitude and

longitude of a base station and this origin point and add the value as a new

field to our data, ‘haversine_dist‘. The Haversine formula is given by:

ℎ = 𝑠𝑖𝑛2(𝑎) + 𝑐𝑜𝑠(𝑙𝑎𝑡_𝑜𝑟𝑖𝑔𝑖𝑛)𝑐𝑜𝑠(𝑙𝑎𝑡_𝑏𝑠)(𝑠𝑖𝑛2(𝑏)) (1)

where, a is difference between lat_origin and lat_bs and b is the difference

between lon_bs and lon_origin and, lat_origin and lon_origin are the latitude

and longitude of the origin point; lat_bs and lon_bs are the latitude and

longitude of the base station.

• Preserving the cyclic nature of the feature ‘hour‘: We added ‘hour_sin‘ and

‘hour_cos‘ as additional fields in our data to encode the cyclical nature of time,
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which is important in time series analysis. When we work with time series data,

we often encounter cyclical patterns, such as daily or weekly cycles, where the

pattern repeats over a fixed time period. Representing cyclical patterns using

traditional numerical encoding techniques can lead to problems because these

methods assume that the data is linearly related. However, time is cyclical, so

a non-linear representation would be more appropriate. In order to represent

time in a cyclical way, we can use sine and cosine functions. By encoding time

using sin and cos functions, we can represent the cyclical nature of time and

avoid issues that may arise from treating time as a linear variable. For example,

in the case of hourly data, we can represent each hour of the day as a point

on a unit circle, where the angle of the point corresponds to the hour of the

day. We can then use the sine and cosine functions of the angle to encode

the hour. This approach ensures that the hour is represented in a cyclical and

continuous manner, where the difference between 23:00 and 00:00 is small, unlike

a numerical representation where these two times are far apart.

ℎ𝑜𝑢𝑟_𝑠𝑖𝑛 = 𝑠𝑖𝑛(ℎ𝑜𝑢𝑟) (2)
ℎ𝑜𝑢𝑟_𝑐𝑜𝑠 = 𝑐𝑜𝑠(ℎ𝑜𝑢𝑟) (3)

3.1.2 Data Cleaning

Cleaning the time series data involves identifying and addressing missing values,

dealing with outliers, handling duplicates or errors, and removing irrelevant data that

may interfere with the forecasting.

• Removing low-frequency base stations from the dataset: In the given dataset,

the number of records provided by each base station varies greatly. Some

base stations were found to have less number of records. A threshold value

was considered to filter these base stations. This value was considered as the

minimum number of base station records that had to be present in order for the
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data record to be taken into consideration. After taking into account the total

number of base stations and their average records, a value of 67 was chosen.

This value is 40% of the maximum number of records any base station has. The

base stations with less than the threshold value were filtered out and removed.

• Handling outliers: Sometimes outliers are introduced in a dataset due to errors

or noise during data collection. These are data points that are very different

from all the other data points in the dataset. Because of these outliers, the

forecasting model performance can be negatively affected. Figure 3 shows a

scatter plot of all data points including the outliers. It is crucial to make sure

we remove these outliers after identifying them so that the model is accurate.

This is done by first calculating the Z-score of all the data points on the ‘packets‘

columns, and then removing a data point if its score exceeded 3. The threshold

of 3 was chosen because 99.7% of the data had a Z-score lower than that value.

We replace the value of the outlier with NaN and proceed to the next step. The

NaNs in our dataset were values that were either originally missing or were

converted due to being outliers. The next step was to replace the NaNs with a

value from the dataset of the time instance prior to the current.

• Forward Fill null values: The method of replacing missing values with the

previous record’s value is called "forward fill" or "last observation carried

forward" (LOCF). It is a common approach in time series data imputation,

where missing data is replaced with the most recently observed data. For all

the NaN values in the dataset that originated from the missing values or the

outliers, outliers, we replaced this value with the value of the record at the

previous. The percentage of data points affected by forward filling was 1.27%.
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Figure 3: Scatter plot to show outliers

3.2 Clustering

Clustering is a useful technique in time series data analysis because it can help

identify patterns and group similar time series together. When clustering is performed

on time series data, the approach is different than clustering static data. The reason

behind this is that the features are dynamic and continuously changing. Traditional

clustering techniques are not always effective for time series data because they are

designed to identify similarities in static features. Clustering was used in the research

to group base stations with similar traffic loads together for the purpose of improving

the accuracy of time series forecasting of traffic load on base stations. The reason for

clustering is that different base stations process different amounts of traffic load, and

some base stations within a network may have a low load, whereas others may have

an extremely high load. By clustering base stations with similar traffic loads, the

training data becomes more focused and specific, which can lead to better forecasting

performance. An example of a problem statement where clustering helps is while

developing a grid based energy saving scheme where the base stations with low loads

14



Unclustered Cluster-0 Cluster-1 Cluster-2 Cluster-3 Cluster-4

1059.9387 137.6398 873.9473 1426.5502 17.2557 415.8907

Table 1: MSE of unclustered data vs individual clusters

can be switched to sleep mode during hours of low or negligible traffic load, without

compromising on the quality of service for users. Clustering also mitigates the model

variance. The variance is measured in terms of the Mean Squared Error (MSE) value.

Table 1 gives the MSE values for unclustered data, as well as all clusters which shows

that the MSE values are lesser for 4 out of 5 clusters than for unclustered data.

3.2.1 TimeSeriesKMeans with Euclidean distance for 5 clusters

Spatial clustering clusters the base stations according to the base station locations

and assumes that base stations near each other have the same behavior. However,

time series clustering based on base station behaviors is more accurate. We perform

clustering using TimeSeriesKMeans with Euclidean distance as the distance metric.

The number of clusters was chosen as 5.

3.2.2 Euclidean distance over Soft Dynamic Time Wrapping (DTW)

Soft Dynamic Time Warping (Soft DTW) is slower than Euclidean distance in

TimeSeriesKMeans because it involves more computations. Soft DTW is a flexible

variant of Dynamic Time Warping (DTW) that computes a differentiable loss function

by incorporating a soft-minimum operation into the DTW cost matrix. This operation

involves computing the exponential of the negative distances between each pair of

time series points and summing them up along all possible alignments. The soft-

minimum operation allows the optimization algorithm to backpropagate the gradients

through the DTW algorithm, enabling end-to-end training of models that use DTW

as a component. On the other hand, Euclidean distance is a simpler metric that

involves only the computation of the distance between the corresponding points of
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two-time series, making it computationally faster. However, Euclidean distance does

not account for the temporal misalignment between the two-time series and may not

capture the similarity between them as well as DTW-based methods. However, Soft

DTW is a computationally expensive algorithm, and clustering a million time series

with 10 features using Soft DTW distance can take a considerable amount of time,

even on a high-end system. The time required can range from several days to a few

weeks, depending on the factors mentioned above. Hence, we used Euclidean distance

with lower accuracy in tradeoff with the time and cost of computing Soft DTW.

3.3 Recurrent Neural Network - LSTM (Long Short Term Memory) for
Load Prediction

ARIMA/SARIMA are popular statistical methods for time series forecasting.

However, flexibility in modeling different types of time series data is provided by

Recurrent neural network (RNN). RNNs can be used to model different types of time

series data, such as multivariate time series data, irregularly sampled time series

data, and time series data with missing values. Overall, RNNs offer greater flexibility

and adaptability than ARIMA/SARIMA models, which makes them more suitable

for a wider range of time series forecasting tasks, including ours. Recurrent neural

network (RNN) can be used to predict the network load on base stations in time series

forecasting. RNNs are able to capture time dependencies by utilizing past patterns to

predict future values. However, traditional RNNs face the vanishing gradient problem

when considering a long range of previous time steps. Two popular solutions to this

problem are LSTMs and GRUs, which both use gates to determine what information

to keep and forget. LSTMs have four gates and are used to determine what to keep

from the new cell state, what to forget from the existing memory, and what the next

hidden state should be. GRUs have two gates and determine which past information

to reset or forget and what to use to update the new cell. Both LSTMs and GRUs
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are used to solve the vanishing gradient problem, but they differ in their specific

processes.

Figure 4: RNN LSTM Hyperparameters

3.3.1 LSTM Model architecture

The model architecture consists of a Sequential model from Keras, which is a

linear stack of layers.

• The first layer is an LSTM (Long Short-Term Memory) layer with 128 memory

units and return_sequences=True to return the full sequence of output values

instead of only the last one. The input shape is set to (1, 8) since we are

processing 8 features as a sequence of length 1.

• After the LSTM layer, a dropout layer is added with a rate of 0.2, which helps

to prevent overfitting by randomly setting some of the input units to 0 during
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Figure 5: RNN LSTM Hyperparameters

training. The same LSTM layer is added again with the same parameters as

before, followed by another dropout layer with the same rate.

• Finally, a Dense layer is added with a single output unit, which is the predicted

value for the time series. The loss function used for training the model is specified

by the loss_function variable, and the optimizer used for minimizing the loss is

specified by the optimizer variable. The metrics used for evaluating the model

during training are ’mae’ (mean absolute error).
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The input data scaled to a minimum and maximum value of 0 and 1 using a

MinMaxScaler() function. The training and testing data is reshaped using a reshape()

function to match the input shape of the LSTM layer. During training, the model

is fit to the training data with hyperparameters defined in Figures 4 and 5. Early

stopping is used to prevent overfitting, and the trained model is saved as a pickle file.

Finally, the trained model is used to make predictions on the test data, and the root

mean squared error (RMSE) between the predicted values and the actual values is

calculated. During training, the model is fit to the training data with hyperparameters

defined above. Early stopping is used to prevent overfitting, and the trained model is

saved as a pickle file. Finally, the trained model is used to make predictions on the

test data, and the root mean squared error (RMSE) between the predicted values and

the actual values is calculated.

3.3.2 Cluster specific modelling

For each cluster, a separate model was trained, and a sample of base stations

belonging to each cluster was considered for the results. The traffic loads of these

base stations were shown against the corresponding forecasted values.

3.4 Results

There are several evaluation metrics that can be used for evaluating LSTM RNN

models for time series data, some of which are:

• Mean Absolute Error (MAE): MAE measures the average absolute difference

between predicted and actual values. It is a common evaluation metric used in

LSTM RNN models.

• Mean Squared Error (MSE): MSE measures the average of the squared differences

between predicted and actual values. It is a common loss function used in training

LSTM RNN models.
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• Root Mean Squared Error (RMSE): RMSE is the square root of the MSE, and

it measures the average difference between predicted and actual values, taking

into account the scale of the values.

• R-squared (R2): R2 measures the proportion of variance in the target variable

that is explained by the model. It ranges from 0 to 1, with higher values

indicating a better fit of the model to the data.

• Mean Absolute Percentage Error (MAPE): MAPE measures the percentage

difference between predicted and actual values. It is commonly used in forecasting

models to assess the accuracy of the model’s predictions.

3.4.1 Root Mean Square Error

We calculated the RMSE for each cluster, as given in Table 2, and then the

average RMSE was calculated for all base stations belonging to the same cluster. This

approach provided an overall performance measure for the LSTM RNN model for each

cluster. Lower RMSE values indicated better performance of the model in accurately

forecasting the traffic loads of the base stations. Both MSE and RMSE measure the

performance of a model by calculating the difference between the predicted values

and the actual values. However, RMSE is preferred in many cases, including time

series forecasting, because it penalizes larger errors more heavily than smaller ones,

and it is presented in the same units as the actual observations, making it easier to

interpret. Hence, RMSE was used as the evaluation metric for each cluster’s model

because it provides a more comprehensive measure of the performance of the models

across different base stations and clusters. Figures 6, 7, 8, 9, 10 show graph plots of

model loss per epoch for each cluster.
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Cluster-0 Cluster-1 Cluster-2 Cluster-3 Cluster-4

11.7320 29.5626 37.7697 4.154 20.3934

Table 2: RMSE for RNN LSTM for each cluster

Figure 6: Model loss per epoch for Cluster-0

3.5 Discussions

• If there are enough data in each cluster, clustering base stations according to

how they behave before applying time series forecasting techniques can increase

the precision of their load forecasts.

• The TimeSeriesKMeans clustering algorithm often yields the lowest error for

time series data when compared to other clustering algorithms.

• For time series forecasting, Recurrent Neural Networks, including LSTMs and

GRUs, outperform statistical techniques and machine learning.
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Figure 7: Model loss per epoch for Cluster-1

Future research should test these strategies on additional datasets that may

circumvent the constraints of the dataset utilized in this study.
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Figure 8: Model loss per epoch for Cluster-2
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Figure 9: Model loss per epoch for Cluster-3
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Figure 10: Model loss per epoch for Cluster-4
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CHAPTER 4

Handover Using Dynamic Load
4.1 Simulation Framework

An open-source traffic simulation software known as SUMO (Simulation of Urban

Mobility) allows modeling and simulating different transportation systems, including

road networks, public transportation, and pedestrians. It is often used for research and

development purposes in fields related to transportation, such as traffic engineering,

urban planning, and autonomous vehicles. SUMO simulates the behavior of different

traffic participants, such as vehicles, bicycles, pedestrians, and public transportation

vehicles, based on predefined traffic rules and customizable parameters. It can be

used to analyze traffic flow, test traffic management strategies, evaluate the impact of

new infrastructure projects, and optimize transportation systems.

OpenStreetMap (OSM) is a collaborative project that aims to create a free and

editable map of the world. SUMO (Simulation of Urban Mobility) can use OSM

data to create realistic simulations of urban traffic networks. OSM provides a vast

amount of geographical data, including roads, buildings, and points of interest, which

can be used to create detailed and accurate traffic network models, as shown in

Figure 13. SUMO can import OSM data and convert it into a network representation

that can be used for traffic simulation. By using OSM data in SUMO simulations,

researchers and planners can accurately model traffic patterns and test different traffic

management strategies in a realistic and detailed environment. OSM data can also

be used to validate and calibrate traffic simulation models and to assess the impact

of new infrastructure projects on traffic flow and transportation accessibility. The

combination of OSM and SUMO provides a powerful tool for transportation research

and planning, enabling users to create detailed and accurate traffic simulations that

can help inform decision-making and improve transportation systems.
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We leverage a dataset [11], [12], [13] provided by Shanghai Telecom comprising

over 7.2 million records of mobile internet access, collected over a six-month period

from more than 9,000 mobile phones and over 3,000 base stations. The dataset

includes the location of each base station in Shanghai, as well as six parameters such

as month, data, start and end times, base station location, and mobile phone ID. This

information can be used to track user trajectories and aid researchers in evaluating

solutions related to mobile edge computing, such as edge server placement, service

migration, and service recommendation. Visualizations in Figures 11 and 12 show

the distribution of these base stations by plotting their locations using Google Maps

library.

Figure 11: Base stations plotted on Google maps

We select a region in Shanghai in the OSM and start the simulation with one

vehicle. Figure 3 shows area selection in the OSM. At the end of the simulation, we

obtain logs that we use to convert into a trace file. To use the simulation results in a
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Figure 12: Cluster of base stations in Shanghai region

handover, we require NS3.

Figure 13: Region selection in OSM
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NS3 (Network Simulator 3) is a discrete-event network simulator that is widely

used for research in computer networks. It is an open-source software that provides

a platform for designing and simulating network protocols, applications, and archi-

tectures. NS3 is written in C++ and offers a flexible and modular architecture that

allows for customization and extension of its functionalities. NS3 supports a range

of networking technologies, including wired, wireless, and cellular networks, and can

be used to simulate different layers of the network stack, such as the physical, data

link, network, and transport layers. It also supports a variety of routing protocols,

transport protocols, and application protocols, including TCP, UDP, HTTP, and

FTP. NS3 provides a comprehensive set of features for network simulation, including

support for visualization, tracing, and debugging of simulation results. It also includes

various modules for network emulation, traffic generation, and energy modeling, which

allow for more realistic and accurate simulations.

4.2 Handover using NS3

SUMO and NS3 are used together in to simulate vehicular communication. In this

case, SUMO can be used to simulate the vehicular traffic and movement, while NS3

can be used to simulate the wireless communication and network behavior. The path

of vehicle generated by SUMO can be seen in Figure 14. This integrated simulation

approach can provide more realistic and accurate results, as it considers both the

mobility and communication aspects of the scenario. To simulate a handoff and

measure performance, we use a combination of mmWave module with NS3 [14]. The

algorithm used maintains a list of potential base stations to handover to, with the

target base station being determined based on proximity to the user equipment and

higher Reference Signals Received Quality (RSRQ) values. This is the basic principle

of the algorithm. The algorithm can be written as a function of distance and RSRQ
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values, where the likelihood of a handover is directly proportional to both these factors.

The algorithm, however, does not take into consideration the load at the base station

at that particular time of day. In real life scenarios, predicting the load at a base

station will help the algorithm select a better target base station. The load value is

inversely proportional to the likelihood of a handover. Lesser the load value at a base

station, higher is its chance of being chosen as a target base station during handover.

Figure 14: Vehicle path generated by SUMO

4.3 Results

Once the candidate base stations were identified, their dynamic load values were

predicted using the deep learning model. Table 3 shows the predicted load values for

each base stations. In the case of time series prediction, LSTM is used as a regression

model to predict continuous values, hence it returns a float value in order to get an

estimate of the number of users. Applying the floor function and rounding off the
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BS1 BS2 BS3 BS4 BS5 BS6 BS7 BS8 BS9

24.6 14.7 19.3 24.1 23.7 28.7 25.5 36.7 22.9

Table 3: Predicted traffic load on each base station

number to the nearest integer will give the exact number of users. The algorithm used

for handover simulation was NS3’s A2A4RsrqHandoverAlgorithm. The experimental

setup consisted of the list of candidate base stations and one user equipment (UE).

The initial and the final position of the vehicle was specified as obtained from SUMO

results. At the end of the simulation, the total number of handovers were observed.

The number of handovers without considering the load value came out to be 29,

whereas after considering the predicted load it was reduced to 23. Overall, a 20%

decrease was observed. Figure 15 shows this result in a tabular format.

Figure 15: Handover observations
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CHAPTER 5

Conclusion

The research presented in this report aimed to predict network traffic load on

base stations using time series forecasting techniques. Clustering of base stations was

done based on their behavior as a solution for the nonsimilar behavior of different

base stations. Good results were obtained by implementing TimeSeriesKMeans with

Euclidean Distance. The base stations were grouped into five groups and tested each

group separately using recurrent neural networks. RNNs like LSTMs provided good

performance for time series forecasting. The main conclusions of the research are

that clustering base stations based on their behavior can significantly improve the

accuracy of their load forecasting, TimeSeriesKMeans usually results in the lowest

error for clustering time series data, and RNNs usually provide better performance

than statistical methods and machine learning for time series forecasting. The dataset

used in this work has several limitations and future work must consider applying

and testing the techniques used in this work with other datasets that overcome these

limitations.
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CHAPTER 6

Future Work

The future of dynamic load prediction of base stations looks promising, as there

are several developments that are likely to enhance its capabilities. One of the

major trends is the adoption of more machine learning and artificial intelligence (AI)

techniques in load prediction models. These techniques have the potential to improve

the accuracy of load prediction by analyzing large volumes of data and identifying

patterns and trends that would be difficult for human operators to detect. Another

possible development is the use of real-time data analytics and edge computing. By

analyzing data at the edge of the network, close to the base stations, it is possible to

improve the accuracy and speed of load prediction, and to respond more quickly to

changes in network conditions. The dynamic prediction model implemented in this

research can be used as a ’plug-n-play’ model in various handover algorithms and

network optimization techniques.

To check for the stationarity of a time series, future work can use statistical tests

like the Augmented Dickey-Fuller (ADF) test or the Kwiatkowski-Phillips-Schmidt-

Shin (KPSS) test. These tests check whether the time series has a unit root (i.e.,

a root of 1) or not. A time series is considered stationary if it has no unit root. If

the time series is not stationary, we can use techniques like differencing, seasonal

differencing, or log transformation to make it stationary. Differencing eliminates the

level fluctuations in a time series, leading to a decrease in trend and seasonality. Log

transformation is a common transformation technique that works by applying the log

function on the time series to transfer each value to its logged one.

We used Euclidean distance over the slower Soft Dynamic Time Wrapping in

TimeSeriesKMeans because it involves more computations to incorporate the soft-

minimum operation into the DTW cost matrix, but it offers a more flexible and
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powerful approach to time series clustering that accounts for temporal misalignments

between time series. Future work can use clustering using the Soft DTW distance

to achieve much better results. Since the dataset used only provides hourly traffic

data, we cannot use the feature ’minute’. Using an alternate dataset with the minute

information will increase the number of features in the model, and consequently, the

model’s complexity.

Future work can be done using the DeepAR algorithm to examine the effect

of clustering on forecasting. DeepAR is a supervised learning algorithm designed

for time series forecasting using autoregressive recurrent neural networks (RNNs).

It does not require clustering. The algorithm utilizes the similarity found between

related time series data to improve forecasting performance by learning a global model

from the past data of the existing related time series. The advantage of the DeepAR

algorithm is that it can provide future predictions for new time series with no previous

records because it learns from related time series. Therefore, it can be used to evaluate

the effect of clustering on forecasting by training and testing the DeepAR model on

clustered and unclustered time series data separately and comparing their performance

using evaluation metrics such as RMSE.
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APPENDIX A

Appendix A
A.1 Clustered base stations provided by Shanghai Telecom

Figure A.16
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APPENDIX B

Appendix B
B.1 Code snippets

Figure B.17: Python function to calculate Haversine distance
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Figure B.18: LSTM model architecture
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