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ABSTRACT 
 
IMAGE CLASSIFICATION USING ENSEMBLE MODELING AND DEEP LEARNING 
      

        by Kaneesha Gandhi 

 
With the advances in technology, image classification has become one of the core areas of 

interest for researchers in the field of computer vision. We, humans, experience great levels of 

visuals in our day-to-day lives. The human eye is a powerful tool that not only lets us capture 

images around us but also aids in remembering, distinguishing, and interpreting these visuals. 

Comprehending the images that the user perceives is an important application in the fields of 

artificial intelligence, smart security systems, and areas of virtual reality. Recent advances in 

machine learning and neural networks have led to more precise and efficient methods for 

identifying and categorizing visual data. In this project, we focus on the classification of images 

into different categories by running various ensemble machine-learning models like Decision Tree 

model, Extra-Tree classifier, XGBoost model and Gradient Boosting model. Our primary goal will 

be to emphasize two kinds of input data numerical eye-tracking data and image data. Furthermore, 

we train Deep Convolutional Generative Adversarial Network (DCGAN) to generate new images 

that resembles our input image dataset. This is particularly to augment our dataset and create 

images for our image dataset in order to enhance the performance of our ensemble models. A 

comparative thorough analysis is then performed with our current ensemble models and the 

previous as well as current literature. Our experiments conclude that for image data classification, 

our proposed model performs better after data augmentation and for classification using eye-

tracking numerical data  Decision Tree performs than all the models implemented. 

 Keywords – Ensemble models, eye-tracking, human visuals, image-classification, Hybrid model, 

Decision Tree model, Extra-Tree classifier, XGBoost model, Gradient Boosting model, DC-GANs
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1 INTRODUCTION 
 
 
1.1  Introduction 
 

Vision is one of the most important yet one of the most complex senses of the human body. As 

per popular research, about half of our brain is used for vision [1, 2, 3]. Moreover, of the five 

senses, sight is the one that has been the most completely studied and understood. Research has 

clearly shown that we rely more on our sense of sight than any other when interacting with the 

outside world [4]. As a result, processing visual information occupies a much larger portion, close 

to 80% of the primate brain, than processing information from any other sense [4, 5]. Human vision 

and image classification are closely related as image classification tasks involve training machines 

to mimic the human visual system's ability to recognize and categorize visual information. 

In image classification, a machine learning algorithm is trained to recognize and categorize 

images based on a set of predefined labels [3]. The algorithm analyzes the visual features of the 

image, such as color, texture, and shape, to make a prediction about the image's content [4].  

Image classification has received special interest in the field of computer vision because it can 

yield methodical explanations for target-oriented eye-movement responses [1, 2]. This 

phenomenon dates back to the 1960s, when the first computer vision systems were developed. 

Early techniques for image classification were based on feature extraction, which involved 

manually identifying and extracting key features from images, such as edges, corners, and textures. 

These features were then used to train machine learning algorithms, such as support vector 

machines and decision trees, to classify images [41]. 
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There exists a symbiotic relationship between visual attention and a particular task which 

indicates that any image that the human eye captures can be successfully categorized [5, 6]. There 

are a number of characteristics one can deduce from the eye-tracking data and hence realize the 

different surroundings of a particular subject [6, 7]. These methods are influenced by the 

organization and operations of the human visual system and have been educated on vast image 

datasets to accurately identify and sort objects [5, 6, 7].  

In the 1990s, neural networks became increasingly popular for image classification, due to their 

ability to automatically learn and extract features from images. Convolutional neural networks 

(CNNs) emerged as a particularly effective approach, using layers of filters to detect features at 

different levels of abstraction [42]. Even today, over the past few years, there has been notable 

advancement in the creation of deep learning techniques for categorizing images, such as 

convolutional neural networks (CNNs), which have delivered remarkable outcomes in diverse 

image classification assignments [4].  

In 2012, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) was introduced, 

which led to a significant advancement in image classification. The challenge involved 

categorizing 1.2 million images into 1,000 categories using the deep learning algorithm AlexNet, 

which achieved a top-5 error rate of 16.4%. Later in 2015, the ResNet architecture surpassed 

GoogLeNet in accuracy on the ImageNet dataset, achieving a top-5 error rate of 3.57%. 

Consequently, ResNet has become a popular choice in deep learning for various computer vision 

tasks, such as object detection and image segmentation [43]. In present year of 2023, Improved 

Differential Evolution of Convolutional Neural Network (IDECNN) was launched which 

performed image classification on MNIST dataset. This achieved a top-5 error rate of 0.38%.  
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The approach employed the Differential Evolution (DE) algorithm to automatically create a 

layer-based Convolutional Neural Network (CNN) architecture for the purpose of image 

classification [44]. This comparison of different error rates is shown in the Figure 1 below: 

                       

Figure 1: Top-5 error rates of Deep CNN models used for image classification [44] 

In image generation, GANs are trained to create new images that are similar to a given set of 

training images. The training process involves two neural networks: a generator network that 

creates the images, and a discriminator network that tries to distinguish between the generated 

images and real images. The two networks are trained simultaneously, with the goal of improving 

the generator's ability to create realistic images that fool the discriminator. While GANs were 

originally developed for image generation tasks, they have also been used for image classification 

in some cases. Our approach is to use a DC-GANs model to generate similar looking images of 

objects from the original dataset. These synthetic images were added to the training data for all 

image classification algorithms, which can improve its ability to recognize and classify objects in 

different contexts. 

Our goal is to emphasize the importance image classification using two types of input data: 

numerical eye tracking data consisting visual displays of user gaze scan paths converted to pixel 

coordinates of Left and Right eye respectively in CSV files and second, the image dataset.  
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We enhance our image dataset and boost the precision of the ensemble learning models by 

training a Deep Convolutional Generative Adversarial Network (DCGAN) to create new images 

that closely resemble our current dataset.  

We then compare the performance of our ensemble models with those used in previous and 

current research, performing a thorough analysis to assess their efficacy. Our results indicate that 

image-based classification is more effective for the proposed hybrid model after data augmentation 

is employed, and that Decision Tree performs comparatively better among all the models for eye 

tracking data. Figure 2 below shows the detailed diagrammatic representation of the different 

methodical approaches to be followed for this research. 

 

 

 

 

 

 

 

 

   Figure 2: Organization of different approaches and their inputs 

 

 

Performing data 
augmentation 
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The rest of the report is organized as follows: Chapter 2 covers the background study  and 

literature review of previous researchers in the fields of Image Classification. Chapter 3 describes 

the different libraries and development tools used for the implementation of the project. Chapter 4 

showcases the detailed description of the dataset used. Chapter 5 describes the approaches and 

implementation of our project by covering the different ensemble models and GANs 

implementation for the research.  Chapter 6 discusses the different metrics used for evaluation of 

our experiments and the different methods of experimentation for each of the models used. Chapter 

7 includes the final results of the research including the comparison of our model with models in 

other literature . Lastly, chapter 8 discusses the conclusion and future work of the research.
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1.2  Research Objective 
 

The objective of this research is to explore different ensemble machine learning approaches 

for image classification that combines the strengths of multiple classifiers to improve accuracy and 

robustness. Specifically, the study aims to explore different ensemble techniques of Decision Tree, 

XGBoost, ExtraTree and Gradient Boosting, and compare their effectiveness on our raw image 

and eye-tracking datasets. The research also proposes a hybrid ensemble model that combines 

Decision Tree, XGBoost and ExtraTree classifiers in conjunction and compare the different 

evaluation metrics with the rest of the models. Additionally, the research will investigate the 

impact of feature selection and optimization of models through hyper-parameter tuning, on the 

performance of the ensemble classifiers.  
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2   LITERATURE REVIEW 
 
 
 2.1   Introduction 
 

Classifying pictures is a difficult task that has been widely researched recently [1, 2] in the 

field of computer vision. Ensemble learning is a promising method that includes combining 

predictions from various classifiers to get a more trustworthy and accurate final prediction in order 

to improve the precision and durability of picture categorization. This section summarizes current 

studies that explore how ensemble learning may be used to classify images [11]. When employing 

ensemble learning for image classification, the choice of basic classifiers is also a crucial factor. 

The performance of the ensemble can be improved by using a variety of classifiers because 

different classifiers have different strengths and weaknesses [11, 12]. Support vector machines, 

decision trees, and deep neural networks are just a few examples of basic classifiers that have been 

studied in studies, and it has been shown that combining them can increase classification accuracy 

and reduce the danger of overfitting [13]. 

In recent years, several studies have proposed novel ensemble learning techniques for image 

classification, such as Bayesian model averaging, mixture of experts, and random forest. These 

methods have shown promising results on various datasets, and offer new insights into how 

ensemble learning can be used for image classification [4]. 

The main subject of this review of existing literature is the classification of images through the 

utilization of a variety of techniques related to machine learning, deep learning, and DC-GANs. 

The articles chosen for this review encompass a range of sources such as conference proceedings, 

academic journals, thesis dissertations, and up-to-date research from companies that specialize in 

quantitative and qualitative analysis of image classification. 
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The remainder of the literature review is structured in the following manner: Section II provides 

a summary of research that has been conducted using conventional machine learning algorithms; 

Section III details research that has been done using deep learning algorithms, specifically CNNs. 

Section IV outlines previous studies on image classification and generation that have utilized 

GANs. Figure 3 illustrates the layout of the literature review. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       

 

Figure 3: Map of organization of literature review 
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2.2  Conventional Machine Learning Approach 
 

 2.2.1 Support Vector Machine 

The process of classifying photographs using their visual features involves dividing them up 

into various groups or classes. Machine learning has gained appeal as an image classification 

technique due to its ability to find patterns and features in large datasets [1, 5, 6]. Support Vector 

Machines (SVMs) and Random Forests are two common examples of traditional machine learning 

techniques that have been successfully applied to picture categorization applications [4]. For 

picture classification, these algorithms make use of elements including texture, color, and form. 

The incapability of these algorithms to understand intricate characteristics and patterns, however, 

may restrict their usefulness. 

Yarbus et al. [2] demonstrated that a person’s visual behavior is closely related to the task they 

are performing when viewing a visual scene. This finding has been highly influential and has led 

to a large number of subsequent studies in various fields, including human vision, neuroscience, 

artificial intelligence, and computer vision. These studies often aim to analyze visual behavior, 

such as fixations and saccades, in order to make predictions about a person’s behavior [7, 8]. The 

researchers in this study have compiled a dataset of fixation data from 18 people searching for 

specific images within synthesized collages of approximately 80 images, in three different image 

categories. This is shown in the Figure 4 below. In a controlled experiment, they show that they 

can predict the correct target image from a group of five candidates. The paper also presents a new 

approach for predicting search targets in a more open-ended setting, which involves learning the 

connections between fixations and potential target images [3, 4].  
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             Figure 4: Sample dataset from fixation data [2] 

 

2.2.2 Random Forest Classifier 

Samaras et al. [5] conducted a study to decode a person’s search behavior during a visual search 

task. They focused on the objects that a person fixated on during the search, which can provide 

information about the category of their search target. They found that people tended to fixate on 

objects that were similar to their target in both search tasks. They also had other participants view 

the searchers’ scan paths, superimposed over displays that did not include the target, and try to 

decode the target category (bear or butterfly). The bear search team was correctly classified, while 

the butterfly search team had a classification rate of 77%. To analyze the preferentially fixated 

objects, the researchers utilized Support Vector Machine (SVM) classifiers and obtained 

comparable classification rates [6, 7, 10]. By interpreting the fixations made during a search, the 

researchers demonstrated that it's possible to infer the search target's category. On average, human 

decoders accurately classified a searcher's target 89% of the time [5].  
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This high decoding rate differed from the individual trial rates, which were close to or at 

chance. This indicates that SVM-based classifiers could be beneficial for identifying the 

characteristics that differentiate various search target categories [11, 13]. The images employed in 

this study were categorized as high, medium, and low similarity distractors, where similarity was 

directly linked to the target. This is shown in Figure 5. 

 

 

 

 

 

 

Figure 5: Representative examples of similarity-rated objects used as distractors. (A) Bear-similar objects. 

(B) Bear-dissimilar objects. (C) Butterfly-similar objects. (D) Butterfly-dissimilar objects. (E) Medium-

similar objects [5].  

For the labeled dataset, calculations are made using supervised machine learning techniques 

[11]. In order to construct a computation on a dataset of labeled pictures using supervised machine 

learning, each image that has been labeled with a significant category or lesson is employed. [12, 

14, 16]. Algorithms learn to recognize patterns and attributes inside labeled photos in order to 

discover new hidden photo categories or histories [17, 18]. Often, guided machine learning for 

image categorization goes through the initial and testing stages.  
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2.2.3 Fixated Visual Search 

To determine the design and attributes innate in each image history, calculations are done on 

the annotated dataset. In supervised machine learning for image classification, it is important to 

have a large and diverse labeled dataset for training the algorithm [23]. The dataset should be 

representative of the types of images that the algorithm will encounter in the real world. This is 

because the accuracy of the algorithm depends heavily on the quality of the training data [12, 13]. 

Another important aspect of supervised machine learning for image classification is the choice 

of evaluation metrics [9, 10, 11]. Commonly used metrics include accuracy, precision, recall, and 

F1 score. These metrics provide a quantitative measure of the algorithm's performance on the 

testing data and help to identify areas for improvement [5]. 

Overall, fixated visual search has proven to be a powerful tool for image classification, 

enabling a wide range of applications in areas such as medical imaging, object detection, and 

autonomous driving [12, 13]. While deep learning has shown remarkable success in image 

classification tasks, traditional machine learning algorithms still have a role to play, particularly in 

cases where the dataset size is small or the computational resources are limited [14]. 

 

2.3 Deep Learning (CNNs) 
 

2.3.1 CNNs 

CNN stands for Convolutional Neural Network, and it is a type of deep learning algorithm 

commonly used for image classification tasks. It is designed to automatically extract and learn 

important features from images, such as edges, corners, textures, and patterns, and use them to 

classify the image into different categories or classes. 
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CNNs are composed of several layers, including convolutional, pooling, and fully connected 

layers. During the convolutional layers, filters or kernels are applied to the input image to extract 

features. The resulting feature maps then undergo non-linear activation functions, such as ReLU. 

The pooling layers shrink the size of the feature maps and retain only the crucial features. Lastly, 

the fully connected layers make predictions based on the learned features. 

One of the most common applications of CNNs is image classification. The network is trained 

on a vast dataset of labeled images, where each image corresponds to a particular category or class. 

The network learns to recognize the distinct patterns and features of each class and uses this 

knowledge to forecast the class of new, unseen images.. 

CNNs have proven to be highly successful in image classification tasks, achieving state-of-the-

art performance on various benchmark datasets such as ImageNet, CIFAR-10, and MNIST. As a 

result, they are widely utilized in numerous applications like object detection, facial recognition, 

and medical image analysis. 

 

2.3.2 Gaze Pooling Layer 

Previous studies have explored classification tasks, including those involving human eye-

tracking data. Fritz in [1] came up with a new approach called Gaze Pooling Layer. In this, the 

CNN tampered features were in made to be in conjunction with the gaze data and this was done 

via a mechanism called attention mechanism.  

This mechanism consisted of two different aspects pf the normal human gaze behavior – 

temporal and spatial. The method was quiet simple. It made use of collection of exhaustive but 

pre-trained CNN models and hence avoided the use of expensive techniques involving image and 
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gaze data. There were a lot of experiments conducted and these show the accurate prediction of 

visual target, specifically 10 category and 10 attribute tasks [1]. There were 14 participants and all 

the researchers showcase this dataset by expensive and exhaustive experimentation showing 

amazing results using eye-tracking data.  

The authors of [3] have introduced a novel method for detecting a person's implicit visual 

search intention by analyzing their eye movements and pupillary response. The proposed approach 

can differentiate between task-oriented visual search and task-free visual browsing. To accurately 

measure the pupillary response, the authors suggest using a hierarchical support vector machine. 

The model can accurately detect transitions between different intention conditions with high 

accuracy rates, greater than 90%. However, factors like the intensity and size of the visual stimulus 

may impact the measurement of the pupillary response. Therefore, the authors suggest a robust 

baseline model to overcome these effects.  

This model can identify a person's implicit intention while viewing real-world scenes in both 

indoor and outdoor environments as either task-free visual browsing (TFVB) or task-oriented 

visual search (TOVS) intent. TFVB is when a person is looking for interesting objects without a 

specific goal in mind, while TOVS is when a person is searching for a particular object or 

information about its location to achieve a specific task [6, 7]. The block diagram for the 

implementation is shown in Figure 6. 
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Figure 6: Block diagram of the proposed system for recognizing human’s implicit intentions [3] 
 

Kumar et al. [11] analyzed the dataset by creating a scatter plot to visualize the features and 

data points in order to understand the properties of each task. After eliminating highly correlated 

features, he trained a support vector machine (SVM) and an Ada Boosting classifier to predict the 

tasks from the filtered eye movement data. He achieved an accuracy of 95.4% in classifying the 

tasks, supporting the hypothesis that it is possible to classify tasks based on a person’s eye 

movement data.  

2.3.3 AlexNet architecture 

In [25], the authors made a significant advancement in deep learning and image classification 

by introducing the AlexNet architecture, a deep convolutional neural network that consisted of five 

convolutional layers, max-pooling layers, and three fully connected layers. To train this network, 

they used the ImageNet dataset that comprised of over 1.2 million high-resolution images 

categorized into 1000 classes [25].  
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Their research demonstrated that AlexNet was capable of achieving a top-5 error rate of 15.3%, 

which was considerably better than the prior best performance of 26.2%. This improvement was 

largely attributed to the use of a deep convolutional neural network architecture, which was able 

to automatically learn complex features from the images [1, 3]. The paper also introduced a number 

of novel techniques for training deep convolutional neural networks, including the use of data 

augmentation, dropout, and ReLU activation functions. These techniques have since become 

standard practices in deep learning for computer vision. 

2.3.4 ResNet architecture 

The paper introduced the ResNet architecture [26, 27], a deep convolutional neural network 

that addresses the problem of vanishing gradients in very deep networks by using residual 

connections. 

The ResNet architecture consists of multiple residual blocks, each of which contains two or 

more convolutional layers with shortcut connections that bypass the convolutional layers [26]. The 

shortcut connections allow the network to learn the difference between the input and output of a 

residual block, making it easier to learn the residual mapping. By using residual connections, the 

network can be trained to very deep depths without suffering from the problem of vanishing 

gradients [27]. 

The authors assessed the performance of the ResNet architecture on the ImageNet dataset and 

found that their network outperformed the previous state-of-the-art GoogLeNet, achieving a top-5 

error rate of 3.57% with up to 152 layers [26, 27]. As a result, the ResNet architecture has become 

a popular option for various computer vision tasks, including object detection, image segmentation, 

and image captioning. Moreover, the ResNet architecture has been modified for use in other areas 

such as speech recognition and natural language processing [27]. 
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He et al. [27] proposed a solution to the degradation problem in deep neural networks using 

deep residual learning. They introduced the concept of fitting a residual mapping, represented as 

F(x), to the desired underlying mapping, represented as H(x), by using stacked nonlinear layers. 

This residual mapping is defined as the difference between the desired mapping and the input, F(x) 

= H(x) - x. As illustrated in Figure 7 this residual mapping is added back to the input, resulting in 

the desired mapping H(x) = F(x) + x. 

 

 

 

 

Figure 7: Residual learning building block [27] 

In this equation, we assume both x and F(x) to be the same, i.e., their sizes to be the same. We 

can see in the above figure 5 that we use different units for map functions between stacked layers 

and this takes place in a periodic manner. There are various ways of explaining this phenomenon. 

One such way is, for example, let’s say y= F(x,{Wi}) + x. Here x is the input and F(x,{Wi}) 

determines the residual function that is mapped out by different convolutional network layers. Y is 

the output of the entire function. 
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X and Y are the two input and output variables in that layer's settings. For a residual function 

F(x) to exist, the parameters x and F must match. If the dimensions do not match, the shortcut link 

must have a Ws linear projection to correct the dimensions. The building block output y is 

computed as a function of the residual F(x,Wi) multiplied by the linear projection Ws multiplied 

by the input x, or y = F(x,Wi) + Ws x. 

 

2.3.5 Inception architecture 

The Inception architecture was proposed by Szegedy et al. [11] as a deep convolutional neural 

network that utilizes multiple convolutional filters at each layer. It introduced the concept of 

"inception modules" which enables the network to process input data in parallel with filters of 

various sizes. This allows the network to capture features at different scales and resolutions, which 

is important for recognizing objects in complex images.  

In the Inception architecture, there were way lesser parameters involved. This, hence increased 

the accuracy of the model in comparison to other previous approaches. This architecture received 

further light and importance when it was used on the ImageNet dataset. In this, 1x1 convolutions 

were used to decrease the amount of input channels. This along with bigger filters and global 

pooling were used in conjunction in place of fully linked layers.  

The Inception architecture has since undergone several iterations, namely Inception-v2, 

Inception-v3, and Inception-v4. Our most current versions substantially improve performance 

while keeping efficiency by employing state-of-the-art techniques including regularization, 

residual connectivity, and factorization of huge convolutions. 
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2.4 GANs 

 
2.4.1 Laplacian GANs 

Navab et al. [8] provides a detailed overview of all recent literature that makes use of GANs 

in solving major shortcomings in the field of medicine. Major applications of GANs in medical 

analysis involve conditional synthesis, denoising, reconstruction, classification and segmentation, 

just to name a few [8]. Out of these applications, Navab concludes that maximum number of GANs 

methods have been employed in the field of conditional and unconditional synthesis, comprising 

35.44% of the total number of methods. Comparing the different types of GANs, Navab indicates 

that Laplacian GAN (LAPGAN) performs the best in determining conditional and unconditional 

synthesis. 

2.4.2 Feature Map 

GANs may be utilized for picture classification jobs even if their primary use is image creation. 

One method is to employ a GAN generator as a feature map, which may be used to take high-level 

characteristics from an input picture and utilize them to classify the image [19, 20]. This is 

accomplished by running a picture and through generator network and utilizing the feature vector 

produced by one of its intermediary layers [21]. 

An alternative method is to employ a GAN in a semi-supervised learning environment, where 

the classifier network is utilized to categorize labeled pictures into distinct categories and to 

identify actual or false images [22]. When just a little quantity of labelled data is available, this 

method may be advantageous since the discriminator may use the knowledge from both unlabeled 

and labeled information to enhance performance of the classifier [23, 24].  
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The table 1 below summarizes all the related works described above in a terse manner including 

the scheme, results and challenges of each research. 

            Table 1: Tabular summary of related works 
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3  IMPLEMENTATION PLATFORM AND LIBRARIES USED 
 
 3.1   Data and Graph Manipulation Libraries 
 

 Python 3 is a powerful and versatile programming language that has become a popular choice 

for data science projects due to its vast array of libraries and support for machine learning and data 

analysis. Among the libraries utilized in this project, Tensorflow stands out as a crucial tool for 

building and simulating deep learning models. Its ability to leverage both CPU and GPU compute 

resources allows for more efficient and faster training of models, which is especially important for 

complex projects such as image classification using GANs.  

 To store and manipulate the data, Pandas and NumPy were also used. NumPy is the best option 

for processing CSV data since it offers scientific computation and vector handling functions, but 

Pandas is particularly beneficial for it's own built-in features for data manipulation. The scikit-

learn toolkit, which offers a comprehensive workflow across all machine learning techniques and 

makes it simple to create and test different models, also played a significant part in this project. 

The successful execution of the image recognition project utilizing GANs was made possible by 

the integration of these potent libraries. 

 

3.2  Development Platform 

3.2.1 Setup on local computer (Windows 10) 

A local desktop configuration was used in the project's early phases for activities like data 

preparation and graph building. The desktop has an i7 CPU, 16 GB of Memory, and an Nvidia 

GeForce RTX GPU, which gave it the processing capacity required for these computationally 

demanding activities. The Anaconda environment, a complete distribution of well-liked open-
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source data analysis and machine learning libraries, was used to get the libraries needed for the 

project. On their website, Anaconda offers setup instructions that make using and installing the 

required libraries quick and easy. Using a local desktop gave users more control over their 

computer resources and eliminated the necessity of cloud computing, which may be expensive and 

has network speed restrictions and availability. Overall, the local desktop setup with Anaconda 

proved to be an efficient and reliable platform for the initial stages of the project. 

 

3.2.2 Jupyter Notebook (Anaconda) 

The open-source online application Jupyter notebook, created by Project Jupyter, enables 

GPU-accelerated deep learning. This platform's pre-installed libraries, including TensorFlow, 

Keras, PyTorch, and Pandas, that are crucial for creating deep learning applications, are one of its 

standout benefits. It is crucial to remember that there are particular limitations on session length 

and file size, which may make it less useful for some users. Jupyter notebook is a fantastic tool for 

creating algorithms for deep learning that take advantage of GPUs despite these drawbacks. 

For novices, the documentation available on the official website of Jupyter notebook might be 

a great place to start. It provides descriptions of the platform's many features and functions as well 

as step-by-step instructions for setting up and using Jupyter notebook. Furthermore, there are a ton 

of online tutorials and instructions that can teach you how to utilize Jupyter notebook for deep 

project - based learning, including how to create and train neural networks, handle and analyze 

massive datasets, and launch your models for practical use.
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4    DATASET 
 

 The dataset we use for this research is the same as used by Kumar et at. [11] which was inturn 

borrowed from Otero-Millan et al’s study [12]. The four categories of target stimuli are - Blank, 

Natural, Puzzle and Waldo. Blank scene is merely a plain screen (50% gray) presented to the user. 

Natural image is one where there is a scene that the user is asked to observe. Puzzle indicates two 

similar images placed side by side and the user is asked to find the differences between the two. 

Lastly, Waldo is derived from the game "Where’s Waldo" where the user is asked to find the 

character Waldo, i.e., find an object amidst a group of objects. Figure 8 below shows four sample 

of images belonging to the four different labels presented to user for different eye scan paths. 

   

                                                
                Figure 8: Sample images from the dataset presented to user for different eye scan paths [12]
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For this research, the resolution of every image was fixed to 921 x 630 pixels. The images after 

data augmentation with DC-GANs was at a size of 500 images dataset. Every trial lasted for about 

45 seconds gathering a result of approximately 10 million data points for each for the numerical 

eye-tracking, which are nothing but the data points of user scan paths. This balanced distribution of 

our dataset before performing train test split is shown in the Figure 9 below. Whereas, the dataset 

count for each of the labels after test split of 33% is shown in Figure 10. 

 

 

 

         Figure 9: Total dataset count before performing train-test split 

 

 

 

            

        Figure 10: Total test - dataset count after performing 33% test split 
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In our research, we try to implement different types of inputs based on the same user dataset 

available to us. In the first case, we pass gaze fixation points, i.e., raw numerical data (in CSV 

format) to different ensemble models and compare their accuracies. A few of the rows of a sample 

CSV file of our initial eye-tracking dataset is shown in Figure 11. 

 

                   

 

Figure 11: Few rows of eye-tracking data stored in a sample CSV file 

 

In the second case, we pass direct raw images in our dataset as input to the DC-GANs model 

for data augmentation and then to the ensemble learning models. 

 

4.1 Challenges of the given dataset 

The provided dataset includes many CSV files relating to the user gaze scan path and raw 

images. The classification may be done with both CSV data and raw images. The CSV files include 

several contain records having NaN values and unusual characters. Data processing is required in 

order to use the CSV files as input to our machine learning models. The raw images provided in the 

dataset that were used as input to our ensemble models were restricted in number, with a dataset of 

only 50 images using DenseNet201 with transfer learning produced results with extremely low 

accuracy, almost close to 1%.  
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The figure 12 indicates the training and validation accuracy across 11 epochs. To improve 

accuracy, we undertook data augmentation to boost the number of images. 

 

 

 
 
 
 
 
 
 
          Figure 12: Accuracy plot of DenseNet201 
 
 
 

4.2 Data Cleaning 

Data integration is performed to aggregate data from multiple CSV files into one dataframe. 

The dataset contains multiple NaN values and unusual characters. The missing values corresponded 

to the data points where the user looked outside of the viewing area. Since this affected model 

accuracy, we eliminated such rows using basic Python libraries. These significantly reduce the 

accuracy of a model, hence data cleaning is necessary. Figure 13 below indicates the number of 

NaN across different columns of data belonging to the whole dataset. After data cleaning, the below 

result is achieved showing successful removal of NaN values. 
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Figure 13: Total number of NaN values in the entire dataset 

 
 
4.3 Data Pre-processing – Correlation Analysis 

We used the Pearson correlation matrix to plot the correlation between different features of our 

initial eye-tracking dataset. The Pearson correlation coefficient is a measure of the linear 

relationship between two variables, which ranges from -1 to 1. A correlation coefficient of -1 

indicates a perfect negative correlation, meaning that as one variable increases, the other decreases 

in a perfectly linear fashion. A coefficient of 0 indicates no linear correlation between two variables, 

while a coefficient of 1 indicates a perfect positive correlation, meaning that as one variable 

increases, the other also increases in a perfectly linear fashion. The correlation between features of 

the user gaze fixation points is plotted to shows the dependency of different attributes on one 

another as shown below in Figure 14.  

 

 

 

 

 

             Figure 14: Feature correlation between different attributes of the dataset 
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5      APPROACHES AND IMPLEMENTATION 
 

There were many machine learning techniques and manually constructed feature extraction 

methods that were previously used to classify images. Image preprocessing to eliminate noise and 

reduce the photos to a uniform size was one phase in the process. Another step was feature 

extraction, which entailed manually creating a collection of features to describe the image. Local 

Binary Patterns, Scale-Invariant Feature Transforms, and Histogram of Oriented Gradients were 

frequently used feature extraction techniques. Following the extraction of the features, a machine 

learning algorithm—such as SVM Classifier, Random Forest, or k-Nearest Neighbors—was 

trained on a labeled dataset of photos. After being trained, the model was able to identify the class 

of fresh photos by identifying their attributes. The development of the proper feature extraction 

algorithms for this method took a lot of effort and skill. However, deep learning, on the other hand, 

has made the procedure easier by enabling computers to pick up the features on their own. 

In this project, two broad methods are utilized for achieving comparative analysis between 

them. The first method consist of using numerical eye-tracking dataset stored in CSV files and 

passing them as input to train our ensemble models. The second method consists of taking raw 

images as input and passing them to the ensemble models to see in order to form strong 

comparative analysis between the working and performance of different ensemble approaches. We 

also propose a novel approach to perform a cohesive incorporation three out of four ensemble 

models as to determine the accuracy of this hybrid model. Additionally, the research also takes 

into account the use of DC-GAN for the purpose of data augmentation.  The flowchart for the 

complete execution of the project is shown below in Figure 15. 
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Figure 15: Experimental flowchart of the different technical aspects of project  

 

 

5.1   Decision Tree Ensemble model 

A very powerful ensemble learning approach for classification and regression is the decision 

tree. With ‘n’ nodes the data characteristics and edges representing the decision rules, this 

supervised learning technique divides the data into smaller groups using binary judgments. The 

most informative features are found and a stopping requirement, such as a maximum depth or a 

minimum sample size, is satisfied while this process iteratively proceeds [6]. Figure 16 below 

illustrates the same. 

 
 
 
 
 
 
 
 

 
Figure 16: Sample decision tree based on binary target variable Y [28] 
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The fundamental decision tree model presented in Figure 15 consists of two dependent 

variable, x1 and x2, having values ranging from 0 to 1, as well as one goal variable Y (which might 

have a value of zero or one). The nodes and branches of a decision tree structure are its crucial 

components, and crucial processes including data division, setting halting criteria, and pruning are 

necessary for its formation [7]. 

In the Decision Tree model, every eye tracking data is read and file and features are 

extracted along with label values for each data sample in our dataset. This is done for all four label 

classes namely “Blank”, “Natural”, “Waldo” and “Puzzle”, for the numerical eye-tracking data as 

well as image data. For this model, the dataset is split into test and train dataset with 67% train and 

33% test sizes respectively. 

  

5.1.1 Definitions and nomenclature 
 

Nodes: Several sorts of nodes may be recognized in a decision tree. The root of the tree, 

which is sometimes called the decision node, comes first [12]. The selection represented by this 

node will divide the data into several, mutually exclusive subgroups. Second, internal nodes exist, 

which are also known as risk junctions [9, 13, 28]. These nodes reflect one of the options that are 

accessible at that particular branch in the binary tree. They are connected to its parent node at the 

top and their leaf node or leaf nodes at the bottom via an edge. The leaf nodes, often referred to as 

end nodes, come last. These nodes show how a chain of choices ultimately turned out [28].  

 

 

 

 

 



31 
 

 

Branches: The root nodes and intermediate nodes of the decision tree model have a network 

of branches that reflect potential outcomes or occurrences [14, 15]. A classification rule is 

represented by each route from the root node via the hidden layers to a leaf node. If-then 

statements, where a given combination of criteria results in a certain conclusion, can be used to 

define these decision rules [28]. For instance, the outcome will be outcome j if a specific set of 

circumstances, like condition 1, condition 2, etc., are satisfied. 

Splitting: Only input parameters that have a connection with the attribute value are taken 

into account when dividing the parent nodes, which results in purer child nodes that depend on the 

target parameter [12, 13, 15]. It is required to decide which input variables would be most crucial 

before dividing the data at the root node and succeeding internal nodes into different categories or 

'bins' according to the current state of these variables [28]. 

Stopping: Stopping in a decision tree refers to the process of determining when the tree 

should stop growing and instead become a final decision model. Complexity and robustness are 

conflicting qualities that must be taken into account when developing a statistical model [28]. In 

some instances, a decision tree model could be constructed in such a way as to provide pure leaf 

nodes, where every record has the desired outcome. This strategy is severe, though, and it might 

not work in every circumstance [28, 29]. 

 

5.2    Extra-Tree Ensemble Model 

 This algorithm has been widely used in a variety of applications, including the classification 

of land cover using Extremely Randomized Trees [31, 32, 33] and the development of a multi-layer 

detection system for intrusion using Extra Trees feature selection, an ensemble learning machine 

outfit, and softmax aggregation. The comparison between the ExtraTree classifier and the Random 

Forest classifier using the F-1 score as a measure and for five distinct datasets is shown in the table 

2 below. 
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Table 2: Tabular summary of F-1 score and execution time between Random Forest and 
Extra Trees algorithm 
 

 

 

 

In our Extra-Tree classifier, our ensemble model is hence constructed. The dataset is divided 

with a train-test split of 67% and 33% respectively. This is done for all four label classes namely 

“Blank”, “Natural”, “Waldo” and “Puzzle”, for the numerical eye-tracking data as well as image 

data.  

The Extra-Trees classifier uses a majority vote to aggregate all of the trees' predictions to get 

the final result [29, 30, 31]. This method's basic premise is that ensemble averaging and fully 

randomizing the picking of characteristics and cut-points together substantially minimize variation 

compared to weaker randomization techniques utilized in other approaches [33]. The approach 

does not employ bootstrap replicas but rather all of the unique training data to minimize bias.  

One of the main advantages of the Extra-Trees classifier is that it is recognized for being 

computationally efficient [31, 32]. This algorithm has been widely used in a variety of applications, 

including the classification of land cover using Extremely Randomized Trees [15, 16, 33] and the 

development of a multi-layer detection system for intrusion using Extra Trees feature selection, an 

ensemble learning machine outfit, and softmax aggregation.  

 
5.3  Gradient Boosting Ensemble Model 
 

Gradient boosting machines are a collection of powerful machine learning techniques that 

have shown notable success across a range of real-world applications [1, 2, 34]. They are quite 
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adaptable when it comes to conforming to the particular application's requirements, such as being 

learned using different loss functions.  

Gradient boosting machines, or GBMs for short, employ a sequential learning procedure in 

which new models are fitted one after the other to increase the precision of the predicted dependent 

variables [24, 35, 36]. Designing the new base-learners to have a strong correlation with the 

ensemble's extremely negative gradient of the error function is the key idea behind this technique 

[36].  Although the selection of the loss function might be arbitrary, it is important to keep in mind 

that the learning process would include fitting mistakes one after the other if the utility function is 

the conventional squared-error loss [34, 37].  

With the variety of activation functions which have been produced to date and the ability to 

create a tailored loss function suited to the particular job, choosing which loss function value to 

utilize is typically left up to the researcher's choice [36, 37, 40]. 

In our project, Gradient Boosting algorithm is combined with MinMaxScaler from the sklearn 

module. When using MinMaxScaler on a feature, each value in the feature is first subtracted by 

the minimum value of the feature, and then divided by the range [35]. The range, in turn, is 

calculated as the difference between the original maximum and minimum values of the feature. 

Importantly, MinMaxScaler does not alter the shape of the original distribution of the feature, but 

rather scales it uniformly to fall within the range of 0 and 1 [36, 37]. 
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The figure 17 below shows a diagrammatic explanation of simplistic working of Gradient 

Boosting algorithm.  

    

 

  

 

 

        Figure 17: Diagrammatic explanation of Gradient Boosting [38] 

Iteratively building an ultimate ensemble model while employing a loss function that has been 

tuned via gradient descent, gradient boosting is a remarkable ensemble approach since it 

acknowledges the limits of weak models.  

Gradient boosting frequently uses decision trees as the weak learners, thus the other term 

"gradient tree boosting" for the method. Gradient boosting regression uses a front stagewise 

modeling method to calculate the actual values, in contrast to AdaBoost, which modifies the 

weights of training instances to improve prediction performance. Additional decision trees are then 

fitted to minimize the disparity between the expected and actual values. To lessen the residual's 

negative gradient, the newly created weak learners are added to the ensemble. This process is 

called “gradient descent”. 

5.3.1 Procedure 

1. Setting the loss function is the first step in creating a gradient boosting regression model. 

2. Next, determine the negative gradient to determine the current regression model's residual 

error (rij). 

3. Create a regression tree using the residual rij as a starting point, and then identify the leaf 
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region Rij for tree i. 

4. To get the loss function's minimal value, do a linear search. 

5. Replace the previous ensemble model of the regression tree with a new decision tree. 

6. Keep iterating over n cycles to build the ultimate gradient boosting regression model. 

In this model too, raw data is passed as input for image classification for four labels/classes 

and for the image data, the classification is performed for three labels/classes. We use the 

MinMaxScaler to scale both the X and Y train sets of the same size as vectors. 

 

5.4   XGBoost Ensemble Model 

Despite its superior performance compared to existing gradient boosting implementations, 

XGBoost can take a very long time to start [39]. A typical task can take hours or days to complete. 

Generating highly accurate models using gradient boosting requires careful parameter tuning. 

During this process, we need to run the algorithm multiple times to explore the effect of parameters 

such as learning rate and L1/L2 regularization conditions on cross-validation accuracy [39, 40]. 

The basic architecture of XGBoost model is shown in Figure 18. 

 

 

 

 

                  Figure 18: Architecture of XGBoost ensemble model [39] 
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In the XGBoost ensemble model for this project, the four labels/classes are taken into account 

with the ‘unicode_escape’ encoding and labels taken as 0, 1, 2, 3. For this model, the dataset is 

split as 70% for training and 30% for testing datasets. At first the learning rate was set to 0.05 and 

then slowly increased during hyper-parameter tuning.  

XGBoost [40] is one of the boosting tree models with the strongest expansion and adaptability. 

To create a more robust learner model, it incorporates many tree models. A further characteristic 

of XGBoost is its capacity to automatically utilize the CPU's multithreading for parallel 

processing, which can accelerate the calculation. Just the first derivative information is used in 

conventional Boosting Tree models [40, 41]. The residual of the previous n-1 trees is employed 

while training the nth tree, making dispersed training challenging to implement.  

The loss function is expanded by XGBoost in a second-order Taylor manner, and it may 

automatically utilize the CPU's multithreading for parallel processing. Moreover, XGBoost 

employs a number of techniques to prevent overfitting [39, 40]. All the above ensemble models 

are first run standalone on the inputs of image dataset and raw CSV file dataset and then in 

integration through the same datasets described above. 

 

5.5     Proposed Hybrid Model 

    In addition to the previously mentioned ensemble models, we proposed a new ensemble 

model consisting of three of the above models – Decision Tree, Extra Tree and XGBoost 

models. This was done to improve the accuracy of our predictions and evaluate the impact of 

increasing model complexity. The hybrid model approach aims to leverage the unique strengths 

of each algorithm and combine them in a way that maximizes performance. We attempted to 

combine all four models but it proved too computationally expensive and we were unable to 
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complete the training of the entire dataset given our available resources. 

Firstly, the decision tree model is useful for handling non-linear data and can generate 

understandable rules for feature selection. It splits data based on the most significant feature, 

which makes it easy to interpret and visualize. However, decision trees are prone to overfitting, 

where the model learns too much from the training data and performs poorly on the test data. 

To address this issue, we use the extra tree model, which is similar to the decision tree model 

but reduces variance by randomly selecting features and split points. This helps to improve the 

accuracy of the decision tree model and prevent overfitting.  

Finally, the XGBoost model is a popular gradient boosting algorithm that can provide better 

regularization and prevent overfitting. It considers the weights of the samples during training, 

which can improve accuracy. Additionally, XGBoost can handle missing values, which is 

particularly useful for image classification tasks where there may be missing pixels or corrupted 

data. By combining these models in a hybrid ensemble, we can leverage the strengths of each 

individual algorithm and achieve better performance than using a single model alone.  

The Figure 19 below shows a simple conceptual diagrammatic representation of the 

conjunction of all the three ensemble models. This was essentially called an “ensemble of 

ensemble models”. 

 

 

 

 

 

 

                   Figure 19: Diagrammatic representation of hybrid model 
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5.6 DC-GANs Model 

 

The creation of GANs that use generative models to generate new data is one of a million ways 

to generate massive amounts of data [17]. GANs are also used to transform low-resolution photos 

into high-resolution ones. Ledig et al. [18] introduced SRGAN for super-resolution (SR) imaging.  

The authors of [20] developed a conditional GAN to generate high-resolution images without 

a trained network. Most of the experiments mentioned above focused only on turning low-

resolution photos into high-resolution images, but GANs can also generate fake data that looks 

real. Denton et al. [19] used a convolutional network to build an image inside a Laplacian pyramid.  

Deep Convolutional GANs (DCGANs), which employ typical and fractional convolutional 

layers for downsampling and upsampling, respectively, to produce high-resolution pictures, were 

first described by Radford et al. [22]. By applying GANs, Rawat and Shen [23, 24] created novel 

topology design techniques to provide the best designs for buildings. 

In our DC-GAN model, we perform data augmentation to increase the size of our dataset, as 

our dataset was limited in size. We utilize convolutional layers with sigmoid and ReLU as loss and 

activation functions respectively. The DC-GAN model consists of generator and discriminator 

following the same loss and activation functions described above. After training the Discriminator 

and Generator in separate functions we download the generated images in a directory, compute the 

loss, and real score parameters. We train these images for a total of 340 epochs and then test the 

images generated. The ultimate goal is to generate similar looking images as our dataset so as to 

increase our total dataset size to 500 and hence increase accuracy. The figure 20 below gives a 

brief description of the GANs generator and discriminator model. It clearly depicts how random 

noise is fed to the generator and then the generated images are compared with the training set till 
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a point where the discriminator cannot differentiate between the real and fake images. 

 

 

 

                                                     

  Figure 20: Working of GANs [40] 

GANs generates both valid and invalid data, and then the discriminator performs a data 

analysis pattern to spurn out the valid from the invalid data.  

This process continues till the discriminator is no longer able to differentiate between valid 

and invalid data. This can be done subdividing and bifurcating the data into new branches. One of 

the ways to perform this is clustering analysis [17]. This helps the users understand the entire 

profile of the dataset available by the process of coalescing similar data into one group and so on. 

In the past too, there have been multiple studies to determine clusters of such groups [20, 21].  

The authors of [20] applied different methods to detect World Wide Web unauthorized data by 

using the method of K-means clustering and self-organizing map (SOM). This was in turn done 

for visualizations purposes in the typhoon image collection. There have been multiple studies in 

the past that have combined GANs model along with clustering analysis for various kinds of 

topology optimization problems.  
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6    EXPERIMENTS 
 
 
 
6.1    Metrics 
 

  In this project we have built multiple models for both our eye-tracking and raw image dataset. 

The resolution of every image was fixed to 921 x 630 pixels. Every trial lasted for about 45 seconds 

gathering a result of 22500 data points per CSV file, which are nothing but the data points of user 

scan paths. 

In our research, we attempt to develop several input formats based on the same user dataset 

that is at our disposal. In the first instance, we subject several ensemble models to gaze fixation 

points, or raw numerical data (in CSV format), and compare the accuracy of the results. In the 

second scenario, we feed DC-GANs models and ensemble learning models directly raw pictures 

from our dataset. 

In this project we have used the following metrics: 

 
1) Precision 
2) Recall 
3) F-1 Score 
4) Accuracy 

 
 

• Precision 

There are many ways to calculate the performance of a model and one of them is precision. 

It is calculated by the total number of positives divided by the total number of positives 

summed with the total number of false positives (Figure 21). 

 

 

       Figure 21: Precision in machine learning 
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• Recall 

Similarly, there are multiple ways of finding out recall for different multi-label 

classification problems. It is calculated by the total number of true positives divided by the 

sum of true positives and false negatives (Figure 22). 

 

 

      Figure 22: Recall in machine learning 

 

• F-1 Score 

It combines a model's accuracy and recall ratings. It defines the number of times a model 

can correctly predict the full dataset. It is computed as the harmonic mean of precision and 

recall (Figure 23). 

 
 
 
 
 
 
                                                 Figure 23: F-1 score in machine learning 

 

• Accuracy 

The accuracy of a model determines the total number of correct predictions made by the 

respective model(s). That is, the sum of true negatives and the true positives divided by the 

sum of all the predictions (Figure 24). 

 
 
 
 
 

  
 
 

Figure 24: Accuracy in machine learning 
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6.2   Experiments 

Experiments were conducted by passing input data first to the four ensemble models – both 

raw and image data and then data augmentation was performed using DC-GANs model, after 

which the data was again passed as input to the four ensemble models for comparing the metrics 

described above. Moreover, a hybrid model was proposed comprising of the four ensemble models 

in which both raw and image data was passed as input.  

• Ensemble models 

In the Decision Tree model, read every eye tracking data and file and extract feature is 

performed along with label values. This is done for both numerical eye-tracking data as well as 

the image dataset. The dataset is split into test and train dataset with 67% train and 33% test sizes 

respectively. 

 

          Figure 25: Reading eye tracking data file and extracting feature and label values 

The code in the Figure 25 above illustrates how to parse eye tracking data files and extract 

feature and label values from them. Eye tracking data files generally comprise a time-stamped 

series of gaze coordinates from which different parameters such as fixation length, saccade 

velocity, and pupil diameter may be extracted. 
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Extraction of features and labels from eye tracking data generally consists of many processes, 

including data cleaning and preprocessing, feature extraction, and labeling. Data cleaning and 

preprocessing may include the removal of outliers, the filtering of noise, and the interpolation of 

missing data points. Typically, feature extraction entails extracting several statistical 

measurements and metrics from raw eye tracking data, such as mean fixation length or frequency 

of saccades. 

This code defines two empty lists called rows_full and rows_sub. It then iterates over the files 

in the directory specified by data_folder. 

For each file, it checks if the file name contains certain keywords ("Puzzle", "Waldo", 

"Blank", or "Natural") to determine the label for the data.  

For each row in the DataFrame, the code appends the values of the columns LXpix, LYpix, 

RXpix, RYpix, LXhref, LYhref, RXhref, RYhref, LP, RP, and the label to the rows_full list as a 

list. It also appends the values of the columns LXpix, LYpix, RXpix, RYpix, LP, RP, and the label 

to the rows_sub list as a list. 

Overall, this code reads fixation data from files in a directory and extracts certain columns, 

creating two lists: one with all columns and one with a subset of columns.  

The different hyper-parameters and their corresponding values for the Decision Tree are 

shown below in Figure 26. 
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         Figure 26: Different hyper-parameters and their values for Decision Tree 

We employed GridSearchCV for decision tree-based image classification, a parameter grid is 

usually defined to specify the range of values to explore for each hyperparameter. The 

GridSearchCV algorithm performs a systematic search of the hyperparameter space, evaluating 

the performance of the decision tree model with each combination of hyperparameters using cross-

validation. 

We experimented with different hyper-parameters and their values. To arrive at the optimal 

values for the hyper-parameters, we used a hit-and-try method and ran experiments across multiple 

epochs. Through this process, we carefully selected values that resulted in the best performance 

compared to other values that we tested. Here are the hyper-parameters and their respective values 

for the decision tree model. 

The criterion was set to “gini” which means the algorithm tries to minimize the Gini impurity 

of the samples in each node. Gini impurity is a measure of the probability of misclassifying a 

randomly chosen element from the set. This worked for our dataset as compared to the “entropy” 

value because we had a large amount of raw data with balanced number of labels. Splitter 

determines the strategy used to choose the split at each node. The best splitter (splitter='best') 

chooses the best split amongst all possible splits and hence leads to homogenous subsets. 
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In our Extra-Tree classifier, we initially used an input of 10-fold cross validation is used with 

a combination of a total of 2000 individual decision trees and a maximum of 2 features. Our 

ensemble model is hence constructed. The dataset is divided with a train-test split of 67% and 33% 

respectively. Due to resource limitations and constraints, these parameters did not prove to be so 

efficient and was causing overfitting, hence we had to employ hyper-parameter tuning and set 

suitable values to achieve considerable performance out of the model. 

 

 

 

 

    Figure 27: Building Extra-Tree model with 2000 trees 

In the provided code in Figure 27, the variable `seed` is set to 7 to ensure reproducibility. 

Then, a `KFold` object called `kfold` is initialized to split the data into 10 folds for cross-

validation. The `random_state` parameter is set to 1 to ensure that the same splits are used each 

time, and `shuffle=True` indicates that the data should be shuffled before splitting. 

The number of trees in the Extra Trees Classifier is set to 2000 using the variable ̀ num_trees`, 

and the maximum number of features used at each split is set to 2 using `max_features`. Extra 

Trees Classifier model is then initialized with these parameters and assigned to the variable 

`model`. This code initializes a `KFold` object and the model with specified parameters, which 

can be used for cross-validation and classification tasks. 
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During hyper-parameter tuning, for the experimentation process of extra tree classifier, the 

hyper-parameter values were used as shown in Figure 28. In particular, the out of bag score which 

is an inbuilt mechanism to calculate the performance of the model , was set to false because we 

wanted to test the performance of the model during the testing phase and computing the out-of-

bag score increases the computational cost, as the model needs to be trained multiple times to 

generate the out-of-bag samples. 

The boostrap parameter is set to False, because we had a huge training dataset and this was 

beneficial as each learner was built on the entire training dataset without any resampling. 

 

 

 

 

 

     Figure 28: Different hyper-parameters and their values for Extra Tree 

In the XGBoost ensemble model for this project, the four labels/classes are taken into account 

with the ‘unicode_escape’ encoding and labels taken as 0, 1, 2, 3. For this model, the dataset split 

is done as 70% for training and 30% for testing datasets. At first, the learning rate was set to 0.05 

and then slowly increased during hyper-parameter tuning.  
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                  Figure 29: Initial run of XGBoost model before hyper-parameter tuning 

The given code utilizes the train_test_split function from scikit-learn's model_selection 

module to split the data into training and testing sets. The feature matrix is stored in X, and the 

corresponding labels are stored in `y`. The data is split in a 70:30 ratio between training and testing 

sets using the test_size parameter, with a fixed random_state value of 1 for reproducibility.  

XGBClassifier model is then initialized using the values shown below in Figure 28. By using 

these values, we tried to combat overfitting as far as possible whilst maintaining model 

performance. The parameter booster is the type of model to use for boosting. In XGBoost, there 

are two types of boosters: gbtree and gblinear. gbtree trains decision tree-based models. On the 

other hand, gblinear trains a linear model.  Setting the parameter to gbtree worked better in our 

case because of its higher complexity as compared to gblinear that is generally used for smaller 

datasets that require faster models. The parameter gamma is the minimum loss reduction required 

to partition a leaf node. We set it to 0 which means no minimum loss reduction is required and a 

split is made at every leaf node. This encouraged more randomization for our model. 

reg_alpha and reg_lambda are the L1 and L2 regularization terms on weights to prevent 

overfitting. Since we have a large dataset, to enhance better feature selection we set the reg_alpha 

to 1 and reg_lambda to 0 to reduce expensive computation. 
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Figure 30: Different hyper-parameters and their values for XGBoost 

In our project, Gradient Boosting algorithm is combined with MinMaxScaler from the sklearn 

module. When using MinMaxScaler on a feature, each value in the feature is first subtracted by 

the minimum value of the feature, and then divided by the range [35]. The range, in turn, is 

calculated as the difference between the original maximum and minimum values of the feature. 

Importantly, MinMaxScaler does not alter the shape of the original distribution of the feature, but 

rather scales it uniformly to fall within the range of 0 and 1 [36, 37] as shown in Figure 31. 

 

 

 

Figure 31: MinMax Scaler for Gradient Boost model 

In the given code, a MinMaxScaler object is initialized and stored in the variable scaler from 

the preprocessing module of scikit-learn. Then, X_train is transformed using the fit_transform() 

method of the scaler to scale the feature values between 0 and 1. The transform() method of the 

scaler is then called on X_test to scale the test data with the same scaling factors as the training 

data.  
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After that, the train_test_split() function is used to split the transformed X_train into training 

and validation sets with an initial of 70:30 ratio. The training and validation sets are stored in 

X_train, X_val, y_train, and y_val.Finally, a Gradient Boosting Classifier ensemble model is 

created using the values tuned as shown below in Figure 32.  

 

 

 

 

            Figure 32: Different hyper-parameters and their values for GradientBoost 

For gradient boost, the most important hyper-parameter values that brought a significant 

change in the performance of the model were as follows: Learning_rate of 0.1 means that each 

decision tree in the gradient boosting model will contribute a fraction of 0.1 to the final prediction. 

This worked for our dataset because a value lower than this required more boosting iterations to 

achieve the same reduction in training error, and a value larger than this resulted in faster 

convergence and lead to overfitting.  

We set the max_depth of 3 meaning that each decision tree in the gradient boosting model 

had at most three levels of nested decisions. Increasing this factor was causing degradation of 

model performance by increasing overfitting. Lastly, we set the value of subsample parameter to 

1.0 which means that all samples are used for fitting the individual base learners. When we tried 

to set a value less than 1, we observed that the model was not able predict all classes of images 

efficiently and it was resulting in a very skewed output. 
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For the proposed hybrid model, the Figure 33 below provides a part code snippet of hybrid 

model that we used. The hybrid ensemble model was created using the VotingClassifier function 

from the sklearn.ensemble module. The purpose of the VotingClassifier was to combine the 

predictions of multiple base classifiers to make a final prediction.  

The VotingClassifier uses a majority voting scheme by default, where each classifier's 

prediction is treated equally and the most frequent prediction is chosen as the final prediction. In 

the code, the ensemble model combines the predictions of three different classifiers, namely 

Decision Tree Classifier, Extra Trees Classifier, and XGB Classifier. 

The three classifiers were added to a list called estimators, and the list is passed to the 

VotingClassifier function to create the ensemble hybrid model. 

 

 

 

 

 

 

   Figure 33: Hybrid model using VotingClassifier 

In the above figure, the three classifiers are defined: DecisionTreeClassifier, 

ExtraTreesClassifier, and XGBClassifier, with their hyperparameters specified. These classifiers 

are then added to a list called models. 

Next, a loop is set up with a range of n_estimators from 10 to 50. Within the loop, the 

models are initialized with updated parameters, and the multi-output classification is performed 

using the VotingClassifier and MultiOutputClassifier classes. 
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The accuracy scores for the training and validation sets are stored in the acc_score_train 

and acc_score_val lists, respectively, and can be used to evaluate the performance of the ensemble 

model for different numbers of estimators. 

 

• DC-GANs model 

In our DC-GAN model, we perform data augmentation to increase the size of our dataset, 

as our dataset consists of 50 raw images with their corresponding labels of “Natural”, “Blank”, 

“Puzzle” and “Waldo”. The dataset was increased to a size of 500. We utilize convolutional layers 

with sigmoid and ReLU as loss and activation functions respectively.  

The DC-GAN model consists of generator and discriminator following the same loss and 

activation functions described above. After training the Discriminator and Generator in separate 

functions we download the generated images in a directory, compute the loss, and real score 

parameters. We train these images for a total of 340 epochs and then test the images generated. 

The ultimate goal is to generate similar looking images as our dataset so as to increase our total 

dataset size and hence increase accuracy. The basic training of this network is shown in Figure 34. 

 

 

 

 

                                               Figure 34: Training DC-GANs model 

 



52 
 

 

The code initializes a variable count to zero. Then, for each directory in data_folder, it 

uses the glob.glob() function to obtain a list of all .jpg files in that directory and stores it in the 

variable files. The length of this list is added to the count variable. Next, the code sets the 

image_size variable to 256 and batch_size variable to 16. Two tuples stats are defined which 

represent the mean and standard deviation values for each color channel of the images. 

An ImageFolder object is created with the data_folder as the root directory and a set of 

image transformations applied to each image. These transformations include resizing and cropping 

the image to image_size, converting it to a tensor, and normalizing its values using the stats tuple. 

The resulting transformed dataset is stored in the train_ds variable. Using the ImageFolder class 

from the torchvision.datasets library, the script reads in the dataset and applies a series of image 

transformations using the tt.Compose method which further normalize pixel values of the images 

as part of pre-processing. 

 

 

 

 

 

 

 

 

 



53 
 

 

7    EVALUATION AND RESULTS 

7.1    Experimental Results 

During the initial run of experiments with all the ensemble models, before we encompassed 

different hyper-parameters for testing out the performance of each respective model, and plotted 

their confusion matrices to better understand this performance and devise strong conclusive about 

the different evaluation metrics of precision, recall, f-1 score and accuracy. Figures 35 through 39 

represent these confusion matrices for each of the ensemble models. 

  

 

 

 

 

 

  

 

 

Figure 37: Confusion matrix for XGBoost 
model 

Figure 35: Confusion matrix for Extra-Tree 
classifier 

Figure 36: Confusion matrix for Gradient 
Boost model 

Figure 38: Confusion matrix for Decision 
Tree classifier 
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From the Extra-Tree confusion matrix, it can be inferred that the model has relatively high 

accuracy in classifying the images as belonging to the first, second, and fourth classes (as 

evidenced by the high numbers on the diagonal for those classes). However, it appears to struggle 

more with the third class, as there are more misclassifications between this class and the others. 

Based on the confusion matrix of the Gradient Boosting model and XGBoost model, it can be 

deduced that the model has a higher accuracy rate in identifying images that belong to the second, 

third, and fourth classes as indicated by the high number of correct classifications on the diagonal 

for those classes. However, it appears that the model faces challenges in accurately classifying 

images in the first class (Puzzle) as there are more instances of incorrect classifications between 

this class and the others. 

The confusion matrix of the Decision Tree model suggests that the model has a better accuracy 

rate in identifying images belonging to the first, second, and third classes, indicated by a high 

number of correct classifications on the diagonal. However, it seems to struggle in accurately 

classifying images in the third class (Natural) as there are more instances of incorrect 

classifications between this class and others, as shown in Figure 31.  

Figure 39: Confusion matrix for proposed 
hybrid model 
 



55 
 

 

The confusion matrix of the proposed hybrid model indicates that the model is more accurate 

in classifying images belonging to the first, second, and fourth classes, as there are high numbers 

on the diagonal for those classes. The class "Waldo" has the highest accuracy compared to others. 

However, the model faces challenges in accurately classifying images in the third class, as there 

are more instances of incorrect classifications between this class and the others. 

Hence, to resolve the issues discussed above, we undertook careful hyper-parameter tuning 

of different parameters and devised the results in the tables 3 and 4 shown below. 

Table 3: Comparison of ensemble models with all evaluation metrics for eye-tracking data 

 

    

 

 

 

 

The above table 3 conclude that XGBoost, Gradient Boosting, Extra Tree Classifier, and 

Decision Tree are among the popular ensemble models used for image classification. These models 

have their strengths and weaknesses, and their performance depends on the dataset and the specific 

problem at hand.  

In this particular case, it was observed that the Decision Tree model outperformed the other 

models in terms of precision, recall, f-1 score, and accuracy. This means that the Decision Tree 

model was better able to correctly identify and classify images compared to the other models. This 

observation was marked due to several reasons.  
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One, decision tree model was better able to capture the most important features for predicting 

the outcome variable. Since, decision trees are known for their ability to identify important features 

and make decisions based on them, this was an advantage for this dataset. Second, Decision trees 

are good at modeling non-linear relationships between variables, which was beneficial for our 

research because  there are several non-linear relationships between the features and the outcome 

variable. F-1 score of 0.88 and accuracy of 90.3% suggests that somewhere the model was unable 

to capture the nuances of certain images but at the same time was able to classify the majority of 

the images in the dataset.  

The XGBoost model does not perform so well, since it has the least f-1 score of 0.71 but is 

showing an accuracy of fairly high amount of 86%, which means it is correctly identifying the 

negative instances but is not doing as well in identifying the positive instances. This can be 

reflected in a high accuracy score, but lower precision and recall scores. 

Table 4: Comparison of ensemble models with all evaluation metrics for image data – After data 

augmentation using DC-GAN 

 

 

 

 

 

  

On the other hand, for the image data, the proposed hybrid model performed better than the 

rest of the models. This observation was marked due to a number of predicted reasons.  
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Working with an image dataset contributed to the better performance of the hybrid model. 

Since the image dataset was large and complex, with a high number of features and non-linear 

relationships between the features and the target variable, it was easier for a complex model that 

comprised of several models to capture all the nuances in the data. In short, the hybrid model was 

able to leverage the strengths of different models and capture a broader range of relationships in 

the data. For example, the decision tree model was good at capturing non-linear relationships in 

the data, while the xgboost model was good at reducing bias and variance in the model. Combining 

the two models in a hybrid approach could help capture the non-linear relationships while reducing 

bias and variance, resulting in better performance.  

Moreover, for the image data, decision tree showed the poorest performance with an accuracy 

of 66.6% and an F-1 score of 0.67 because images are high-dimensional data with many features, 

and decision trees tend to work better on low-dimensional datasets. When used for image 

classification, decision trees may not be able to effectively capture the complex relationships 

between the many features of an image. In addition, decision trees are prone to overfitting, where 

the model learns too much from the training data and performs poorly on the test data. 
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7.2   Comparative Analysis with other literature  

Our proposed model is compared with one of the previous literature by Kumar et al. [11] and 

two of the current literature that has been published in the recent years. This enhanced comparison 

is shown below in Table 6. 

     Table 5: Qualitative and quantitative comparison of our approach with other literature 
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8    CONCLUSION AND FUTURE WORK 

8.1    Conclusion 

 In this project, a novel approach for image classification is proposed using a coalition of 

different ensemble models for four different labels – “Natural”, “Blank”, “Waldo” and “Puzzle” 

image classes. Moreover, in this project, a novel approach for image classification is proposed 

using a coalition of three different ensemble models namely – Decision Tree, Extra-Tree, 

XGBoost classifier.  

Decision tree model was better able to capture the most important features for predicting 

the outcome variable since they are known for their ability to identify important features and 

make decisions based on them, which was an advantage in this dataset. Also, there was a huge 

amount of non-linear relationships in our eye-tracking dataset. Decision trees are good at 

classification when there are huge non-linear relationships because they recursively split the data 

based on the most significant feature, which can capture complex, non-linear relationships 

between features. Additionally, decision trees can handle both categorical and numerical data 

and this proved to be beneficial in our case because our eye-tracking dataset was numerical and 

large in size. 

We employed another model, DC-GANs for the purpose of data augmentation of the 

image dataset since it was limited in size. This was done primarily to increase the efficiency of 

all models during training and testing. Working with an image dataset contributed to the better 

performance of the hybrid model. Though the hybrid model combines the strengths of the three 

base models in our case, other possible reasons for high accuracy can also lead possible 

conclusions of the small image dataset size of 500 images and possibly lesser features in our 

images.  
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8.2    Future work 

Looking ahead, there are several directions for future research that build on the findings of 

this study. There is scope of using deep learning along with reinforcement learning in this field 

for improvised accuracy. Reinforcement learning involves training a model to make decisions 

based on trial and error, with the goal of maximizing a reward. Deep learning involves training 

neural networks with multiple layers to recognize complex patterns in data. 

We can also extend focus to leveraging the sequential information in the data and 

employing algorithms like Hidden Markov Models (HMMs) and Long Short-Term Memory 

(LSTMs). HMMs are a type of statistical model that can be used to analyze sequential data, 

while LSTMs are a type of neural network that can be trained on sequential data. Transfer 

learning can be used to improve the performance of the models by leveraging pre-trained models 

such as VGG, ResNet, or Inception, and fine-tune it for the specific image classification. 

Transfer learning has been shown to improve the performance of models and reduce the need for 

large amounts of labeled data. 

We can explore other multi-label classification techniques such as binary relevance and 

classifier chains to handle multi-label classification. Multi-label classification involves assigning 

multiple labels to a single instance, which can be challenging but is relevant in many applications 

such as medical diagnosis. 
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