
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2023

Hate Speech Detection in Hindi Hate Speech Detection in Hindi

Pranjali Prakash Bansod
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Artificial Intelligence and Robotics Commons

Recommended Citation Recommended Citation
Bansod, Pranjali Prakash, "Hate Speech Detection in Hindi" (2023). Master's Projects. 1265.
DOI: https://doi.org/10.31979/etd.yc74-7qas
https://scholarworks.sjsu.edu/etd_projects/1265

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1265&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1265&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/1265?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1265&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Hate Speech Detection in Hindi

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Pranjali Prakash Bansod

May 2023

© 2023

Pranjali Prakash Bansod

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Hate Speech Detection in Hindi

by

Pranjali Prakash Bansod

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2023

Dr. Fabio Di Troia Department of Computer Science

Dr. William Andreopoulos Department of Computer Science

Dr. Robert Chun Department of Computer Science

ABSTRACT

Hate Speech Detection in Hindi

by Pranjali Prakash Bansod

Social media is a great place to share one’s thoughts and to express oneself. Very

often the same social media platforms become a means for spewing hatred.The large

amount of data being shared on these platforms make it difficult to moderate the

content shared by users. In a diverse country like India hate is present on social media

in all regional languages, making it even more difficult to detect hate because of a

lack of enough data to train deep/ machine learning models to make them understand

regional languages.This work is our attempt at tackling hate speech in Hindi. We

experiment with embeddings like fastText and GloVe combined with machine learning

classifiers like logistic regression and decision tree classifier. We also experiment with

transformer based embeddings like distilBERT and MuRIL.The transformer based

models perform better in our task and we achieve an F1 score of 0.73 with the help of

MuRIL embeddings.

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my project advisor Dr. Fabio di

Troia for guiding, encouraging and correcting me throughout the project. This project

would not have been possible without the constant support and inputs of Prof. Di

Troia. I would also like to thank my committee members Prof. William Andreopoulos

and Prof. Robert Chun for evaluating this work and providing valuable guidance.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

2 Background . 4

2.1 Related Work . 4

2.1.1 Hate speech detection in Urdu 4

2.1.2 Hate Speech Detection in Marathi 6

2.1.3 Hate Speech Detection in Hindi 6

2.2 Embeddings . 7

2.2.1 GloVe . 9

2.2.2 fastText . 11

2.2.3 BERT . 12

2.2.4 DistilBERT . 13

2.2.5 BERT Embeddings for Indic languages 14

2.3 Techniques . 15

2.3.1 Under-sampling and Oversampling 15

2.3.2 Class Weights . 15

2.3.3 Logistic Regression . 15

2.3.4 Decision Tree Classifier . 17

2.3.5 Dropout . 17

2.3.6 Layer Normalization . 19

3 Experiments . 20

vi

vii

3.1 Hardware Setup for experiments 20

3.2 General process for experiments 20

3.3 Description of the dataset . 22

3.3.1 Experiment 1: Finetuning DistilBERT pretrained model . 22

3.4 Experiment 2: Finetuning MuRIL pretrained model 23

3.5 Experiments with fastText and GloVe embeddings 23

3.6 Experiment 3: fastText embeddings with logistic regression classifier 23

3.7 Experiment 4: fastText embeddings with Decision Tree Classifier 24

3.8 Experiment 5: GloVe embeddings with logistic regression classifier 24

3.9 Experiment 6: GloVe embeddings with Decision Tree Classifier . . 24

4 Results . 25

5 Conclusion and Future Work . 40

5.1 Conclusion . 40

5.2 Future Work . 41

LIST OF REFERENCES . 42

APPENDIX

A . 45

B . 46

CHAPTER 1

Introduction

The internet is a wonderful place to share one’s thoughts, knowledge and experi-

ences. Unfortunately, it sometimes also becomes a place where hurtful things are said

to a person or targeted at a group of people. Hatred can also be directed at people

belonging to certain community, race, ethnicity, religion or gender. These are traits

of a person on which that person has no control.As a consequence hateful speech can

have lot of negative psychological effects on a person. These negative effects include

feelings of worthlessness and a low self-esteem and in worst cases might also make a

person suicidal. The targeted individuals might also feel isolated from the rest of the

society and they might choose to withdraw from participating in any discussion on

any social media platforms. In the worst case online hatred might turn into crimes

in real world if it invokes feelings of revenge amongst the targeted people. Tackling

online hate speech is a complicated problem since the volume of data is so large that

checking every written item for hate is difficult.There is a pressing need for AI based

moderation to detect hateful content with minimum human intervention. Secondly,

laying out the guidelines for classifying any written item as hateful is challenging

since hate is very subjective, what is hateful for one person might be mildly offensive

to another person. So, when data is collected for training models for hateful speech

detection it is difficult to agree on labels for the given data. If the data is related to

any issue going on in some part of the society then there might be varied opinions

about that issue based on the knowledge level of the people labeling the data[1]. The

problem of hate speech becomes manifold in India since it is such a diverse country in

terms of language, culture and ethnicity. Almost every state has it’s own language and

hateful content is present in the online world in most of those languages accompanied

with hateful content in English. To further compound the situation, the content from

1

these languages is present in a code-mixed form where languages are mixed together

or a script of a different language is used to write something in another language.

More and more data is required to train language models on these languages in order

to identify hate speech and mitigate it. The problem of hate speech in India needs to

be taken seriously since it is one of the largest markets for social media platforms like

Facebook, Twitter, Instagram, YouTube etc. Fig. 1 gives a glimpse of the language

diversity found in India. One can see that Hindi is spread over a larger portion of the

Figure 1: Indian languages and their spread through out the country.

country and in this work we plan to tackle hate speech detection in Hindi and Hindi

written using English letters.67

The remnant of this work has been divided as follows. Chapter 2 covers the

work related to hate speech detection in languages similar to Hindi. It also covers the

2

techniques that are used for sentiment analysis in general. Chapter 3 contains all the

experiments that we have conducted for hate speech classification in Hindi. Chapter

4 discusses the results of the experiments discussed in Chapter 3. In Chapter 5 the

possible future research for hate speech detection in Indian languages is discussed.

3

CHAPTER 2

Background

This chapter discusses the work done so far in the field of hate speech detection in

Indian languages. It also discusses the different approaches whether it is embedding,

deep-learning or machine-learning models used for sentiment analysis in general.

2.1 Related Work

This section discusses the approaches used for hate speech detection in other

indic languages that are similar to Hindi.Languages like Marathi and Urdu share

many features with Hindi. Secondly, it discusses the existing approaches to tackle

hate speech detection in Hindi.

2.1.1 Hate speech detection in Urdu

Urdu is a language that originated in India and is spoken in countries like Pakistan

and some parts of Afghanistan. It shares a lot of grammar and words with Hindi and

is known commonly because of the beautiful poetry compositions written in Urdu. In

India it is mostly spoken in states like Uttar Pradesh, Telangana and Jammu and

Kashmir. Urdu has a perso-arabic script. There have been efforts to detect hate

speech in Urdu. In one such attempt [2] Bilal et al. tried to detect hate speech for

Urdu written in the Roman script. They created a dataset RU-HSD-30K comprising of

30,000 Roman Urdu text messages and trained the BERT model from scratch on this

dataset known as the RU-BERT model. In addition to this, they have tried models

like multilingual BERT and BERT-English models on the RU-HSD-30K dataset.

They used 2 approaches for fine-tuning the transformer models. One way was to

freeze the weights of the pre-trained transfomer models and use them with BiLSTM

and BiLSTM with attention networks for classification and the other way was to

update the weights of the pretrained models as they get trained along with BiLSTM

and BiLSTM with attention networks. They compared the results of transformer

4

based models with that of Word2Vec embeddings combined with machine learning

algorithms. The transformer models outperformed the Word2Vec embeddings and ML

algorithms by a huge margin. The highest accuracy was achieved by the random forest

classifier amongst the traditional ML models and was 71 %. The highest accuracy

achieved by transformer based models was 97 %. In 2021 Saha et al.[3] presented

an approach to classify Urdu text as abusive and threatening. They used the Urdu

HASOC 2021 dataset for their experiments.As one approach, they combined BERT

embeddings with XGBoost classifier and LGBM classifier turn by turn and in the

other approach they used multilingual-BERT, dehatebert-mono-arabic. Since, the

dataset for threatening vs non-threatening faced a class imbalance the authors had

to apply class weights to their model training. The highest F1 score achieved for

the abusive tweet classification was 0.88 and was due to the dehatebert-mono-arabic

model. For the threatening text classification the highest F1 score was achieved by

the same model and was 0.54. [4] addressed the lack of guidelines for classifying any

speech as hateful. In 2021 [4]Malik et al. formed the dataset HS-RU-20 of Roman

Urdu text where they classified speech into 3 categories - hateful, offensive and neutral.

According to guidelines laid out by the authors of [4] a speech is hateful when it is

directed towards any trait of a community/person on which they have no control such

as gender, race, physical features etc. Offensive speech is when a person/community is

attacked but not based on traits on which they have no control, meaning the content

is still offensive but not hateful. This dataset has then been used to train classical

machine learning models on embeddings like count vectorizer, n-gram vectorizer and

character level features. The logistic regression performed the best giving an accuracy

of 84 per-cent when combined with the count vectorizer embeddings.

5

2.1.2 Hate Speech Detection in Marathi

Marathi happens to be the cousin language of Hindi. It has the same script has

Hindi and many words in both the languages are common. It is spoken in the western

part of India, in the state called Maharashtra. In 2021 Velankar et al. [5] tackled

Marathi hate speech detection on the Marathi dataset provided by HASOC for the

year 2021. The authors of [5] used embeddings like fastText and combined the fastText

embedding with deep learning methods like 1D-CNN, LSTM and BiLSTM one by one

.They also used transformer based embeddings like multilingual-BERT, IndicBERT[6]

and Roberta-mr for hate speech detection in Marathi.They have adopted a hierarchial

approach for training.If a tweet is classified as hateful in the first level of classification

then it is further classified as profane, offensive or just hateful. The non-trainable

version of fastText embeddings combined with 1D CNN achieved an accuracy of 83

%. Amongst the transformer based approaches, the IndicBERT performed the best

giving an accuracy of 88 %. Joshi et al.[7] created a large dataset of Marathi tweets

with over 25000 samples known as L3Cube-MahaHate. The dataset has categories like

hateful, offensive, profane and non-hateful. The authors of [7] trained the multilingual

BERT model on this dataset and shared it as MahaBERT on HuggingFace[8].

2.1.3 Hate Speech Detection in Hindi

In [9] the authors again used the HASOC 2021 dataset along with another dataset

like CONSTRAINT – 2021 for detecting hate speech in Hindi. They have done hate

speech detection for Code mixed Hindi, Hindi written in Devnagari script and also

for English sentences written in Devnagari script. The authors of this work have

made use of the multilingual transformer model (m-bert) for classification.In [9] the

authors categorized hate speech into 34 different categories out of which 28 categories

were for hateful/ non - hateful speech in single language (Hindi) and the remaining 6

6

categories were for code mixed hate speech. Not all sentences containing hateful words

are hate speech, for example “I hate apples” does not target any person or group, it is

just somebody expressing their dislike for apples. The motivation for creating these

categories was to separate such non – hateful sentences like the one above from actual

hateful speech. This work also dealt with hateful speech with missing offensive words

and missing names of the protected groups against which the hate is being directed.

Such sentences also form some of the categories. In [10] Kanade et al. used embeddings

like TF-IDF, Word2Vec and Bag-of-Words (BOW) on the HASOC 2021 dataset to

classify Hindi tweets as hateful and non hateful. They passed these embeddings to

traditional machine learning models like Naive Bayes, Logistic Regression, SVM and

Random Forest Classifiers. They achieved a macro F1 score of 69 per-cent and an

over-all accuracy of 75 per-cent on the binary classification task when they combined

Word2Vec with an SVM classifier. The authors of [11] experimented with BERT

embeddings and also experimented with the combination of BERT embeddings with

convolutional networks. They have run their experiments separately on the HASOC

2020 and HASOC 2021 dataset. To address the class-imbalance issue in these datasets

they have applied over-sampling to the datasets and the experiments were run on

the over-sampled version and the original version of the dataset separately. On the

over-sampled version of the HASOC 2020 dataset they achieved an F1 score of 85

per-cent and on the HASOC 2021 dataset they achieved an F1 score 77 per-cent with

the BERT combined with 1D-CNN approach.

2.2 Embeddings

This section discusses the different Embeddings and approaches used for convert-

ing text into vectors.Embeddings have come a long way and are crucial to natural

language processing. Word embedding is a way of converting a word into vector while

7

also extracting meaningful information about the words of a corpus. Embeddings store

lot meaningful information about words such as the semantic relationship amongst

words whether 2 words are synonyms or antonyms, they also capture syntactic relation-

ship between words ,whether words form a noun-to-verb or verb-to-noun relationship

and the types.They also store contextual information about words. Research regarding

word embeddings goes back to early 2000s but the first break through came with

Word2Vec embeddings[12] Mikolov et al. created the Word2vec embeddings at Google.

Word2Vec quickly became popular and was being widely used for NLP tasks. The

basic idea behind Word2Vec embeddings is that similar words appear together in

similar context and hence their vectors are close to each other. Word2Vec brought 2

ways to train the neural network, one was the skip-gram approach and the other was

continuous bag of words (CBOW). In the skipgram approach the neighbouring words

of a given word are predicted. In the CBOW approach given the surrounding words

of a word, the word needs to be predicted. Word2Vec uses a single hidden layer of

Figure 2: Idea of CBOW and skip-gram training [12]

length N and width d for training where N is the size of the vocabulary and d is the

8

dimension of the output vector, in the original word2vec paper a dimension size of

300 was used. 1-hot encoded vectors of size N are passed to the this layer. If we are

training using the skip-gram approach then there will be only one place marked as

a 1 in the input vector.The output of the hidden layer is passed to a softmax layer.

In case of a skip-gram approach there will be an output vector of size d returned at

the end of the training. Although, word2vec was a significant development in the

Figure 3: Skip-gram training with hidden layer [13]

world of embeddings it has some shortcomings. Word2Vec embeddings are static

they don’t change with their context. Word2Vec embeddings cannot handle out of

vocabulary words.These limitations gave room for further improvements and other

types of embedding were further developed.

2.2.1 GloVe

GloVe is an unsupervised method for converting words into vectors.It was in-

troduced at Stanford University in 2014[14].It figures out how frequently 2 words

appear together through out a given corpus. For maintaining this information it uses

a co-occurrence matrix. Fig.4 shows an example of a co-occurrence matrix.

GloVe also borrows the sliding window method used in Word2Vec for capturing

9

Figure 4: Example of a co-occurrence matrix [15]

the local context of a word, that is the words surrounding a word.When forming the

co-occurrence matrix for a corpus the window slides over the corpus and the words

falling within the window are the context words for the center word of that window

and those will get incremented in the matrix.The loss function of GloVe can be derived

using the log-bilinear regression model.

𝐽 =
∑︁
𝑖,𝑗

𝑓(𝑋𝑖𝑗)(𝑤
𝑇
𝑖 𝑤𝑗 − 𝑙𝑜𝑔𝑋𝑖𝑗)

2 (1)

The above loss function captures the information of Pij/ Pik[16]. That is the

probability of the words i and j occurring together divided by the probability of j and

k occurring together. To briefly summarize the loss function. The term Xij is derived

from the co-occurrence matrix and it is the number of times the words i and j occurred

together.the function f(Xij) is the power law function to make sure that frequent pairs

of of words i and j are not given too much weight nor rare co-occurrences are given

10

too much weight.Before the training begins, every word in the corpus is assigned a

numeric value.A matrix of size (vocabulary * embedding size) is formed with random

values as the initial vector representations for words like wi and wj.Here wi and wj are

words within a context.The loss is calculated by passing all the 3 values wi, wj and

Xij to the loss function and the gradient is then applied to the vectors of the center

word wi and the surrounding context vector wj. In [17] the GloVe algorithm has been

implemented from scratch and gives a clear idea about the inner workings of GloVe.

2.2.2 fastText

fastText[18] embeddings were created by Facebook. FastText embeddings imple-

mentation forms character n-grams of a given word because there is lot of valuable

information hidden at the character level in a word. fastText makes use of negative

Figure 5: 3-grams example [19]

sampling where negative samples are words randomly picked from the corpus and are

not the neighboring words of a given word t. The vector representation of the word ’t’

is formed by taking the sum of it’s character n-grams. This sum is then added to the

vector of that whole word itself. A table containing random vectors for every word is

used before the training is started, similar to the GloVe approach.The dot product

of the vectors for the actual context words of the word t is taken. The dot product

of the negative samples and the word t are also taken. The sigmoid function is then

applied to both the vector products to get a score between 0 and 1. The training for

fastText is basically bringing the score of the actual context to 1 and reducing the

11

score of the negative samples.[19]. The loss used for doing this type of training is the

binary logistic loss. Once the loss is calculated then those gradients get applied to

the vectors and their values get updated. This is the skip-gram way of training the

fastText model.

Figure 6: Idea of fastText training [19]

2.2.3 BERT

BERT stands for bidirectional encoder representation from transformers[20]. The

BERT model is available in different sizes. The BERT-Base model is formed by

stacking 12 encoder blocks and uses 12 attention heads whereas the BERT-Large is

formed by stacking 24 encoder blocks and it uses 16 attention heads.The architecture

of an encoder is shown below: To briefly describe the working of an encoder [21]we

send the positional embeddings of a word to the encoder and the self attention is

calculated. Self-attention is the most important part, in this part the word embeddings

are treated as 3 values Q, K and V where Q stands for Query , V stands for Value and

K stands for Key. We can consider Q as a search term we input in a search engine

where it will be matched against K keys that are a potential matches for Q and V

is the values returned after the search is completed. Analogous to this example, Q

is the current word in a sentence and K, V are the remaining words of the sentence.

So, these 3 vector values are passed through a linear layer each. A dot product of

12

Q and K is taken which gives us a table or a matrix showing the relevance value of

every word to every other word. This matrix is scaled down since multiplication can

result in exploding values. The softmax function is applied on this matrix to give

us probabilities for every value in the matrix. If we split the Q, K and V vectors

into pieces and pass it down to multiple attention units working in parallel then we

are using something called a multi-headed attention. The encoder also makes use of

residual connections. Once we compute the product of the probabilities-matrix and

the V vector we add this product to the input positional embeddings, this addition

back into the input is called residual connection. The residual connection output then

passes through a layer normalization. As the last step, the normalized residual output

is passed through 2 feed-forward network layers with ReLU activation. Fig. 7 shows

the inner workings of a transformer block.

Figure 7: Architecture of an encoder block [22]

2.2.4 DistilBERT

DistilBERT [23]is a smaller and compact version of the original BERT embeddings.

The original BERT embedding has many layers and it takes lot of computation

13

resources and time to train BERT embeddings. Using such large models is not feasible

for research activities and real-life applications. To take an example of our own project

it takes a couple of hours to fine - tune distilBERT on our corpus whereas it takes 4

to 5 hours to fine tune other embeddings like MuRIL on our dataset, for the same

number of epochs, GPU configuration and training data due to their huge size.So,

in order to reduce the size of the BERT embeddings alternate layers of the BERT

model are removed and the knowledge of the larger BERT model is ’distilled’ into the

smaller model. The DistilBERT is trained using the Teacher-Student training. In

teacher-student training the output logits of the teacher or the larger model are also

given as input to the loss function. The calculated loss is then used to update the

weights of the student model. Fig. 8 shows the idea of distillation.

Figure 8: Idea of student-teacher training [24]

2.2.5 BERT Embeddings for Indic languages

Various transformer based models have been trained on corpora from Indian

languages. One such embedding that is particularly applicable to the task of Roman-

Hindi data is the MuRIL embedings[25] MuRIL stands for Multilingual Representations

for Indian Languages. MuRIL is the BERT model trained not only on 17 Indian

languages but also their transliterated and translated counterparts. English is also

included in the training. The MuRIL model has been trained on corpora like Wiki,

14

COMMONCRAWL, Dakshina and PMINDIA. The researchers who created this model

have also shared it on HuggingFace for others to use. Multilingual models when

trained on a large number of languages do not pick up the nuances of a languages

and don’t learn the language properly in depth. The creators of MuRIL have focused

only on 17 Indian languages such that the model properly learns each language.

2.3 Techniques

This section discusses the finer details of machine/ deep learning models, the

small tricks that come handy in improving the model’s performance.

2.3.1 Under-sampling and Oversampling

In many real life classification problems it is very common that the number of

examples for a given category is way less than the number of examples for the other

category. In that case there are 2 techniques which are used to tackle this problem.

Using under-sampling we randomly remove a portion of the class which is in majority.

Oversampling is quite the opposite of under-sampling, in which we randomly duplicate

examples of the minority class. These techniques are applied on the training data.

2.3.2 Class Weights

Class weights is a way of altering the loss function in order to address class

imbalance in a dataset. The loss function is changed in such a way that when it

mis-classifies an example from the minority class it will be penalized more than it will

be penalized for mis-classifying an example from the majority class.By adopting this

method more weight is given to the minority class.

2.3.3 Logistic Regression

Logistic regression is a supervised machine learning algorithm for used for classi-

fication. It makes use of the sigmoid function to separate the values into classes also

15

known as dependent variables.

𝑆(𝑥) =
1

1 + 𝑒−𝑥

(2)

Figure 9: Sigmoid function curve [26]

To briefly summarize the working of a logistic regression classifier, the input

parameters are sent to a linear classifier first. Linear classifiers are susceptible to

outliers and might not do well in separating the members into their respective classifiers.

Therefore, the output of the linear classifier is sent to the sigmoid function.The sigmoid

function takes any numeric values and returns a value between 0 and 1. A threshold

can be used on the sigmoid function output to do the final classification. A threshold

of 0.5 is usually used, it can be seen from the curve of sigmoid function because it

cuts the y-axis at 0.5. So, if a value is greater than 0.5 then the label would be 1 and

if it is lesser than 0.5 then it will be 0. The logistic regression cost function is then

minimized and the best parameters for classification are then learned.

16

2.3.4 Decision Tree Classifier

Decision tree classifier is a supervised machine learning algorithm. Decision

trees are easier to understand.They can also be easily visualized and are useful when

the relationship between the dependent and independent variables is complicated It

works on the principle of splitting the dataset in such a way that all the examples

fall into their appropriate classes by dividing the dataset based on a feature of the

input data.The root node of a decision tree is the entire dataset, it recursively keeps

splitting the dataset using a feature of the dataset. The quality of the split can be

calculated with the help of measures like gini index, entropy, information gain, gain

ratio, chi-square. If the split contains samples belonging only to a single class then

the split is considered good but if the split contains examples from more than 1 class

then it needs to be split further.The leaf nodes of a decision tree are splits which are

homogeneous. Decision tree performs splitting on all features of the input data and

then selects the feature that gave the best split. The splitting will continue until the

split is pure or homogeneous and this can lead to deep trees. Such trees with great

depth can cause overfitting and pruning is adopted to keep the depth of the tree in

check and hence to avoid overfitting. Branches are removed from the tree such that

the overall accuracy of the algorithm is not reduced, branch removal begins from the

leaf nodes of the trees. To do the removal of branches the dataset is divided into

training and validation dataset and after the branch removal the algorithm is tested

on the validation dataset to check if the accuracy is dropped.

2.3.5 Dropout

Dropout [28] is technique used for tackling the issue of over-fitting. When a

particular model shows a great accuracy on training data but a drastically low accuracy

on the test data. It means that model has memorized the examples from the training

17

Figure 10: Decision tree splitting [27]

data set instead of learning the underlying pattern to distinguish between classes.

Overfitting is caused when there is a dependence between the neurons of a neural

network such that an update in one neuron improves/ fixes the result of other neurons.

Such a dependence causes overfitting. By using a dropout we are simply removing

some of the neurons of the network such that every neuron is just responsible for their

own output and the dependence between neurons is reduced. The dropout layer has

been used in the BERTforSequenceClassification model which has been used in our

work.

Figure 11: Dropout [28]

18

2.3.6 Layer Normalization

The encoder in the transformer makes use of layer normalization. It is a crucial

step in the encoder architecture. If a neural network receives inputs that vary along a

large range then it will take longer to train because while training a neural network

the weights are updated to minimize the error and large values might lead to large

updates. When these large updates accumulate over several layers they cause exploding

gradients. In order to solve this issue Hinton et al. [29] came up with the approach

of layer normalization. The idea is to normalize the input to the layer such that

there are no fluctuating values in the input. Layer normalization is suitable for small

batch sizes because a small batch size will not show a very large variation in inputs as

compared to large batch sizes. In natural language processing usually a small batch

size is used, layer normalization is suited for such tasks.

19

CHAPTER 3

Experiments

This chapter goes over the experiments we conducted on the HASOC dataset.

We have divided the experiments into 2 categories. The first category explores the

transformer based embeddings like DistilBERT and MuRIL. embeddings . The second

category contains experiments with the GloVe and FastText embeddings. We tried

a series of experiments from which we found some to be successful and we have

documented those in this section.

3.1 Hardware Setup for experiments

The MuRIL model and embeddings were fine tuned on the SJSU High Performance

Computing cluster using the NVIDIA Kepler 40 (K40) GPU. We fine tuned the models

using 2 GPUs. The GloVe and FastText embeddings were trained on an intel i7

10th gen processor. DistilBERT embeddings and model were finetuned on the Google

Colab Pro runtime that supports GPU.

3.2 General process for experiments

1. Text cleaning Tweets contain hash-tags, emojis, URLS and special characters.

These add unnecessary noise to the model and removing these helps any model

learn better.So we remove emojis, URL links, punctuation and all the special

characters from a tweet.

2. Nukta or diacritic character is a dot that is added to a letter in the Devanagari

script to represent sounds that were not part of the script originally and were

borrowed from other languages like Urdu as an example.

3. Since our data is written in Hindi we transliterate the data into roman script by

making use of a transliteration library[30].

4. We form the embeddings for fastText and GloVe mebeddings for the tweets and

20

Figure 12: Nukta characters

run traditional machine learning models on the embeddings to classify them as

hateful or non-hateful.

5. We pass down the tweets to the BERTforSequenceClassification model with

DistilBERT embeddings as base layer and fine tune the model.

6. Similar to the previous step, we pass the tweets to the BERTforSequenceClassi-

fication with MuRIL as the base layer for fine tuning.

Fig. 13 summarizes the entire process of the project.

Figure 13: General Idea of the project

21

3.3 Description of the dataset

We have combined 3 datasets containing tweets in mixed Hindi and English

provided by HASOC into one dataset. The combined dataset contains 9753 tweets.

Out of the 9753 tweets 2281 are hateful tweets and remaining are non-hateful. HASOC

stands for Hate Speech and Offensive Content Detection in English and Indo-Aryan

Languages. It is a competition that is being held every year since the year 2019 where

teams submit their models for detecting hate-speech in Hindi, English and Marathi.

HASOC provides these datasets to researchers for use and we have made use of the

same.

Table 1: Table showing the number of hateful and not hateful tweets in the dataset

Tweet Type Number of Tweets Percentage
Hateful 2281 23.38%

Not Hateful 7472 76.61%

3.3.1 Experiment 1: Finetuning DistilBERT pretrained model

Transfer learning is the technique of using pre-trained models on tasks similar to

our own task. The weights of the existing models are updated by training the model

further which is known as fine-tuning the model. Transfer learning is more suitable for

our problem because our dataset is not very large and pretraining is suitable only if we

have a large dataset.Secondly, finetuning is faster than pretraining a model from scratch.

We have made use of the HuggingFace version of the BERTforTextClassification

with distilbert-base-uncased model for generating word embeddings. Fig.14 shows

the layers of the bert text classification model. We trained the model with a varying

learning rate dictated by the polynomial decay, we started with an initial learning

rate of 5e-5.Adam optimizer has been used for the training. We have applied class

22

weights to the model to tackle the class-imbalance problem. The model was ran for 4

epochs.

Figure 14: Individual layers of the BERT classification model.

3.4 Experiment 2: Finetuning MuRIL pretrained model

Similar to the distilBERT pretraining, the MuRIL model is finetuned on on

our dataset. We used the BERTForSequenceClassification model with MuRIL for

generating the embeddings. We have again applied class-weights to the model and

trained it for 8 epochs at a very low learning rate of 1e-5 using the Adam optimizer.

3.5 Experiments with fastText and GloVe embeddings

This section explores the fastText and GloVe embeddings along with classic

machine learning classifiers. Each experiment was conducted once with oversampling

and then without oversampling.

3.6 Experiment 3: fastText embeddings with logistic regression classifier

We form the fastText embeddings for the entire corpus using the fastText

implementation of the Gensim library. We go over every word in each sentence of the

dataset and we add the vectors of all the words in the sentence to form a single vector

23

of size 50, this approach is adopted for all the following fastText/GloVe experiments.

This vector is then sent to the Logistic Regression classifier. The fastText model was

trained for 25 epochs with a window-size of 1.

3.7 Experiment 4: fastText embeddings with Decision Tree Classifier

Similar to the previous experiment, we have created fastText embeddings for the

corpus. We have then passed down these embeddings to a decision tree classifier.

3.8 Experiment 5: GloVe embeddings with logistic regression classifier

For this experiment we have used GloVe embeddings for converting words into

vectors.We have used the glove-python library implementation for forming the word

embeddings.The GloVe model was trained for 20 epochs with a window size of 5.

These GloVe embeddings are passed down to a logistic regression classifier.

3.9 Experiment 6: GloVe embeddings with Decision Tree Classifier

Similar to the previous experiment, GloVe embeddings are formed for the entire

corpus and then passed down to the decision tree classifier.

24

CHAPTER 4

Results

This section discusses the results of the experiments described in the previous

section. We trained different embeddings accompanied by deep learning and machine

learning models. In Experiment 1 we combined fastText embeddings with the logistic

regression classifier. We get an overall accuracy of 68 per-cent when we oversample

the minority class in the training dataset. To summarize the result we have made use

of the precision-recall curves since we have a class imbalance in our dataset.

Fig.15 shows the PR-curve for the logistic regression when trained with fastText

embeddings. The classification report for this experiment is shown in the table 2. The

recall for the hateful class is 0.66. The precision is 0.38 which appears low but a closer

look at the confusion matrix (Fig.16)of this experiment shows that the classifier has

356 false positives which is still a small number when compared to the total number

neutral tweets.The number of true negatives is still a high number. The total area

under the curve for this experiment is 0.81 and the F1 score for this model is 0.62.

Table 2: Classification report for fastText combined with Logistic Regression

Class Precision Recall F1 Support
Hateful 0.38 0.66 0.48 338

Non-Hateful 0.87 0.68 0.77 1125
Accuracy - - 0.68 1463

Macro Avg 0.63 0.67 0.62 1463
Weighted Avg 0.76 0.68 0.70 1463

For this experiment we sent fastText embeddings of sentences to a decision tree

classifier. The decision tree classifier has an overall accuracy of 66%. It shows a great

recall for the hateful class. However, the number of false positives in this case are

higher as shown in the confusion matrix in Fig. 18.The classifier was able to identify

25

Figure 15: PR curve for logistic regression with over-sampling

677 neutral tweets correctly as shown in Fig.18. The PR curve for this experiment is

shown in Fig.17 and the area under this curve is 0.88. The F1 score for this model is

around 0.63.

Table 3: Classification report for fastText combined with Decision Tree

Class Precision Recall F1 Support
Hateful 0.39 0.84 0.53 338

Non-Hateful 0.93 0.60 0.73 1125
Accuracy - - 0.66 1463

Macro Avg 0.66 0.72 0.63 1463
Weighted Avg 0.80 0.66 0.68 1463

Fig. 19 and Fig. 20 show the result of both the classifiers when no over-sampling

is done on the data. It can be seen from the confusion matrix of logistic regression

that the model classifies the large number of neutral tweets correctly, giving a high

26

Figure 16: Confusion Matrix for fastText combined with logistic regression classifier
with over-sampling

accuracy. However, it is hardly able to identify any hateful tweets correctly and has a

higher number of false negatives since it classifies 291 neutral tweets as hateful. The

decision tree classifier has a similar outcome however it has a slightly higher number

of false positives.

The results for GloVe combined with logistic regression classifier are as fol-

lows.Table 4 shows the classification report for this experiment. The overall precision

for the hateful class was around 62 per-cent. The precision for the hateful class

was 0.33 because it classified 411 non-hateful tweets as hateful as shown in Fig. 27.

This number is higher than the number shown in the fastText and logistic regression

classifier experiment. The Precision for the not-hateful or neutral class is 0.72 which

is still high enough but lower than the corresponding fastText experiment. The

area under curve for this experiment is 0.87. Fig. 21 shows the PR curve for the

27

Figure 17: PR curve for decision tree classifier with over-sampling

GloVe-Logistic Regression experiment.

Table 4: Classification report for GloVe combined with logistic regression classifier

Class Precision Recall F1 Support
Hateful 0.33 0.58 0.42 347

Non-Hateful 0.83 0.63 0.72 1116
Accuracy - - 0.62 1463

Macro Avg 0.58 0.61 0.57 1463
Weighted Avg 0.71 0.62 0.65 1463

Table 5 shows the classification report for decision tree classifier when used on

GloVe embeddings. The recall for hateful class is 0.60 and the precision is 0.28 which

is low because the classifier has almost falsely classified half of the neutral tweets as

hateful as shown in the confusion matrix in Fig. 23. The area under curve for this

experiment is 0.83 and the PR curve is shown in Fig. 24

28

Figure 18: Confusion Matrix for fastText combined with decision tree classifier with
over-sampling

Figure 19: Confusion Matrix for decision tree classifier without over-sampling

29

Figure 20: Confusion Matrix for logistic regression classifier without over-sampling

Figure 21: PR curve for GloVe combined with logistic regression classifier

30

Figure 22: Confusion Matrix for GloVe combined with logistic regression classifier

Table 5: Classification report for GloVe combined with decision tree classifier

Class Precision Recall F1 Support
Hateful 0.28 0.60 0.38 347

Non-Hateful 0.81 0.53 0.64 1116
Accuracy - - 0.54 1463

Macro Avg 0.54 0.56 0.51 1463
Weighted Avg 0.68 0.54 0.58 1463

Fig 25 and 26 show the results of not oversampling the training data before

sending it to the classifier. Both the classifiers were barely able to classify the hateful

tweets correctly.

The distilBERT fine-tuned model has an overall accuracy of 76 per-cent. It

is higher than the fastText and GloVe combined with traditional machine learning

models. Table 6 shows the classification report for the distilBERT model. We can see

31

Figure 23: Confusion Matrix for GloVe combined with decision tree classifier

Figure 24: PR curve for GloVe combined with decision tree classifier

32

Figure 25: Confusion Matrix for GloVe and logistic regression classifier without
oversampling

from the classification report that the precision for the hateful class is much higher

in the case of the distilBERT model. It means lesser number of neutral tweets have

been classified as hateful. The model has 227 false positives which is lesser than the

false positives that the previous experiments gave. The recall for the hateful class is

also similar to the previous models in case of the distilBERT model. The precision

and recall for hateful class improved without hurting the precision and recall scores of

the non-hateful class.The PR curve of the distilBERT model has an area of 0.90 and

is shown in Fig. 28 and an F1 score of 0.70.

Fig. 29 shows the overall accuracy trend for training and testing of the model. Fig.

30 shows the loss while training and testing the model. The loss is going downward in

both training and validation.

The table 7 shows the classification report for the MuRIL embeddings when they

33

Figure 26: Confusion Matrix for GloVe and decision tree classifier without oversampling

Table 6: Classification Report for DistilBERT finetuning

Class Precision Recall F1-score Support
Hateful 0.50 0.65 0.56 342

Not Hateful 0.88 0.80 0.84 1121
accuracy 0.76 1463

macro avg 0.69 0.72 0.70 1463
weighted avg 0.79 0.76 0.77 1463

are fine-tuned.

The recall for hateful class in this model is even higher than the distilBERT

Table 7: Classification Report for MuRIL finetuning

Class Precision Recall F1-score Support
Hateful 0.55 0.66 0.60 342

Not Hateful 0.89 0.83 0.86 1121
accuracy 0.79 1463

macro avg 0.72 0.75 0.73 1463
weighted avg 0.81 0.79 0.80 1463

34

Figure 27: Confusion matrix showing the distilBERT actual numbers

Figure 28: PR curve for distilBERT model

35

Figure 29: DistilBERT accuracy trend

Figure 30: DistilBERT loss trend

36

model. Even the precision and recall for the neutral class is undisturbed which is a

good indication. The precision for the hateful class has also increased and the model

has even lesser false positives as shown in the confusion matrix in Fig.31 . The PR

Figure 31: Confusion Matrix for the MuRIL finetuned model

curve for this experiments is shown in the Fig.32. The area under this curve is 0.92

and the F1 score for this model is 0.73. The accuracy and loss trends for the MuRIL

model are shown in Fig.33 and Fig.34.

The table 8 shows the results of all the 6 experiments as a summary.

37

Figure 32: PR curve for the MuRIL finetuned model

Figure 33: Accuracy for the MuRIL finetuned model

38

Figure 34: Loss for the MuRIL finetuned model

Table 8: Table summarizing all experiments

Experiment Precision Recall F1-score
fastText and Logistic Regression 0.38 0.66 0.62

fastText and Decision Tree 0.39 0.84 0.63
GloVe and Logistic Regression 0.33 0.58 0.57

GloVe and Decision Tree 0.28 0.60 0.51
DistilBERT 0.50 0.65 0.70

MuRIL 0.55 0.66 0.73

39

CHAPTER 5

Conclusion and Future Work

This chapter concludes this work by summarizing the best of approaches discussed

in this work. Since, a lot more needs to be done in the area hate speech detection for

Indian languages, there are lot of directions in which the future research can progress.

5.1 Conclusion

We have adopted a variety of methods in this project to identify hate speech

for Roman Hindi. We have used embeddings like fastText, GloVe and transformer

based embeddings like distilBERT and MuRIL. We applied classical machine learning

models as well as deep learning for classification. The best performing approach seen

in this work was the MuRIL embedding combined with the BERTforClassification

model. Overall, the application of class weights and the low learning rate give a

macro F1 score in the range of 70 - 75 %.The DistilBERT based approach also gave

comparable results. The incorrectly classified test samples were examined after the

DistilBERT experiment finished.The test samples that we examined contained a large

number of tweets from the second wave of COVID that hit India. People took to

twitter to express their feelings on the crisis going on in the country. It was found

that a large number of the examples were just harsh criticisms and it can be seen

that the model did not classify such harsh criticism as hate. Hate is very subjective

and for that reason harsh criticism was labeled as hatred in the dataset. There were

tweets in which hate was expressed sarcastically. The model was not able to sense

sarcasm that was hateful. Some tweets did not contain the name of the person being

targeted but rather a veiled reference to the person which can be hard to figure out

and requires lot of background knowledge which the model does not have. There

were also some tweets about political issues and just lacked enough information about

the issue to make any sort of classification. The dataset has a class imbalance and

40

the application of class weights results in false positives for both the transformer

based experiments. False positives is an issue even in the fastText-GloVe experiments

because of oversampling.The above reasons pose as barriers to the transformer based

model’s learning.

5.2 Future Work

The language diversity of India adds lot of complexity to the problem of hate

speech detection. Even the languages shown in the map of India show lot of variation

from region to region. Language models should be trained to capture those variations

as well. There is lot of scope for improvement for standardizing Hindi codes-switched

with English. There is already research progressing in this area [31, 32].Standardizing

Hindi code-switched with English is necessary because when Hindi is written in the

Latin script then there might be different spellings for the same word and this hurts

the performance of any model that is trying to classify speech. More and more

transformer models with newer and better classification heads can be trained on roman

transliterated Hindi data. The challenges mentioned in the previous section can be

mitigated by training transformer based models on larger datasets with examples of

sarcastic-hate and veiled references.

41

LIST OF REFERENCES

[1] T. Mandl, S. Modha, G. K. Shahi, H. Madhu, S. Satapara, P. Majumder,
J. Schäfer, T. Ranasinghe, M. Zampieri, D. Nandini, et al., ‘‘Overview of the
hasoc subtrack at fire 2021: Hate speech and offensive content identification in
english and indo-aryan languages,’’ arXiv preprint arXiv:2112.09301, 2021.

[2] M. Bilal, A. Khan, S. Jan, S. Musa, and S. Ali, ‘‘Roman urdu hate speech
detection using transformer-based model for cyber security applications,’’ Sensors,
vol. 23, no. 8, p. 3909, 2023.

[3] M. Das, S. Banerjee, and P. Saha, ‘‘Abusive and threatening language detection
in urdu using boosting based and bert based models: A comparative approach,’’
arXiv preprint arXiv:2111.14830, 2021.

[4] M. M. Khan, K. Shahzad, and M. K. Malik, ‘‘Hate speech detection in roman
urdu,’’ ACM Transactions on Asian and Low-Resource Language Information
Processing (TALLIP), vol. 20, no. 1, pp. 1--19, 2021.

[5] A. Velankar, H. Patil, A. Gore, S. Salunke, and R. Joshi, ‘‘Hate and offensive
speech detection in hindi and marathi,’’ arXiv preprint arXiv:2110.12200, 2021.

[6] D. Kakwani, A. Kunchukuttan, S. Golla, N. Gokul, A. Bhattacharyya, M. M.
Khapra, and P. Kumar, ‘‘Indicnlpsuite: Monolingual corpora, evaluation bench-
marks and pre-trained multilingual language models for indian languages,’’ in
Findings of the Association for Computational Linguistics: EMNLP 2020, 2020,
pp. 4948--4961.

[7] A. Velankar, H. Patil, A. Gore, S. Salunke, and R. Joshi, ‘‘L3cube-mahahate:
A tweet-based marathi hate speech detection dataset and bert models,’’ arXiv
preprint arXiv:2203.13778, 2022.

[8] ‘‘Mahabert,’’ https://huggingface.co/l3cube-pune/marathi-bert, accessed: 2022-
03-30.

[9] M. Das, P. Saha, B. Mathew, and A. Mukherjee, ‘‘Hatecheckhin: Evaluating
hindi hate speech detection models,’’ arXiv preprint arXiv:2205.00328, 2022.

[10] I. Jadhav, A. Kanade, V. Waghmare, and D. Chaudhari, ‘‘Hate and offensive
speech detection in hindi twitter corpus,’’ in Forum for Information Retrieval
Evaluation (Working Notes)(FIRE), CEUR-WS. org, 2021.

42

https://huggingface.co/l3cube-pune/marathi-bert

[11] S. Shukla, S. Nagpal, and S. Sabharwal, ‘‘Hate speech detection in hindi language
using bert and convolution neural network,’’ in 2022 International Conference
on Computing, Communication, and Intelligent Systems (ICCCIS). IEEE, 2022,
pp. 642--647.

[12] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ‘‘Efficient estimation of word
representations in vector space,’’ arXiv preprint arXiv:1301.3781, 2013.

[13] L. Weng, ‘‘Learning word embedding,’’ https://lilianweng.github.io/posts/2017-
10-15-word-embedding/, 2017.

[14] J. Pennington, R. Socher, and C. D. Manning, ‘‘Glove: Global vectors for word
representation,’’ in Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP), 2014, pp. 1532--1543.

[15] A. Jha, ‘‘Vectorization techniques in nlp [guide],’’ https://neptune.ai/blog/
vectorization-techniques-in-nlp-guide, 2023.

[16] K. Venugopal, ‘‘Mathematical introduction to glove word embedding,’’
https://becominghuman.ai/mathematical-introduction-to-glove-word-
embedding-60f24154e54c, 2021.

[17] A. R. G. Devjyoti Chakrobarty, ‘‘An introduction to the global vectors
(glove) algorithm,’’ https://wandb.ai/authors/embeddings-2/reports/GloVe--
VmlldzozNDg2NTQ, 2021.

[18] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, ‘‘Enriching word vectors
with subword information,’’ Transactions of the association for computational
linguistics, vol. 5, pp. 135--146, 2017.

[19] A. Chaudhary, ‘‘A visual guide to fasttext word embeddings,’’ https://amitness.
com/2020/06/fasttext-embeddings/, accessed: 2022-03-30.

[20] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘Bert: Pre-training of
deep bidirectional transformers for language understanding,’’ arXiv preprint
arXiv:1810.04805, 2018.

[21] M. Phi, ‘‘Illustrated guide to transformers- step by step explana-
tion,’’ https://towardsdatascience.com/illustrated-guide-to-transformers-step-
by-step-explanation-f74876522bc0, accessed: 2022-03-30.

[22] J. Alammar, ‘‘The illustrated transformer,’’ https://jalammar.github.io/
illustrated-transformer/, 2021.

[23] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, ‘‘Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter,’’ arXiv preprint arXiv:1910.01108,
2019.

43

https://lilianweng.github.io/posts/2017-10-15-word-embedding/
https://lilianweng.github.io/posts/2017-10-15-word-embedding/
https://neptune.ai/blog/vectorization-techniques-in-nlp-guide
https://neptune.ai/blog/vectorization-techniques-in-nlp-guide
https://becominghuman.ai/mathematical-introduction-to-glove-word-embedding-60f24154e54c
https://becominghuman.ai/mathematical-introduction-to-glove-word-embedding-60f24154e54c
https://wandb.ai/authors/embeddings-2/reports/GloVe--VmlldzozNDg2NTQ
https://wandb.ai/authors/embeddings-2/reports/GloVe--VmlldzozNDg2NTQ
https://amitness.com/2020/06/fasttext-embeddings/
https://amitness.com/2020/06/fasttext-embeddings/
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

[24] ‘‘Distillation of bert-like models: The theory,’’ https://towardsdatascience.com/
distillation-of-bert-like-models-the-theory-32e19a02641f, accessed: 2023-03-30.

[25] S. Khanuja, D. Bansal, S. Mehtani, S. Khosla, A. Dey, B. Gopalan, D. K. Margam,
P. Aggarwal, R. T. Nagipogu, S. Dave, et al., ‘‘Muril: Multilingual representations
for indian languages,’’ arXiv preprint arXiv:2103.10730, 2021.

[26] Jitender, ‘‘Implement sigmoid function using numpy,’’ https://www.geeksforgeeks.
org/implement-sigmoid-function-using-numpy/#article-meta-div, 2023.

[27] A. Navlani, ‘‘Decision tree classification in python tutorial,’’ https://www.
datacamp.com/tutorial/decision-tree-classification-python, 2023.

[28] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
‘‘Dropout: a simple way to prevent neural networks from overfitting,’’ The journal
of machine learning research, vol. 15, no. 1, pp. 1929--1958, 2014.

[29] J. L. Ba, J. R. Kiros, and G. E. Hinton, ‘‘Layer normalization,’’ arXiv preprint
arXiv:1607.06450, 2016.

[30] R. Mishra, ‘‘devanagari-to-roman-script-transliteration,’’ https://github.com/
ritwikmishra/devanagari-to-roman-script-transliteration, 2019.

[31] A. Sharma, A. Kabra, and M. Jain, ‘‘Ceasing hate with moh: Hate speech
detection in hindi--english code-switched language,’’ Information Processing &
Management, vol. 59, no. 1, p. 102760, 2022.

[32] K. Mehmood, D. Essam, K. Shafi, and M. K. Malik, ‘‘An unsupervised lexical nor-
malization for roman hindi and urdu sentiment analysis,’’ Information Processing
& Management, vol. 57, no. 6, p. 102368, 2020.

44

https://towardsdatascience.com/distillation-of-bert-like-models-the-theory-32e19a02641f
https://towardsdatascience.com/distillation-of-bert-like-models-the-theory-32e19a02641f
https://www.geeksforgeeks.org/implement-sigmoid-function-using-numpy/#article-meta-div
https://www.geeksforgeeks.org/implement-sigmoid-function-using-numpy/#article-meta-div
https://www.datacamp.com/tutorial/decision-tree-classification-python
https://www.datacamp.com/tutorial/decision-tree-classification-python
https://github.com/ritwikmishra/devanagari-to-roman-script-transliteration
https://github.com/ritwikmishra/devanagari-to-roman-script-transliteration

APPENDIX A

45

APPENDIX B

46

	Hate Speech Detection in Hindi
	Recommended Citation

	Introduction
	Background
	Related Work
	Hate speech detection in Urdu
	Hate Speech Detection in Marathi
	Hate Speech Detection in Hindi

	Embeddings
	GloVe
	fastText
	BERT
	DistilBERT
	BERT Embeddings for Indic languages

	Techniques
	Under-sampling and Oversampling
	Class Weights
	Logistic Regression
	Decision Tree Classifier
	Dropout
	Layer Normalization

	Experiments
	Hardware Setup for experiments
	General process for experiments
	Description of the dataset
	Experiment 1: Finetuning DistilBERT pretrained model

	Experiment 2: Finetuning MuRIL pretrained model
	Experiments with fastText and GloVe embeddings
	Experiment 3: fastText embeddings with logistic regression classifier
	Experiment 4: fastText embeddings with Decision Tree Classifier
	Experiment 5: GloVe embeddings with logistic regression classifier
	Experiment 6: GloVe embeddings with Decision Tree Classifier

	Results
	Conclusion and Future Work
	Conclusion
	Future Work

	LIST OF REFERENCES
	
	

