
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2023

NoSQL Databases in Kubernetes NoSQL Databases in Kubernetes

Parth Sandip Mehta
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Databases and Information Systems Commons

Recommended Citation Recommended Citation
Mehta, Parth Sandip, "NoSQL Databases in Kubernetes" (2023). Master's Projects. 1269.
DOI: https://doi.org/10.31979/etd.qrrp-3equ
https://scholarworks.sjsu.edu/etd_projects/1269

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1269&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1269&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/1269?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1269&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

NoSQL Databases in Kubernetes

NoSQL Databases in Kubernetes

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirement for the Degree

Master of Science

by

Parth Sandip Mehta

May 2023

NoSQL Databases in Kubernetes

© 2023

Parth Sandip Mehta

ALL RIGHTS RESERVED

NoSQL Databases in Kubernetes

The Designated Project Committee Approves the Project Titled

NoSQL Databases in Kubernetes

by

Parth Sandip Mehta

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

MAY 2023

Dr. Robert Chun Department of Computer Science

Dr. Ben Reed Department of Computer Science

Dr. Thomas Austin Department of Computer Science

NoSQL Databases in Kubernetes

ABSTRACT

With the increasing popularity of deploying applications in containers, Kubernetes

(K8s) has become one of the most accepted container orchestration systems. Kubernetes

helps maintain containers smoothly and simplifies DevOps with powerful automations. It

was originally developed as a tool to manage stateless microservices that run seamlessly

in containers. The ephemeral nature of pods, the smallest deployable unit, in Kubernetes

was well-aligned with stateless applications since destroying and recreating pods didn’t

impact applications. There was a need to provision solutions around stateful workloads

like databases so as to take advantage of K8s. This project explores this need, the

challenges associated and the available solutions for running databases in Kubernetes.

Most of the current research is focused towards SQL-like databases in K8s even though

the DNA of NoSQL distributed databases is more aligned with K8s. With no research

being done with NoSQL databases, this project outlines the process behind setting up two

famous NoSQL databases in K8s: MongoDB and Cassandra. The project also shows a

representative viewpoint of the performance comparison between them using the YCSB

benchmark. The project lays a foundation around the setup of these databases using K8s

Operators and their benchmarking. The goal of the project is to describe the advantages

of having databases in K8s, provide developers a clear path for setup and provide

insights on basic benchmark performance.

NoSQL Databases in Kubernetes

ACKNOWLEDGEMENTS

I would like to thank my project advisor Dr. Robert Chun for his continuous

support throughout this project. I wouldn’t have been able to complete this project

without his help and understanding. I would also like to thank my committee members,

Dr. Ben Reed and Dr. Thomas Austin for taking interest in my project and providing

valuable feedback. I would also like to thank Dr. Suneuy Kim for her continuous support,

guidance and insight in this project since its inception.

Lastly, I would like to thank my family and friends who have been the most

supportive throughout my Master’s journey.

NoSQL Databases in Kubernetes

TABLE OF CONTENTS

I. INTRODUCTION... 1

II. BACKGROUND AND RELATED WORK..4

III. Design and Implementation... 16

Operator Choice... 16

Benchmark..19

Infrastructure...21

Monitoring and Metric Collection.. 22

Architecture...23

IV. Experiments and Results...25

Data Load... 26

Workload C: 100% Read.. 27

Workload A: 50% Read and 50% Write.. 28

Metrics Results... 29

V. Conclusion and Future Work.. 34

References... 37

NoSQL Databases in Kubernetes

LIST OF TABLES

Table 1: Differences between pods in StatefulSet and Deployment... 9

Table 2: Different types of databases and their Operator availability......................................16

Table 3: Feature analysis between different MongoDB Operators... 17

Table 4: Hardware configurations of EC2 instances... 25

NoSQL Databases in Kubernetes

LIST OF FIGURES

Figure 1: Kubernetes architecture...7

Figure 2: Difference between StatefulSet and Deployment.. 8

Figure 3: Operator and Custom Controller..10

Figure 4: To run or not to run a database in K8s...11

Figure 5: Sharded MongoDB cluster and Kubernetes architecture with Percona Operator... 17

Figure 6: Generic K8ssandra Architecture..19

Figure 7: Cassandra Architecture.. 23

Figure 8: MongoDB Architecture..24

Figure 9: Metrics comparison during load phase...26

Figure 10: WorkloadC: Throughput vs Threads...27

Figure 11: WorkloadA: Throughput vs Threads... 29

Figure 12: MongoDB WorkloadA Metrics...30

Figure 13: Latency vs Threads.. 31

Figure 14: Metrics at highest throughput in run phase...32

Figure 15: Disk utilization spikes in Cassandra... 33

NoSQL Databases in Kubernetes

I. INTRODUCTION

Kubernetes, also called as K8s, is a powerful open-source platform for container

orchestration. It was developed by Google to manage their numerous containerized

applications running in their huge data centers. Post that, Kubernetes has become the

de-facto tool in modern cloud computing and software development for orchestrating

and managing containers. The Cloud Native Computing Foundation (CNCF) now

maintains the development of K8s. K8s focuses on automating and simplifying the

process of deploying, scaling and managing applications that run in containers. These

containers started with primarily being Docker based but as of the latest K8s release,

Kubernetes can support multiple container runtimes like containerd and cri-o.

Containers package software applications in a light-weight fashion and hence

provide portability and flexibility to run independently of the platform. As modern

software becomes more and more complex, the number of containers to manage increases

to an extent where managing them becomes time-intensive and complex.

Kubernetes helps developers define the desired state of their application using

declarative YAML files. These files contain all the information required to manage the

application like the number of replicas, network policies, container image source, etc.

Based on this configuration, Kubernetes ensures that the desired state is maintained and

even in failure scenarios, where the containers might fail, Kubernetes redeploys them

automatically. Apart from self-healing, it also provides tools for handling automatic load

1

NoSQL Databases in Kubernetes

balancing, cluster management and rolling updates. Being platform-agnostic, developers

can deploy clusters of containers on their choice of cloud service like AWS, GCP or

Azure.

With the advent of microservices architecture, more and more applications are

being developed using smaller, modular and loosely coupled services. Kubernetes has

been increasingly used to decouple application services from infrastructure and hence

making it independent of the physical machines. In Kubernetes, the pods that host these

containerized services are prone to being destroyed and recreated, either to heal from a

failure state or to replicate to handle more load. Modern applications are almost always

stateful. They need to persist data externally and cannot be stateless like the service layer.

Hence having stateful applications in Kubernetes pods becomes a challenge as there is a

risk of losing data when a pod is recreated.

Traditionally databases have been hosted outside the Kubernetes ecosystem to

safeguard them from the ephemeral nature of pods. This DevOps pattern doesn’t enable

developers to have a single way of managing their stack since most of their stateless

workloads are deployed using Kubernetes. Many NoSQL databases have features in-built

in them (like elections, replication) that make it more suitable to exist in Kubernetes since

dying of database nodes is possible in NoSQL context. A recent survey by CNCF [19]

showed that there was a 48% increase in the number of organizations that chose to deploy

database workloads in Kubernetes.

This project aims to explore the following questions: What are the major

2

NoSQL Databases in Kubernetes

challenges of having a database in Kubernetes? How do existing features of Kubernetes

make it easy to run databases in pods? How easy is it to set up NoSQL database systems

in Kubernetes? How do NoSQL database systems perform in a Kubernetes environment?

The project report is organized in the following manner: Chapter 2 discusses the

Background of this topic which includes surveys of relevant literature, the architecture of

Kubernetes and its supported database management tools. Chapter 3 outlines the design

and implementation choices of this project. Chapter 4 describes the experiment run on the

choice of NoSQL databases: MongoDB and Cassandra and its results. Chapter 5

concludes the report with findings of the project and future work.

3

NoSQL Databases in Kubernetes

II. BACKGROUND AND RELATED WORK

Container orchestration is needed so that the developer that spins up numerous

containers doesn’t need to manage hand-made scripts to keep check on the health of the

container as well as the host. As software development transitioned to microservices

(instead of monolith) more and more containers were needed and their management

became tough for a DevOps engineer. Kubernetes is more popular than its competition

like Docker Swarm and Mesos because Swarm doesn’t have advanced features like

self-healing, automatic rollouts and rollbacks while Mesos is difficult to setup. In [10],

the authors evaluated these container orchestration systems (COS) for their custom

workload and found that Kubernetes provided better handling during node failure and

better recovery time with network partitions.

Kubernetes architecture includes multiple terminologies, concepts and components

that are discussed below:

1. Cluster: A cluster is made up of multiple nodes where each node can either be a

physical machine or a VM (virtual machine). Each of these nodes will run K8s

and be able to communicate.

2. Nodes: There are primarily 2 types of nodes, Master and Worker.

The master node of K8s runs the control plane which is responsible for

communicating with users and clients, managing the overall state of the cluster,

resource management, workload scheduling and config storage. The worker

4

NoSQL Databases in Kubernetes

node primarily hosts the workloads in pods. There can be multiple masters in a

cluster to support high availability and a master node can also host pods.

3. Pods: They are the smallest deployable unit in K8s and each pod can have

multiple containers running within it. Usually a pod consists of the main

application container and a couple of sidecar containers like an init container for

initial setup or a logging container. Pod is a K8s Resource type.

4. etcd: It is a consistent key value store that stores and acts as the single source of

truth for the clusters’ information, configurations, desired states of the pods and

resides on the master node.

5. API server: This communication point helps the master communicate with

workers and also allows developers to interact with the cluster using a

command line utility: kubectl. Developers can inspect cluster status, create,

update and delete resources like Pods via kubectl.

6. Scheduler: It resides on the master and is responsible for deploying pods in

nodes. It tracks the resources of the cluster and schedules pods into nodes that

have capacity. It also ensures optimal pod placement so that replicas of pods are

running on different nodes for high availability.

7. Controllers: They run watch loops that keep track of configuration files and

pushes the state of the cluster from the current state to the desired state outlined

in the YAML config files of components.

8. YAML manifests: Kubernetes objects or resources need to be defined and given

a desired state. All types of resources are defined using .yaml files that outline

5

NoSQL Databases in Kubernetes

the desired state like the number of replicas, compute resources, network

policies, etc. They are also called config files or charts.

9. kubelet: It acts as an agent on each node that communicates node and pods

telemetry to the control plane via the API server.

10.ReplicaSet: It is a type of resource definition and a higher-level abstraction

which makes sure that a specified number of replicas of a pod are always up and

running.

11. Deployments: A higher abstraction that manages the creation and updation of

replicasets, pods and other resource types. It allows for rollback of pod versions

to revert back easily and also rolling updates to ensure minimal disruption of the

application service.

12.Service: A resource type that enables network access to a logical set of pods by

providing a stable IP address, DNS name and exposes ways to interact with that

set. There are multiple options like ClusterIP (static IP for intra-cluster

communication), NodePort (fixed binding between host machine and the

cluster) and LoadBalancer.

6

NoSQL Databases in Kubernetes

Figure 1: Kubernetes architecture [9]

As Kubernetes became the obvious choice for stateless workloads, a similar

solution was needed to handle stateful workloads like databases. The ephemeral nature of

pods made it extremely difficult to use pods as database instances. The prospect for

databases in K8s was important since it not only enabled a single orchestration interface

for DevOps but also gave an easy way of achieving replication and horizontal scalability

even in databases that were designed towards single node monoliths. The later versions of

K8s incorporated in-built resources that could support persistent storage and stateful

workloads.

1. StatefulSet is a special kind of resource that creates and manages a set of pods

who stay in order with unique stable network IPs and a fixed mapping to

persistent storage volumes. StatefulSet pods have persistent sticky identities and

store their state data in a fixed PersistentVolume (PV). After recovering from a

7

NoSQL Databases in Kubernetes

failure, the restarted pod will receive the same identity and will be bound to the

same volume as before, hence have access to its state data stored prior to its

restart.

2. Persistent Volume: PV is a piece of storage in the cluster whose lifecycle is

independent of those of the pods using it. The host filesystem, NFS, AWS EBS

are examples of a PV.

3. Persistent Volume Claims (PVC): It is a request for storage made by a pod. A

PVC binds the pod to a PV that matches the PVC’s characteristics.

Deployment controllers are usually used for managing stateless applications.

Kubernetes abstracts the details of storage solutions by providing PVs and PVCs that can

be defined in a StatefulSet.

Figure 2: Difference between StatefulSet (left) and Deployment (right) [6]

8

NoSQL Databases in Kubernetes

StatefulSet Deployment

After restart, the pod retains identity and IP After restart, the pod gets new identity and
new IP

Each pod can have its own PV All pods rely on same shared PV

When node shuts down, pod isn’t recreated
in a different node

When node shuts down, a new pod in a
healthy node is created

Table 1: Differences between pods in StatefulSet and Deployment

The official documentation of K8s [12] mentions that the process of cloning and

keeping multiple replicas in sync isn't automatically done by StatefulSet since it is more

purposed towards easing the complexity involved in deploying stateful workloads in K8s.

Another challenge that is being faced with databases in Kubernetes is that a lot of

db admin tasks warrants manual steps from engineers. In [2], the author discusses the

concept of Operators that was introduced by CoreOS. The Operator pattern combines

domain-specific knowledge and the existing declarative style of defining state to manage

software applications and infrastructure. The author notes that the Operator concept is not

limited to Kubernetes or software. A train operator in a steam engine might be manual

while one in a bullet train could be automatic. In K8s, it is difficult to manage failure,

replication and upgrades in stateful applications but by using the built-in capabilities of

K8s such as self-healing and combining those with application (DBMS)-specific

complexities and domain knowledge, creates the idea behind the operator pattern.

Databases require very specific steps to be performed in a fixed sequence for a

conforming upgrade. While vanilla Kubernetes would rely on the simple restarting pods

technique to fix issues, for databases the correct error-remediation way would be to have

9

NoSQL Databases in Kubernetes

the Operator run specialized upgrade code with alerting.

“An operator is a Kubernetes controller that understands 2 domains: Kubernetes

and something else. By combining knowledge of both domains, it can automate tasks that

usually require a human operator that understands both domains” - Jimmy Zelinskie,

CoreOS, company that created the first K8 operator.

A Kubernetes Operator is a software tool that handles complex application specific

operations for us. More complex tasks and more number of environments to manage

implies more benefits from a software operator over a manual engineer. Operators use

custom control loop and Custom Resource Definitions (CRD), which act like custom

components designed specifically for the database application.

Figure 3: Operator and Custom Controller [13]

10

NoSQL Databases in Kubernetes

In the famous blogpost from Google [4], the author discussed the things to

consider when deciding if a database should be run on Kubernetes or not. The author

states that databases like ElasticSearch, MongoDB and Cassandra have features like

leader election during failures, replication and sharding in-built in its DNA. These

choices will be more compatible to run on K8s. The following flowchart guides a user in

their decision.

Figure 4: To run or not to run a database in K8s [4]

11

NoSQL Databases in Kubernetes

Having K8s operators for databases greatly assists in automating DevOps Day 0

tasks like initialization of the database pods, deployment, enabling replication and Day 1

operations like version upgrade, backups and recovery. Without operators, the data

synchronization between instances would need to be handled manually. Database

operators help save engineer time in an organization and also provide quick steps to setup

multiple kinds of databases in an existing K8s cluster. A typical 3 replica set MongoDB

setup with sharding, which takes hours when done manually via StatefulSets, is now

automated into minutes by the operator. The CRD used by the operator is built on top of

the primitive constructs of StatefulSet, PV and PVC.

In both [1] and [3], the authors have considered experimenting on PostgreSQL in

Kubernetes. Perera et al. [1] create a machine learning algorithm that helps scale

PostgreSQL hosted on Kubernetes. The authors used the Zalando operator [14] to

manage the setup. Unusually, the syncing logic between multiple PostgreSQL replicas

was manually written even when the operator came packed with the Patroni package that

could handle this. Similar to [9] they used Prometheus to gather metrics and Grafana for

visualization. In [3], the authors analyzed the benchmarking of PostgreSQL/PostGIS

geospatial databases operating on a clustered environment against non-clustered

environments. They ran experiments on 3 environments: AWS EC2, AWS RDS and AWS

EKS. They observed that the import time was quickest for databases operating in AWS

EKS, because of its ability to scale up or down based on resource usage. They concluded

that the performance in all 3 were comparable since geospatial queries operating upon

indexed attributes involved low computation. While a computationally expensive

12

NoSQL Databases in Kubernetes

geospatial query on a large dataset yielded better results in EKS. The research failed to

explain their EKS setup which casted doubt on the experiments. Currently, a popular

database like PostgreSQL has multiple available operators like Crunchy, Zalando and

KubeDB. These also come in-built with the Prometheus operator that deploys pods for

Grafana too making monitoring also automated.

A lot of research has been done around SQL-like systems on Kubernetes. In [5],

[7] and [8], Spark has been analyzed on Kubernetes. Spark executors were set up in K8s

and in bare-metal and benchmarked on WordCount and SQL Join operations in [5].

Surprisingly, the authors conclude that Spark on the bare metal outperforms Spark on

Kubernetes because even if executors on Kubernetes are given the same CPU compute

power, the bare metal executors are able to utilize more CPU cycles owing to their

proximity to the kernel. On the other hand, Spark on Kubernetes had better disk I/O write

performance in certain MapReduce stages. They used the open-source tool collectl to

monitor usages of standard computing resources like CPU, memory and disk. In [7],

authors analyzed SQL-on-Hadoop systems: Apache Hive, Apache Drill, Trino, Apache

Spark-SQL on Kubernetes with the TPC-H benchmark. In contrast to [5], the HDFS data

was stored outside K8s and the benchmark focused on the scalable query engines. They

utilized three different scale factors (10, 100, and 300 GB) and concluded that Trino was

the fastest with Spark being one of the slowest. They voiced similar challenges regarding

databases in K8s due to the complexity of deployments, lack of official guidelines and

smaller community that has adopted K8s for databases. In [8], the authors have utilized

GCP’s Dataproc, which are fully managed Spark and Hadoop clusters, to run analysis on

13

NoSQL Databases in Kubernetes

popular Uber locations. Dataproc provides simple configuration to run the workload on

Google Kubernetes Engine (GKE) versus on VMs. On contrary to [5], their results

showed that in the Kubernetes environment the streaming process had a performance gain

along with lower CPU utilization. Nowadays, each cloud company provides a managed

Kubernetes service (EKS in AWS, GKE in GCP and AKS in Azure) which not only ease

the cluster setup but also provide monitoring dashboard and alerts.

Similar to [8], Olle Larsson [9] has compared 3 SQL databases: TiDB, MySQL

and CockroachDB that are setup using GCP’s GKE. In line with [1], they used operators

to simplify their setup: TiDB-Operator, Presslabs MySQL Operator and the Couchbase

Operator. The author has used SysBench as their synthetic benchmarking tool. The

experiment evaluated impact on latency when database specific operations like scale up,

scale down, scale out, scale in, version upgrade and backup were performed. They

concluded that MySQL performed better since it kept complete copies of the dataset

while TiDB and CockroachDB throttled when re-balancing of data between pods was

being done. They align with the idea that for databases which have well implemented

operators that perform most of the complex operations, the ease of adoption of the

database in K8s is high. Sharing the same sentiment, in [6], the authors went a step ahead

and created their own custom State controller that enabled high availability for stateful

workloads which was lacking in Kubernetes.

Majority of the research related to databases in K8s was focused towards SQL-like

systems even though NoSQL databases, being inherently distributed systems, are better

14

NoSQL Databases in Kubernetes

tuned for K8s. In [11], a new workbench was created that helped compare different

autoscalors. Though they utilized Cassandra on Kubernetes as an example, they didn’t

focus on the setup of the database or its performance in K8s. Similarly, in [10],

MongoDB was compared on multiple COS like Docker Swarm, Mesos and Kubernetes

but the focus was more towards the orchestration systems and its features than setup of

the database. To answer the research question regarding the ease to set up NoSQL

database systems in Kubernetes, this project outlines the process of setting up MongoDB

and Cassandra using operators and provides a representative view of how these databases

compare in performance when run in K8s.

15

NoSQL Databases in Kubernetes

III. Design and Implementation

Operator Choice

Most of the popular SQL, NoSQL and NewSQL databases now have multiple

operators as outlined in Table 2.

Database Type Design # of Operators

Cassandra NoSQL P2P 2

CockroachDB NewSQL P2P 1

Couchbase NoSQL P2P 1

MariaDB SQL Leader/Follower 2

PostgreSQL SQL Leader/Follower 5

MongoDB NoSQL Leader/Follower 3

MySQL SQL Leader/Follower 3

TiDB NewSQL P2P 1

YugabyteDB NewSQL P2P 1
Table 2: Different types of databases and their Operator availability

To explore NoSQL databases, this project covers the 2 most popular NoSQL

databases: MongoDB and Cassandra. This will provide developers with an understanding

of the available options, to deploy them in Kubernetes and an overview on their

performance. For the choice of operator for MongoDB, the following operators were

explored:

16

NoSQL Databases in Kubernetes

Feature MongoDB
Community
Operator

Percona
MongoDB
Operator

KubeDB
Community
operator

OpsTree
operator

Replication ✅ ✅ ✅ ✅

Sharding ❌ ✅ ✅ ❌

Scaling ✅ ✅ ❌ ✅

Automatic Database Upgrade ❌ ✅ ❌ ❌

Monitoring ✅ ✅ ✅ ✅

Table 3: Feature analysis between different MongoDB Operators

Based on these, the Percona MongoDB [14] provides the most features for free

and was chosen for this project. Even though the official MongoDB Operator would be

more assuring, the Community version has limited features while the Percona operator

provides all the features that the Enterprise edition of the official Operator provides.

Figure 5: A sharded MongoDB cluster (left) and Kubernetes architecture with Percona Operator [14]

17

NoSQL Databases in Kubernetes

For the choice of operator for Cassandra, 2 operators were compared:

K8ssandra-operator (also called simply K8ssandra) and CassKop Operator. Both of these

operators provide the most commonly needed features for deployment and even advanced

options like live backups and upgrades. The CassKop operator lacks in terms of

scalability where one instance of the operator can run only in one namespace while a

single K8ssandra can run multiple clusters in multiple namespaces. K8ssandra is also the

official open-sourced project of the Apache Cassandra community and offers better

community support. K8ssandra also provides an ecosystem of common Cassandra related

tools bundled together: Stargate (data gateway that supports REST, CQL, GraphQL),

Prometheus, (metrics monitoring) and Medusa (backup and recovery). Hence the official

K8ssandra operator was chosen for this project [15].

18

NoSQL Databases in Kubernetes

Figure 6: Generic K8ssandra Architecture [15]

Benchmark

Existing literature has used various benchmarks like SysBench [9], TPC-H [7] and

MapReduce WordCount [5]. TPC-H is an OLAP workload that is a successor of the

TPC-C benchmark. The TPC benchmarks, being SQL and row-like, have been modified

to work on NoSQL databases like MongoDB but that wouldn’t be the idle scenario. For

this project, the Yahoo! Cloud Serving Benchmark (YCSB) was used. YCSB [18] creates

synthetic workloads that simulate real-world usage patterns, such as read and write

operations, and measures database performance under various levels of concurrency and

19

NoSQL Databases in Kubernetes

dataset load. YCSB has been used on MongoDB and Cassandra in [11], [16], [17], [20]

and [21]. YCSB provides a simple command line utility with multiple parameters that can

be tweaked to generate new benchmarking scenarios. YCSB [18] includes the following

Core workloads:

● Workload A: Update heavy workload which has a mix of 50/50 reads and

writes.

● Workload B: Read mostly workload which has a mix of 95/5 reads and writes.

● Workload C: Read only

● Workload D: Read latest workload; new records are inserted, and then they are

read

● Workload E: Short ranges of records are queried, instead of individual records.

● Workload F: Read-modify-write workload will read a record, modify it, and

write back the changes.

The benchmark also offers the following configuration parameters to generate a

flexible multi-dimensional workload:

● executiontime: Runtime of the workload (in minutes)

● threadcount: Number of parallel threads

● recordcount: Number of initial records

● operationcount: number of operations (default = 1000)

● readproportion: read portion of the workload (0 - 1)

● writeproportion: write portion of the workload (0 - 1)

20

NoSQL Databases in Kubernetes

● updateproportion: Update portion of the workload (0 - 1)

● requestdistribution: uniform vs zipfian (some rows have more probability to be

targeted by reads so as to generate a hotspot)

YCSB benchmarking is divided into 2 phases: the load phase and the run phase.

The load phase is common for all the Core Workloads where records are added into the

database using the Java driver for the target database. The database needs to be prepared

beforehand in terms of empty table creation or keyspace creation or empty collection

creation before the load phase can start. A single table `usertable` is used for the INSERT

operations in the load phase. The schema of this table consists of a `user_id` which acts

as a primary key or index key and 10 other string fields that are filled with random

characters.

Infrastructure

AWS was used as the cloud provider of choice. There are 2 main ways to run K8s

experiments on AWS: EKS cluster (fully managed service) and running one’s own K8s

cluster on EC2. Since this project aims to provide a representative viewpoint of databases

in Kubernetes, the cheaper option of EC2 was chosen. The EC2 instance that runs YCSB

is kept separate, though within the same availability zone of the EC2 that hosts the K8s

cluster. Many lightweight Kuberentes distributions are available that make setting up

clusters on lower compute resources VMs easier. These distributions abstract out the

complexity of setting up and maintaining K8s clusters. As part of this project, microk8s,

k3s, kind and minikube were explored. kind stands for Kubernetes in Docker and along

21

NoSQL Databases in Kubernetes

with minikube, these distributions spin up a cluster inside a Docker container. Both the

operators of choice have compatibility with these 2 but weren’t used because of the extra

nested layer created by the Docker container. The external YCSB query will have to go

from one EC2 to another, tunnel into the Docker container and then connect into the open

port of the pod. Among k3s and microK8s, the latter was chosen since it provided a

single command installation and also provided addons (plugins) for additional packages

like dns, storage provisioning, helm and prometheus that could be installed easily.

Monitoring and Metric Collection

As part of the experiments, Prometheus and Grafana were used to monitor metrics

like CPU, memory and disk utilization. Prometheus is an open-source systems

monitoring tool that collects time-series data. PromQL, its own query language, can be

used to manipulate and retrieve time-series data of metrics. Prometheus is based on a pull

mechanism where it scrapes data from multiple sources rather than relying on the source

to push data. Prometheus has built-in support for service discovery and can easily detect

new pods, nodes, namespaces, PVs in Kubernetes.

Grafana is a powerful visualization tool used to generate custom dashboards and

alerting. Grafana can have multiple data sources with the most prominent being

Prometheus. It allows for loading pre-existing templates of dashboards that can be used to

monitor time series based graphs of metrics. The in-built plugins in microk8s made

Prometheus and Grafana stack the obvious choice for the monitoring solution.

22

NoSQL Databases in Kubernetes

Architecture

K8ssandra operator was used to set up a single Cassandra datacenter with 3

Cassandra instances (3 replicas). Separate pods were created to run Prometheus and

Grafana. Their endpoints were exposed publicly so that the dashboards can be viewed

from any browser. The benchmark operated on a single keyspace `ycsb` in the Cassandra

cluster and ran operations on the `usertable`.

Figure 7: Cassandra Architecture

23

NoSQL Databases in Kubernetes

The Percona MongoDB operator was used to set up a MongoDB cluster with 3

replicas of each of the 3 shards. A single mongos instance ran with a replica-set of 3

config servers. Each of the components ran in its separate pod. A database named `ycsb`

and an empty collection named `usertable` was needed for the benchmark.

Figure 8: MongoDB Architecture

24

NoSQL Databases in Kubernetes

IV. Experiments and Results

The experiments are run in AWS EC2 virtual machines where 1 EC2 will host all

the database pods inside a single node Kubernetes cluster. Since the focus is not on high

availability, the K8s cluster has only 1 node but each replica of the database is housed in

a separate pod. Another EC2 instance in the same availability zone runs the YCSB client

benchmark. To increase the load on the database system, the client needs to spawn

multiple threads, each performing operations on the database.

EC2 type vCPU RAM Storage disk (EBS)

Kubernetes + DB t2.xlarge 4 16 GB 64 GB

YCSB Client t2.2xlarge 8 32 GB 32GB
Table 4: Hardware configurations of EC2 instances

Since the client needs to increase the load by spawning more threads, an even

more powerful machine with 8 vCPU was used. WorkloadA and WorkloadC of the Core

YCSB workloads were utilized in this project. Before each of the workload Run phase,

the database was populated with 100,000 records in the Load phase. In each experiment

run, a fixed number of operations were performed: 50,000 as a standard. Each workload

benchmark consisted of multiple experiments in which the database throughput was

measured against an increasing number of YCSB threads. The experiments ended when

increasing the number of threads on the client side did not yield a gain in throughput.

This indicates the saturation point of the database in terms of handling the workload. All

experiments utilized the zipfian distribution so as to emulate a real world application that

is prone to hotspots. The experiments were run each time with a different `-threads`

25

NoSQL Databases in Kubernetes

parameter to increase the simultaneous load on the database.

Data Load

The load phase for each of the workloads involved populating MongoDB and

Cassandra with 100,000 records. Additional steps were performed on the MongoDB

setup to enable sharding prior to loading the data. It was observed that MongoDB took

3.7 times more time to finish loading the data as compared to Cassandra.

Figure 9: Metrics comparison during load phase

The average throughput during the load phase was 493 ops/s for Cassandra with

an average latency of 1.9 ms per INSERT operation and 203 ops/s for MongoDB with 7.2

ms average latency. It was observed that MongoDB’s disk utilization spiked to 97% while

handling insert which gave it a lower max throughput value. Cassandra used less CPU

26

NoSQL Databases in Kubernetes

resources than MongoDB but consumed 1.9 times more memory. Better write

performance by Cassandra can be attributed to its peer to peer architecture where each

node can handle writes in contrast to MongoDB’s single master that handles write

operation like INSERT. Cassandra’s memory based storage model that utilizes SSTables,

makes writes quicker than MongoDB which had to perform more writes to the disk which

in turn gave a higher disk utilization percentage.

Workload C: 100% Read

The workload C of YCSB performs 100% READ operations on the databases.

Unlike [17], the results of this experiment showed that Cassandra gave a higher

throughput than MongoDB and was also able to handle more threads.

Figure 10: WorkloadC: Throughput vs Threads

27

NoSQL Databases in Kubernetes

The considerably higher throughput of 4540 ops/s of Cassandra could be because

of the database design which is suited for higher concurrency READ operations. In [16]

and [21], the authors observe a similar trend when YCSB WorkloadC was run on

MongoDB and Cassandra setup on bare-metal. By having comparable results, the

knowledge gap of performance comparison between databases set up in bare-metal and in

Kubernetes was bridged in this project.

Workload A: 50% Read and 50% Write

The workload A of YCSB has an equal split between READ and UPDATE

operations. Similar to the results of the load phase, Cassandra showed better throughput

and lower latency than MongoDB. Even this could be attributed to Cassandra’s

architecture that supports multiple masters that can perform writes and its ability to

perform in-memory writes. Figure 11 shows that while MongoDB saturated after 120

concurrent threads of YCSB, Cassandra was able to handle more load with an increase in

throughput up till 160 threads. The throughput of both the databases fell when compared

with results of workload C. This is because the 50% of write operations took more time

than the read operations. In contrast to their findings with workload C, the authors of [17]

also found that Cassandra outperformed MongoDB in workload A. The results of Figure

11 corroborate with the results in [16], [20] and [21] where Cassandra gave lower latency

with the YCSB workload A.

28

NoSQL Databases in Kubernetes

Figure 11: WorkloadA: Throughput vs Threads

Metrics Results

It was observed that MongoDB metrics steadily increased as the number of threads

increased unlike with workload C where the max CPU utilization was 30%. Figure 12

shows that due to the write-intensive nature of this workload, the system resources

consumed by MongoDB increased steadily until it reached a saturation point. At that

point, the max throughput was observed for MongoDB. Also, the disk utilization was

over 93% for the majority of the run, similar to the load phase, due to the frequent flushes

of the oplog of MongoDB to the disk. MongoDB does this to survive unexpected crashes

but this limits the performance of write operations.

29

NoSQL Databases in Kubernetes

Figure 12: MongoDB WorkloadA Metrics

The average latency observed by the READ and UPDATE operations is shown in

Figure 13. It is observed that the MongoDB UPDATE operation has the highest latency

while Cassandra READs in workload C have the lowest latency. Interestingly, both

READ and UPDATE operations in workload A for Cassandra have similar latency vs

threads trajectory. Due to this, their line plot overlaps in Figure 13. It is observed that all

Cassandra operations are faster than MongoDB operations which furthers the hypothesis

of better performance of Cassandra over MongoDB in Kubernetes.

30

NoSQL Databases in Kubernetes

Figure 13: Latency vs Threads

The metrics CPU, memory and disk are compared across workloads in Figure 14.

It is seen that there is marginal increase in resource utilization in Cassandra when moving

from a read-intensive workload to a write-intensive workload. Whereas, MongoDB sees a

jump from 30% CPU to 87% CPU at its max throughput point. MongoDB’s disk usage

almost maxed off at 96% during write operations. Cassandra used similar % of memory

throughout the experiments which could be because of its constant reliance on memory

for its operations. MongoDB was able to run at almost half the RAM that was needed by

Cassandra.

31

NoSQL Databases in Kubernetes

Figure 14: Metrics at highest throughput in run phase

Figure 15 shows a screenshot of disk utilization over time from the Grafana

dashboard. It shows occasional spikes in Cassandra Kubernetes cluster’s disk utilization.

This spike every 5 minutes can be attributed to the fact that Cassandra performs the

majority of its operations in-memory and writes them to disk in batches to increase

performance.

32

NoSQL Databases in Kubernetes

Figure 15: Disk utilization spikes in Cassandra

Even though Cassandra in Kubernetes outperformed MongoDB in throughput,

latency, CPU % and disk utilization %, MongoDB was able to run at a lower memory

footprint. During the database setup, it was observed that the K8ssandra operator was not

able to deploy pods in hardware where the number of vCPUs were less than 3. This

suggests that MongoDB is a better option when deploying in a Kubernetes cluster with

less resources since it uses less RAM as well as CPU for setup. The benchmark results

suggest that master-master database architecture like Cassandra are well suited to handle

heavier loads of both reads and writes while master-follower systems like MongoDB are

prone to saturate due to a bottleneck at the master. The experiments successfully provided

a representational overview of how these NoSQL databases perform in Kubernetes and

lays down a foundation for future heavier workloads on multi-node Kubernetes clusters.

33

NoSQL Databases in Kubernetes

V. Conclusion and Future Work

The biggest challenge for having stateful workloads in Kubernetes is the

ephemeral nature of pods. To handle this, Kubernetes provides a host of in-built

components to handle stateful applications like databases. By using StatefulSets,

PersistentVolumes and PersistentVolumeClaim, database pods can receive a sticky

identity that helps them bound back to their original data volume and survive pod crashes

and restarts. Even though these provisions help deploy databases in Kubernetes, it doesn’t

help operate it automatically. The setup and maintenance of the database in Kubernetes is

still manual since these components do not have any domain specific knowledge.

Kubernetes Operators help bridge this gap by automating Day 0 and Day 1 DevOps tasks

related to databases. Operators act like extensions that automatically manage the database

and abstracts out the operational complexities that would otherwise be handled by a

database administrator with expertise in Kubernetes.

By having databases in Kubernetes, one can also benefit from having optimal

allocation of hardware resources for each of the databases deployed. Managing multiple

databases manually on multiple nodes leaves out resources that could otherwise be

optimally scheduled by Kubernetes. Databases in pods can enable efficient moving of

pods to nodes that have capacity which gives maximum utilization of resources.

Kubernetes manages and fine tunes resource requests and limits of each pod and node.

Kubernetes also provides elasticity and autoscaling capability via its vertical and

horizontal pod autoscaler. Organizations also have the option of moving their databases

from on-premise to public cloud on the fly using Kubernetes to adjust cloud computing

34

NoSQL Databases in Kubernetes

bills. Kubernetes acts like a standardized infrastructure as a code layer that can help move

workloads around multiple clouds. Database deployments in Kubernetes using operators

help DevOps set policies for auto-scaling and resiliency and have the operator automate it

rather than manually reacting to failure in production. By using helm-charts,

pre-packaged K8s yaml files, customization based on environment, region and policies

can be done that automates the recreation of the entire stack (database, query layer,

monitoring tools, backup solutions, etc) in any Kubernetes cluster.

Existing literature covers performance of various SQL-like databases in

Kubernetes but doesn’t explore NoSQL databases that are better aligned with Kubernetes

ideology. The project was able to explore the available operators for MongoDB and

Cassandra and demonstrate the simplification in terms of setup that is provided by

Percona MongoDB operator and K8ssandra operator. Benchmarking these database

setups in Kubernetes with YCSB provided a foundation for comparisons between NoSQL

systems in Kubernetes. The experiment results on throughput and latency align with

existing results of comparing Cassandra and MongoDB on bare-metal. Metrics like CPU,

memory and disk utilization were captured by Prometheus and visualized in Grafana to

compare the 2 databases.

The project aimed to provide a base on which future complex experiments can be

run to benchmark MongoDB and Cassandra in different setups. Further research can be

done in terms of running different Core workloads of YCSB, varying the amount of data

by having more records and running for a larger operation count. The base Kubernetes

35

NoSQL Databases in Kubernetes

cluster can also be varied to get results in multi-node Kubernetes clusters. The hardware

configuration of EC2s can be increased and the performance of the databases can be

plotted against memory and CPU. Future experiments could also benchmark and compare

performance of NoSQL systems in different managed Kubernetes services from AWS,

GCP and Azure.

As more and more developers explore container technologies, Kubernetes will

become more prominent as an orchestration tool. With DevOps moving towards

automation, more stateful workloads like databases will be deployed alongside stateless

microservices to provide a unified source for application management. With more

awareness of database operators, a larger community is expected to form around

developing better tooling around databases in K8s. This will lead to more performance

benchmarking research and a gradual shift from traditional bare-metal database setups to

automated Kubernetes setup when comparable or even better performance is consistently

observed between the two set ups.

36

NoSQL Databases in Kubernetes

References

[1] H. C. S. Perera et al., "Database Scaling on Kubernetes," 2021 3rd International
Conference on Advancements in Computing (ICAC), 2021, pp. 258-263, doi:
10.1109/ICAC54203.2021.9671185.

[2] CNCF Operator White Paper
https://github.com/cncf/tag-app-delivery/tree/main/operator-whitepaper/v1

[3] Sharma, Bansal, P., Chugh, M., Chauhan, A., Anand, P., Hua, Q., & Jain, A. (2021).
Benchmarking geospatial database on Kubernetes cluster. EURASIP Journal on Advances in
Signal Processing, 2021(1), 1–29.

[4] To run or not to run a database on Kubernetes: What to consider - Benjamin Good
https://cloud.google.com/blog/products/databases/to-run-or-not-to-run-a-database-on-kubernet
es-what-to-consider

[5] C. Zhu, B. Han and Y. Zhao, "A Comparative Study of Spark on the bare metal and
Kubernetes," 2020 6th International Conference on Big Data and Information Analytics
(BigDIA), 2020, pp. 117-124, doi: 10.1109/BigDIA51454.2020.00027.

[6] L. Abdollahi Vayghan, M. A. Saied, M. Toeroe and F. Khendek, "Microservice Based
Architecture: Towards High-Availability for Stateful Applications with Kubernetes," 2019
IEEE 19th International Conference on Software Quality, Reliability and Security (QRS),
2019, pp. 176-185, doi: 10.1109/QRS.2019.00034

[7] Cardas, Aldana-Martín, J. F., Burgueño-Romero, A. M., Nebro, A. J., Mateos, J. M., &
Sánchez, J. J. (2022). On the performance of SQL scalable systems on Kubernetes: a
comparative study. Cluster Computing. https://doi.org/10.1007/s10586-022-03718-9

[8] T. M. Gunawardena and K. P. N. Jayasena, "Real-Time Uber Data Analysis of Popular
Uber Locations in Kubernetes Environment," 2020 5th International Conference on
Information Technology Research (ICITR), 2020, pp. 1-6, doi:
10.1109/ICITR51448.2020.9310851.

[9] Running databases in a Kubernetes Cluster - An Evaluation - Olle Larsson - Master’s
Thesis.

37

NoSQL Databases in Kubernetes

[10] E. Truyen, M. Bruzek, D. Van Landuyt, B. Lagaisse and W. Joosen, "Evaluation of
Container Orchestration Systems for Deploying and Managing NoSQL Database Clusters,"
2018 IEEE 11th International Conference on Cloud Computing (CLOUD), 2018, pp. 468-475,
doi: 10.1109/CLOUD.2018.00066.

[11] W. Delnat, E. Truyen, A. Rafique, D. Van Landuyt and W. Joosen, "K8-Scalar: A
Workbench to Compare Autoscalers for Container-Orchestrated Database Clusters," 2018
IEEE/ACM 13th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS), 2018, pp. 33-39.

[12] Kubernetes official documentation https://kubernetes.io/docs/home/

[13] Zalando Operator for PostgreSQL documentation
https://github.com/zalando/postgres-operator

[14] Percona Operator for MongoDB documentation
https://docs.percona.com/percona-operator-for-mongodb/

[15] K8ssandra Operator documentation https://docs.k8ssandra.io/

[16] E. Tang and Y. Fan, "Performance Comparison between Five NoSQL Databases," 2016
7th International Conference on Cloud Computing and Big Data (CCBD), Macau, China,
2016, pp. 105-109, doi: 10.1109/CCBD.2016.030.

[17] S. N. Swaminathan and R. Elmasri, "Quantitative Analysis of Scalable NoSQL
Databases," 2016 IEEE International Congress on Big Data (BigData Congress), San
Francisco, CA, USA, 2016, pp. 323-326, doi: 10.1109/BigDataCongress.2016.49.

[18] Yahoo! Cloud Serving Benchmark (YCSB) https://github.com/brianfrankcooper/YCSB/

[19] CNCF Annual Survey 2021 https://www.cncf.io/reports/cncf-annual-survey-2022/

[20] J. M. A. Araujo, A. C. E. de Moura, S. L. B. da Silva, M. Holanda, E. d. O. Ribeiro and
G. L. da Silva, "Comparative Performance Analysis of NoSQL Cassandra and MongoDB
Databases," 2021 16th Iberian Conference on Information Systems and Technologies (CISTI),
Chaves, Portugal, 2021, pp. 1-6, doi: 10.23919/CISTI52073.2021.9476319.

38

NoSQL Databases in Kubernetes

[21] Abramova, & Bernardino, J. (2013). NoSQL databases: MongoDB vs cassandra.
Proceedings of the International C Conference on Computer Science and Software
Engineering, 14–22. https://doi.org/10.1145/2494444.2494447

39

	NoSQL Databases in Kubernetes
	Recommended Citation

	CS298 - Parth - Report Final (Draft v1)

