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ABSTRACT

Modeling Sequencing Artifacts in Artificial Low Frequency Cancer Data

by Hannele Padre

The rapid advancement in technology for next-generation sequencing (NGS) 

continues to make NGS more affordable, and in turn there is a high influx of sequencing 

data. While NGS is relatively fast and efficient to previous sequencing technologies, 

there are a multitude of steps in the NGS workflow in which sequencing errors can 

be introduced. Such sequencing errors are known as artifacts, and if not careful, can 

be mistaken for true variants. It’s especially important to distinguish artifacts in 

cancer biopsies, more specifically, liquid biopsies, a noninvasive method for sample 

collection. Somatic mutations occur at low frequencies, and a liquid biopsies adds 

another challenge for detection if not enough cancer calls are collected in the sample. 

Thus, the distinction between low frequency mutations and low frequency artifacts 

becomes more difficult. In this study, machine learning methods will be used to model 

sequencing artifacts in NGS cancer data. The Genome in a bottle (GIAB) genomes 

and BAMSurgeon will be used as “truth-sets” to distinguish true variants from low 

frequency sequencing artifacts.
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CHAPTER 1

Introduction
1.1 Sequencing and Genomics

Over the last few decades, there have been numerous efforts in the study of

genomics. Previously, genetics was observed in the early 1900’s through Mendelian

inheritance, but it wasn’t until 1977 that Sanger Sequencing was introduced which

allowed the first ever sequencing of genes [2, 3]. Since then, sequencing technologies

rapidly advanced into what we know today, Next-generation Sequencing (NGS), and

continues to improve [3]. Through sequencing the field of genomics was born and

now we are able to study the human genome and obtain better insight between genes

and disease etiology. Diagnosis is now possible for previously undiagnosable genetic

diseases by sequencing specific genes and identifying genetic variants [2]. Over the

last few years, sequencing has become both more affordable and robust. While it was

once only done in laboratories and research settings, it has now extended into clinical

settings, revolutionizing healthcare [2]. One of the most impacted fields is oncology,

the study of cancer, where thanks to NGS, exists panel testing for cancer screening

and hereditary cancer risk assessment [2, 4].

1.2 Cancer Genomics

The invention of sequencing is the primary reason it is now possible to study

cancer genomics. S. Behjati and P.S. Tarpey [3] described cancer as a “disease of

the genome” due to the fact cancer is caused by harmful mutations in the DNA. By

studying the genome and genetic variations, it became possible to not only detect

cancer driver gene variants and rare cancer variants, but also to characterize cancer

variants to an accurate diagnosis [2]. Currently, approximately 500 out of 20,000 genes

have been discovered to be related to cancer [5]. Genomic sequencing also provided

a new method of treatment for cancer, as well as other diseases, called precision
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medicine. In precision medicine, the patient’s genomic data and other factors such

as environment and lifestyle are all taken into consideration to curate a personalized

treatment [5]. Sequencing has also been adapted for clinical use in cancer panel

screening, in which a set of genes that are known to be related to cancer are screened

for cancerous mutations [4, 5]. Panel testing wouldn’t have been possible without the

sequencing technologies that have developed over the last few decades, most notably,

next-generation sequencings(NGS).

1.3 Next-Generation Sequencing

Next-generation sequencing (NGS), also known as massively parallel or deep

sequencing, is today’s most popular and widely used method of DNA sequencing.

There are many platforms of NGS but each platform uses this similar technique:

the sequencing of amplified short DNA fragments in parallel [3]. The parallelization

NGS process is as follows: First, short DNA template strands are bound in distinct

positions on a plate. Next, the reads undergo bridge amplification. Then, each strand

is extended with nucleotides that have been modified to fluoresce based on nucleotide

type, and to terminate extension. Because of the amplification step, the fluorescence

is strong enough for the microscope to detect, and this wavelength is recorded and

converted into a base pair reading. The modified base pairs are then converted to

normal base pairs to allow for the addition of another modified base pair. This

extension process is repeated until the strands are fully sequenced [4].

The development of NGS technology revolutionized the study of genomics by

producing staggering amounts of sequencing data which was not possible previously

with Sanger sequencing. While Sanger sequencing produces a single DNA sequence in

one experiment, NGS is able to produce millions of unique reads. This is significantly

faster and less labor intensive than Sanger sequencing [4]. Additionally, NGS requires
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relatively smaller samples, and still maintains high sensitivity and high coverage [2, 3].

The advancements of NGS sequencing technology have also made NGS more and

more affordable, and continues to do so, such that NGS is now being used in clinical

practice [5].

Some applications of NGS include: sequencing of the whole genome (noncoding

and coding regions, WGS), whole exome sequencing (coding regions only, WES), or

sequencing of individual genes or regions or interests [3]. Through sequencing, genes,

diseases, and genetic variations can be discovered.

1.4 Variants

Variants in sequencing data, also known as mutations, are defined as genomics

differences from the human reference genome [3, 4]. Variants can cause synonymous or

nonsynonymous mutations depending on the severity of change in the DNA. There are

2 types of variants based on cell type: germline and somatic. Germline variants are

passed down genetically and happen before conception, while somatic variants occur

after conception, during one’s lifetime. Somatic mutations can happen spontaneously,

during mistakes in DNA repair, or when DNA is exposed to stress, and while some

may produce no negative effects to the individual, cancers are typically the result of

an accumulation of somatic mutations [6].

1.4.1 Single Nucleotide Polymorphisms

There are three types of variants classified by the type of alteration it makes to

the DNA: Single nucleotide variants (SNVs), indels, and structural variants (SVs).

Single nucleotide variants (SNVs) alternate the DNA by substituting one nucleotide

with another [4]. This is similar to single nucleotide polymorphisms (SNPs), however

for a variant to be considered an SNP, the mutation must be present in at least

1% of the population [7]. Indel variants are short insertions or deletions of a set of
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bases. Large insertions or deletions, duplications, inversion, or translocation are all

examples of structural variants that cause major structural changes to the DNA [4].

SNVs/SNPs are the most commonly occurring type of variant in the human genome.

Those that occur in genes associated with DNA repair, the cell cycle, metabolism, and

immunity are typically susceptible in cancer and can therefore potentially be used as

cancer biomarkers [8].

1.5 Artifacts

Artifacts are defined as errors in sequencing, typically caused by DNA damage

during sample preparation or mistakes during sequencing and informatics analysis.

Artifacts can happen at any point in the NGS workflow from “tissue processing, tissue

storage, DNA isolation, fragmentation, probe hybridization, library amplification,

sequencing, and informatics analysis” [9, 10]. For example, tissue biopsies are typically

stored in formalin-fixed, paraffin-embedded (FFPE) tissue due to its preservation

properties [11]. However, FFPE causes a variety of DNA damage such as fragmentation,

formaldehyde-induced cross linking, and histone-DNA crosslinks [5, 11]. Artifacts

from sequencing misreads are caused by regions in the DNA that are difficult for

the sequencer to read such as homopolymers [11] or GC-rich or AT-rich regions [12].

According to source [4], mistakes occur about 0.1% of the time, with the exception of

rare sites that are prone to error with about a 1% error rate. Sequencing technologies

can curb some artifacts by utilizing read depth, coverage, and cross referencing variants

to the reference genome; however even through these filters, sequencing artifacts may

still appear in the output read data [4], and is even more difficult to filter in cancer

data.
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1.6 Artifacts in Cancer Data

Distinguishing between artifacts and cancer data is still an ongoing challenge

in research [9]. The typical workflow for NGS cancer specimens involves sequencing

normal tissue and cancer tissue and cross referencing the artifacts and variants. This

way, it is possible to distinguish between low frequency artifacts from low frequency

cancer variants and from constitutional variants [9]. However, this method is costly

and it is not always possible to obtain both datasets, therefore most laboratories run

tumor-only sequencing [9]. Because tumor mutations have extremely low frequency

due to tumor cellularity, it can be hard to distinguish between extremely low frequency

artifacts and extremely low frequency mutations even with high-depth sequencing.[4]

While a larger depth increases the confidence of low frequency variant calls, at a certain

point, read depth results in an increase of cost more than performance. Typically, a

read depth of 50x is reliable [4, 9]. Another possible solution includes cross-referencing

variant callers, although this method does not remove biases from variant callers.

Liquid biopsies are another method of sampling for cancer in which samples are

taken in a liquid form (typically blood but may also include saliva etc). This method

of sampling is becoming more popular since it’s less invasive than surgically removing

cancer tissue. However, cancer DNA is diluted in this form since it’s mixed with

billions of other cells, such as blood cells, which lowers the allele frequency further.

Therefore, it’s critical to distinguish low frequency artifacts from the allele frequency

cancer mutations in liquid biopsies. [13]

1.7 Genome In A Bottle

Genome in a bottle (GIAB) is a private-public and academic consortium, created

by the National Institute of Standard and Technology, whose goals are to character-

ize benchmark human genomes. The NIST developed reference materials, such as
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reference genome bed files and variant calling format (VCF) files from the human

genomes characterized by GIAB. The first ‘genome in a bottle’ and most widely used

characterized genome was NA12878/HG001, a caucasian Female from Utah, and since

then, additional genomes have been characterized in the Personal Genome Project.

The goals of GIAB are to provide benchmarking in the field of biotechnology and

health sciences and develop reference standards, method, and data. In this project,

the sample NA12878 will act as our ’ground-truth’. [14, 15]

1.8 NCBI: SRA

The National Center for Biotechnology Information (NCBI) is a government

funded division of the National Library of Medicine (NLM), located within the National

Institutes of Health (NIH). Within NCBI is a collection of databases and literature

relating to biology, health, and medicine. The sequence read archive (SRA) is an NGS

data repository, curated by a collection of organizations: International Nucleotide

Sequence Database Collaboration (INSDC), European Bioinformatics Institute (EBI),

and the DNA Database of Japan (DDBJ). NGS data is first submitted to one of the

organizations before added into the SRA database. [16, 17]

1.9 Current Study

Distinguishing between low frequency artifacts and low frequency somatic muta-

tions is an ongoing challenge in sequencing and genomic oncology. Current solutions

are either costly or limited to the abilities of variant calling tools. This study will

explore machine learning to characterize artifacts in cancer data. To obtain cancer

data with a “truth set”, the tool BAMSurgeon will spike in low frequency SNVs

with allele frequencies ranging between 0.01-0.3%. Supervised learning models will

be trained with metadata from a collection of samples from different cell lines and

sequencing platforms. Various supervised models and features will be tested for best
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accuracy.
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CHAPTER 2

Methods and Materials
2.1 Data

The data is collected from the NCBI SRA database [18]. All samples are NGS

data from paired-end, whole exome sequencing on Illumina platforms. Refer to Table 1

for a list of all collected sample.

Table 1: Data Collected from the NCBI SRA Database

Sample Cell Line SRR # Ref
Genome Seq Scope Library Prep Kit Library Kit

Assembly Seq Platform Seq Unit Seq Layout

NA24631 HG005 SRR14724459 hg38 WXS TruSeq hg38 Illumina NovaSeq 6000 Paired-end
NA24385 HG002 SRR14724462 hg38 WXS TruSeq hg38 Illumina NovaSeq 6000 Paired-end
NA24631 HG005 SRR14724469 hg38 WXS IDT hg38 Illumina NovaSeq 6000 Paired-end
NA12878 HG001 SRR14724463 hg38 WXS TruSeq hg38 Illumina NovaSeq 6000 Paired-end
NA12878 HG001 SRR14724473 hg38 WXS IDT hg38 Illumina NovaSeq 6000 Paired-end
NA12878 HG001 SRR14724503 hg38 WXS IDT hg38 Illumina HiSeq 4000 Paired-end
NA24631 HG005 SRR14724479 hg38 WXS Agilent SureSelect v7 hg38 Illumina NovaSeq 6000 Paired-end
NA24631 HG005 SRR14724489 hg38 WXS TruSeq hg39 Illumina HiSeq 4000 Paired-end
NA24631 HG005 SRR14724499 hg38 WXS IDT hg38 Illumina HiSeq 4000 Paired-end
NA24631 HG005 SRR14724508 hg38 WXS Agilent SureSelect v7 hg38 Illumina HiSeq 4000 Paired-end
NA24385 HG002 SRR14724472 hg38 WXS IDT hg38 Illumina NovaSeq 6000 Paired-end
NA24385 HG002 SRR14724482 hg38 WXS Agilent SureSelect v7 hg38 Illumina NovaSeq 6000 Paired-end
NA24385 HG002 SRR14724492 hg38 WXS TruSeq hg38 Illumina HiSeq 4000 Paired-end
NA24385 HG002 SRR14724502 hg38 WXS IDT hg38 Illumina HiSeq 4000 Paired-end
NA24385 HG002 SRR14724512 hg38 WXS Agilent SureSelect v7 hg38 Illumina HiSeq 4000 Paired-end

2.2 Bioinformatics Workflow

The Bioinformatics workflow was implemented in Snakemake, a workflow manage-

ment tool [19], and follows the workflow in Figure 1. Breifly, NGS data are retrieved

by the NCBI SRA database and are analyzed by the pipeline, resulting with variant

call format (VCF) files, and subsequently filtered into artifacts and variants. Each

step of the workflow is explained in depth.
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Figure 1: Bioinformatics Workflow to retrieve NGS data fom the NCBI SRA
database for alignment, insert artificial somatic cancer mutations, variant calling,
converting the resulting VCF file into a data frame, and filtering the variant calls

into true variants and true artifacts.
This workflow consists of three main parts: QC and Alignment, Process BAM and
Spike SNVs, and Variant Calling and Filtering. Under QC and Alignment, the reads
are downloaded, checked for quality, trimmed, checked for quality post-trim, and

aligned to the human reference genome. Process BAM and Spike SNVs is the part of
the workflow in which artificial somatic mutations are added (or ’spiked’) into the

BAM file, and the resulting BAM file is prepped for variant calling. Lastly, Variant
Calling and Filtering calls variants in the BAM files, resulting in VCF files, which are
then converted into data frames and subsequently filtered into artifacts and variants.

2.2.1 Download SRA Reads: Prefetch and Fastq-dump

Prefetch and fastq dump are a part of the SRA toolkit, a collection of tools that

is used to collect data from the SRA database. Prefetch retrieves the samples from

the SRA database and fastq-dump downloads the FASTQ files. [20]
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2.2.2 Quality Check: FastQC and MultiQC

FastQC is a tool to review the quality metrics of FASTQ files [21]. To view the

metrics of multiple samples in one file, and MultiQC combines a collection of FastQC

files into one readable file [22]. To assess the quality of our reads, one important

metric is the phred score, which is a quality score that measures the base quality

identified by the sequencer. [23]

2.2.3 Trimmomatic & QC

Trimmomatic was used to trim adapters and reads below a certain quality

threshold [24]. The following trimming parameters are:

ILLUMINACLIP:{params.adapters} LEADING:30 TRAILING:30 MINLEN:70

Illumina Universal Adapters is in place of {params.adapters}.

2.2.4 Alignment: bwa mem

The next step is alignment, in which reads are aligned to the human reference

genome. The tool used is the Burrows-Wheeler-Aligner (BWA), bwa mem. The same

reference genome, hg38 (Homo sapiens (human) genome assembly GRCh38), was used

for all samples. The output of bwa mem is a Sequence Alignment Map (SAM) file. I

used samtools view to convert it into a Binary Alignment Map (BAM) file. [25, 26]

2.2.5 Processing BAM files

The BAM files produced by the alignment step are then processed. First, the file

is sorted by query by picard SortSam [27]. This is done to ensure unmapped mates

and secondary/supplementary alignments are marked removed by picard MarkDupli-

cates [28]. Marking and remove duplicates is done to remove PCR products that are

from the same template to avoid having redundant data that might affect the allele

frequency estimate of the variant calls. The BAM files are sorted by coordinate by

picard SortSam and indexed by samtools to prepare for downstream analysis. [27, 26]
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2.2.6 Spike in SNVs: BAMSurgeon

BAMSurgeon is a tool that adds synthetic mutations into alignment data to

simulate somatic mutations. Since cancer data with a “truth set” is difficult to obtain,

BAMSurgeon was used to simulate somatic cancer mutations and provide a “truth

set”. BAMSurgeon has the capabilities to add SNVs, Indels, and SVs, however for

the purpose of this project, only SNVs are spiked in the data [1]. The method

that BAMSurgeon mutates our BAM files is displayed in Figure 2. The BAMfile

is represented in (a), and in (b) the areas of interest are highlighted. BAMSurgeon

mutates the reads overlapping each position (c), and the reads are re-mapped to the

reference genome (d) [1].

Figure 2: BAMSurgeon SNV Spike-in Method from [1]
This is the method in which BAMSurgeon spikes in SNV’s into a BAMfile. (a) First,
a region of interest is selected in the BAMfile. (b) BAMSurgeon selects a position to
add the SNVs, here, this is indicated by the blue, orange, and green arrows. (c) The
reads that overlap with this position are mutated and remapped. (d) The mutated

and remapped reads are replaced into the original BAMfile.

BAMSurgeon’s primary input is a BAM file, however there are optional parameters

to specify the number of desired SNVs, the location, and the allele frequency [1]. The
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desired number of SNVs for this project is 40,000 SNVs for each sample, with allele

frequencies ranging between 0.01 to 0.3. This interval was chosen because it was

observed in my data that the average AF of SNVs were approximately 0.2 and

the goal is to simulate low frequency cancer variants. To give BAMSurgeon these

specific directions, a VARFILE was created that gives BAMSurgeon regions and allele

frequencies to add SNVs. To create the VARFILE for each sample, 40,000 rows were

randomly selected from the corresponding exome bedfile and AF’s chosen between 0.1

to 0.3 were selected for each row. Thus, the final VARFILE consisted of 3 columns:

start position, end position, and allele frequency. It’s important to note that bed files

are 0-based, however BAMSurgeon takes in 1-based files for it’s VARFILE parameter,

therefore 1 was added to the start positions.

2.2.7 Variant Calling: VarDict

Variants were called using VarDict, a somatic variant caller [29], with a frequency

of 0.01 to capture both variants and artifacts for analysis. The bed file from GIAB,

corresponding to the sample cell line, is given during this step to narrow down our

variant calling to these regions. The output of VarDict is a variant call file (VCF)

that contains meta data information that will be used as features for machine learning

analysis. The vardict variable descriptions are in the Appendix in Table .14.

2.2.8 Intersection

The intersection step is important to narrow down our dataset to the high confi-

dence regions provided by GIAB, and the regions targeted by the exome sequencing kit.

Without this step, it would increase the number of artifacts and skew our data. The

variant calling tool VarDict already intersects our file with the sample’s corresponding

reference genome bed file. Bedtools intersect was used to intersect the sample VCF

file with its corresponding sequencing exome kit bed file [30]. The end result is a
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VCF file that only contains data with regions present in the GIAB and the exome kit.

The GIAB vcf is also intersected with the exome sequencing kit bedfile. This is done

such that comparisons between the sample and GIAB are limited to shared regions

and true comparisons. A visual of how intersection narrows down the VCF files are

presented in Figure 3 for the sample VCF and in Figure 4 for the GIAB VCF.

Figure 3: Sample VCF Intersection
The sample VCF (light blue) is intersected twice. First, the sample VCF (light blue)

is intersected with the GIAB bed file (light green) to filter our sample down to
regions that the GIAB vcf cover. Then, the sample VCF (light blue) is intersected

with the exome bed file (red) to further filter our sample down to regions targeted by
the exome sequencing kit. The final output is the sample VCF after intersections

(dark blue).
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Figure 4: GIAB VCF Intersection
The GIAB vcf (light green) is intersected with the exome bed file (red) to filter the
GIAB vcf down to regions covered by the exome bed file, provided by the exome

sequencing kit.

2.3 Artifact and Variant Identification

Up to this point, three vcf files are produced, the intersected sample vcf and

two ground truths: the vcf produced by BAMSurgeon and the intersected GIAB vcf.

The last step in the Bioinformatis workflow is identifying the variant called as either

artifacts and true variants. Variants and artifacts are defined in Table 2 and are split

into 5 possible cases. The script process_vcfs.py converts the VCF files into pandas

DataFrames follows the definitions of Table 2 to append 2 new columns ’ARTIFACT’

and ’CASE’.

Case 3 occurs when no artifact/variant is identifited in a locus when GIAB called

a variant. It is not tackled in this project since there is no available VCF data for

this particular case. No reads- no vcf data. No call- no vcf data. The remainder of

this project focuses solely on Case 1,2,4, and 5.
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Table 2: Artifacts and Variant Identification

Case Description ARTIFACT
Assignment

Case #1: True Variant. The sample variant call
matches the location and allele in GIAB.

False

Case #2: Artifact. The sample variant call matches the
location but differs in base call from GIAB.

True

Case #3: Artifact. There is a variant call in GIAB
but no variant call in the sample at the same
location. There are 2 conditions in which case
3 can occur:

1. At the shared location, the sample’s
base call agrees with the reference
genome, while GIAB does not, and call
variant.

2. At the shared location, there are no
reads in the sample.

True

Case #4: Artifact. The sample calls a variant while
GIAB does not.

True

Case #5: BAMSurgeon Variant. BAMSurgeon spiked
an SNV at this location.

False

2.4 Data Exploration
2.4.1 REF to ALT Heat Map

The variant of interest for this project are single nucleotide variants (SNVs),

which are single base pair mutations/substitutions. There are two types of mutations,

transitions (conversions between 2 purines (G,A) or conversions between 2 pyrimidines

(C,T)), and transversions (conversions between purines(G,A) and pyrimidines(C,T)).

Transition conversions occur most frequently according to D. M. Lyons and A. S.

Lauring [31]. To visualize the transitions and transversions, a heat map was created

from the data. To create the heat map, the dataframe is filtered to only contain

the ’REF’ and ’ALT’ column and then pivoted. The heat map is then created using
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seaborn [32]. The function is shown in Figure 5.

Figure 5: Function to Create A Heat Map Given the VCF DataFrame.

2.5 Data Pre-processing
2.5.1 Feature Addition

The final output from the bioinformatic pipeline for this project are VCF files

which are converted into python pandas DataFrames. The ’INFO’ and ’FORMAT’

columns are extracted from the VCF files and are used as additional columns in the

DataFrame. Additional metadata obtained from the SRA webpage for each sample is

added as additional features to the DataFrame: ’CELL_LINE’, ’LIB_PREP_KIT’,

’SEQ_PLATFORM’, ’SEQ_UNIT’. Lastly, ’REF’ and ’ALT’ are combined into one

column ’REF_TO_ALT’.

2.5.2 Feature Removal

The DataFrame is further prepared by removing features not needed for

machine learning: ’DUPRATE’, ‘SVLEN’, ‘SVTYPE’, ’LSEQ’, ’RSEQ’, ’REF-

BIAS’, ’VARBIAS’, ’RD’, ’ALD’, ’AD’, ’SAMPLE’, ’TYPE’, ’CASE’, ’CELL_LINE’,

’SEQ_PLATFORM’, ’ID’, ’REF’, ’ALT’. These columns are dropped for the following

reasons: 1. Features that only had 1 value for all entries (’DUPRATE’, ’TYPE’,

’SEQ_PLATFORM’), 2. Features that had too many missing values (‘SVLEN’,

‘SVTYPE’), 3. Categorical features that contained too many unique values (’LSEQ’,
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’RSEQ’), 4. Features that are redundant to other columns (’REFBIAS’, ’VARBIAS’,

’RD’, ’ALD’, ’AD’,’REF’ and ’ALT’), 5. Features that identify the sample (’SAM-

PLE’,’CELL_LINE’), and 6. Features that directly identify the intended Artifact

label (’CASE’).

The DataFrame now contains the appropriate information for machine learning

as displayed in Table 3. The descriptions for the features directly from the VCF meta

data is described in Appendix in Table A.13.

Table 3: DataFrame Column Data Types for Machine Learning

Data Type Column/Feature

Categorical [’REF_TO_ALT’,’LIB_PREP_KIT’,’CHROM’,’SEQ_UNIT’,
’BIAS’,’GT’,’FILTER’]

Numerical

[’ADJAF’, ’DP’, ’AF’, ’HIAF’, ’HICNT’, ’HICOV’, ’MQ’, ’MSI’,
’MSILEN’, ’NM’, ’ODDRATIO’, ’PMEAN’, ’PSTD’, ’QSTD’,
’QUAL’, ’SBF’,’ SHIFT3’, ’SN’, ’SPANPAIR’,’SPLITREAD’,
’VD’,’POS’]

Label [’ARTIFACT’]

2.5.3 OneHotEncoder()

The categorical attributes of my data in Table 3 were one-hot encoded to create

a binary representation in the form of a sparse matrix. Encoding categorical data is

typically required to use for many scikit-learn estimators. [33]

2.5.4 StandardScalar()

The numerical attributes of my data in Table 3 were transformed using Stan-

dardScalar(), which changes the mean to 0 and scales the features to unit variance.

This is done to normalize our data and decrease the distance between data points to

increase the performance of the model. One caveat to using StandardScalar however

is its sensitivity to outliers. [34]
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2.6 Machine Learning Models

After pre-processing the data, the data is split into testing and training sets into

20% and 80%, respectively. The label column ’ARTIFACT’ is separated from both

sets. Since the data have categorical labels, the machine learning models to be used

are supervised and classification models. To choose which classification models to

train on, LazyPredict was used to quickly assess a total of 20 classification models. [35]

2.7 Assessing of ML Models Performance

Models were validated by 3-fold cross-validation (CV) and confusion matrices.

K-fold cross validation produces a metric for the performance of the models by training

the model in k-1 folds and performing validation on the kth fold. The average accuracy

is a measure of the model’s accuracy without bias from splitting the data set in training

and testing sets.

Confusion matrices are typically used for classification problems [36], and produces

4 values as displayed in Table 6: TP for True Positives, FP for False Positives, FN

for False Negatives, and TN for True Negatives. In the context of this project, true

positives are true Artifacts that are correctly predicted by a model to be artifacts.

False positives are True Variants that are mistakenly predicted as artifacts. False

negatives are true artifacts that are mistakenly predicted to be variants. Lastly, true

negatives are true variants that are correctly predicted to be variants.
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Figure 6: Confusion Matrix in the Context of Sequencing Artifacts

From the values of the confusion matrix, three more metrics are produced:

Accuracy, Precision, and Recall [36]. Precision is a metric for how accurately a model

can predict positive outcomes correctly and is calculated by the following:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃 )

Recall, also known as sensitivity, is a measure of a models strength to predict

positive outcomes, and is calculates by the following:

𝑅𝑒𝑐𝑎𝑙𝑙/𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)

Lastly, accuracy is a measure of the model’s ability to correctly identify both TP

and TN, and is calculated by the following equation:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁)

Additionally, a learning curve is created to evaluate the model and the optimal

amount of training data. This is done by training over several data sets of different
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sizes and evaluating both the training score and validating score. This is done using

sklearn’s learning curve. [37, 38, 39]

2.8 Experiments
2.8.1 Measuring Predictive Power

To measure the predictive power of the features from Figure 17, features were

removed iteratively from most importance to least importance and trained a random

forest model.

2.8.2 AF 0.01 to 0.03 BAMSurgeon Spike-ins

AF was the strongest feature in the work done by Y. Leung [40], and also

remains a strong feature in my model training. By using BAMSurgeon, AF can be

manipulated to create an even more challenging data set by spiking in extremely low

allele frequencies. BAMSurgeon was used to spike in 40,000 SNV’s with AF’s between

0.01 to 0.03 into two samples, DRR189730 and DRR189732. A small set of samples is

done to briefly check whether the performance of the models are affected.

2.8.3 Removing Case 1 True Variants from Data Set

The AF gap between germline variants (Case #1) and artifacts (Case #2 and #4)

makes these cases fairly distinguishable. The challenge, however, is in distinguishing

between low AF cancer variants (in this case, our Case 5 BAMSurgeon spike-ins) from

low AF artifacts. To decrease the power of AF as a feature and study the importance

of other features, models were trained on the dataset after the removal of germline

variants (Case #1).

2.8.4 Sub-Sampling Equal Amounts of BAMSurgeon Variants and Arti-
facts

To balance the data set and further challenge allele frequency as a predictive

feature, equal amounts of BAMSurgeon somatic variants and Artifacts were sampled

within the range allele frequency range.
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CHAPTER 3

Results
3.1 Raw Data FastQC

Figure 7 displays the mean quality score per base pair for all samples. Overall,

most FASTQ reads are within the green area, indicating these base pair positions are

of passing quality. However, early base pair positions for a few of the samples dip in

the yellow. Figure 8 displays the quality score per sequence. Peaks in the green area

indicate most of the reads are of high quality. Lastly, Figure 9 measure the adapter

content of each sample. Almost all samples curve up into the yellow or red regions

indicating that adaptor content is present.

Figure 7: Raw Mean Per Base Quality Scores
This figure displays the mean per base quality score, phred score, of all samples used
in this project. This graph was created with MultiQC, which combines the FastQC

files of all the samples to be displayed in one format.
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Figure 8: Raw Per Sequence Quality Scores
This figure displays the quality score, phred score, per sequence. Green indicates high
quality. This graph was created with MultiQC, which combines the FastQC files of

all the samples to be displayed in one format.

Figure 9: Raw Adapter Content
This figure displays whether raw adaptor content is present in the sample. Each line
corresponds to a sample and any increase in the y-axis indicates adaptors are present.
This graph was created with MultiQC, which combines the FastQC files of all the

samples to be displayed in one format.

3.2 Trimmomatic & QC

After trimmomatic, we see overall improvement in the mean quality scores per

base pair in Figure 10 and per sequence quality score in Figure 11. However, some

samples still contain adapters, most are trimmed, as seen in Figure 12. This occurred
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due to giving trimmomatic the incorrect path to the adapters for the first few samples.

Figure 10: Post-Trimmed Mean Per Base Quality Scores
This figure displays the mean per base quality score, phred score, of all samples used
in this project. This graph was created with MultiQC, which combines the FastQC

files of all the samples to be displayed in one format.

Figure 11: Post-Trimmed Per Sequence Quality Scores
This figure displays the quality score, phred score, per sequence. Green indicates high
quality. This graph was created with MultiQC, which combines the FastQC files of

all the samples to be displayed in one format.
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Figure 12: Post-Trimmed Adapter Content
This figure displays whether raw adaptor content is present in the sample. Each line
corresponds to a sample and any increase in the y-axis indicates adaptors are present.
This graph was created with MultiQC, which combines the FastQC files of all the

samples to be displayed in one format.

3.3 Spike in SNVs: BAMSurgeon

The resulting amount of BAMSurgeon variants are displayed in the AF histogram

in Figure 13. The sample true variants and atrifacts are included in the histogram as

well. The contains a histogram of the allele frequencies for Variants, Artifacts, and

BAMSurgeon added variants.
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Figure 13: Allele Frequency (AF) Histogram per SNV Type
A histogram of the allele frequencies for Variants, Artifacts, and BAMSurgeon added

variants.

3.4 Artifacts and Variant Exploration

The total number of cases per sample is displayed in Table 4 and in the histogram

in Fig 14. The number of BAMSurgeon Spikes (Case #5) is expected to be 40,000,

however not all spikes made it into the final VCF file.
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Table 4: Case Counts per Sample

Each variant is classified into either Case 1 sample Variant, Case 2 Artifact, Case
4 Artifact, or Case 5 BAMsurgeon Variant. The total of each case per sample is
recorded in this table.

Sample Case
#1

Case
#2

Case
#4

Case
#5

Total
SNVs

SRR14724459 23876 3 115765 30489 170133
SRR14724463 24329 6 120805 31414 176554
SRR14724462 28912 9 136732 34111 199764
SRR14724469 16010 1 63168 31030 110209
SRR14724473 16134 0 58990 32079 107203
SRR14724503 16123 1 82342 31659 130125
SRR14724479 17893 3 73093 31003 121992
SRR14724489 23656 6 103721 30010 157393
SRR14724499 15941 1 65284 29773 110999
SRR14724508 17735 2 74384 29841 121962
SRR14724472 19258 4 72730 34451 126443
SRR14724482 21334 7 74741 34711 130793
SRR14724492 28668 13 121855 33748 184284
SRR14724502 19170 3 80129 33551 132853
SRR14724512 21177 9 87347 33381 141914
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Figure 14: Artifact Case Histogram
The total amount of artifacts, true variants, and BAMSurgeon variants among all

samples are displayed in this histogram.

Transition conversions occur more frequently [31], as observed in the heat map in

Figure 15, where the largest amount of mutations are from G to A, followed by C to

T. The conversion from C to T is also a common artifact caused by the deamination

of cytosine (C) for FFPE stored tissue [5].
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Figure 15: REF to ALT Heatmap
This heatmap displays the frequency of base changes from REF (reference call) to

ALT (alternative call).

3.5 LazyPredict

LazyPredicts runs the default hyperarameters of 20 models and produces: Ac-

curacy Score, Balanced Accuracy, ROC AUC, F1 Score, and Time Taken. [35] The

output of Lazy predict is displayed in Figure 16. RandomForestClassifier scored

the highest accuracy of 0.99 and balanced accuracy 0.98. This is followed by Extra-

TreesClassifier, BaggingClassifier, AdaBoostClassifier, DecisionTreesClassifier, and

ExtraTreeClassifier. The top 6 models produced by LazyPredict are all ensemble

learning algorithms, which are typically preferred for medium to large data sets [41].

Since RandomForestClassifier scored the highest, the feature exploration is done with

this classifier.
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Figure 16: LazyPredict Model Evaluation
LazyPredict trains the default of several models and procuded an output listing the
models from best to worst performing, ranked by accuracy. Balanced accuracy, F1
Score, and Time Taken is also included. This method allows several models to be

evaluated in a shorter amount of time.

3.6 Feature Exploration
3.6.1 Feature Importance

Two methods were used to explore feature importance. Since Random Forest

Classification was the top model from LazyPredict, this is the model that was used.

The first method created by Leung [40], Random Forest Classification is trained for

1000 iterations, and each iteration is a different and random combination of 3 features.

The accuracy scores are recorded for each iteration along with the 3 features used for

training. The accuracy scores are averaged over each feature, producing the Figure 17.

From Figure 17, ’SN’ has the most predictive power, followed by ’HICNT’, ’AF’,

’HIAF’, and ’VD’.
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Figure 17: RandomForestClassifier Feature Importance
Feature importance is a measure of how important a feature is for the model’s

performance. It was calculated by training 1000 iterations of the Random Forest
Classifier with a combination of 3 random features for each iteration. The average

accuracy of each feature is calculated by averaging the score of the models that
included the feature.34



In addition to Leung’s method for measuring predictive power per feature, sklearn’s

contains the attribute feature_importance_ for the Random Forest Classifier that

measures impurity-based feature importance [42, 43]. Feature importance is measured

by how well a feature predicts the target, or in other words, how much a feature is

used in each tree. This metric is computed as the (normalized) total reduction of the

criterion brought by that feature [44]. The top important features in Figure 18 made

by feature_importance_ are similar to those in Figure 17, however the in Figure 18

the top feature is ’VD’ followed by ’SN’. In both cases, ’SN’, ’VD’, ’HIAF’, ’HICNT’

and ’AF’ are important features. However, it is important to note that impurity-based

feature importance contains biases toward high cardinality features (features with

many unique values) [43].
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Figure 18: RandomForestClassifier sklearn tree.feature_importance_
Feature importance is a measure of how important a feature is for the model’s

performance.
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A correlogram of the top 5 features is displayed in Figure 19 to view the relation-

ship and histograms among the features.

Figure 19: Artifacts Correlogram
This figure displays a correlogram, a series of histograms, for the top five features

from the feature importance in 17. The correlation between the different features is
displayed in this figure, as well as the histograms for each feature.

3.7 Models
3.7.1 RandomForestClassifier

The random forest classifier is an ensemble learning algorithm that utilizes

multiple randomly generated decision trees and bootstrap replicas, in other words,

sub-sampling of the data set with replacement when training. RFC reduces the

over-fitting of the decision tree algorithm and in turn improves the predictive accuracy

of the model [41, 45].
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The average 3-fold cross validation accuracy score of the Random Forest Classifier

is 97.8%. With the test set, the accuracy of the random forest classifier is 97.8%,

the precision is 99.1%, the recall is 97.3%, and the F1 score is 98.2%. The confusion

matrix in Figure 20 and Table 5 reflects these values.

Figure 20: Random Forest Classifier Confusion Matrix
This figure displays the true positives (TP, the percentage of correctly identified

artifacts), true negatives (TN, the percentage of correctly identified true variants),
false positives (FP, the percentage of falsey identified artifacts), and false negatives

(FN, the percentage of falsely identified variants).

Table 5: Random Forest Classifier Results

Metric Score

Cross-Validation
97.8%
97.8%
97.8%

Accuracy 97.8%
Precision 99.1%
Recall/Sensitivity 97.3%
F1 98.2%

Two learning curves were created for this model and is displayed in Figure 21
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and Figure 22. Both the training and validation scores remain high and steady with

each sample size. Overall, the model performs well with the given data, even with

less training data.

Figure 21: Random Forest Learning Curve for Accuracy Score
The Accuracy training scores and validation scores of the random forest model are

calculated over several training sizes.

Figure 22: Random Forest Learning Curve for F1 Score
The F1 training scores and validation scores of the random forest model are

calculated over several training sizes.

3.7.2 ExtraTreesClassifier

The extra trees classifier is another ensemble learning algorithm. Unlike random

forest, extra trees classifier does not utilize bootstrap replicas but rather utilizes the
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entire sample. Also, extra trees classifier chooses cut points at random when splitting

nodes, while random forest and decision tree chooses the optimal split [46, 47, 41].

The average 3-fold cross validation accuracy score of this model was 91.5%. The

test set accuracy is 91.5%, the precision is 89.4%, the recall is 98.0%, and the F1 is

93.5%. The confusion matrix is displayed in Figure 23 and the values are found in

Table 6

Figure 23: Extra Trees Classifier Confusion Matrix
This figure displays the true positives (TP, the percentage of correctly identified

artifacts), true negatives (TN, the percentage of correctly identified true variants),
false positives (FP, the percentage of falsey identified artifacts), and false negatives

(FN, the percentage of falsely identified variants).

Table 6: Extra Trees Classifier Results

Metric Score

Cross-Validation
92.5%
92.3%
92.0%

Accuracy 91.5%
Precision 89.4%
Recall/Sensitivity 98.0%
F1 93.5%
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Two learning curves for accuracy and F1 score were created for this model and is

displayed in Figure 24 and Figure 25. Both the training and validation scores in both

plots converge and within scores around 90%. Over an increase of sample size, the

scores intially dip but then steadily increase.

Figure 24: Extra Trees Classifier Learning Curve for Accuracy Score
The Accuracy training scores and validation scores of the random forest model are

calculated over several training sizes.

Figure 25: Extra Trees Classifier Learning Curve for F1 Score
The F1 training scores and validation scores of the random forest model are

calculated over several training sizes.

41



3.7.3 BaggingClassifier

The bagging classifier is an ensemble learning algorithm that performs a final

prediction based on the aggregate of predictions performed on random subsets [48].

The average 3-fold cross validation accuracy score is 97.6%. The test set accuracy

is 97.6%, the precision is 99.0%, the recall is 97.1% and the F1 is 98.0%. The confusion

matrix is displayed in Figure 26 and the model scores are in Table 7.

Figure 26: Bagging Classifier Confusion Matrix
This figure displays the true positives (TP, the percentage of correctly identified

artifacts), true negatives (TN, the percentage of correctly identified true variants),
false positives (FP, the percentage of falsey identified artifacts), and false negatives

(FN, the percentage of falsely identified variants).

Table 7: Bagging Classifier Results

Metric Score

Cross-Validation
97.6%
97.6%
97.6%

Accuracy 97.6%
Precision 99.0%
Recall/Sensitivity 97.1%
F1 98.0%

42



Two learning curves for accuracy and F1 score were created for this model and is

displayed in Figure 27 and Figure 28. Both the training and validation scores in both

plots converge as the training set size increases.

Figure 27: Bagging Classifier Learning Curve for Accuracy Score
The Accuracy training scores and validation scores of the random forest model are

calculated over several training sizes.

Figure 28: Bagging Classifier Learning Curve for F1 Score
The F1 training scores and validation scores of the random forest model are

calculated over several training sizes.

3.7.4 DecisionTreesClassifier

Decision trees are a supervised learning algorithm which makes predictions based

on decision rules inferred from data features [49, 50].
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The average 3-fold cross validation accuracy is 97.6%. The test set accuracy,

precision, recall, and F1 are 97.6%, 99.1%,97.1%, and 98.1% respectively and displayed

in Table 8. The confusion matrix is in Figure 29.

Figure 29: Decition Trees Classifier Confusion Matrix

Table 8: Decision Trees Classifier Results

Metric Score

Cross-Validation
97.5%
97.6%
97.6%

Accuracy 97.6%
Precision 99.1%
Recall/Sensitivity 97.1%
F1 98.1%

Two learning curves for accuracy and F1 score were created for this model and is

displayed in Figure 30 and Figure 31. Both the training and validation scores in both

plots converge as the training set size increases.
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Figure 30: Decision Trees Classifier Learning Curve for Accuracy Score
The Accuracy training scores and validation scores of the random forest model are

calculated over several training sizes.

Figure 31: Decision Trees Classifier Learning Curve for F1 Score
The F1 training scores and validation scores of the random forest model are

calculated over several training sizes.

3.7.5 LogisticRegression

Logistic regression is a linear classification algorithm [51]. The accuracy, precision,

recall, and F1 scores are 96.8%, 96.9%, 98.0%, and 97.5%, and displayed in Table 9.

The confusion matrix is in Figure 32.
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Figure 32: Logistic Regression Classifier Confusion Matrix
This figure displays the true positives (TP, the percentage of correctly identified

artifacts), true negatives (TN, the percentage of correctly identified true variants),
false positives (FP, the percentage of falsey identified artifacts), and false negatives

(FN, the percentage of falsely identified variants).

Table 9: Logistic Regression Classifier Results

Metric Score

Cross-Validation
96.8%
96.8%
96.8%

Accuracy 96.8%
Precision 96.9%
Recall/Sensitivity 98.0%
F1 97.5%

Two learning curves for accuracy and F1 score were created for this model and

is displayed in Figure 33 and Figure 34. In both plots, the accuracy and F1 scores

increase as training size increases, and the training score curve and validation score

curve converge.
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Figure 33: Logistic Regression Learning Curve for Accuracy Score
The Accuracy training scores and validation scores of the random forest model are

calculated over several training sizes.

Figure 34: Logistic Regression Learning Curve for F1 Score
The F1 training scores and validation scores of the random forest model are

calculated over several training sizes.

3.8 Summary and ROC Curve and Precision-Recall Curve

The Receiver Operating Characteristic (ROC) Curve is a graph of the true positive

rate (TPR) vs the false positive rate (FPR) and displays the overall performance of

the model. The Area Under the Curve (AUC) score is a measure of the model’s ability

to discriminate between 2 classes, and summarizes the ROC Curve. The models are

compared in Figure 35, and almost all models have a high AUC score indicating they

are able to distinguish between artifacts and variants with high accuracy [52]. The
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Precision-Recall Curve displays the tradeoff between precision (False positive rate),

and recall (False negative rate). High precision indicates a low false positive rate

and high recall indicates low false negative rate [52]. The models are compared in

Figure 36, and again, all models performed well.

Figure 35: ROC Curve Comparison for ML Classifers on Test Set
The Reciver Operating Characterisic (ROC) Curve graphs true positive rate (TPR)

vs. false positive rate (FPR) and displays the overall performance of the model.
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Figure 36: Precision-Recall Curve for ML Classifiers on Test Set
The precision-recall curve displays the tradeoff between precision and recall.

3.9 Experiments
3.9.1 Measuring Predictive Power

The predictive power of each feature displayed in Table 10. From Table 10, a

steady decline in accuracy is observed for every removal or a feature. The precision

appears to switch between dropping and rising and the recall drops significantly as

features are removed.
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Table 10: Feature Predictive Power with Random Forest Classification

Features Accuracy Precision Recall
All Features 96.9% 99.2% 96.4%
Previous Row Minus ‘SN’ 97.3% 98.7% 97.1%
Previous Row Minus ‘HICNT’ 96.9% 97.2% 97.7%
Previous Row Minus ‘AF’ 96.9% 97.5% 97.6%
Previous Row Minus ‘HIAF’ 96.1% 98.3% 95.3%
Previous Row Minus ‘VD’ 86.9% 90.8% 89.8%
Previous Row Minus ‘NM’ 86.3% 88.5% 91.9%
Previous Row Minus ‘SBF’ 82.2% 87.5% 86.2%
Previous Row Minus ‘QSTD’ 80.8% 85.0% 85.5%
Previous Row Minus ‘ADJAF’ 78.1% 83.1% 83.9%
Previous Row Minus ‘BIAS’ 77.9% 83.3% 83.8%
Previous Row Minus ‘DP’ 77.7% 83.1% 87.2%
Previous Row Minus ‘GT’ 71.6% 92.1% 66.6%
Previous Row Minus ‘PMEAN’ 69.5% 90.3% 65.4%
Previous Row Minus ‘REF_TO_ALT’ 65.0% 85.6% 67.4%
Previous Row Minus ‘PSTD’ 65.3% 84.1% 62.3%
Previous Row Minus ‘HICOV’ 60.0% 89.3% 44.9%
Previous Row Minus ‘SPANPAIR’ 61.7% 89.3% 44.4%
Previous Row Minus ‘QUAL’ 53.4% 78.0% 36.8%
Previous Row Minus ‘MSILEN’ 53.5% 73.6% 50.2%
Previous Row Minus ‘SEQ_UNIT’ 52.3% 73.6% 50.3%
Previous Row Minus ‘SPLITREAD’ 51.4% 74.1% 48.8%
Previous Row Minus ‘POS’ 51.2% 74.5% 47.8%
Previous Row Minus ‘ODDRATIO’ 48.1% 96.8% 17.9%
Previous Row Minus ‘MSI’ 48.1% 96.8% 17.9%
Previous Row Minus ‘LIB_PREP_KIT’ 48.1% 96.8% 17.9%
Previous Row Minus ‘MQ’ 48.1% 96.8% 17.9%
Previous Row Minus ‘SHIFT3’ 48.1% 96.8% 17.9%

3.9.2 AF 0.01 to 0.03 BAMSurgeon Spike-ins

The histogram of SNVs in Figure 37, BAMSurgeon variants overlap significantly

with the sample true artifacts.
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Figure 37: Allele Frequency (AF) Histogram per SNV Type

A Random Forest Classifier is then train on this data, and the accuracy is lower

than that of previous models. The accuracy, precision, and recall are 91.7, 92.7, 95.4,

respectively and the confusion matrix and scores are in Figure 38 and Table 11.

Figure 38: Random Forest Classifier Confusion Matrix
This figure displays the true positives (TP, the percentage of correctly identified

artifacts), true negatives (TN, the percentage of correctly identified true variants),
false positives (FP, the percentage of falsey identified artifacts), and false negatives

(FN, the percentage of falsely identified variants).
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Table 11: Random Forest Classifier Results

Metric Score

Cross-Validation
91.8%
91.6%
91.8%

Accuracy 91.7%
Precision 92.9%
Recall/Sensitivity 95.4%

The ROC Curve and Precision-Recall Curve (Figure 39) for the training sets

have outstanding scores of 1.0, however when these curves (Figure 40) are created on

the test set, the scores are slightly lower: 0.98 for the AUC score and 0.99 for the AP

score.

Figure 39: Random Forest Classifier ROC and Precision-Recall Curve for Train Set

Figure 40: Random Forest Classifier ROC and Precision-Recall Curve for Train Set
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Additionally, upon looking at the feature importance in Figure 41 utilizing

sklearn.featre_importance_ [42] , the top features are similar to what is observed

previously.

Figure 41: Random Forest Classifier Feature Importance

3.9.3 Removing Germline Variants from Data Set

Germline variants are removed and the remaining data consists of Artifacts and

BAMSurgeon somtic variants. The histogram of allele frequency counts are divided by

color for variant type and are in Figure 42. There is more overlap in allele frequency

between variants and artifacts.
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Figure 42: Allele Frequency (AF) Histogram per SNV Type

The model exhibited high performance in distinguishing between the BAMSurgeon

variant spike-ins and sample artifacts. A 5-fold cross validation was performed and

plotted in Figure 43, and random forest classifier performed the highest with accuracy

scores hovering around 0.96. This is followed by bagging classifier, decision trees

classifier, logistic regression, and extra trees classifier. The ROC-AUC Curve is in

Figure 44 and the precision-recall curve is in Figure 45. Random Forest Classifier has

a perfect AUC score, indicating that its identifying true artifacts perfectly. The other

models have high AUC scores as well. Random Forest Classifier also has a perfect

precision-recall score.
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Figure 43: 5-Fold Cross Validation for Random Forest Classifier

Figure 44: ROC-AUC Curve Comparison of Classification Models
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Figure 45: Precision-Recall Comparison of Classification Models

Since random forest classifier performed the strongest, the hyper-parameters

of this moderl were tweaked. Several hyper-parameters were tested: n_estimators,

min_samples_leaf, min_samples_split, and max_depth. To ensure the model was

not over-fitting, training set and testing set AUC was plotted over a range of values

for max_depth, and plotted in Figure 46. The point at which the training set AUC

and testing AUC separate is where over-fitting occurs [53].
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Figure 46: AUC vs. Tree Depth
The AUC (Area Under the Curve) plotted over a range of values for tree depth.

The best parameters were found to be n_estimators = 80, min_samples_leaf =

1, min_samples_split = 5, and max_depth = 11.

The accuracy, precision, recall, and F1 scores are 98.3, 98.9, 98.9, and 98.0%

respectively, and the confusion matrix and scores are in Figure 47 and Table 12.
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Figure 47: Random Forest Classifier Confusion Matrix
This figure displays the true positives (TP, the percentage of correctly identified

artifacts), true negatives (TN, the percentage of correctly identified true variants),
false positives (FP, the percentage of falsey identified artifacts), and false negatives

(FN, the percentage of falsely identified variants).

Table 12: Random Forest Classifier Results

Metric Score

Cross-Validation
97.2%
97.2%
97.2%

Accuracy 97.4%
Precision 99.5%
Recall/Sensitivity 96.6%
F1 98.0%

Two learning curve was created for accuracy (Figure 48) and F1 (Figure 49)

scores to evaluate the model training over varying training sizes. The validation and

training scores for both plots converge, with a difference in 0.0005 for accuracy and

0.0003 for F1.
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Figure 48: Random Forest Classifier Accuracy Learning Curve, Trained With Data
Without Germline Variants
The training scores and validation scores of the random forest model are calculated

over several training sizes.

Figure 49: Random Forest Classifier F1 Learning Curve, Trained With Data Without
Germline Variants
The training scores and validation scores of the random forest model are calculated

over several training sizes.

Additionally, upon looking at the feature importance (Figure 50, the top 5 features
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are similar to that of the previous experiment: ’HICNT’, ’SN’, ’VD’, ’HIAF’, ’AF’.

Figure 50: Random Forest Classifier Feature Importance

3.9.4 Sub-Sampling Equal Amounts of BAMSurgeon Variants and Arti-
facts

Equal amounts of BAMSurgeon somatic variants and artifacts were subsampled,

and the histrogram over allele frequency is displayed in Figure 51.
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Figure 51: Allele Frequency (AF) Histogram per SNV Type

5-fold cross validation was performed and plotted in Figure 52. Random forest,

decision trees, and bagging classifier hover around a 0.95 accuracy score. This is

followed by Logistic regression with a cross validation accuracy of around 0.92, and

extra trees classifier around 0.82. The ROC-AUC curve and precision-recall curve are

displayed in Figure 53 and Figure 54. Random forest classifier and bagging classifier

have the highest AUC scores of 0.98, and random forest classifier performs highest in

the precision-recall curve.
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Figure 52: 5-Fold Cross Validation for Random Forest Classifier

Figure 53: ROC-AUC Curve Comparison of Classification Models
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Figure 54: Precision-Recall Comparison of Classification Models

Since random forest classifier had the highest overall performance in comparison

to the other models, the hyper-parameters were tuned and the top hyper-parameters

were found to be: n_estimators = 80, min_samples_leaf = 1, min_samples_split =

5, and max_depth = 8.

The average cross-validation accuracy of this model was 95.1%. The test set accu-

racy, precision, recall, and F1 score are 95.6%, 96.0%, 95.3%, and 95.6% respectively.

The confusion matrix is displayed in Figure 55 and the metric values are displayed in

Table 13
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Figure 55: Random Forest Classifier Confusion Matrix
This figure displays the true positives (TP, the percentage of correctly identified

artifacts), true negatives (TN, the percentage of correctly identified true variants),
false positives (FP, the percentage of falsey identified artifacts), and false negatives

(FN, the percentage of falsely identified variants).

Table 13: Random Forest Classifier Results

Metric Score

Cross-Validation
95.1%
95.1%
95.2%

Accuracy 95.6%
Precision 96.0%
Recall/Sensitivity 95.3%
F1 95.6%

Two learning curves were created for accuracy(Figure 56) and F1(Figure 57)

scores. The training score and validation curves in each plot converge as the training

set size increases.
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Figure 56: Random Forest Classifier Accuracy Learning Curve
The training scores and validation scores of the random forest model are calculated

over several training sizes.

Figure 57: Random Forest Classifier F1 Learning Curve
The training scores and validation scores of the random forest model are calculated

over several training sizes.

The feature importance was also explored, and displayed in Figure 58, are the

top features for this experiment. As seen in other experiments, ’HICNT’, ’VD’, ’SN’,

’AF’, and ’HIAF’ are still strong features, however ’AF’ does decrease in importance.
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Figure 58: Random Forest Classifier Feature Importance

Since the top 5 features for all experiments were ’HICNT’, ’VD’, ’SN’, ’AF’,

’HIAF’, a correlogram was created (Figure 59 to display the histogram count of each

feature as well as the correlation between each feature. The histogram in each feature

shows significant overlap between artifacts and BAMSugeon variants, however in the

plots that display the correlation between each feature, the artifacts and variants are

visually distinguishable.
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Figure 59: Feature Correlogram
A feature correlogram displays the histogram counts per feature and the correlation

between each feature.
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CHAPTER 4

Discussion
4.1 Summary and Conclusions

The strongest models for this data set are the ensemble algorithms, as seen

from the LazyPredict output in Figure 16, with the top model being Random Forest

Classification. Overall, most models have high accuracy scores of at least 0.90 with

the highest scoring model, Random forest Classifier, to be 0.99.

Random forest is then used to explore the features of most importance. All

the features appear to contribute to training the model efficiently, even the feature

with the lowest importance provides an average accuracy score of 0.70 when included

for training. The top 5 features that produced accuracy scores of at least 90% are

’SN’,’HICNT’,’AF’,’HIAF’, and ’VD’, refer to Figure 17. These features are a measure

of the variant and read depth and overall quality, and the descriptions are found in

the Appendix in Table A.13. The top feature ’SN’ is the variant’s signal to noise.

From the histogram in Figure 19, true artifacts appear to have genrally lower ’SN’

values in comparison to variants.

After evaluating LazyPredict and feature importance, Several models were trained:

Random Forest Classifier, Extra Trees Classifier, Bagging Classifier, AdaBoost Clas-

sifier, Decision Trees Classifier, SGD Classifier, and Logistic Regression. Random

forest performed the best as expected, with an accuracy score of 98.6% averaged

across 3-fold validation, with a precision of 98.9% and 98.8%. An AUC-ROC Curve

and Precision-Recall Curve were created over the train set among all the models to

compare the learning abilities. Overall, all models performed exceptionally well.

A few experiments were they conducted. First, the predicted power of each

feature was explored. From each feature removal, a steady decline in accuracy is

observed, with the largest drop (-10%) at the removal of ’VD’, also known as variant
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depth.

In another experiment the allele frequency of BAMSurgeon spikes was decreased

from the threshold of 0.01 - 0.3 to 0.001 - 0.03. This is done to provide more challenging

data for the model to challenge, since ’AF’ is an important feature in modeling and a

feature that can be manipulated by BAMSurgeon. Upon decreasing allele frequency

of spikes in BAMSurgeon, the performance of the Random Forest Classifier decreases

slightly and over-fitting is observed.

The third experiment, Case # 1 True Variants (germline variants) were removed

from the data set. From the 5-fold cross validation, ROC-AUC, and precision-recall

curves that were produced; random forest classifier performed the strongest, and was

hyper-tuned. The a accuracy, precision, recall, and F1 score of random forest after

hyper-tuning are 97.4%, 99.5%, 96.6% and 98.0% respectively. Upon creating learning

curves, as more training data was added, the less over-fitting occurs and the more the

validation and training scores converge.

In the last experiment, equal amounts of BAMSurgeon variants and artifacts

were sampled for training and testing supervised classification models. A 5-fold cross

validation was plotted for 5 classification models. The accuracy score of random forest,

decision trees, and bagging classifier hover around 95%, followed by logistic regression

at 92% and extra trees classifier at 82%. Overall, the performance of these models

in this experiment do not perform as strong as previous experiments. However, an

accuracy score of 95% is still very high.

For all experiments, the top 5 feature importance for the random forest classifi-

cation model were ’HICNT’, ’VD’, ’SN’, ’AF’, ’HIAF’. The histogram displays that

despite the overlaps that BAMSurgeon low-frequency variants and low frequency

artifacts have in each feature, 2 of these features are plotted against each other, there

is a visual distinction between the BAMSurgeon variants and artifacts.
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4.2 Future Research

BAMSurgeon proved to be a successful tool in spiking in low frequency somatic

mutations, however more methods to add somatic mutations could be explored that

can target to change not only allele frequency, but other factors as well. The models

created in the experiments can also be tested on completely new datasets, or perhaps

on actual NGS cancer data sets. Lastly, further exploration can be done on the top 5

features, such as training models with only the top 5 features or a deeper dive into

the features for actual cancer somatic variants.
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Table .14: VCF Meta Information Table

VCF Meta Information/Feature Description
SAMPLE Sample name (with white space translated to underscores)
TYPE Variant Type: SNV Insertion Deletion Complex
DP Total Depth
END Chr End Position
VD Variant Depth
AF Allele Frequency
BIAS Strand Bias Info
REFBIAS Reference depth by strand
VARBIAS Variant depth by strand
PMEAN Mean position in reads
PSTD Position STD in reads
QUAL Mean quality score in reads
QSTD Quality score STD in eads
SBF Strand Bias Fisher p-value
OODRATIO Strand Bias Odds Ratio
MQ Mean mapping quality
SN Signal to noise
HIAF Allele frequency using only high quality reads
ADJAF Adjusted AF for indels due to local realignment
SHIFT3 No. of bases to be shifted to 3 prime for deletions due to alternative alignment
MSI MicroSatellite >1 indicates MSI
MSILEN MicroSatellite unit length in bp
NM Mean mismatches in reads
LSEQ 5’ flanking seq
RSEQ 3’ flanking seq
HICNT High quality variant reads
HICOV High quality total reads
SPLITREAD No. of split reads supporting SV
SPANPAIR No. of pairs supporting SV
SVTYPE SV type: INV, DUP, DEL, INS, FUS
SVLEN The length of SV in bp
DUPRATE Duplicate rate in fraction
LongMSI The somatic variants is flaked by long A/T (>=14)
AMPBIAS Indicate the variant has amplicon bias.
GT Genotype
DP Total Depth
VD Variant Depth
ALD Variant foward, reverse reads
AD Allelic depths for the ref and alt allele in the other listed
RD Reference forward, reverse reads
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