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Abstract 

 Global warming is an ongoing issue where the Earth is rapidly warming up. It negatively 

affects the growth of coral through ocean warming and ocean acidification. Many coral 

communities, home to a large variety of marine life, are expected to be severely impacted by 

these effects. Past evidence suggests that sponges will take over as the primary reef builders 

since many species of sponges have skeletons made of silica or glass which is not affected by 

ocean acidification. More research is needed to determine which kinds of sponge will most 

likely be able to thrive in today’s climate. 

 This can be done by sampling the seabed for the target era and identifying the spicules 

that are present in the sample. However, classifying the spicules by hand accurately and within 

a reasonable amount of time is not tractable with large amounts of spicules. Transfer learning 

with a pre-existing convolutional neural network (CNN) can be utilized to train a model with a 

small spicule dataset to classify spicules. 

 In this project, I use transfer learning with MobileNet, a pre-existing CNN, to classify 

seven categories of spicules. I then use image transformations, zero padding, and background 

padding on the data before training the model to try to improve its performance on the data. 

Background padding had the best performance although none of the different iterations of the 

model could classify all categories well at once. 

Index terms—Convolutional Neural Networks (CNN), Transfer Learning, Transformations, Zero 

Padding, Background Padding. 
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1. INTRODUCTION 

Corals are structures created by multiple organisms called polyps. There are at least 835 

known species of corals that serve as the foundation for coral reefs are the homes for millions 

of marine species [1]. The coral reefs however, are at risk of disappearing due to global 

warming. 

Global warming is an ongoing process in which human activity is accelerating the rate at 

which the surface of the Earth is heating up which affects the environment in many ways. It is 

the result of the greenhouse effect where a buildup of gases in the atmosphere such as carbon 

dioxide absorb solar energy reflected by the Earth’s surface which traps heat. The oceans 

absorb some of this heat which raises their temperatures. Warmer oceans cause corals to expel 

the algae that give them their color and provide food for them, a phenomenon known as coral 

bleaching[2]. This results in the corals turning white and becoming vulnerable to death by 

starvation. Ocean acidification affects corals through a chemical process where higher levels of 

atmospheric carbon dioxide causes the ocean to absorb more carbon dioxide which increases 

the amount carbonic acid in the ocean resulting in the removal of dissolved carbonate that 

corals need to create calcium carbonate to maintain and grow their skeletons[3]. Both effects 

have dire consequences for coral reefs and the marine life that lives in them. According to Bell 

et al. [4], most coral species will not survive until the end of the century. However, there are 

studies that indicate that sponges could possibly survive and flourish in oceans affected by 

ocean acidification.  
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Sponges are one of many benthic organisms or organisms that generally live at the bottom 

of a body of water. Sponges can be classified into four classes of which three of them 

(Demospongiae, Hexactinellida, Homoscleromorpha) are made of silica or glass while the last 

one (Calcarea) is made of carbonate [5]. They are filter feeders that are capable of processing 

10 m3 of water per osculum or an opening in the sponge that water that enters a sponge is 

expelled [6]. Sponges are a part of a process known as the sponge loop where they convert 

dissolved organic matter (DOM) such as dissolved carbon and nitrogen into particulate organic 

matter (POM) in the form of detritus caused by the rapid production and shedding of sponge 

cells [7]. The detritus can be utilized by organisms at a higher trophic level[8]. This is important 

for communities located in oligotrophic seas, or seas with a low level of nutrients, where there 

are no other organisms that can provide this service[9]. They also accumulate pollutants from 

the water they filter which is useful for monitoring the state of the environment they live 

in[10]. 

In the past there have been several instances where sponges were the dominant reef 

builders. Some of those instances were caused by events such as the mass extinction that took 

place between the Triassic and Jurassic time periods which devastated organisms that built 

their shells and exoskeletons out of calcium carbonate such as corals due to ocean 

acidification[4]. A study of the fossils from that period shows that glass sponges thrived after 

the loss of those organisms. Bell, et al. [4] also mention that there are some reefs in the 

Caribbean, Atlantic, Pacific, and Indo-Pacific today that are now dominated by sponges after 

the coral populations declined. This indicates that sponges could potentially become the future 

for reefs. However, more research is needed to determine how well sponges can cope with 
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global warming in the long run since there are many different factors that are affecting the 

environment today compared to the past such as human activity. 

One way to further research how well sponges can thrive is by analyzing their spicules to 

see which types of sponge were able to thrive in the past. Spicules are the building blocks of a 

sponge’s skeleton. Sponges are generally made up of multiple spicules with each species having 

its own unique distribution of spicules which can be used to differentiate them. Most species of 

sponges have spicules that are made of silica while the remaining species have spicules that are 

made of calcium carbonate which means that they are susceptible to the effects of ocean 

acidification. Silica can resist breaking down for millions of years since its composition is similar 

to glass, so silica spicules are preserved in the geological record. Therefore, samples of silica 

spicules can be extracted from sediment in the seabed pertaining to a specific time period and 

identified to help determine which species of silica sponges are more likely to ignore the effects 

of ocean acidification and thrive. However, there are some challenges that come with 

classifying spicules with their respective species. 

The size of sponge spicules can range from a few micrometers to a few millimeters 

depending on the species [11]. A sample of sediment from the seabed that belongs to a certain 

time period can contain thousands if not more of these spicules. There is technology to isolate 

and photograph individual spicules in a sample, but each image needs to be examined by an 

expert to classify which species a spicule belongs to. The problem with this is that a single 

person examining these spicules will not be able to go through all the images in a reasonable 

amount of time and multiple samples must be taken from an area to acquire enough data to 

make a conclusion about what species were present and thriving. Using a team of people to 
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classify could reduce the amount of time it takes to classify these images, but each person in 

the team could have slightly different perceptions that could lead to conflicting conclusions 

about the species a spicule may belong to. A solution to avoid these issues is to use deep 

learning to help classify the spicules. 

Deep learning is a way to simulate the human brain by trying to find patterns in data. This is 

done through algorithms known as Artificial Neural Networks (ANN) [12]. ANNs can be used for 

a variety of purposes, but for the purpose of image recognition, a specific kind of ANN known as 

Convolutional Neural Networks (CNN) need to be used. A CNN like an ANN has three 

components to it, which are an input layer, an intermediary set of hidden layers, and an output 

layer. The input layer takes in an input image as a set of pixel values. These values are passed to 

the hidden layers which are made up of a combination of convolutional, pooling, and fully-

connected layers (Figure 1)[12], [13]. Convolutional layers use a kernel or two dimensional 

matrix filter to both provide smaller portions of an image to the neurons in a subsequent layer 

and recognize patterns for feature detection[13]. This allows the model to work more 

efficiently since every neuron in the model does not need to examine all the pixels from the 

original input image. The pooling layer helps to reduce the complexity of the model by applying 

a kernel to different parts of a set of values and returning a single value from each application 

of the kernel to produce a smaller area for subsequent layers to examine(Figure 2).Unlike a 

convolutional layer, a pooling layer does not directly contribute to the learning process. It 

decreases the chances of the model overfitting on the training data by reducing the number of 

parameters the model needs to learn [14]. The fully-connected layer is a set of multiple layers 

of neurons where every node in a layer is connected to all of those in the layers before and 
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after it. This layer is at the end of the model and connects directly to the output layer which 

generates a value that represents the predicted label. A CNN needs to be trained with as much 

training data as possible to ensure the best accuracy when it classifies new data. This is done 

mainly through supervised learning where the training data is labeled which allows the CNN to 

adjust itself while training so that it can make better predictions on unseen data. Increasing the 

number of layers in the hidden layer allows a model to learn more complex features since more 

layers allows the model to examine the images in finer detail. 

 

Figure 1: CNN Architecture  

[https://nafizshahriar.medium.com/what-is-convolutional-neural-network-cnn-deep-
learning-b3921bdd82d5] 
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Figure 2: Pooling Example 

[https://paperswithcode.com/method/max-pooling] 

There have been many applications where CNNs can be used for image recognition. For 

example, Arora and Sharma [15] used CNNs to determine if there are early signs of  brain 

cancer in MRI scans. The result of their study found that CNNs outperformed other machine 

learning algorithms by a significant amount. Similarly, Treebupachatsakul and Poomrittigul [16] 

use a CNN called LeNet to classify between two groups of bacteria which yielded good results. 

Shaily and Kala trained a CNN called ResNet on a bacteria dataset with 20 categories which 

achieved better results than other pre-existing classifiers [17]. [18] compared the performances 

of a CNN with a Support Vector Machine (SVM) when classifying between spicules and non-

spicules with the CNN performing better than the SVM across all evaluation metrics. Based on 

the success of current applications of CNNs, it should be possible to use them to classify sponge 

spicules. 

The purpose of this study is to use transfer learning to implement a program that will train 

an existing CNN called MobileNet to classify seven kinds of spicules. The performance of the 

model on unseen data during its training process is assessed using confusion matrices. Based 



Poriferal Vision 

    7 

off the performance of the initial model, I used transformations, zero padding, and background 

padding to preprocess the data before retraining the model to see if the model’s performance 

improves and if so, which of the methods did the best. 

2. METHODS 

2.1 Data 

 The data analyzed in the current work is the basis of a large NSF grant proposal 

submitted in 2023 by Heller, Kahn, and Aiello of San José State University and Moss Landing 

Marine Laboratories. The particles of the samples are passed through a FlowCam which isolates 

each particle and photographs it. The FlowCam runs were paid for by a Level-Up grant from San 

José State University. The data contains 26 kinds of spicules, however I only used 7 of them 

because those categories each had at least 100 images which I decided should be the minimum 

number of images for the model to learn a category well. Figure 3 shows an example of each of 

the seven categories of spicules used to train the model.   
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Figure 3: Examples of each Class of Spicule - a. Acanthosytle, b. Hexactin, c. Pentactin,            
d. Sigma, e. Oxea, f. Strongyle, g. Style 

 
 The data was divided into a training set, a validation set, and a test set using a 70-15-15 

split. The training set is used by the model to learn from the data so that it can adjust its 

parameters accordingly. The validation set is used by the model to gauge its performance after 

every epoch or when the model goes through the entire training set once. The model will adjust 

its learning process when going through the training data again based on its performance on 

the validation set. The test set is used as a final evaluation of the model on unseen data. Table 1 

shows how each spicule category is divided into the training, validation, and test sets. 

Table 1. Spicule Dataset Distribution 

Spicule Training Validation Test Total 

Acanthostyle 279 61 61 401 

Hexactin 90 20 20 130 
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Oxea 315 68 68 451 

Pentactin 113 25 25 163 

Sigma 154 34 34 222 

Strongyle 275 60 60 395 

Style 942 203 203 1348 

  

2.2 Preprocessing Data 
 

2.2.1 Transformations 

 The data is imbalanced across the different spicule categories. Style contains far more 

data than the other categories (Table 1). This puts the model at a possible risk of overfitting 

since it could learn Style better than the other categories due to the amount of training data 

from Style it will be exposed to compared to the other categories. One way to prevent 

overfitting from happening is to augment the data for underrepresented classes using 

transformations. Transformations in machine learning are a series of operations that can be 

applied to an image to create variations of that image which serves as both a way to generate 

more data samples from a limited set and introduce more variation into the data. In this 

project, six transformations from the Albumentations library were applied to every image in the 

training sets of two of the spicule categories. The two categories that the transformations were 

applied to are oxea and strongyle because they are very similar in appearance to style (Figure 

3e, 3f, 3g). The six transformations that I applied to the data are contrast, gaussian noise, 

horizontal flip, vertical flip, transpose, and a combination of horizontal and vertical flipping. 

Figure 4 shows examples of each of the transformations applied to the data.  
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Figure 4: Examples of Each of the Transformations Used: a. Original Image, b. Contrast, c. 
Double Flip, d. Gaussian, e. Horizontal Flip, f. Transpose, g. Vertical Flip 

2.2.2 Padding 

 The spicule images come in a variety of sizes and their dimensions can be very 

disproportionate depending on the orientation of the spicule at the time its picture was taken 

by FlowCam. Figure 5 shows the dimensions of two images in the spicule dataset. 

 

Figure 5: Dimensions of Some of the Spicule Images. 

MobileNet by default expects an image with dimensions 224 x 224, so the spicule images will be 

forced to conform to that size. This results in the images becoming distorted since they are 

being stretched or compressed to fit into the 224 x 224 size for MobileNet. The amount of 
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distortion will vary depending on how close the dimensions are to each other. Figure 6 shows 

how the spicules from Figure 5 would look to the model they are forced to become 224 x 224.  

 

Figure 6: How the Images From Figure 5 Look to the Model 

The 42 x 198 image is unrecognizable compared to the original version because the image was 

stretched far more in one dimension than the other. On the other hand, the 222 x 206 image 

looks very close to the original because its dimensions are very close to each other, so they are 

stretched by a very similar amount. This variation in the possible appearances of spicules to the 

model will affect how well it can learn the features of each kind of spicule. One way to help the 

model see the images similarly to their original appearance is to adjust the dimensions of the 

images by padding them with extra pixels so that their dimensions are equal. In this 

experiment, zero padding and background padding were used to adjust the dimensions of the 

spicules. 

 Zero padding is a method of adjusting the size of an image by adding black pixels which 

have a value of zero around an image. When a layer of a CNN encounters zero padding while 
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training, it will not learn any significant features from the zero padded border since it does not 

contribute any meaningful information to the learning process [19]. Zero padding was applied 

two ways depending on the dimensions of the image. If the larger dimension of the image is 

less than 224, then the image is padded on all sides until it becomes 224 x 224. Otherwise, if 

the image’s larger dimension is greater than 224, then the smaller of the two dimensions is 

background padded until the dimensions are equal. Figure 7 shows an example of what a zero 

padded image looks like to the model.  

 

Figure 7: Comparison of a Spicule vs. the Zero Padded Version the Model Sees 

  

Background padding is very similar to zero padding except that instead of padding with 

black pixels, it pads using the color of the background of the image. This is a method that is 

applicable to images that have relatively uniform backgrounds since adding more background 

should ideally not introduce significant features for the model to learn. The amount of padding 

added to the spicule images is the same as zero padding. The color for the background padding 
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was picked using the color of the top rightmost pixel of the image. There is a possibility that the 

top rightmost pixel is a different color from the rest of the background, but it is not expected to 

be the case for most of the spicule images. Figure 8 shows an example of what a background 

padded image looks like to the model. 

 

Figure 8: Comparison of a Spicule vs. the Background Padded Version the Model Sees 

 

2.3 Transfer Learning  

An extensive amount of training data and time is required to train a model from scratch, 

which would be impossible to do with limited sized data sets. Transfer learning is a solution to 

this problem by taking an existing pre-trained model and fine-tuning it so that it can reliably 

extract and learn features from a small dataset[20].  

This project is a continuation of another project to determine a suitable model for 

classifying sponge spicules using transfer learning. In that project, Domala [21] did a 

comparison of eight different models (VGG16, VGG19, ResNet50, ResNet152V2, Inception-v3, 
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InceptionResNetV2, MobileNet, MobileNetV2) to compare their performances on two datasets 

which are spicules vs. non-spicules and two kinds of spicules. The model that performed the 

best overall was MobileNet. 

MobileNet is a model that is trained on the ImageNet Dataset which consists of 1,000 

classes which altogether contains 1,281,167 training images, 50,000 validation images, and 

100,000 test images. MobileNet is less complex than other models which allows it to take up 

less space, but it sacrifices some accuracy in return[22]. To train MobileNet with the sponge 

spicule data, I removed the last four layers of the original MobileNet model to remove some of 

the layers that learned some of the more complex features of the dataset. An output layer with 

the same number of outputs as categories in the spicule data set was added to the end of the 

model. The output layer has a softmax function that will change the output of the layer so that 

it produces a probability distribution of how confident the model is that an image belongs to 

each of the categories it. The last four layers of the new model were set to be trainable, so that 

they could learn the more complex features of the spicule dataset.  

3. RESULTS 

3.1 Initial Model 

 Figure 9 and Table 2 show the performance of the model on the spicule data without 

any modifications. The model had an 84.9% accuracy overall. When considering accuracy per 

spicule category, acanthostyle, hexactine, pentactin, sigma, and style were able to achieve 

accuracies close to and above 90%. On the other hand, oxea and strongyle did not perform as 

well with accuracies of 55% and 80.9%. Most of the incorrectly classified images for each of 
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these categories were predicted to be style. It is worth noting that for style, all the incorrect 

classifications were a combination of both oxea and strongyle. 

 

Figure 9: Result of Initial MobileNet Model 

Table 2: Initial Model Accuracy Per Spicule 

Spicule Correctly Classified Incorrectly Classified Accuracy 

Acanthostyle 60 1 0.984 

Hexactin 18 2 0.900 

Oxea 55 13 0.809 

Pentactin 22 3 0.880 

Sigma 34 0 1.000 

Strongyle 33 27 0.550 

Style 178 25 0.877 

Total 400 71 0.849 
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Figure 10 and Table 3 show the performance of the model when it was trained on data 

that had transformations applied to it. The transformations were applied only to the training 

data for Oxea and Strongyle to try to improve their performances compared to the initial 

model. The accuracy for oxea and strongyle both decreased to 75% and 51.7% while the 

accuracy for style increased to 91.6%. The remaining four categories remained unchanged. 

 

Figure 10: Result of using Transformations 

Table 3: Accuracy Per Spicule for Model using Transformations on Data 

Spicule Correctly Classified Incorrectly Classified Accuracy 

Acanthostyle 60 1 0.984 

Hexactin 18 2 0.900 

Oxea 51 17 0.750 

Pentactin 22 3 0.880 
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Sigma 34 0 1.000 

Strongyle 31 29 0.517 

Style 186 17 0.916 

Total 402 69 0.854 

 

 Figure 11 and Table 4 show the performance of the model when it was trained on zero 

padded spicule images. Compared to the initial model, Strongyle had a large decrease in 

accuracy to 35% while the accuracy for style increased to 95.1%.  

 

Figure 11: Result of Using Zero Padding 

Table 4: Accuracy Per Spicule for Zero Padding 

Spicule Correctly Classified Incorrectly Classified Accuracy 

Acanthostyle 60 1 0.984 

Hexactin 17 3 0.850 

Oxea 50 18 0.735 

Pentactin 16 9 0.640 

Sigma 34 0 1.000 
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Strongyle 21 39 0.350 

Style 193 10 0.951 

Total 391 80 0.830 

 

 Figure 12 and Table 5 show the performance of the model when it was trained on data 

that had background padding applied to all the images in the dataset. The overall performance 

of the model improved to about 87.3% and the accuracy of Style increased to 95.6%.  Oxea and 

Hexactin had a slight decrease in accuracy. 

 

Figure 12: Result of Using Background Padding with All Data 

Table 5: Accuracy per Spicule for Background Padding with All Data 

Spicule Correctly Classified Incorrectly Classified Accuracy 

Acanthostyle 60 1 0.984 

Hexactin 15 5 0.750 

Oxea 53 15 0.779 

Pentactin 22 3 0.880 

Sigma 34 0 1.000 
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Strongyle 33 27 0.550 

Style 194 9 0.956 

Total 411 60 0.873 

 

 Figure 13 and Table 6 show the performance of the model when the amount of training 

data for style is limited to 300 images to give the model an equal exposure to Oxea, Strongyle, 

and Style. The model had a significant drop in overall accuracy to about 79% which was caused 

by the accuracy of Style dropping to about 59%. However, the accuracies of Oxea and Style had 

significant improvements to their accuracies to 94.1% and 95%. 

 

Figure 13: Result of Using Background Padding with Even Training Sets 

Table 6: Accuracy Per Spicule for Background Padding with Even Data 

Spicule Correctly Classified Incorrectly Classified Accuracy 

Acanthostyle 60 1 0.984 

Hexactin 15 5 0.750 

Oxea 64 4 0.941 
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Pentactin 22 3 0.880 

Sigma 34 0 1.000 

Strongyle 57 3 0.950 

Style 120 83 0.591 

Total 372 99 0.790 

 

4. DISCUSSION 

 The initial model performed within expectations. There were some issues differentiating 

between Hexactin and Pentactin because they have the least amount of data available out of 

the seven categories of spicules used and the images were being distorted. They are similar in 

appearance with the main difference being that the structure of Hexactin is straight while 

Pentactin is curved. In the case of Oxea, Strongyle, and Style, the model predicted Style 

reasonably well while it had issues with predicting Oxea and Strongyle. There are multiple 

factors that contribute to this observation. First, the model was exposed to about three times 

the amount of training data for Style compared to the other two categories. This resulted in the 

model most likely overfitting on Style which explains the model’s performance for those three 

categories. Secondly, the spicules are extremely similar in appearance. The difference in their 

appearances is that Oxea has two needle like tips at the ends, Strongyle has rounded ends, and 

Style has one needle like end and one rounded end. Style in a sense is like a hybrid of Oxea and 

Strongyle since it shares similar features with them. This combined with the distorted images 

from the train, valid, and test sets would explain why the incorrect predictions for Oxea and 

Strongyle were predicted to be Style and the incorrect predictions for Style were divided 

between Oxea and Strongyle. 
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 The model’s performance when trained on data where the training data for Oxea and 

Strongyle were augmented using transformations was worse than expected. The expectation 

was that the model’s accuracy for all three categories would improve because there was more 

data available in Oxea and Strongyle for the model to learn from. The model ended up 

performing better on Style, but worse for Oxea and Strongyle. The cause was most likely the 

distortion that was applied to all the images including the new images created by 

transformations. The image distortion was not discovered until after I tried applying 

transformations to the original data. I later trained the model on padded images that were 

augmented by transformations, but it did not perform as well as the padded images alone, so I 

did not include the results of that here. 

 I had two approaches for applying zero padding. My initial method for doing this was to 

look for the longest dimension across all images and pad them so that they were all squares 

whose width and height are equal to the longest dimension. The model performed far worse 

than the initial model with drops in accuracy across all spicule categories, but Sigma and 

Strongyle. When these images were loaded into the train, valid, and test sets, all of the images 

were scaled down the same amount. However, the original images were all different sizes, so 

the larger images were able to retain more of their features when scaled down compared to 

the smaller ones that lost a far larger amount. With the second approach where the images 

were adaptively padded individually, the model performed far closer to the initial model, but 

was slightly worse. A possible explanation for why this happened is that the images had varying 

amounts of padding, so the model could be learning the amount of background as a factor 

when predicting the labels of images. 
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 The model performed the best overall when trained with all the data with background 

padding. This improvement is due to the accuracy of Style having a significant increase in 

accuracy. Oxea and Strongyle did not improve, but instead got slightly worse. Since the issue 

with the image distortion was resolved I decided to revisit the possibility that the model was 

overfitting on Style because it was exposed to far more training samples for Style compared to 

Oxea and Strongyle. Instead of trying to increase the number of samples for Oxea and 

Strongyle, I decided to limit the amount of data that the model sees for Style to 300. When 

trained on this data, the model had a significant drop in accuracy for Style, but the accuracies 

for Oxea and Strongyle improved significantly. There appears to be a tradeoff between the 

accuracy of Style and the accuracies of Oxea and Strongyle. I experimented with varying the 

amount of Strongyle training data that model can see to determine how it affects the 

accuracies of all three categories. I could not find a trend that leads to reasonable accuracies 

across all three of these categories. 

 

4.1 Conclusion 

 This paper demonstrates how to use transfer learning to train a pre-existing CNN on 

datasets that are too small to train a CNN from scratch. This was done with MobileNet by 

removing the last few layers of the model and adding a layer that would provide outputs equal 

to the number of categories in the target dataset. The last few layers of the model were 

retrained to learn the higher-level features of the data. Based on the performance of this initial 

mode, transformations, zero padding, and background padding were individually applied to the 

data before training the model to try to improve the model’s performance for the categories 
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Oxea, Strongyle, and Style. Out of these three methods, background padding achieved the best 

results for improving the model’s accuracy for these three categories with the caveat being that 

not all of them could be predicted well at the same time. Instead, it required two different 

methods where one would achieve the best accuracy for Style while the accuracies Strongyle 

and Oxea would suffer while the other would achieve the best accuracies for Strongyle and 

Oxea while the accuracy of Style would suffer. 

 

4.2 Next Steps 

 This project is a part of a larger project to develop a three-part pipeline (“Poriferal 

Vision”) proposed by Philip Heller and Amanda Kahn. Figure 14 shows the three parts of 

Poriferal Vision. 

 

Figure 14: Poriferal Vision Pipeline 
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The first part of the pipeline, which this project aimed to progress, is developing a model that 

can classify images of spicules taken by FlowCam. The second part is using the spicules from 

known sponge species to teach the model to identify the species based on the spicules present 

in a distribution. The last part is taking the spicules from the seabed samples and using the 

model to identify what species are present in the sample. 

 More work is needed on the first part of the pipeline before moving on to the second 

part. The model was trained to classify 7 of the 26 available categories of spicules since the 

remaining 19 were deemed to not have enough data. Once more data is acquired, the 

remaining categories can be incorporated into the model and any adjustments to improve the 

performance can be made from there. If the accuracies of any single trained instance of the 

model is unable to classify all spicule categories with reasonable accuracies then there are a 

couple of possible approaches to deal with this issue. 

 One possible approach is to have multiple variations of the model make predictions on 

the unlabeled data. The predictions for each category can be based off which of the models can 

predict that category the best. For example, if the two variations of the model that were 

trained on background padded data made predictions, the spicules that are predicted as Style 

by the variant that was trained on all of the training data should be assumed to be Style while 

the spicules predicted to be Oxea or Strongyle by the variant that was trained with limited 

training data should be assume to be Oxea or Strongyle. If there are spicules that are predicted 

to be Style by the variant that predicts Style well but are predicted to be Oxea or Strongyle by 

the one that predicts both well, then those spicules should be examined manually. The 

limitation to this approach is that it should be done only if the model has issues with only a 
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small portion of the categories that its learning since it would waste time and space if too many 

variations of a model need to be trained to ensure that all categories can be covered. 

 Another approach is to combine spicule categories based off an ontology. An ontology is 

a grouping of categories and the relationships that relate them to each other. Figure 15 shows a 

hierarchical ontology for a subset of spicule categories. 

 

Figure 15: Spicule Ontology 

In the spicule ontology, Acanthostyle is related to Style since it has the same general shape 

where it has one rounded end and one pointed end, but it has an extra feature of spikes which 

Style doesn’t have. Oxea, Strongyle, and Style share the common category of Monaxonic 

Megasclere which would be the label of the category if they were joined into a single category. 

Figure 16 shows the performance of the model when it is trained on data where Oxea, 

Strongyle, and Style are consolidated into Monaxonic Megasclere. 
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Figure 16: Result of Training Model Using Monaxonic Megasclere as a Category 

The model does extremely well in this case. However, this approach requires knowledge of the 

spicule makeup of the different species of sponges to determine which spicule categories to 

consolidate. The spicules that are being combined should not be the sole differentiating factor 

between certain species of sponges. For example, if there are three sponge species that share 

the same spicule makeup except that one has Oxea, another has Strongyle, and the last has 

Style, then saying that one of three possible species of sponge is present does not provide as 

significant amount of information as narrowing it down to just one.   

 

4.3 Expanding the Scope 

This pipeline can be applied for training the model on other datasets. To do this, the 

necessary Python libraries need to be installed and a data folder needs to exist in the same 

directory as the program. The data folder should contain labeled folders of images for each 
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category that the model needs to learn. The program will be able to divide up the data 

accordingly and train the model from there. If zero padding or background padding are used 

and the original images need to extracted from the padded images, then the image names 

should end with their dimensions in the format “name_widthxheight” where name is the image 

name, width and height are the dimensions of the original image. 
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