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ABSTRACT 

 

Identifying Potential Alzheimer’s Disease Biomarkers Beyond Amyloid-Beta and Tau 

  

By Frank Cai 

 

  

Alzheimer's Disease (AD) and other forms of Mild Cognitive Impairment (MCI) affect 

millions of people around the world. The buildup of Amyloid-Beta (Aβ) and Tau proteins in the 

brain produced by amyloid precursor protein (APP) has been identified as an important cofactor 

in the onset and progression of AD. However, although patients diagnosed with AD exhibit Aβ 

and Tau buildup, about 40% of the subjects with Aβ and Tau buildup are not diagnosed with AD. 

In this project, we hypothesize the involvement of other epigenetic interactions between APP and 

related genes in addition to the buildup of Aβ and Tau that might explain the onset and progression 

of AD. A robust and systematic methodology is applied to identify potential epigenetic biomarkers 

of AD. Single Nucleotide Polymorphisms (SNP) mutated proteins are considered in this study. A 

novel integrated epigenetic computational pipeline is implemented for SNP protein sequence 

generation, protein structural-functional change prediction, statistical analysis, and identification 

of significant SNPs associated with AD. These significant SNPs warrant further investigation as 

potential biomarkers linked to AD. 

 

Keywords: Amyloid-Beta and Tau; Alzheimer's disease; significant single nucleotide 

polymorphisms; epigenetic interactions; biomarker; pipeline.  
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CHAPTER 1 INTRODUCTION 

 

 AD affects more than 6 million Americans in 2023 reported by Alzheimer Association [1]. 

Its symptoms include a gradually worsening memory, to the point where the person affected can 

even forget his or her own identity.  In recent years the number of people having AD is increasing 

and this number is projected to rise to an estimated 14 million people by 2060 in United States of 

America (USA) [2]. The cause of this disease is long thought to be a slow buildup of Aβ proteins 

[3, 4] and Tau protein [5, 6] within certain regions of the brain, which affects how the neurons in 

these regions communicate with each other [7, 8]. However, recent researchers have discovered 

that AD is a complex multifunctional disease and there are many bio-epigenetic relationships 

between other genes and AD beyond Aβ and Tau [9 - 13]. 

AD is only one of the many neurodegenerative diseases, such as Parkinson's disease, 

Huntington's disease, amyotrophic lateral sclerosis (ALS), and motor neuron disease. All these 

diseases are resulted from functional degradation or death of the nerve cells in the brain or 

peripheral nervous system. The possibility of developing a neurodegenerative disease rises 

dramatically with age. As life expectancy increases due to modern healthcare systems and 

medications more and more people will be affected by neurodegenerative diseases. 

According to the special report from Alzheimer Association [1], 1 in 3 American seniors 

die with AD or another related dementia in 2023 [1]. Dementia is an overall term for a particular 

group of symptoms including problems with memory, language, problem-solving and other 

thinking skills. These symptoms are common in neurodegenerative diseases. AD and other 

dementias kill more people than breast cancer and prostate cancer combined [1]. During the last 

decade, deaths from heart disease have decreased 7.3% while deaths from AD have increased 

145% [1]. In 2023, AD and other related dementias will cost the USA estimated $345 billion [1]. 

Over 11 million Americans provided unpaid care for people with AD or other dementias, which 

valued at nearly $340 billion [1]. It is projected that the cost will increase to $1 trillion in 2050 in 

the USA [1]. 

There are many more people who suffer from AD and related dementias globally [14]. 

According to the statistics reported by Alzheimer's Disease International (ADI) [14], over 55 

million people worldwide are currently living with AD or another dementia [14]. More than 10 

million new cases of dementia are developed each year worldwide with a new case every 3 seconds 
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[14]. The total number of cases are projected to reach 139 million in 2050 [14]. The total estimated 

worldwide cost of dementia was US$ 818 billion in 2015, which was equivalent to 1.09% of global 

GDP at that time [14]. The annual global cost of dementia is now above $ 1.3 trillion and is 

expected to rise to $ 2.8 trillion by 2030 [14]. 

Research on AD and other dementias is urgent since there are many people who are 

affected by such disease and the economic impacts are enormous. To address this, the National 

Alzheimer's Project Act (NAPA) (Public Law 111-375) was signed into law in the USA on January 

4, 2011. The goals of NAPA are to create plans, improve early diagnosis, coordinate research and 

services, accelerate the development of treatments, and coordinate with international bodies to 

fight AD globally [15]. The World Health Organization (WHO) had also created a global action 

plan on the public health response to AD and related dementias in 2017 [16]. The plan comprises 

seven action areas including dementia research and innovation to improve the lives of people with 

dementia. 

Although certain treatments may help relieve some of the physical or mental symptoms 

associated with neurodegenerative diseases, no cures exist [1]. The U.S. Food and Drug 

Administration (FDA) recently approved two drugs (aducanumab and lecanemab) for the 

treatment of AD [17, 18]. However, these mediations may not have benefits for some individuals; 

could result in serious potential side effects; and require complicated monitoring procedures [1]. 

We must improve our understanding of what causes AD and other neurodegenerative diseases to 

develop new approaches for treatment and prevention. 

One of the important research areas is the identification of biomarkers in AD and related 

dementia. Biomarkers play a critical role in drug development, diagnosis assistance, target 

engagement, disease modification support, and safety monitoring [19]. The identification and 

validation of biomarkers for AD and related dementia are increasingly important with the 

advancement in biotechnology [19, 20]. The correct identification of biomarkers can accelerate 

the development of new diagnosis methods, medications, treatment therapies, and prevention tools. 

Although AD and MCI are typically caused by the excessive buildup of Aβ and Tau 

proteins produced by the APP gene in the brain [11], excessive levels of Aβ and Tau proteins are 

not sufficient, in and of itself, for AD diagnoses. There are up to 40% of normal individuals 

showing high levels of Aβ and Tau [21, 22].  There must be other mechanisms, such as genetic 

and epigenetic interactions between other genes and the genes producing Aβ and Tau proteins, 
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which are additional factors causing AD. On the other hand, having a buildup of both of Aβ and 

Tau protein is necessary for diagnosing AD [23]. AD and MCI patients do not exhibit just a buildup 

of only Aβ or only tau protein, both are needed [23]. MCI is a condition in which people have 

more memory or thinking problems than other people their age. The symptoms of MCI are not as 

severe as those of AD or related dementia. However, people with MCI are at a greater risk of 

developing AD or a related dementia than people without MCI [24]. 

The focus of this study is on a systematic scheme to identify other mechanisms or 

biomarkers in AD and related dementia. Software tools are developed to facilitate large-scale 

bioinformatic data processing. A substantial number of SNPs from a few hundred genes related to 

AD and MCI are studied.  

 

CHAPTER 2 BACKGROUND AND RELATED WORK 

2.1 Background 

2.1.1 Plaque Buildup 

The Aβ and Tau protein buildup is caused by a cascade of mutated proteins. This process 

is incredibly complicated. A study by Aswathy et. al [25] goes into depth about how the plaque 

buildup happens in an AD patient. The formation of Aβ protein is a 2-step process, with the 

cleavage of APP by the BACE1 enzyme to form a β-secretase derived fragment of APP, followed 

by an action of γ-secretase to generate Aβ isoforms ranging from 37 to 42 amino acid residues. 

Although Aβ40 isoform is the most abundant isoform, aggregated Aβ42 isoform are associated with 

AD [25].  The BACE1 gene is just one of the many genes involved in the Aβ42 production.  The 

pathway of Aβ protein synthesis which creates the Aβ42 is very complex. LaFerla et al [26] 

presented a cellular Aβ production site graphically as shown in Figure 1. From Figure 1, we can 

clearly see that there are many genes and pathways which have contributions in Aβ production 

within the endoplasmic reticulum (ER) and Golgi system. APP affects the plasma membrane by 

releasing sAPPα into the extracellular space, which results in C83 within the membrane. Reacting 

with SORL1, APP is recycled back to the Golgi in retromer endosomes. BACE1 cleavage of APP 

produces C99 which can turn into Aβ within the endosome/lysosome system. Aβ can be bound to 

cell surface receptors such as LRP, LDL, RAGE, FPRL1, NMDA receptors and α7nAChR, which 

are adopted into early endosomes. Aβ accumulates in the multivesicular body, lysosomes, 
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mitochondria, ER, Golgi and the cytosol. This is a complicated procedure involving a number of 

genes and through different mechanisms. 

     

 

Figure 1. Sites of cellular Aβ production [26]. 

 

Furthermore, Aβ produced intracellularly or taken up from extracellular sources, has 

various pathological effects on cell and organelle function [26]. The intracellular Aβ can assemble 

itself into oligomers, which mediate pathological events in the cell. The oligomers will further 

assemble into plaques as shown in Figure 2 [26]. These plaques build up in nerve cells and in the 

extracellular matrix, blocking the chemical signals needed to transfer information through the brain 

as shown in Figure 3 [27]. The plaque buildup with excessive Aβ could facilitate Tau hyper-

phosphorylation, disrupting proteasome and mitochondria function, and triggering calcium and 

synaptic dysfunction of the neuron and may cause the neuron to die out completely [26]. 

Eventually, with a certain amount of dysfunctional and dead brain nerve cells, it leads to MCI and 

AD.  
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Figure 2. Pathological effects of intraneuronal Aβ [26]. 

 

 
Figure 3. Plaque buildup in the brain from the overproduction of Aβ protein [27]. 

 

2.1.2 Epigenetic Mechanisms 

Studying epigenetic mechanisms can provide insight into how different genes relate to each 

other and can uncover previously unknown factors in genetic relationships. The buildup of Aβ and 

Tau proteins in the brain is the primary cause of AD, but it is not the only cause [9 – 13]. The many 
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genes that have a relationship with the AD metabolic pathway contribute to the complexity of 

identifying possible causes of MCI and AD. Furthermore, irregularities with the regulation of these 

genes can contribute, along with or in combination with direct mutations, presents a formidable 

challenge to understand MCI and AD pathologies. There are many epigenetic mechanisms that 

can link to AD as shown in Figure 4 [28]. 

 

 

Figure 4. Epigenetic mechanisms linked to AD [28]. Epigenetic factors are in the yellow 

boxes. Classical AD genes are in the blue box. Genes related to sporadic AD are in the red 

boxes. Genes increasing production/aggregation of Aβ or Tau are colored in red. Genes 

cleaning Aβ or Tau are colored in green. Genes for Aβ- or Tau-mediated neuronal damage 

are colored in blue. Genes for Tau phosphorylation are colored in purple. 

The major metabolic pathways of Aβ and Tau can be shown as Figure 5 [29]. Mutations in 

BACE1 and BACE2 change the regulation of APP to cause Aβ generation. Changes in GSK3B, 

CDK5, and MARK1 can result in Tau kinases and contribute to Tau pathology. The Aβ and Tau 

buildup will eventually lead to neuronal death and cause AD. 
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Figure 5. Genes involving the metabolic pathways of Aβ and Tau protein in AD [29]. 

 

The work in this project focus on exploration of genes epigenetically associated with 

classical AD genes based on “Significant” SNP (SSNP) mutations.  The meaning of “significant” 

SNP mutations is mutations that are predicted to change the shape and function of the gene versus 

SNPs that do not change a protein’s function. The study involves investigating if and the extent 

that SSNP mutations of genes having an epigenetic relationship to the APP, Tau, and other AD-

related genes can become biomarkers to the onset and progression of MCI or AD.   

There are many types of mutations that change the composition of a given sequence, from 

small scale changes that affect only a few nucleotides to duplications of entire chromosomes. 

These mutations can have a positive, negative, or no impact on the structure and function of the 

expressed protein. The most basic type of mutation is the SNP which is the change of a single 

nucleotide in the sequence. Many SNPs in the human genome occur in non-coding regions of 

DNA. Non-coding regions make up about 90 percent of the human genome [30]. Non-coding DNA 

is not translated into protein or other molecular structures, so they are usually ignored when 

studying mutations [30]. However, there are many SNPs that do lie within the coding regions of 

DNA. These SNPs have the chance of affecting the structure and function of the proteins that the 
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sequence codes, and these are the most studied. There are many other types of mutations that are 

also important, including deletion, insertion, and translocation mutations. These are currently 

ignored for the purpose of this study. However, these types of mutation can certainly be used in 

future studies. 

There might be many explanations why 100% of AD subjects exhibit a buildup of both Aβ 

and Tau. On the other hand, there might also be many explanations why ~40% of subjects that 

exhibit a buildup of both Aβ and Tau appear and function normally and are not diagnosed with 

AD or MCI.  One possible explanation might be epigenetic related. In order to explore such 

potential epigenetic explanations, an important part of the research is to identify the genes that are 

involved with or related to the APP and APOE physiology through biochemical pathways and 

networks. Thus, it is critical to investigate if, which, and how “significant” mutations of related 

genes are consistent with observed clinical results. Identification of potential AD/MCI SNP-related 

biomarkers using statistical significance tests is indispensable in AD and MCI research.  

2.1.3 SNPs and Protein Function Change Prediction 

It is a well-established fact that mutations, alongside other environmental factors, are a 

driving force of evolution. However, mutations in one’s DNA can also lead to one of many 

debilitating genetic diseases and syndromes.  One or more SNPs could change the shape or the 

function of a protein which play an important role in mutations. Mutations are essential to 

evolution and every genetic feature in every organism was, initially, the result of a mutation [31]. 

Therefore, understand the shape and functional changes of the protein are the key to explore the 

evolution changes in any organism.  

The amino acid sequence defines the protein’s shape [32] which is the main source for its 

function. An alteration in the amino acid sequence of the protein can lead to changes in its folding 

and stability property [33, 34], its interaction with other molecules [35, 36], its functional levels 

[37], and even its overall function. A mutation in the amino acid sequence may alter the protein 

shape but may not change its function [38]. Accurate prediction of the changes in protein shape 

and function from SNPs is critical in the research of biological evolution. Lee et al [39] had 

reviewed some of the methodologies in protein function prediction in the field of computational 

biology. Sequence-based function prediction is one of the important technologies in protein 

function prediction, which uses the gateways provided by the NCBI and the European Molecular 
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Biology Laboratory–European Bioinformatics Institute (EMBI–EBI). These resources provide 

crucial bioinformatic data including protein and domain family information, functional sites and 

function prediction methods. They also provide a list of links of related information corresponding 

to a protein accession code, gene name or similar term. There are many resources and tools have 

been developed for the application of the database, including Entrez, an integrated literature and 

molecular databases, BLAST, a sequence similarity search service, VAST, a structure similarity 

searches, Cn3D, a 3D structure viewer, and Genome, a workbench standalone sequence analysis 

annotation platform, used in NCBI. However, no sophisticated tools exist for predicting the protein 

change from its coding gene and SNPs. 

2.1.4 Networks and Pathways 

 The Aβ42 synthesis pathway is vast and complicated, with up to 430 genes being involved 

some way or the other as found out by Hu et. al [13]. Using the human genetic association studies 

deposited in the PubMed database, they were able to gain a collection of 430 genes that were 

associated with AD. From there, they used the WebGestalt and ToppGene software to analyze the 

biological relationships between the genes and built a crosstalk network by calculating the overlap 

coefficient and the Jaccard coefficient. A network diagram was plotted using the Steiner minimal 

tree algorithm as shown in Figure 6. The network contains 496 vertices and 1521 lines, with the 

vertex color designating its corresponding degree under the background of the human protein 

interactome. The circular genes correspond to the Alzgset database, and the triangular vertices are 

the genes that are expanded in their study. It shows visually the interconnects between the genes.  

Another way to explore the genes related to AD is through the biological pathways. There 

are many pathways that relate to AD, as shown in Figure 7 [13]. These include apoptosis, oxidative 

phosphorylation, and ovarian steroidogenesis, amongst others. The genes from the network all 

belong to one of these pathways. For example, the genes BDNF, CAMK2D, GSK3B, and IRS1 

belong to the Neurotrophic signaling pathway while the genes COL11A1, EFNA5, EIF4EBP1, 

FGF1 and GNB3 belong to the PI3K-Akt signaling pathway. 

  A few genes, including epidermal growth factor receptor (EGFR), nuclear respiratory 

factor 1 (NRF1), somatostatin receptor 2 (SSTR2), and sortilin 1 (SORT1), were already shown to 

be related to AD in previous studies. 
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Figure 6. Network diagram of AD genes via the Steiner minimal tree algorithm. Circular 

vertices, genes of Alzgset; triangular vertices, expanding genes. Color of a typical vertex 

designates its corresponding degree under the background of the human protein 

interactome. Darkness of color for a vertex is directly proportional to the corresponding 

degree value [13]. 
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Figure 7. Pathways and processes of AD [13]. 

 

Most of the genes are not directly related to AD, but some genes did have direct 

involvement. Those that are indirect are linked to AD by other genes in the same family. For 

example, ABCG5 is not directly related, but the genes ABCA1, ABCA2, ABCA7, ABCC2, 

ABCG1, and ABCG2 are in the same family. These genes are all directly related to AD. Other 

genes in the network, like HAMP1, are involved in the pathway, but are supplementary to the main 

genes. 

2.2 Related Work 

Pimplikar [9] pointed out that there are a significant number of normal individuals who 

have an excessive buildup of Aβ plaque. Morris et al. [10] found that APOE is a risk factor for AD 

but it is not a necessary factor. Some individuals clinically diagnosed with AD do not have Aβ 

pathology. By studying several SNPs on chromosome 6, Kim et al. [11] discovered that 15 genes 

associated with the glutathione pathway play an important glutathione role in AD pathogenesis. 

These genes include TMEM14A, RPS16P5, MLIP-IT1, MIR5685, MCM3, LRRC1, GSTA7P, 



12 

GSTA5, GSTA3, GSTA2, GFRAL, GCM1, FBXO9, FAM83B, and ELOVL5. Among them, the 

above GSTA<X> genes express glutathione proteins. They suggested that the mutations produced 

by epigenetic mechanisms can negate glutathione function and could be a significant factor in AD.  

Giri et al. [12] studied the genes associated with late-onset AD and analyzed the 

relationship between these risk genes and the neuropathologic features of AD. They reviewed the 

revolutionizing bioinformatic technologies, such as Genome-Wide Association Study (GWAS) 

and Next-Generation Sequencing (NGS), which play important roles in the study of AD. 28 genes 

with their corresponding SNPs are studied for their relationships to AD. These genes were 

categorized into 3 pathways: inflammatory response, lipid metabolism, and Endocytosis.  

Hu et al. [13] performed a comprehensive and systematic analysis of 430 human genes 

reported to be associated with AD from 823 publications. They focused on the biological function 

and interactions of these genes in the context of AD using network and pathway-based 

methodology. They systematically explored the pathogenetic mechanism underlying AD. A 

framework they proposed can be applied for investigating the pathological molecular network and 

genes relevant to other complex diseases or phenotypes.  

A recent two-stage genome-wide association study had been performed by Bellenguez et 

al. [21] on 111,326 clinically diagnosed ‘proxy’ AD cases and 677,663 controls. The information 

used is from GWAS catalog including the location of the gene, the pathways related to the gene, 

and all the mutations that can be found in the gene. 42 new loci among the 75 risk ones were found 

related to AD. The study also found some new genes that previously did not have a relationship 

with AD, like PRKD3.  

All these prior and recent studies have suggested that Aβ and Tau are not sufficient to cause 

AD, but it is necessary. Rather, the pathology of AD is linked to many other genes associated 

through different pathways.  Current research results have discovered many genes and SNPs that 

are linked to AD in a variety of ways. To find an effective early detection and prevention treatment 

schemes for AD, epigenetic mechanisms underlying AD pathogenesis and the potentially 

implicated pathways appear to warrant investigation. In addition, advanced technologies and 

software tools are indispensable in future research which need to process huge amounts of 

information from gigantic databases. 
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CHAPTER 3 APPROACH 

3.1 Essential SNP Investigation 

Most of the prior studies were performed on a small number of SNPs which limited the 

scope of research [9-13, 40].  The work presented here focuses on an approach that involves 

identifying as many “Significant” SNPs (SSNPs) as possible in epigenetic-related genes that are 

linked to AD and MCI.  The SSNP is defined as a SNP which results in Protein Structure and 

Function Change (PSFC) due to its nucleotide change in the DNA sequence. 

  SSNP will be used as an important ID to identify epigenetic-related genes that might be 

associated with AD and MCI along with the necessary data. Genes used in this project are collected 

from related research and development publications. SNPs associated with each gene are obtained 

from the NCBI database. These SNPs are processed by the software modules implemented to 

detect SSNPs. Statistical analyses will then be performed on these SSNPs against the ADNI 

database to identify differentiating genes and SNPs. 

To study the deeper relationships of the selected AD genes, more research needs to be done 

involving the SNPs that can potentially affect those genes. For a specific gene, hundreds of 

thousands of SNPs could be found associated with it. All these SNPs should be studied to explore 

the epigenetic relationship between the gene and AD. This results in a large amount of data that 

needs to be processed.  Therefore, a systematic approach is essential in this study. Well-established 

biological databases consisting of enough information are also critical. Established biological 

databases are also more trustworthy as well. Furthermore, effective software tools which can 

automatically perform many heavy identification, complex manipulation, and large number of 

calculations tasks are indispensable to the success of this project.  

3.2 Data  

There are a few databases, including ADNI, NCBI, and Protein Data Bank (PDB), that are 

used to get information about AD related genes. The ADNI database contains a wealth of 

information about the SNPs that appear in AD patients. The information includes the position of 

the SNP and what changed it had occurred, amongst other data. The names of the patients and the 

SNP ID can be extracted and used to make comparisons between the wild-type and mutated 

sequences of the proteins that are coded by the genes. To do this, a large database of genes and 
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their respective proteins will need to be accessed. That is the place where the NCBI database comes 

into play. The NCBI database contains huge amounts of genes, SNPs, DNA and protein sequences, 

and much other information as needed for the study. To verify the prediction accuracy from the 

pipeline, it is necessary to have a database which can generate the biological identity for a specific 

protein sequence. The PDB database is applied for this purpose. The PDB database is used to 

compare the physical properties of the wildtype and modified SNP sequences of the protein. All 

of these three databases are well-established and widely used by the researchers in the 

bioinformatic community. They are also essential in this project. 

3.3 Data Collection 

Based on the genes presented in [13] together with some other genes from a few 

publications [11, 12], 219 genes related to AD in various ways are selected for this study. These 

genes are listed as follows. 

  

A2M, ABCA1, ABCA2, ABCA7, ABCC2, ABCG1, ABCG2, ADAM10, ADAM17, ADRB1, 

ADRB2, AKAP9, ALOX5, ANK3, APH1A, APH1B, APOA1, APOE, APP, ATP8B3, BDNF, 

BIN1, BLNK, BMPR1B, C4A, C4B, CAMK2D, CARD8, CASS4, CCDC6, CCL2, CCL3, 

CCR2, CD14, CD2AP, CD33, CD36, CDK1, CDK10, CDK5, CDK5R1, CDKN2A, CEBPZOS, 

CELF1, CFH, CHRNA7, CLOCK, CLU, COL11A1, COMT, COX10, COX15, CR1, CTSB, 

CTSH, CTSS, CXCL8, CYP19A1, CYP2D6, DBH, DOC2A, DRD4, DSG2, EFNA5, EGFR, 

EIF2AK2, EIF4EBP1, EPHA1, ESR1, ESR2, FAM114A1, FAS, FCER1G, FERMT2, FGF1, 

FOXF1, FSHR, GAB2, GAPDH, GNA11, GNB3, GPX1, GRIN2B, GRN, GSK3B, GSTM1, 

GSTO1, GSTO2, GSTP1, GSTT1, HLA-A, HLA-DQB1, HLA-DRA, HLA-DRB5, HMOX1, 

HS3ST5, HTR2A, HTR6, ICA1, ICA1L, ICAM1, IGF1, IL10, IL12A, IL18, IL1A, IL1RN, 

IL23R, IL4, IL6, IL6R, INPP5D, INS, IQCD, IRS1, ITGB1BP1, JAZF1, KLF16, LCK, LDLR, 

LHCGR, LILRB2, LIME1, LLGL1, LPL, LRRC1, MAF, MAGI2, MAOA, MAPK8IP1, MAPT, 

MBL2, MCM3, MEF2A, MEF2C, MEFV, MIR5685, MME, MS4A1, MT-ATP6, MT-ATP8, 

MT-CO1, MYADM, MYLK, MYO15A, NCK2, NCSTN, NGF, NGFR, NLRP1, NLRP3, 

NME8, NOS1, NOS3, NTF3, NTRK1, NTRK2, OLR1, OTULIN, PCK1, PICALM, PIK3R1, 

PLA2G3, PLA2G4A, PLAU, PLD3, PLEKHA1, PNMT, PPARA, PPARG, PPP2R2B, PRDM7, 

PRKD3, PSEN1, PSEN2, PSENEN, PTK2B, RAB7A, RBCK1, RELN, REXO1, RHOH, 

RITA1, RPS6KB2, RXRA, SERPINA1, SERPINF2, SHARPIN, SHROOM3, SIGLEC11, 

SLC24A4, SNX1, SOD1, SOD2, SORL1, SORT1, SOS2, SP1, STK32B, TAP2, TF, TGFB1, 

TLR2, TLR4, TMEM106B, TMEM14A, TNF, TNIP1, TOP3A, TP53, TRAF2, TREM2, 

TSPAN14, UBE2I, UMAD1, UNC5C, VEGFA, WDR81, ZCWPW1 
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 Among them, some of the genes are well known as the causes of AD if certain SNP occurs 

in them such as APP, APOE, PSEN1, PSEN2 etc., which are the main genes for Aβ and Tau. Some 

of the genes, such as APOA1, CHRNA7, ADRB1, HTR2A, COMT, IL1A etc., are identified as 

AD associated by biological function enrichment analysis of different biological process such as 

lipid and/or lipoprotein-related processes, metabolism, the immune system, and neural 

development [13]. Some of the genes, such as A2M, ABCA7, SORT1, NOS1, PTK2B etc., are 

collected as AD related genes through biochemical enriched pathways and pathological protein 

networks using crosstalk analysis [13]. These genes can react with the main Aβ and Tau genes 

through human protein–protein interaction pathways or networks [13]. The protein structure and 

function changes of these genes can affect the pathway and eventually result in AD.  For example, 

ABCG2 is a gene in the ABC transporters pathway. It codes an Aβ transporter protein. Any 

changes in this protein can potentially result in AD [41]. BDNF codes for a protein called a brain 

derived neurotrophic factor, which maintains synaptic plasticity in the neurons and the cognitive 

functions in the brain. Since AD is a synaptic disease, the gene is considered as a potential factor 

for AD [42]. 

For each gene, 3 sets of data including the DNA sequence, coding region, and list of SNP 

information are collected from the NCBI database. The data are retrieved by searching the NCBI 

SNP database using the phrase “all[sb] AND gene[gene name] AND SNV.” The results were 

filtered out by selecting only the synonymous variants. The SNP file was created and downloaded 

by clicking the file link on the “send to” dropdown menu. The SNP file contains a list of all SNPs 

and their corresponding nucleotide change information including position and the nucleotide 

change. In order to get the coding regions, the following processes need to be performed. First, by 

clicking on one of the SNPs to go to the dbSNP page, then scrolling down to the “Genomic regions, 

transcripts, and products” section of the page, where the SNPs of the genes are visually listed. The 

gene itself appeared at the top of the table as a green bar. By clicking the gene and selecting the 

Genbank record from the drop-down menu to go to the Genbank record of the gene. The Genbank 

record contains all the information about the gene. The CDS section is where the coding regions 

are. It is also necessary to get the start and end positions for the gene in respect to its position on 

the chromosome as well as the sequence direction: forward or complementary for the SNP Protein 

Generation Module (SNPPGM) in the pipeline to generate the SNP protein sequences. In the same 

page, by clicking the FASTA tab on the top-left corner, the fasta file for the gene DNA sequence 
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can be obtained and downloaded by clicking on the “send to” button and clicking the file button 

on the drop-down menu.     

 

CHAPTER 4 METHOD 

 

For a given gene, there could be hundreds or even thousands of SNPs associated with it, 

which can be obtained from the NCBI database. SNPs are mutations of a single nucleotide in the 

genetic sequence of a certain gene that could potentially change the shape and function of the 

protein it codes. These changes can accumulate over time, leading to large scale effects on the 

organism that it is affecting. One of the important tasks in bioinformatics is to predict whether the 

SNPs will result in such changes and be considered as SSNPs. In addition, statistical analysis need 

to be performed on the results and the corresponding info in the ADNI to explore the correlations 

between them. A novel and robust python-based Integrated Epigenetic Computational Pipeline 

(IECP) has been implemented to facilitate systematic and effective process of such large amount 

of SNP data. The IECP consists of three main modules: an SNP Protein Generation Module 

(SNPPGM), a Protein Structure and Function Change Prediction Module (PSFCPM), and a 

Statistical Analysis Module (SAM). SNPPGM is created to generate the SNP protein sequence 

automatically for many SNPs. PSFCPM is implemented for PSFC prediction to obtain SSNPs. 

SAM is developed for statistical analysis between the SSNPs predicted and the SNPs in the ADNI 

database. The SNPs in the ADNI database are classified into three groups: control, AD, and MCI. 

Statistical analyses including chi-square test and general hypothesis test are performed on the 

comparison results to obtain the correlations between these three groups. The flow chart of IECP 

is shown in Figure 8. 

4.1 Integrated Epigenetic Computational Pipeline 

4.1.1 SNP Protein Generation Module 

In the SNP list for each gene collected from the NCBI database, there are a lot of SNPs. It 

is necessary to generate their corresponding protein sequences which are used in PSFCPM. 

SNPPGM is implemented for this purpose. The flow chart of this module is shown in Figure 9.  



17 

The module inputs three files: the gene DNA sequence fasta file, the coding region file, and the 

SNP information file. It outputs the SNP protein sequence file in the format that PSFCPM takes. 

 

 

 

 

Figure 8. Flow chart of the IECP. The SNP and gene info are inputted into SNPPGM to 

generate the wildtype and SNP protein sequences which are processed in the protein 

structure and function prediction module. The output is analyzed in the statistical analysis 

module with the ADNI data to obtain the statistical results. 
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Figure 9. Flow chart of the SNPPGM module. The coding region is used for extracting 

both wildtype DNA and the SNP DNA. A list of SNPs with their nucleotides are processed 

according to their change position. If the change position is in the coding region, the SNP 

DNA sequence will be extracted from the wildtype sequence by modifying the 

corresponding nucleotide. Then, both wildtype and SNP DNA sequences are converted to 

protein sequences and outputted to a file. 
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4.1.2 Protein Structure and Function Change Prediction Module 

PSFCPM takes the protein sequence files produced by SNPPGM as input. It will compare 

the SNP protein sequence with its corresponding wild-type protein sequence to see if there are any 

changes that are significant. This is done by comparing the protein sequences using the Biopython 

package [43, 44]. The metric parameters obtained from Biopython for SNP protein sequences are 

compared with the metric parameters for the wildtype protein sequence. The differences of these 

metric parameters are used for PSFC prediction. Several thresholds are used to control the accuracy 

of the prediction. The prediction results are inputted into the statistical calculation module for 

statistical processing. 

The ProtParam module in the SeqUtils package from Biopython is used for analyzing 

protein sequences. The ProteinAnalysis class is used as the object for the protein analysis. The 

metric parameters obtained from the analyzing results are listed in Table 1. 

 

Table 1. The metric parameters for protein change prediction 

Metric 

Parameters 

Type Description 

MOLWT float Molecular mass 

GRAVY float Grand Average of Hydropathy 

AACOUNT dictionary Counts of standard amino acids 

SECSTRUCT list Fraction of helix, turn and sheet 

SCALE list Profile by any amino acid scale 

AROMATICITY float Aromaticity value 

INSTABILITY float Instability index 

FLEXIBILITY list Flexibility 

ISOELECTRIC float Isoelectric point 

 

All the metric parameters obtained using the wildtype protein sequence are compared to 

the corresponding ones obtained using the SNP sequence. A score is assigned to each parameter. 

The scores for the parameters with float type are their absolute difference. For the parameters with 
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dictionary type and list type, the scores are the sum of the absolute differences for the 

corresponding item in the dictionary or list. In addition, a total score is calculated with the sum of 

the scores from all the parameters. A total score for the wildtype itself is also calculated as the 

maximum score for total relative comparison. After many experiments and tunings, the following 

criteria are defined for PSFC prediction. 

If a SNP’s biometric scores satisfy one of the following conditions, it is considered as a 

SNP causing PSFC. 

Criteria 1. Total score > Tt 

Criteria 2.  𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑙𝑎𝑡𝑣𝑒 𝑠𝑐𝑜𝑟𝑒 =  
𝑇𝑜𝑡𝑎𝑙  𝑠𝑐𝑜𝑟𝑒

𝑀𝑎𝑥𝑖𝑚𝑢𝑚  𝑠𝑐𝑜𝑟𝑒
 > Tr 

Criteria 3. (Total score > T1) AND (SECSTRUCT score > S1) 

Criteria 4. (Total score > T2) AND (GRAVY score > S2) 

Criteria 5. [ (SECSTRUCT score > S3) OR (GRAVY score > S4) ] AND 

( 
𝑆𝐸𝐶𝑆𝑇𝑅𝑈𝐶𝑇 𝑠𝑐𝑜𝑟𝑒

𝑇𝑜𝑡𝑎𝑙 𝑠𝑐𝑜𝑟𝑒
 > S5 ) AND ( 

𝐺𝑅𝐴𝑉𝑌 𝑠𝑐𝑜𝑟𝑒

𝑀𝑂𝐿𝑊𝑇 𝑠𝑐𝑜𝑟𝑒
 > S6 ) 

Where Tt , Tr, T1, T2, S1, S2, S3, S4, S5 and S6 are thresholds and their values are given in Table 2. 

 

Table 2. Values for thresholds 

threshold Tt Tr T1 T2 S1 S2 S3 S4 S5 S6 

value 5000 0.001 75 18.06 0.00135 0.007 0.001 0.009 6e-5 2e-4 

 

4.1.3 Validation of PSFCPM 

The results predicted by PSFCPM are compared with PDB database predictions to validate 

the prediction accuracy of the PSFCPM. In order to see whether the SNP changes the structure and 

function of the protein using the PDB database, the following steps are performed. 

 

Step 1. For each gene, the wildtype protein sequence is used to get the reference PDB 

identity from the PDB database. 

Step 2. For each SNP, its PDB identity is obtained using its modified protein sequence 

from the PDB database. 

Step 3. The SNP’s PDB identity is compared to the reference PDB identity using the 
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thresholds above. If the two identities are different, the SNP will be considered 

as a SNP which changes the structure and function predicted by the PDB 

database. 

 

When getting the identity from the PDB database using the protein sequence, a list of 

metrics is returned. For accurate prediction results, only the first identity, the total score, is used 

for comparison. This is used since it is the overall score of each of the other metrics of the protein. 

Heat maps are used to help find the correlations between the parameter scores and the correctness 

of prediction. One of them is shown in Figure 10 where SCORE is the total score and RSCORE is 

the total relative score. From Figure 10, both pipeline prediction and PDB prediction are the same 

and point to PSFC (value = 1) when the total score is a large value. 

A total of 1228 SNPs are used for verifying the prediction accuracy. The results are shown 

in Table 3. The correct prediction percentages are about 70% compared with the predictions using 

the PDB database. 

 

Table 3. PSFC prediction results 

Total number of SNPs causing PSFC predicted by IEPL 590 

Total number of SNPs causing PSFC predicted by PDB 589 

Total number of SNPs causing PSFC predicted by both IEPL and PDB 408 

Correct prediction percentage compared to PDB 69.3% 

4.1.4 Statistical Analysis Module 

The SAM module takes the prediction results from the PSFCPM module to perform 

statistical calculations. The SSNPs are compared to a list of SNPs that have been saved in the 

ADNI database. For each SSNP predicted by PSFCPM, statistical analysis is performed between 

three groups: control (CN) group, AD group, and MCI group. SAM will search the ADNI database 

to collect the statistical data as shown in Table 4. In the table, NCN is the number of times that the 

SNP appears in the CN group, NAD is the number of times that the SNP appears in the AD group, 

and NMCI is the number of times that the SNP appears in the MCI group. These statistical data will 

be used in chi-square and hypothesis tests to obtain the statistical results. 
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Figure 10. Heat map of PSFC prediction correlations to the parameter scores. 

 

Table 4. Statistical data obtained by SAM 

SNP CN AD Group MCI Group 

SNP ID NCN NAD NMCI 
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4.2 Application of IECP 

Although IECP is used in this project for analyzing the genes and SNPs related to AD and 

MCI, it is a general epigenetic computational pipeline which can be applied to process genes 

related to any type of disease or symptoms. Given the DNA sequence, coding region, and a list of 

SNPs, SNPPGM will automatically generate the protein sequences for all the SNPs and output the 

protein sequence files in the PSFCPM format. The SNP protein sequence files can be inputted into 

PSFCPM for PSFC prediction to obtain SSNPs. The SSNPs are then inputted into SAM for 

statistical analysis together with a reference database such as ADNI for AD. The results generated 

by IECP can be used for epigenetic research to explore the genetic relationships of genes, SNPs, 

and related diseases and symptoms. It can also be used in pharmaceutical research to find 

medications or therapeutic treatments for the disease.  

4.3 Statistical Analysis  

There are many statistical tests that can be used to compare groups. The most common 

statistical test to compare whether the data from 2 or more groups is significantly different enough 

is the chi-square test. Chi-square tests are used in many different applications where the data from 

2 or more groups is compared. The chi-square test creates a contingency table, counting the row 

and column totals for the data. The contingency table is used for the calculation of the chi-square 

statistic, the degrees of freedom, and the p-value. 

Hypothesis tests using the two-tail F-test and the t-test are applied in this study to determine 

the significance of SSNPs between two groups. For each SSNP, the following procedures are 

performed. 

Step 1. Select two groups of the total samples from CN, MCI, AD and name them as Group-

1 and Group-2. 

Step 2. For each group, randomly select 70% of the samples and get the count and 

percentage (%) of the number of the selected samples that have the SSNP and save 

them. 

Step 3. Repeat Step 2 100 times. 

Step 4. Compute the mean and standard deviation (std) values for the count and % using 

the results from the 100 experiments above. 

Step 5. Use the two-tail F-test to determine if the variances (variance = std2) of Group-1 
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and Group-2 are the same for both count and %. 

Step 6. Use the t-test, equal variance or different variance based on the result of Step 5, to 

determine if the counts and % are significant. 

The hypothesis is defined below for the F-test and t-test. 

For F-test: 

 The null hypothesis H0: Variance of Group-1 = Variance of Group-2 

The alternative hypothesis HA: Variance of Group-1 != Variance of Group-2 

For t-test: 

 The null hypothesis H0: Mean of Group-1 = Mean of Group-2 

The alternative hypothesis HA: Mean of Group-1 != Mean of Group-2 

An alpha value of 0.05 (α = 0.05) with 95% confidence level is used to compare the p-value to 

determine if the H0 will be rejected. When p-value is less than α, H0 will be rejected. Here the p-

value is a statistical measurement used to validate a hypothesis against observed data. It measures 

the probability of obtaining the observed results, assuming that the null hypothesis is true. The 

lower the p-value, the greater the statistical significance of the observed difference.  

 

CHAPTER 5 RESULTS 

 

In this project, a total number of 202,827 SNPs in 219 genes were processed. These SNPs 

are first processed by SNPPGM to generate the protein sequences for SNPs which are different 

from the wildtype protein sequence. The generated SNP protein sequences and their corresponding 

wildtype sequences were inputted into the PSFCPEP for SSNP prediction. All the SSNPs predicted 

by PSFCPEP were compared to the sampling data obtained from ADNI database. Finally, the 

comparison data was used by SAM for statistical analysis. The results are shown in the following 

sections. 

5.1 SNPPGM Result 

The results from SNPPGM are shown in Table 5. There are 112,342 SNPs whose protein 

sequences are different from their corresponding wildtype protein sequences. 
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Table 5. Results from SNPPGM 

Total number of genes processed 219 

Total number of SNPs 202,827 

Total number of SNPs with different protein sequence from wildtype 112,342 

 

5.2 PSFCPM Result 

 The 112,342 SNPs are inputted into PSFCPM for SSNP prediction. The results are shown 

in Table 6. There are 29,523 SSNPs predicted by PSFCPM. 

 

Table 6. Results from PSFCPM 

Total number of SNPs with different protein sequence from wildtype 112,342 

Total number of SSNPs predicted by PSFCPEP 29,523 

5.3 SAM Result 

 The 29,523 SSNPs from 219 genes were compared to the sampling data obtained from 

the ADNI database. There are a total of 644 samples in the data as shown in table 7. 

 

Table 7. Samples from ADNI database 

Total number of samples in the control group 150 

Total number of samples in the AD group 109 

Total number of samples in MCI group 385 

Total number of samples 644 

 

By comparison, among 29,523 SSNPs from 219 genes, there are 77 SNPs from 54 genes 

in the ADNI samples as shown in Table 8. The genes and their SSNPs are shown in Table 9. 

 

Table 8. Number of genes and SSNPs in the ADNI samples 

Total number of genes in ADNI samples 54 

Total number of SNPs in ADNI samples 77 
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Table 9. Genes and SSNPs in the ADNI samples 

Gene SSNPs 

NME8 rs10250905 

TP53 rs1042522, rs17882252 

ADRB2 rs1042713, rs1800888 

SORT1 rs10458463 

CCDC6 rs1053266 

FAM114A1 rs11096964, rs11944159 

MEFV rs11466045 

NGF rs11466110, rs11466112, rs6330 

GSTO1 rs11509439, rs4925 

LIME1 rs1151625 

OTULIN rs11953822, rs9312870 

GSTM1 rs12068997 

MBL2 rs12260094, rs1800450, rs5030737, rs8191995, rs8191996 

COL11A1 rs12735019 

COMT rs13306279, rs13306281, rs4680, rs5031015, rs6267 

COX10 rs16948978 

IL1A rs17561 

ICAM1 rs1799969, rs1801714 

PPARA rs1800234 

IRS1 rs1801278 

PPARG rs1801282 

NTF3 rs1805149 

SERPINF2 rs2070863 

PRDM7 rs2078478 

PLAU rs2227564 

LDLR rs2228671 

PLA2G3 rs2232176, rs2232183 



27 

TREM2 rs2234255 

CYP19A1 rs2236722, rs2304462 

GAB2 rs2279374 

PCK1 rs28359542 

CYP2D6 rs28371717 

LLGL1 rs28523978 

ABCG2 rs3116448 

IL1RN rs315952 

FAS rs3218611 

EPHA1 rs34372369 

TNF rs35131721, rs4645843 

IGF1 rs35767 

CDKN2A rs3731249 

STK32B rs3733182 

ATP8B3 rs3764606 

NOS3 rs3918234 

CCL2 rs4586 

SOD2 rs4880, rs4987023, rs5746096, rs5746129 

TLR4 rs4986791 

GNB3 rs5444 

FSHR rs6165 

BDNF rs6265, rs8192466 

SERPINA1 rs6647 

APOE rs7412 

IL23R rs7530511 

IL6R rs8192284 

CLU rs9331940 
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5.3.1 Counting Results 

The counts of genes and SSNPs in each group are shown in Table 10 and 11. The counts 

in Table 10 are the sums of counts of SSNPs associated with the gene appearing in each group. 

 

Table 10. Counts of genes in each group 

Gene Control MCI AD Row total 

NME8 116 256 24 396 

TP53 274 698 188 1160 

ADRB2 274 698 188 1160 

SORT1 137 349 94 580 

CCDC6 137 349 94 580 

FAM114A1 274 698 188 1160 

MEFV 137 349 94 580 

NGF 411 1047 282 1740 

GSTO1 274 698 188 1160 

LIME1 137 349 94 580 

OTULIN 274 698 188 1160 

GSTM1 137 349 94 580 

MBL2 664 1652 400 2716 

COL11A1 137 349 94 580 

COMT 685 1745 470 2900 

COX10 137 349 94 580 

IL1A 137 349 94 580 

ICAM1 274 698 188 1160 

PPARA 137 349 94 580 

IRS1 137 349 94 580 

PPARG 116 256 24 396 

NTF3 137 349 94 580 

SERPINF2 137 349 94 580 

PRDM7 137 349 94 580 
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PLAU 137 349 94 580 

LDLR 137 349 94 580 

PLA2G3 274 698 188 1160 

TREM2 137 349 94 580 

CYP19A1 274 698 188 1160 

GAB2 137 349 94 580 

PCK1 137 349 94 580 

CYP2D6 137 349 94 580 

LLGL1 137 349 94 580 

ABCG2 137 349 94 580 

IL1RN 137 349 94 580 

FAS 137 349 94 580 

EPHA1 137 349 94 580 

TNF 274 698 188 1160 

IGF1 137 349 94 580 

CDKN2A 137 349 94 580 

STK32B 137 349 94 580 

ATP8B3 137 349 94 580 

NOS3 137 349 94 580 

CCL2 137 349 94 580 

SOD2 548 1396 376 2320 

TLR4 137 349 94 580 

GNB3 116 256 24 396 

FSHR 137 349 94 580 

BDNF 274 698 188 1160 

SERPINA1 137 349 94 580 

APOE 137 349 94 580 

IL23R 137 349 94 580 

IL6R 137 349 94 580 

CLU 137 349 94 580 
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Column total 10465 26501 6958 43924 

 

Table 11. Counts and percentages of SSNPs in each group 

 
Control MCI AD Row_total Control % MCI % AD % 

rs10250905 116 256 24 396 77.33 66.49 22.02 

rs1042522 137 349 94 580 91.33 90.65 86.24 

rs1042713 137 349 94 580 91.33 90.65 86.24 

rs10458463 137 349 94 580 91.33 90.65 86.24 

rs1053266 137 349 94 580 91.33 90.65 86.24 

rs11096964 137 349 94 580 91.33 90.65 86.24 

rs11466045 137 349 94 580 91.33 90.65 86.24 

rs11466110 137 349 94 580 91.33 90.65 86.24 

rs11466112 137 349 94 580 91.33 90.65 86.24 

rs11509439 137 349 94 580 91.33 90.65 86.24 

rs1151625 137 349 94 580 91.33 90.65 86.24 

rs11944159 137 349 94 580 91.33 90.65 86.24 

rs11953822 137 349 94 580 91.33 90.65 86.24 

rs12068997 137 349 94 580 91.33 90.65 86.24 

rs12260094 137 349 94 580 91.33 90.65 86.24 

rs12735019 137 349 94 580 91.33 90.65 86.24 

rs13306279 137 349 94 580 91.33 90.65 86.24 

rs13306281 137 349 94 580 91.33 90.65 86.24 

rs16948978 137 349 94 580 91.33 90.65 86.24 

rs17561 137 349 94 580 91.33 90.65 86.24 

rs17882252 137 349 94 580 91.33 90.65 86.24 

rs1799969 137 349 94 580 91.33 90.65 86.24 

rs1800234 137 349 94 580 91.33 90.65 86.24 

rs1800450 137 349 94 580 91.33 90.65 86.24 

rs1800888 137 349 94 580 91.33 90.65 86.24 

rs1801278 137 349 94 580 91.33 90.65 86.24 



31 

rs1801282 116 256 24 396 77.33 66.49 22.02 

rs1801714 137 349 94 580 91.33 90.65 86.24 

rs1805149 137 349 94 580 91.33 90.65 86.24 

rs2070863 137 349 94 580 91.33 90.65 86.24 

rs2078478 137 349 94 580 91.33 90.65 86.24 

rs2227564 137 349 94 580 91.33 90.65 86.24 

rs2228671 137 349 94 580 91.33 90.65 86.24 

rs2232176 137 349 94 580 91.33 90.65 86.24 

rs2232183 137 349 94 580 91.33 90.65 86.24 

rs2234255 137 349 94 580 91.33 90.65 86.24 

rs2236722 137 349 94 580 91.33 90.65 86.24 

rs2279374 137 349 94 580 91.33 90.65 86.24 

rs2304462 137 349 94 580 91.33 90.65 86.24 

rs28359542 137 349 94 580 91.33 90.65 86.24 

rs28371717 137 349 94 580 91.33 90.65 86.24 

rs28523978 137 349 94 580 91.33 90.65 86.24 

rs3116448 137 349 94 580 91.33 90.65 86.24 

rs315952 137 349 94 580 91.33 90.65 86.24 

rs3218611 137 349 94 580 91.33 90.65 86.24 

rs34372369 137 349 94 580 91.33 90.65 86.24 

rs35131721 137 349 94 580 91.33 90.65 86.24 

rs35767 137 349 94 580 91.33 90.65 86.24 

rs3731249 137 349 94 580 91.33 90.65 86.24 

rs3733182 137 349 94 580 91.33 90.65 86.24 

rs3764606 137 349 94 580 91.33 90.65 86.24 

rs3918234 137 349 94 580 91.33 90.65 86.24 

rs4586 137 349 94 580 91.33 90.65 86.24 

rs4645843 137 349 94 580 91.33 90.65 86.24 

rs4680 137 349 94 580 91.33 90.65 86.24 

rs4880 137 349 94 580 91.33 90.65 86.24 



32 

rs4925 137 349 94 580 91.33 90.65 86.24 

rs4986791 137 349 94 580 91.33 90.65 86.24 

rs4987023 137 349 94 580 91.33 90.65 86.24 

rs5030737 137 349 94 580 91.33 90.65 86.24 

rs5031015 137 349 94 580 91.33 90.65 86.24 

rs5444 116 256 24 396 77.33 66.49 22.02 

rs5746096 137 349 94 580 91.33 90.65 86.24 

rs5746129 137 349 94 580 91.33 90.65 86.24 

rs6165 137 349 94 580 91.33 90.65 86.24 

rs6265 137 349 94 580 91.33 90.65 86.24 

rs6267 137 349 94 580 91.33 90.65 86.24 

rs6330 137 349 94 580 91.33 90.65 86.24 

rs6647 137 349 94 580 91.33 90.65 86.24 

rs7412 137 349 94 580 91.33 90.65 86.24 

rs7530511 137 349 94 580 91.33 90.65 86.24 

rs8191995 116 256 24 396 77.33 66.49 22.02 

rs8191996 137 349 94 580 91.33 90.65 86.24 

rs8192284 137 349 94 580 91.33 90.65 86.24 

rs8192466 137 349 94 580 91.33 90.65 86.24 

rs9312870 137 349 94 580 91.33 90.65 86.24 

rs9331940 137 349 94 580 91.33 90.65 86.24 

Col_total 10465 26501 6958 43924 6976.67 6883.38 6383.49 

 

5.3.2 Chi-Square Test Results 

The chi-square tests are performed with the results in Table 10 and 11 on the number of 

counts. The results are shown in tables 12 and 13. From Table 12 and Table 13, the group of CN 

and AD and group of AD and MCI show significant differences since the p-values are less than α 

(0.05), but the group of CN and MCI doesn’t. The results could be due to the selections of the 

ADNI data. 

 



33 

Table 12. Chi-square test results with genes for each two groups 

 
CN and AD CN and MCI AD and MCI 

statistic 97.20337 4.926837 81.64699 

dof 53 53 53 

p-value 0.000205 1 0.006963 

 

Table 13. Chi-square test results with SSNPs for each two groups 

 
CN and AD CN and MCI AD and MCI 

statistic 125.313 6.305509 105.129 

dof 76 76 76 

p-value 0.00032 1 0.015121 

5.3.3 Hypothesis Test Results 

 The hypothesis tests are performed on the data in Table 11 for each SSNPs using the 

procedures described in Section 3.6. The two-tail F-test results are shown in Table 14 where T 

represents True and F for False. It shows that the variances between the CN and AD groups are 

statistically the same except for 3 SSNPs, while the variances between the CN and CMI groups 

and between AD and CMI groups are not.  

 

Table 14. F-test results for SSNPs between two groups 
 

CN and AD CN and MCI AD and MCI 

SNP p value 

count 

p value 

% 

var 

same 

p value 

count 

p value 

% 

var 

same 

p value 

count 

p value 

% 

var 

same 

rs10250905 5.0E-04 4.9E-01 T 3.6E-10 1.2E-06 F 2.2E-16 4.8E-04 F 

rs1042522 1.6E-01 1.5E-05 T 1.7E-11 2.1E-05 F 4.8E-06 2.2E-16 F 

rs1042713 9.0E-01 2.3E-03 T 5.2E-06 1.2E-12 F 1.1E-04 2.2E-16 F 

rs10458463 3.5E-01 1.2E-04 T 4.9E-08 2.6E-09 F 1.1E-04 2.2E-16 F 

rs1053266 8.9E-02 4.1E-06 T 2.8E-12 9.3E-05 F 5.8E-06 2.2E-16 F 

rs11096964 4.8E-01 2.9E-04 T 1.2E-10 3.4E-06 F 6.4E-07 2.2E-16 F 

rs11466045 2.1E-01 2.9E-05 T 1.4E-13 8.1E-04 F 1.1E-07 2.2E-16 F 

rs11466110 7.1E-01 1.0E-03 T 2.5E-06 4.8E-12 F 1.7E-04 2.2E-16 F 

rs11466112 1.7E-01 1.9E-05 T 6.2E-10 6.2E-07 F 3.9E-05 2.2E-16 F 
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rs11509439 6.5E-01 7.2E-04 T 3.9E-06 2.2E-12 F 3.3E-04 2.2E-16 F 

rs1151625 3.3E-01 9.8E-05 T 1.2E-06 1.8E-11 F 1.0E-03 2.2E-16 F 

rs11944159 2.6E-01 5.3E-05 T 6.1E-06 8.8E-13 F 4.7E-03 2.2E-16 F 

rs11953822 2.3E-01 3.7E-05 T 1.1E-12 2.0E-04 F 3.1E-07 2.2E-16 F 

rs12068997 2.2E-01 3.3E-05 T 5.4E-11 7.4E-06 F 4.6E-06 2.2E-16 F 

rs12260094 9.4E-01 4.5E-03 T 5.1E-09 5.3E-08 F 2.3E-07 2.2E-16 F 

rs12735019 3.5E-01 1.2E-04 T 8.4E-09 2.9E-08 F 3.3E-05 2.2E-16 F 

rs13306279 8.7E-01 5.9E-03 T 2.9E-03 2.2E-16 F 5.3E-03 2.2E-16 F 

rs13306281 3.0E-01 7.8E-05 T 1.8E-05 1.0E-13 F 6.7E-03 2.2E-16 F 

rs16948978 9.3E-01 2.7E-03 T 6.5E-09 4.0E-08 F 6.0E-07 2.2E-16 F 

rs17561 1.4E-01 1.1E-05 T 7.5E-11 5.4E-06 F 1.7E-05 2.2E-16 F 

rs17882252 8.7E-01 6.0E-03 T 1.3E-11 2.6E-05 F 1.4E-09 1.2E-13 F 

rs1799969 6.1E-02 1.7E-06 T 9.8E-10 3.8E-07 F 3.9E-04 2.2E-16 F 

rs1800234 9.0E-01 2.3E-03 T 7.0E-07 4.3E-11 F 2.5E-05 2.2E-16 F 

rs1800450 5.2E-02 1.3E-06 T 3.2E-13 4.7E-04 F 4.5E-06 2.2E-16 F 

rs1800888 1.4E-01 1.2E-05 T 2.0E-08 9.0E-09 F 4.9E-04 2.2E-16 F 

rs1801278 7.9E-01 1.5E-03 T 6.6E-14 1.3E-03 F 3.0E-10 2.0E-12 F 

rs1801282 7.9E-03 8.5E-01 T 7.4E-04 2.2E-16 F 2.1E-08 6.7E-16 F 

rs1801714 1.3E-01 1.8E-01 T 8.3E-05 3.1E-15 F 7.0E-07 2.2E-16 F 

rs1805149 4.5E-01 2.4E-04 T 6.3E-09 4.1E-08 F 1.3E-05 2.2E-16 F 

rs2070863 2.4E-01 4.2E-05 T 1.4E-10 2.9E-06 F 6.7E-06 2.2E-16 F 

rs2078478 5.6E-01 4.6E-04 T 6.3E-10 6.0E-07 F 1.2E-06 2.2E-16 F 

rs2227564 3.6E-01 1.3E-04 T 3.3E-09 9.0E-08 F 1.7E-05 2.2E-16 F 

rs2228671 1.8E-01 2.0E-05 T 6.2E-10 6.0E-07 F 3.7E-05 2.2E-16 F 

rs2232176 7.5E-01 9.4E-03 T 1.6E-09 2.1E-07 F 2.7E-08 4.4E-16 F 

rs2232183 8.2E-01 7.2E-03 T 9.4E-07 2.6E-11 F 6.4E-06 2.2E-16 F 

rs2234255 3.1E-01 8.5E-05 T 2.5E-10 1.6E-06 F 4.8E-06 2.2E-16 F 

rs2236722 7.9E-02 3.1E-06 T 7.1E-15 4.8E-03 F 1.8E-07 2.2E-16 F 

rs2279374 6.4E-01 1.5E-02 T 4.4E-14 1.7E-03 F 3.1E-12 2.3E-09 F 

rs2304462 3.4E-02 5.3E-07 F 8.9E-14 1.1E-03 F 4.7E-06 2.2E-16 F 

rs28359542 4.6E-02 9.8E-07 F 3.6E-08 4.1E-09 F 4.3E-03 2.2E-16 F 

rs28371717 6.6E-01 7.8E-04 T 2.1E-08 8.9E-09 F 7.3E-06 2.2E-16 F 

rs28523978 7.7E-01 9.0E-03 T 3.3E-10 1.2E-06 F 8.6E-09 3.8E-15 F 

rs3116448 3.9E-01 4.2E-02 T 1.2E-07 7.0E-10 F 5.1E-08 2.2E-16 F 

rs315952 5.9E-01 5.5E-04 T 6.1E-13 3.0E-04 F 6.7E-09 6.2E-15 F 

rs3218611 8.0E-01 1.5E-03 T 5.2E-09 5.2E-08 F 1.1E-06 2.2E-16 F 
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rs34372369 1.5E-01 1.5E-01 T 3.0E-07 1.9E-10 F 5.0E-09 1.1E-14 F 

rs35131721 3.0E-01 6.2E-02 T 1.3E-09 2.8E-07 F 4.4E-10 1.0E-12 F 

rs35767 3.5E-01 1.2E-04 T 9.9E-08 9.8E-10 F 1.7E-04 2.2E-16 F 

rs3731249 1.8E-01 2.2E-05 T 3.5E-09 8.2E-08 F 1.0E-04 2.2E-16 F 

rs3733182 3.4E-01 5.2E-02 T 1.3E-06 1.5E-11 F 2.5E-07 2.2E-16 F 

rs3764606 3.8E-01 1.5E-04 T 4.2E-12 6.7E-05 F 1.5E-07 2.2E-16 F 

rs3918234 2.9E-01 6.9E-05 T 5.1E-10 7.6E-07 F 9.3E-06 2.2E-16 F 

rs4586 1.1E-01 2.0E-01 T 1.6E-07 4.5E-10 F 1.2E-09 1.7E-13 F 

rs4645843 9.6E-01 3.0E-03 T 2.4E-09 1.3E-07 F 2.4E-07 2.2E-16 F 

rs4680 9.6E-01 4.2E-03 T 9.1E-10 4.0E-07 F 6.7E-08 2.2E-16 F 

rs4880 1.2E-01 7.6E-06 T 9.2E-11 4.4E-06 F 2.8E-05 2.2E-16 F 

rs4925 9.6E-01 3.0E-03 T 3.9E-10 1.0E-06 F 6.1E-08 2.2E-16 F 

rs4986791 7.4E-01 1.1E-03 T 1.6E-04 6.7E-16 F 2.9E-03 2.2E-16 F 

rs4987023 4.3E-01 3.5E-02 T 1.3E-08 1.6E-08 F 1.2E-08 2.0E-15 F 

rs5030737 3.9E-01 4.2E-02 T 6.8E-06 7.0E-13 F 1.7E-06 2.2E-16 F 

rs5031015 1.8E-01 2.1E-05 T 1.6E-08 1.2E-08 F 2.7E-04 2.2E-16 F 

rs5444 1.8E-01 1.2E-01 T 1.7E-10 2.6E-06 F 1.4E-11 2.9E-10 F 

rs5746096 4.9E-01 2.6E-02 T 5.8E-05 7.1E-15 F 2.5E-05 2.2E-16 F 

rs5746129 8.1E-01 1.6E-03 T 1.8E-07 3.7E-10 F 1.4E-05 2.2E-16 F 

rs6165 2.4E-01 8.6E-02 T 1.1E-05 2.8E-13 F 5.7E-07 2.2E-16 F 

rs6265 6.9E-01 1.2E-02 T 2.4E-08 7.2E-09 F 1.5E-07 2.2E-16 F 

rs6267 8.9E-03 3.7E-08 F 1.3E-07 6.6E-10 F 4.8E-02 2.2E-16 F 

rs6330 4.5E-01 2.3E-04 T 1.4E-06 1.4E-11 F 5.1E-04 2.2E-16 F 

rs6647 4.4E-01 2.3E-04 T 1.3E-10 3.0E-06 F 9.4E-07 2.2E-16 F 

rs7412 7.1E-01 1.0E-03 T 5.8E-10 6.6E-07 F 4.0E-07 2.2E-16 F 

rs7530511 8.5E-02 3.7E-06 T 5.8E-09 4.5E-08 F 6.1E-04 2.2E-16 F 

rs8191995 3.5E-01 4.9E-02 T 4.5E-14 1.8E-03 F 1.7E-13 9.3E-08 F 

rs8191996 5.2E-01 3.8E-04 T 5.1E-07 7.5E-11 F 1.6E-04 2.2E-16 F 

rs8192284 3.9E-01 1.6E-04 T 6.9E-11 5.8E-06 F 9.3E-07 2.2E-16 F 

rs8192466 7.0E-01 9.3E-04 T 4.7E-10 8.2E-07 F 3.8E-07 2.2E-16 F 

rs9312870 1.2E-01 7.8E-06 T 3.3E-10 1.2E-06 F 6.1E-05 2.2E-16 F 

rs9331940 1.7E-01 1.3E-01 T 1.5E-06 1.2E-11 F 3.3E-08 2.2E-16 F 

 

 The t-test results are shown in Table 15. It shows that all SSNPs are significant for all the 

groups except rs1800450 and rs6647 for the groups between CN and MCI. 
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Table 15. T-test results for all SSNPs between two groups 
 

CN and AD CN and MCI AD and MCI 

SNP p value 

count 

p value 

% 

SNP 

SIG 

p value 

count 

p value 

% 

SNP 

SIG 

p value 

count 

p value 

% 

SNP 

SIG 

rs10250905 6.0E-214 3.0E-198 T 0.0E+00 3.0E-85 T 0.0E+00 9.1E-126 T 

rs1042522 1.2E-174 2.2E-42 T 0.0E+00 1.1E-04 T 0.0E+00 3.9E-28 T 

rs1042713 9.4E-174 1.6E-42 T 0.0E+00 4.7E-04 T 0.0E+00 8.5E-30 T 

rs10458463 8.2E-173 4.4E-42 T 0.0E+00 2.7E-03 T 0.0E+00 3.1E-29 T 

rs1053266 2.0E-177 3.6E-44 T 0.0E+00 1.5E-05 T 0.0E+00 1.6E-28 T 

rs11096964 4.9E-173 6.6E-47 T 0.0E+00 3.4E-10 T 0.0E+00 7.4E-29 T 

rs11466045 8.5E-174 2.8E-39 T 0.0E+00 3.2E-03 T 0.0E+00 2.7E-27 T 

rs11466110 3.9E-174 4.6E-44 T 0.0E+00 3.2E-06 T 0.0E+00 3.3E-29 T 

rs11466112 9.0E-176 1.1E-47 T 0.0E+00 2.1E-08 T 0.0E+00 1.3E-29 T 

rs11509439 3.0E-175 5.5E-48 T 0.0E+00 3.9E-05 T 7.5E-307 3.5E-32 T 

rs1151625 1.4E-172 2.4E-43 T 0.0E+00 3.2E-05 T 6.5E-294 1.0E-28 T 

rs11944159 6.7E-167 4.1E-38 T 0.0E+00 9.9E-08 T 1.8E-276 7.3E-24 T 

rs11953822 3.6E-184 7.1E-52 T 0.0E+00 1.5E-08 T 0.0E+00 2.0E-32 T 

rs12068997 7.5E-179 4.7E-50 T 0.0E+00 6.7E-08 T 0.0E+00 1.8E-31 T 

rs12260094 4.3E-179 1.0E-44 T 0.0E+00 2.3E-04 T 0.0E+00 2.2E-31 T 

rs12735019 2.1E-175 2.8E-47 T 0.0E+00 4.4E-05 T 0.0E+00 2.3E-31 T 

rs13306279 6.0E-171 9.9E-41 T 0.0E+00 6.4E-08 T 1.7E-284 1.6E-26 T 

rs13306281 5.8E-176 5.7E-46 T 0.0E+00 1.7E-03 T 3.1E-282 2.9E-31 T 

rs16948978 8.2E-177 2.6E-47 T 0.0E+00 2.6E-07 T 0.0E+00 4.0E-31 T 

rs17561 1.6E-175 5.0E-43 T 0.0E+00 1.7E-06 T 0.0E+00 1.9E-27 T 

rs17882252 3.0E-180 1.3E-54 T 0.0E+00 1.6E-13 T 0.0E+00 1.7E-33 T 

rs1799969 1.6E-173 1.0E-39 T 0.0E+00 1.5E-04 T 3.4E-299 4.1E-26 T 

rs1800234 3.5E-171 8.8E-44 T 0.0E+00 1.9E-04 T 0.0E+00 2.2E-30 T 

rs1800450 3.8E-167 7.8E-35 T 0.0E+00 6.6E-02 F 0.0E+00 5.3E-25 T 

rs1800888 4.7E-174 6.7E-42 T 0.0E+00 2.0E-03 T 1.5E-299 1.7E-28 T 

rs1801278 1.9E-184 5.4E-49 T 0.0E+00 6.5E-05 T 0.0E+00 1.3E-33 T 

rs1801282 1.4E-204 4.3E-188 T 0.0E+00 3.5E-76 T 0.0E+00 2.5E-106 T 

rs1801714 1.2E-170 2.6E-43 T 0.0E+00 5.3E-06 T 0.0E+00 3.7E-31 T 

rs1805149 2.5E-173 7.9E-42 T 0.0E+00 3.6E-06 T 0.0E+00 1.9E-27 T 

rs2070863 1.1E-176 2.8E-44 T 0.0E+00 3.9E-07 T 0.0E+00 3.4E-28 T 

rs2078478 3.6E-177 7.9E-47 T 0.0E+00 1.4E-06 T 0.0E+00 1.1E-30 T 

rs2227564 2.2E-175 1.3E-42 T 0.0E+00 2.1E-06 T 0.0E+00 1.1E-27 T 
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rs2228671 5.7E-176 9.4E-42 T 0.0E+00 1.7E-04 T 0.0E+00 7.4E-28 T 

rs2232176 2.1E-179 1.4E-47 T 0.0E+00 2.0E-05 T 0.0E+00 6.3E-33 T 

rs2232183 2.8E-174 3.6E-45 T 0.0E+00 1.1E-06 T 0.0E+00 2.4E-30 T 

rs2234255 2.0E-180 1.5E-50 T 0.0E+00 4.9E-06 T 0.0E+00 7.4E-33 T 

rs2236722 1.2E-179 2.3E-51 T 0.0E+00 8.1E-05 T 0.0E+00 2.1E-33 T 

rs2279374 2.6E-180 2.0E-47 T 0.0E+00 8.3E-04 T 0.0E+00 1.7E-34 T 

rs2304462 1.0E-142 3.8E-31 T 0.0E+00 9.0E-07 T 0.0E+00 3.7E-25 T 

rs28359542 2.8E-143 4.1E-33 T 0.0E+00 3.9E-07 T 3.5E-280 1.1E-26 T 

rs28371717 8.9E-180 1.2E-44 T 0.0E+00 6.9E-04 T 0.0E+00 5.3E-31 T 

rs28523978 2.2E-179 3.4E-52 T 0.0E+00 1.9E-08 T 0.0E+00 2.5E-34 T 

rs3116448 1.5E-169 2.3E-39 T 0.0E+00 1.4E-03 T 0.0E+00 2.0E-29 T 

rs315952 3.1E-180 1.4E-50 T 0.0E+00 4.0E-08 T 0.0E+00 1.6E-32 T 

rs3218611 3.4E-176 4.5E-41 T 0.0E+00 1.1E-02 T 0.0E+00 6.4E-30 T 

rs34372369 1.7E-176 1.3E-47 T 0.0E+00 5.7E-07 T 0.0E+00 1.5E-33 T 

rs35131721 3.8E-175 6.0E-48 T 0.0E+00 1.5E-06 T 0.0E+00 1.5E-33 T 

rs35767 1.7E-175 3.2E-43 T 0.0E+00 3.4E-09 T 0.0E+00 1.2E-26 T 

rs3731249 3.2E-175 5.9E-41 T 0.0E+00 4.1E-06 T 0.0E+00 1.9E-26 T 

rs3733182 7.3E-180 2.3E-50 T 0.0E+00 3.9E-04 T 0.0E+00 2.3E-36 T 

rs3764606 7.8E-177 9.5E-45 T 0.0E+00 2.4E-04 T 0.0E+00 2.1E-30 T 

rs3918234 4.3E-180 9.2E-49 T 0.0E+00 1.2E-05 T 0.0E+00 6.9E-32 T 

rs4586 2.9E-176 2.0E-45 T 0.0E+00 2.7E-02 T 0.0E+00 5.1E-36 T 

rs4645843 5.8E-179 1.4E-48 T 0.0E+00 9.4E-03 T 0.0E+00 6.9E-35 T 

rs4680 1.7E-175 1.9E-46 T 0.0E+00 8.7E-06 T 0.0E+00 1.3E-31 T 

rs4880 3.2E-177 7.8E-48 T 0.0E+00 2.0E-07 T 0.0E+00 5.5E-30 T 

rs4925 7.9E-184 1.2E-47 T 0.0E+00 3.3E-06 T 0.0E+00 4.8E-32 T 

rs4986791 1.1E-171 2.9E-40 T 0.0E+00 3.9E-07 T 5.4E-288 3.3E-26 T 

rs4987023 1.1E-176 4.8E-47 T 0.0E+00 8.6E-04 T 0.0E+00 2.3E-34 T 

rs5030737 2.9E-172 2.5E-46 T 0.0E+00 1.1E-05 T 0.0E+00 1.6E-32 T 

rs5031015 5.3E-174 4.3E-44 T 0.0E+00 4.5E-08 T 1.8E-303 1.9E-27 T 

rs5444 1.9E-210 3.6E-192 T 0.0E+00 6.7E-87 T 0.0E+00 7.9E-109 T 

rs5746096 2.2E-168 1.6E-41 T 0.0E+00 3.3E-06 T 0.0E+00 1.2E-28 T 

rs5746129 7.7E-172 2.4E-40 T 0.0E+00 3.0E-04 T 0.0E+00 3.5E-28 T 

rs6165 1.7E-169 1.7E-40 T 0.0E+00 3.0E-04 T 0.0E+00 5.0E-30 T 

rs6265 9.8E-174 3.0E-44 T 0.0E+00 8.7E-04 T 0.0E+00 6.5E-32 T 

rs6267 1.2E-134 3.4E-30 T 0.0E+00 4.4E-05 T 9.2E-256 2.3E-25 T 

rs6330 1.9E-173 1.3E-40 T 0.0E+00 2.1E-04 T 1.2E-301 1.1E-27 T 
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rs6647 1.9E-175 1.2E-39 T 0.0E+00 5.5E-02 F 0.0E+00 4.1E-29 T 

rs7412 9.7E-172 2.3E-43 T 0.0E+00 1.3E-03 T 0.0E+00 1.6E-30 T 

rs7530511 5.3E-172 1.5E-40 T 0.0E+00 1.5E-04 T 9.4E-295 9.8E-27 T 

rs8191995 1.6E-212 3.9E-194 T 0.0E+00 2.2E-91 T 0.0E+00 1.7E-111 T 

rs8191996 6.6E-177 1.6E-47 T 0.0E+00 1.7E-05 T 0.0E+00 1.5E-31 T 

rs8192284 4.2E-177 2.5E-47 T 0.0E+00 2.5E-04 T 0.0E+00 5.2E-32 T 

rs8192466 3.5E-175 2.4E-41 T 0.0E+00 4.8E-03 T 0.0E+00 1.2E-29 T 

rs9312870 6.5E-175 2.0E-41 T 0.0E+00 2.3E-03 T 0.0E+00 3.3E-28 T 

rs9331940 1.7E-177 2.4E-50 T 0.0E+00 1.8E-05 T 0.0E+00 3.5E-36 T 

 

CHAPTER 6 DISCUSSION 

6.1 SSNPs for Biomarkers of AD  

The hypothesis test results from the t-test indicate that all the SSNPs predicted by IECP 

are significant between CN and AD groups. These SSNPs are linked to AD through different 

pathways. They act as biogenetic and epigenetic activators leading to AD or targets for therapies 

to treat AD. The genes associated with these SSNPs play certain important roles in AD diagnosis, 

treatments, and prevention. These SSNPs can be considered as biomarkers in the research of AD 

and related dementia. 

6.2 Relations between Genes and AD 

As shown in Table 8 and Table 9, 54 genes with 77 SSNPs predicted by PSPCPEP are in 

the ADNI database. To validate the result, these genes are checked with research publications to 

find their link to AD. 

ABCG2: it is a gene in the ABC transporters pathway of AD. The gene codes an Aβ 

transporter protein and has been found to be significantly up regulated in Alzheimer's disease [41]. 

ADRB: this gene is found in the calcium signaling pathway. It codes for the beta-2 

adrenergic receptors, which regulate cognitive function. Mutations in this gene can affect the 

signaling between neurons in the brain [45]. 

APOE: it is one of the main genes that is responsible for AD, since its codes for the 

apolipoprotein responsible for synthesizing the Aβ protein. More specifically, the ε4 allele of the    

gene increases the risk of AD [46]. 
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ATP8B3:  this gene is present in the vesicular pathway, which is used in many cellular 

functions. The gene was identified using a network modeling algorithm. The algorithm was 

developed to find overlapping candidate genes [47]. 

BDNF: it codes for a protein called a brain derived neurotrophic factor. These proteins 

maintain synaptic plasticity in the neurons in the brain, making it important for cognitive functions. 

Since AD is a synaptic disease, the gene is considered as a potential biomarker for AD [42]. 

CCDC6: it is a gene that was found to have a relationship to AD using the genome wide 

association study [48].  

CCL2: it is a gene that codes for the Chemokine C-C motif ligand, which is upregulated in 

the case of AD. The gene was studied in mice, using the mouse model of tauopathy [49].  The 

protein produced by the gene produces microglia induced Aβ oligomerization. 

CDKN2A: it codes for the Cyclin-dependent kinase inhibitor protein, which is important 

in cellular aging [50]. The protein was found to be a biomarker for AD, since aging neurons are a 

big cause for AD.   

CLU: this is the gene that codes for clustering, a protein that is expressed under cellular 

stress. Its role in lipid transport and immune modulation makes it an important protein for cells. 

The protein is an important biomarker for AD [51]. 

COL11A1: this gene has been identified as a candidate AD gene in genetic association 

studies. It codes for a protein important to cell adhesion [52]. 

COMT: this gene codes for the catechol-O-methyltransferase protein and has a synergistic 

effect with APOE that makes it a biomarker for AD [53]. 

COX10: this codes the cytochrome C oxidase protein, which serves the mitochondrial 

electron transport chain. The gene was found to be significantly downregulated in AD patients 

[54]. 

CYP19A1: this gene is associated with the biosynthesis of estrogen, which is significantly 

associated with AD [55]. 

EPHA1: this gene was found in the genome wide association study of AD. It is specifically 

found in late onset AD patients [56]. 

FAM114A1: this gene was found to have a relationship by using gene set enrichment 

analysis [57].   
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FAS: this gene is associated with apoptosis or cell death. Apoptosis affects all cells, 

including neurons. Because of this, the gene is associated with AD [58].  

FSHR: this gene codes for the follicle-stimulating hormone receptor. It determines human 

fertility. It was found in a gender specific AD study that links the disease with fertility [59].  

GBA2: this gene codes for the β-glucocerebrosidase enzyme, which was found to have an 

association with Parkinson’s disease [60].  

GNB3: this gene codes for the G protein β3 subunit, part of the G-protein receptor. This 

protein was found to have a relationship with ADRB3. Both genes contribute to AD [61]. 

GSTM1: this gene codes for the protein glutathione, which protects cells from damage 

caused by oxidation. Underrepresentation of this gene is linked to AD [62]. 

GSTO1: this gene codes the glutathione S-transferase protein, which is also part of the 

glutathione pathway [63]. 

ICAM1: this gene codes for the Inter-Cellular Adhesion Molecule, which is involved in 

cell-to-cell interactions. The gene has a peripheral role with AD [64]. 

IGF1: this gene is important in the synthesis of insulin. Lower levels of IGF1 were found 

to be a contribution to AD [65]. 

IL1A: this gene codes for the interleukin protein, which is important in the inflammatory 

pathway. It was found that this gene could increase the risk of AD [66]. 

IL1RN: this gene is associated with signal transduction through IL-1R. Significant 

transcriptional up regulation of this gene was found in AD patients which could play an important 

group-specific role in AD pathophysiology [67]. 

IL23R: this gene encodes Inhibition of interleukin-23 receptor and was found being 

associated AD in a Northern Han Chinese population [68]. 

IL6R: this genes codes the interleukin 6 (IL6) receptor protein whose polymorphisms could 

modify IL6 signaling and affect AD pathogenesis directly or indirectly [69]. 

IRS1: this gene is associated with neurotrophic signaling pathway and plays key roles in 

regulating growth and survival, metabolism, and aging. It was found that its phosphorylation is 

increased in the brains of AD patients [70]. 

LDLR: this gene is linked to ovarian steroidogenesis. Its variants were found to be 

significantly associated with AD [71]. 



41 

LIME1: this gene encodes a transmembrane adaptor protein that links the T and B-cell 

receptor stimulation. It was found that this gene could modulate the metabolism of APP and link 

to AD [72]. 

LLGL1: this gene encodes a protein that is similar to a tumor suppressor in Drosophila 

which is part of a cytoskeletal network. It is one of the genes associated with most significantly 

enriched gene ontology terms potentially linked to AD [73]. 

MBL2: this gene encodes the soluble mannose-binding lectin or mannose-binding protein 

is an important element in the innate immune system. It was found that its two haplotypes, LXP 

and LYQ, were significantly associated with AD risk [74]. 

MEFV: this gene encodes a protein called pyrin (also known as marenostrin) that is an 

important modulator of innate immunity. It is one of the key genes associated with familial 

Mediterranean fever. Its variants are found to be associated with sporadic early-onset Alzheimer's 

disease in an Italian population [75]. 

NGF: this gene is a member of the NGF-beta family and encodes a secreted protein which 

homodimerizes and is incorporated into a larger complex. It is a protein that exerts 

pharmacological effects on a group of cholinergic neurons known to atrophy in AD [76]. 

NME8: this gene is known to be responsible for primary ciliary dyskinesia type 6. It was 

found to play a role in lowering the brain neurodegeneration related to AD [77]. 

NOS3: this gene acts as a biologic mediator in several processes, including 

neurotransmission and antimicrobial and antitumoral activities. It was found that the Glu298Asp 

polymorphism of this gene could be a genetic risk factor for late-onset AD, especially in Chinese 

population [78]. 

NTF3: the protein encoded by this gene controls survival and differentiation of mammalian 

neurons and is closely related to both nerve growth factor and brain-derived neurotrophic factor. 

Its polymorphism was found to be a relevant risk factor for AD [79]. 

OTULIN: this gene is associated with the peptidase C65 family of ubiquitin isopeptidases, 

which remove ubiquitin from proteins. It can regulate the linear ubiquitin chain assembly complex 

which was linked to AD and related dementias [80].  

PCK1: this gene is a main control point for the regulation of gluconeogenesis. Its 

polymorphisms were found to be strongly associated with AD [81]. 
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PLA2G3: this gene encodes a protein in the secreted phospholipase A2 family which 

functions in lipid metabolism. It is the most overexpressed gene in a human neuronal model of 

oxidative stress and found to be associated with AD [82]. 

PLAU: this gene encodes a serine protease that converts plasminogen to plasmin. Its 

variant was found to have a genetic and functional involvement in the pathogenesis of AD [83]. 

PPARA: this gene encodes the subtype Peroxisome Proliferator-Activated Receptor  

(PPAR)-alpha, which is a nuclear transcription factor. It is an important factor regulating 

autophagy in the clearance of Aβ and a potential therapeutic target for AD [84]. 

PPARG: this gene encodes a member of the PPAR subfamily of nuclear receptors 

regulating amyloidogenic pathways. Its Pro12Ala polymorphism may modify the age at onset of 

AD [85]. 

PRDM7: the protein encoded by this gene has a role in transcription and other nuclear 

processes. Its variants could be linked to several neurodegenerative diseases, including AD [86]. 

SERPINA1: this gene is associated with complement and coagulation cascades pathway. 

Its isoforms was found to be linked to AD and could be an interesting diagnostic supplement to 

the related dementia [87]. 

SERPINF2: this gene encodes a member of the serpin family of serine protease inhibitors. 

It has connections to the elements of the amyloid machinery and plays a role in the onset of AD 

[88]. 

SOD2: the protein encoded by this gene belongs to the iron/manganese superoxide 

dismutase family. Its polymorphism was found as a risk factor for AD in Polish population [89]. 

SORT1: this gene encodes a member of the VPS10-related sortilin family of proteins. Its 

genetic variant was identified as being associated with reduced risk of AD [90]. 

STK32B: this gene encodes a serine-threonine protein kinase which transfers phosphate 

molecules to the oxygen atoms of serine and threonine. It was found that this gene could have been 

associated with AD [91]. 

TRL4: the protein encoded by this gene belongs to the toll-like receptor family which plays 

a fundamental role in pathogen recognition and activation of innate immunity. It was identified as 

a promising therapeutic target in AD treatment [92]. 
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TNF: this gene encodes a multifunctional proinflammatory cytokine that belongs to the 

tumor necrosis factor superfamily. Its involvement in the pathogenesis of AD has been classified 

[93]. 

TP53: this gene encodes a tumor suppressor protein containing transcriptional activation, 

DNA binding, and oligomerization domains. Its mutations in exon 7 may be associated with 

pathogenesis of AD [94]. 

TREM2: the protein encoded by this gene forms a receptor signaling complex with the 

tyrosine kinase binding protein. This gene was suggested as a potential therapeutic target for AD 

[95]. 

6.3 Limitations 

The ADNI database selected for this project consists of a total of 644 samples with 150 in 

CN group, 109 in AD group, and 385 in CMI group. These are not much from the statistical point 

of view.  For more accurate results more samples should be collected for the study. In the 

hypothesis tests, they are performed with respect to each SSNPs which also limit the scope of the 

tests. The hypothesis should also be done with a combination of SSNPs associated with a gene or 

a number of genes in the same biological pathway. Such tests will provide more inside to the effect 

of SSNP combinations on AD and MCI. In addition, it can improve the accuracy of the results 

with more factors to be considered. 

 

CHAPTER 7 CONCLUSIONS 

 

A systematic approach for identification of biomarkers in AD and related dementia is 

developed in this project. A novel IECP software tool including SNPPGM, PSFCPM, and SAM is 

implemented for large-scale bioinformatic data processing. A total of 219 genes and 202,827 SNPs 

were processed and 54 genes and 77 SNPs were found to be significant between the control group 

and AD group with the samples obtained from the ADNI database. These SSNPs can be used as 

biomarkers for future study of AD and related dementia to explore more genetical and biological 

factors. It can also help to accelerate the development of new diagnosis methods, medications, 

treatment therapies, and prevention tools. IECP is a general epigenetic pipeline and can be used 

for studying the genes and SNPs related to any other type of diseases such as pancreatic cancer. 
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CHAPTER 8 FUTURE WORK AND RESEARCH 

 

Immediate work that can be done is to implement a SNP collecting module and integrate 

it into the IECP. Given a list of genes, the IECP can automatically collect all the SNPs associated 

with these genes from a given database such as NCBI. All the collected SNPs will be automatically 

processed by IECP. The results of statistical analysis will be outputted by IECP at the final stage. 

There is no manual process required in the entire flow. The IECP will be an effective and efficient 

tool for researchers to study SNP’s epigenetic relations to any disease. 

The metric parameters used in significant SNP prediction should be further studied and 

tuned with more experiments to increase the accuracy of the prediction. The prediction results 

should be verified with more databases, such as UniProt, in addition to PDB to improve the 

prediction credibility. The number of samples for each group including control group and disease 

group in the study should be increased as many as possible to assure that the statistical results are 

correct and reliable. 

 Statistical analysis can be enhanced by extending the single SNP analysis to a group of 

SNPs or even multiple groups of SNPs together. Statistical analysis performed on multiple SNPs 

can explore inter correlations between different SNPs or genes on a disease and its related 

dementia.   
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