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Abstract 

Mild Cognitive Impairment and Alzheimer’s Disease Detection and Testing Interface (MCI-AD-

DTI) Modeller10.4 Integrating Structure-Function Prediction Modules 

By Grant Galileo Jacobson 

In the population of adult human patients who over express Beta and Tau Amyloids, it is unclear 

why 40% of them do not have Alzheimer’s Disease (AD), when all patients with AD have an 

overexpression of Beta and Tau Amyloids. The MCI-AD-DTI project’s epigenetic pipeline is an 

evolving computation tool that seeks epigenetic-related information related to the observed 

disparity. The MCI-AD-DTI’s epigenetic pipeline’s ability to identify mutations currently relies 

solely on PyPDB for verification of its protein functionality evaluation. The assessment process 

of the industry standard application, Modeller10.4, is independent from the current epigenetic 

pipeline’s protein evaluation algorithm. Thus, this project concludes that integrating 

Modeller10.4, with its protein modeling, would contribute through an increase in the ability to 

distinguish between which Single Nucleotide Polymorphic (SNP) mutations change 

functionality.  

Keywords: Alzheimer’s Disease, Mild Cognitive Impairment, Epigenetics, Modeller, SNP  
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Chapter 1  

Introduction 

Alzheimer’s Disease (AD) is responsible for 70% of the reported cases of dementia 

worldwide [1]. AD has been diagnosed by the two proteins amyloid beta (A𝛽) and tau for many 

years [2]. A𝛽 are peptides which come from the amyloid precursor protein that promote the 

growth of neurons [2]. In AD, amyloid beta is heavily clustered in the brain. This clustering 

disrupts A𝛽s true function and leads to neural degeneration. Tau supports microtubules which 

help neurons stay healthy. In a brain that has AD, tau gets tangled up in the part of the brain that 

is associated with memory. After numerous studies, it has been determined that the onset of AD 

cannot be solely caused by high levels of A𝛽 and tau in the brain, because, out of the population 

that displays the relatively high amounts of tau and A𝛽, 40% of these over-expressers are 

cognitively normal functioning individuals [3]. It was concluded that A𝛽 and tau can be used to 

diagnose AD, but there are one or more unknown factors that are the key to the onset of AD. 

This has culminated in attempts being made to discover these unknown factors through 

analyzing single nucleotide polymorphisms that are associated with cognitive decline [4].  

Evaluations of such undiscovered factors which fill in the gaps left by the A𝛽 and tau 

hypothesis, the epigenome is the most likely candidate [5]. Epigenetics is defined as heritable 

changes in gene expression that are, unlike mutations, not attributable to alterations in the 

sequence of DNA [6]. The long-term aim of the proposed effort is to identify purposeful 

genomic-based epigenetic biomarkers that can help identify the onset of AD and mild cognitive 

impairment (MCI) sooner than it is currently achievable [7],[8].  

One of the projects seeking to address these undiscovered factors is the epigenetic 

pipeline of the Mild Cognitive Impairment and Alzheimer’s Disease Detection and Testing 
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Interface (MCI-AD-DTI), started by Professor Leonard Wesley and staffed by his students in the 

Bioinformatics department of San Jose State University. This project was started when Professor 

Wesley bore witness to the tedium and time investment required to search through medical data 

archives for epigenetic information. The MCI-AD-DTI project, upon completion, will drastically 

increase the efficiency of epigenetics research while maintaining, or even exceeding, the quality 

and reliability in its results, as though the researcher had done it themselves. The MCI-AD-DTI 

project is using AD as a model to train and test its results due to the wealth of data available. In 

addition, AD is being utilized for the potential benefits to the medical community resulting from 

any insights the MCI-AD-DTI project can discern into the epigenetic nature of AD.  

This project seeks to create a Python based Structure-Function Prediction Modules to 

demonstrate a potential improvement of the MCI-AD-DTI project’s protein evaluation code 

module. The Structure-Function Prediction Modules of this project uses the industry standard 

protein modeling application Modeller10.4 for its protein modeling qualities. The validation of 

the new module is performed with a code snippet derived from the existing PyPDB integration 

with the MCI-AD-DTI project’s epigenetic pipeline’s protein evaluation module. 
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Chapter 2  

Background 

This section gives a detailed description of the motivation for why this project is being 

built to seek out those proteins whose epigenetic link to AD remains undiscovered, as of yet. 

2.1 Alzheimer’s Disease Explained 

AD is a type of dementia [9] that is a progressive neurodegenerative disorder [10]-[13] and is 

increasingly recognized as a “synaptic disease” [5]. In addition, AD is characterized holistically 

by the disintegration of the nervous system [14], and characterized in series by episodic memory 

impairment [13],[15], temporal and spatial confusion [16], degeneration and then loss of 

language/attention/planning/reasoning [10]-[12],[16], increasingly severe loss of cognitive 

function [10]-[13], and finally death [17]. While AD is not the only illness responsible for such 

symptoms, AD is an epidemic [18] and the most common age-associated neurodegenerative 

disorder as it is the leading cause of dementia [5],[14],[19],[20]. Specifically, up to 1 in 5 of the 

community- dwelling older adults aged 65 years and above suffer from MCI [21]. Between 10–

15% of patients with MCI may develop dementia each year [22], with the remaining being split 

among: about 45% of MCI patients maintain stable, 28% progress to AD and 15% return to 

normal status without recurrence [23]. AD has impacted approximately 47 million or 0.6% of the 

global population in 2015 [9] with an estimated progression to 75.6 million in 2030 [24],[25], 

which is extended further to about 1 in 85 individuals over the age of 65 years predicted to be 

suffering from AD by 2050 [26]. In addition to the human tragedy, AD is already the most 

expensive disease in the United States at $305 billion/year, which is projected to rise 

dramatically [27]. Moreover, AD is one of the most well-known diseases in the world due to its 
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prevalence, the precise cause of the disease is not known, and that the treatments do not modify 

its progression [1],[13],[28]-[30]. Explicitly, the only approved treatments offer modest 

symptomatic improvement absent any actual slowing of disease progression [12],[20], and, 

overall, there is no cure [13]. Given the prevalence and impact of AD, there is a pressing need 

for development of reliable diagnostic biomarkers that can detect the disease pathology at its 

incipient stages, i.e., at or even prior to the onset of the ineluctable behavioral and cognitive 

deficits associated with AD [31].  

2.2 Amyloid Hypothesis 

The Amyloid hypothesis, which is the hypothesis responsible for the first model used to 

try and understand AD, is best summarized in the following manner:  

Prior to 1991, the pathogenic mechanisms underlying AD were unknown. This 

situation changed when mutations in β-amyloid precursor protein (APP) were 

shown to cause familial autosomal dominant AD (FAD). β-amyloid (Aβ) is the 

primary constituent of the amyloid plaques characteristic of the disease 

(reviewed in [11]). Soon after this discovery, mutations in the presenilin-1 and -2 

genes were linked to FAD. These genes encode the catalytic subunits of γ-

secretase, which generates the fibrillogenic Aβ C-terminus [11]. In carriers of 

these mutations, amyloid plaques appear first, and the AD that follows resembles 

the common sporadic form, including tau pathology, inflammation, and cognitive 

impairment. These observations led to the amyloid hypothesis, which became 

the focus for therapeutic intervention. [20] 

However, despite the genetic and cell biological evidence that supports the amyloid hypothesis, 

it is becoming clear that AD etiology is complex and that Aβ alone is unable to account for all 

aspects of AD [4],[13],[21],[32],[33]. For instance, previous work has reported that the amyloid 
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hypothesis has resulted in false positives and demonstrated a weak to moderate association 

between Aβ and the degree of cognitive function [21],[34],[35], for between 30% and 40% of 

normal individuals showed high levels of Aβ and tau [3],[36]. This objection is further supported 

by the fact that vast overproduction of Aβ peptides in the mouse brain failed to cause 

neurodegeneration [13] and that recent neuroimaging studies confirm the previous autopsy 

findings that some AD patients show no amyloid deposits in PET (positron emission 

tomography) scans [37],[38]. Similarly, repeated failures of clinical trials of anti-Aβ therapies 

suggest that there may be pathogenic protein independent factors in AD pathogenesis 

[13],[39],[40]. Two instances demonstrating this are that amyloid clearance with different 

antibodies was confirmed by PET imaging, but the treatment produced no cognitive benefit [20], 

and a treatment which reduced Aβ in the cerebrospinal fluid (CSF) by at least 75% failed to 

preserve cognition [41]. 

2.3 Importance of Researching Genes 

For AD, the molecular pathway associated with it is already characterized by Kyoto 

Encyclopedia of Genes and Genomes (KEGG) data-base 

(https://www.genome.jp/pathway/hsa05010) [5]. This pathway contains dozens of genes, such as 

APP, presenilin 1 (PSEN1), presenilin 2 (PSEN2), and b-secretase 1 (BACE1) to name a few. 

These genes in turn have important mutations, such as Icelandic APP mutation (A673T) which 

[1] used to prevent the development of AD during in vitro experiments. However, the KEGG AD 

pathway is not the only approach being taken to investigate the genetic causes of AD. [21] 

researched the following 15 genes that [4] found to be associated with the glutathione pathway: 

TMEM14A, RPS16P5, MLIP-IT1, MIR5685, MCM3, LRRC1, GSTA7P, GSTA5, GSTA3, 

GSTA2, GFRAL, GCM1, FBXO9, FAM83B, and ELOVL5. This resulted in [21] identifying 
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that the single nucleotide morphism identified as rs10000007 played a significant role toward 

one of the genes involved in the survival of neurons on ectodermal cells in humans. While 

already quite diverse, the scientific community has barely scratched the surface upon which 

genes are indirectly responsible for AD as well as what are the most relevant genetic mutations 

that either hinder or accelerate the onset of AD. 

2.4 Validity of an in Silico Approach to Investigating Alzheimer’s Disease 

In regards to biological experiments it is vital to understand the difference between in 

vitro experiments, in vivo experiments, and in silico experiments. In vitro experiments are those 

done to a living organism inside a petri dish, which usually lacks the context of how the 

experiment would function within a healthy and whole variant of the organism. In vivo 

experiments are those done to the whole of living organisms, with the organism outside a petri 

dish. These can be done in both humans and animals, and these experiments are considered to 

generate the highest quality data. In silico experiments are those done in simulation, with the 

simulation based upon the real-world data of the medical community's understanding of how the 

relevant biological processes function. Verification of the potency of in silico techniques has 

been demonstrated on multiple occasions. The first relevant example of in silico techniques 

being utilized is by [1] to calculate possible off-target events for their sgRNA. The results of the 

in silico testing, which stated the only off-target event for their sgRNA, when there were two or 

fewer mismatches, was a single event isolated to a non coding region [1]. For [1] this was a 

critical step for their project, as one of the essential factors is to ensure the delivery is safe and 

efficient. The second example of in silico techniques being utilized is by [42]. This occurred 

when their in silico prediction of how Cu(II) would interact with the early AD marker ẟ-ALA-D, 

was later in vivo corroborated by [43]. 



7 

 

 

2.5 Technical Gap 

While the scientific literature on AD is expansive in both the breadth and depth, and the 

genetic relationships that are thought to be responsible for AD’s onset and progression, there still 

exists a large technical gap in both the existing open questions and those genes and mutations 

that remain unexamined. The most prominent open question is why the amyloid hypothesis 

mismatches with real world experiments, as several of the papers have noted AD patients who 

did not have the Aꞵ overexpression, and several other papers noted cognitively healthy patients 

who did have the Aꞵ overexpression. The concern for the unexamined genes and mutations is 

instead how complicated the known AD genetic pathways are, a concern further illustrated by 

even those papers that purport to expand the sphere of knowledge about the AD pathway, as they 

lament how vast the extent to which the genetic relationships remain unexplored. Thus, the Mild 

Cognitive Impairment and Alzheimer’s Disease Detection and Testing Interface (MCI-AD-DTI) 

project seeks to step in as a tool to greatly accelerate the scientific community’s advance into the 

remaining unexplored relationships and hasten towards the answering of the open questions that 

continue to elude humanity in its endeavors to research and treat this disease. 
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Chapter 3  

Approach 

The fundamental approach of this project is to integrate the Modeller10.4 application into 

a Structure-Function Prediction Modules that emulates the protein evaluating module of the Mild 

Cognitive Impairment and Alzheimer’s Disease Detection and Testing Interface (MCI-AD-DTI) 

which is designated as epigen_pipeline_sig_protein module (EPSPM). The intent for the new 

module is that it can eventually be integrated into the EPSPM and serve to improve the pipeline’s 

ability to investigate the epigenetic relationships underpinning AD. 

3.1 Data 

In order to construct and debug the Structure-Function Prediction Modules, this project 

requires a quantity of AD associated wild types, and their associated mutations, that was both 

sufficiently diverse and that the data was formatted to match the data that was fed into the 

protein evaluating module of the MCI-AD-DTI project. An example of the minimum viable data 

set would be three wild types, each with 100 Single Nucleotide Polymorphic (SNP) mutations. 

The data, that this project utilized, came from the folder created by Frank Kai, one of those 

responsible for determining the thresholds of the EPSPM [44]. This folder, known as ALL_SNP, 

contained over 100,000 files of sample SNP mutations and their wildtypes. The creation process 

for these files was to find the various genes that are labeled as epigenetically linked to AD on the 

National Center for Biotechnology Information (NCBI), and Frank Kai made a file for each 

listed SNP mutation, such that the file contained the amino acid sequence of the unique SNP 

mutation as well as the amino sequence corresponding to the mutant’s wild type [44]. This is 

deemed a sufficient source of data as it covers a prolific quantity of known AD related proteins 
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and has the requisite diversity of mutations. This provides confidence that the Structure-Function 

Prediction Modules and its Modeller10.4 application module would be tested with enough edge 

cases that the threshold of the sorting would be of utmost quality. 

3.2 Tools 

In regards to the tools, there is: Python, the coding language used in this project; 

Pycharm, the integrated development environment (IDE) utilized by this project; Salilab, the 

official Modeller10.4 application’s website; and the Modeller application programming interface 

(API), used to design the aux6help module and aux6mutant module. Python is also the coding 

language used by the MCI-AD-DTI project, with Pycharm being the first IDE to successfully 

load the MCI-AD-DTI project’s epigenetic pipeline after the Jupyter Notebook IDE failed to do 

so. The Salilab website served to identify the overall manner in which Modeller10.4 application 

would be integrated into the Structure-Function Prediction Modules, while the Modeller API was 

used in the minutia of addressing bugs in the code. 

3.3 Algorithms 

There are several algorithms used in the code, of which three are the most prominent. 

First and foremost of the algorithms is that of the Modeller10.4 application, this is an industry 

standard protein modeling software and the core of this project. In the project Modeller10.4 

application takes in a .cif file and a mutant protein sequence and generates 5 different protein 

models and their Discrete Optimized Protein Energy (DOPE) scores; these scores are then 

compared against their corresponding wildtype protein sequence to determine whether the 

mutant preserves the protein functionality of its wildtype, or if it has a change in functionality. 

The second most important algorithm is Python for the Protein Data Bank (PyPDB) as this 

library is responsible for generating the .cif files based off of the protein sequences from 
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ALL_SNP, which are then fed into the Modeller10.4 application’s modules of the Structure-

Function Prediction Modules. The third algorithm is scoring threshold, which was designed to be 

an extensible evaluation procedure to be of use beyond AD and SNP mutations. 

3.4 Validation 

PyPBD, serves as the validation metric in EPSPM, and thus will be utilized for identical 

purposes in the Structure-Function Prediction Modules. Furthermore, this project will be 

utilizing confusion matrices for generating the statistics to validate whether Structure-Function 

Prediction Modules has achieved its goal. 
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Chapter 4  

Method 

This section describes the methodology by which the Structure-Function Prediction 

Modules was constructed and the methodology by which the Structure-Function Prediction 

Modules evaluates proteins. 

4.1 Methodology to Construct the Structure-Function Prediction Modules 

The methodology for constructing involves six steps. Step one was acquiring sample data 

which emulated the files that the epigenetic pipeline of the Mild Cognitive Impairment and 

Alzheimer’s Disease Detection and Testing Interface (MCI-AD-DTI) generated for its 

epigen_pipeline_sig_protein module (EPSPM). These files are provided in the ALL_SNP folder 

from the MCI-AD-DTI project contributor, Frank Kai [44]. The over 100,000 files in the 

ALL_SNP folder are those that Frank Kai used to determine the thresholds of the EPSPM [44]. 

Step two was finding how the Modeller10.4 application could be utilized to generate a score by 

which the likelihood of whether the protein, which was encoded by a mutant sequence, 

maintained the functionality of the protein encoded by the mutant’s wildtype’s sequence, could 

be determined. These are found from the Salilab website, the official website of the 

Modeller10.4 application. Specifically, the Modeller10.4 application was downloaded from the 

website following the steps listed, and the specific algorithm utilizing the Modeller10.4 

application was derived from a combination of the align2d.py module and the model-single.py 

module. Step three was creating a Structure-Function Prediction Modules based upon the 

EPSPM. This Structure-Function Prediction Modules had to be able to interface with both the 

custom files from the ALL_SNP folder as well as the Modeller10.4 application. Furthermore, the 
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Structure-Function Prediction Modules needed to emulate the functionality of the EPSPM, such 

that when it came time to migrate the code from the Structure-Function Prediction Modules and 

into the EPSPM that the transition went smoothly. Step four was integrating the PDB database 

into the Structure-Function Prediction Modules. The primary manner in which this was achieved 

was the use of PyPDB, which was used to generate .cif files, both to feed into the Modeller10.4 

application code module, and to serve as a form of validation as found in the EPSPM. Step five 

was bug testing the Structure-Function Prediction Modules. Through this testing, the most 

significant thing that was discovered was the need to separate out the Modeller10.4 application 

code into a separate module. This was done to circumvent a bug where the only way to escape an 

infinite loop was to have the Modeller10.4 application code be run solely as a subprocess which 

was checked on a timer to verify whether or not to kill that subprocess. Step six was validating 

the Structure-Function Prediction Modules with both the ALL_SNP files and the PyPDB 

implementation (Figure 1).  

 
Figure 1: Flowchart of Structure-Function Prediction Modules Construction 

Receive A   SNP folder containing the 112,342 files of

training data from Frank  ai [44] which emulates the data

that the epigenetic pipeline feeds into the EPSPM

Download Modeller10.4 from the salilabMODE  ER website

Derive, from a combination of the align2d.py

and the model  single.py modules on the salilab

website, how to use Modeller10.4 to generate a

score for the likelihood of whether the protein,

which was encoded by a mutant sequence,

maintained the functionality of the protein

encoded by the mutant s wildtype s sequence

Derive a variant of the EPSPM that

maintains the EPSPM structure, but uses files

from A   SNP, rather than the data that the

epigenetic pipeline supplies to EPSPM

Reformat the data once it is inside the

EPSPM variant so that it can be fed into the

combination of align2d and model  single

that are used to generate the Modeller10.4

protein evaluation score

Integrate the PyPDB protein evaluation

validation from the EPSPM into the project

Test the code for any bugs

Discover an infinite loop bug that throws no

exceptions or warnings that can go through

the  try except  process to break the loop

Separate the code into four files so that a

clock can be run in parallel to the subprocess

running the Modeller10.4 code, such that the

program can detect the print statement and

kill the subprocess without getting locked out

or crashing the program

 tilize A   SNP training data and the

PyPDB protein evaluations to validate the

Modeller10.4 protein evaluation as it is

implemented in the project
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4.2 Methodology of the Protein Evaluation 

 In order for the Structure-Function Prediction Modules to evaluate proteins, the user 

needs to set up the files as described in Appendix A. Once set up, there are two forms of protein 

evaluation that are performed in the Structure-Function Prediction Modules. The first is PyPDB 

version, which is inherited from EPSPM and serves to validate the second method. The second 

method of generating protein evaluations is the Modeller10.4 version, which generates a set of 

normalized DOPE scores for the wildtypes and each of their mutants. 

 The way EPSPM evaluates proteins with PyPDB is replicated in src6 in the pseudo 

pipeline with the details explained in Appendix B. The way Modeller10.4 evaluates proteins with 

their DOPE scores involves every module from the Structure-Function Prediction Modules. The 

src6.py module serves as a structural component as chronicled in Appendix B. The aux6 module 

is another structural component of the Structure-Function Prediction Modules, but it also serves 

as section where the normalized DOPE scores of the wildtype and the mutant are evaluated, as 

recounted in Appendix C. The module aux6help generates the five wildtype DOPE scores and 

then normalizes them as mentioned in Appendix D, while the aux6mutant module does the same 

for the mutant as cataloged in Appendix E. 
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Chapter 5  

Results 

The following results are derived from a subset of the ALL_SNP folder. This partitioning 

was done to match those proteins that are referenced in the 

epigen_pipeline_genes_to_process.dat file. For the files in ALL_SNP of these selected proteins, 

their wildtype DOPE scores average, median, and standard deviation, as based upon the 

Modeller10.4 application’s module (Table 1).  

Table 1: Average, Median and Standard Deviation of the DOPE Scores for the Major Genes 

Gene Average  Median  Standard Deviation  

ABCA7 0.811794109503484 0.812632660671874 0.0209432779722801 

APOE 0.370899022014451 0.388832738714911 0.0596230130438759 

APP 3.14873696379398 3.13720448051296 0.0224422503744293 

BIN1 1.04977076225188 1.03852991418138 0.0472459411221466 

CD2AP 3.56266334694732 3.55391672523957 0.0422728710520428 

CLU -0.628308838398892 -0.648095416575451 0.119449420601551 

CR1 3.55465344726431 3.55310547115527 0.0241804743631271 

EPHA1 3.39016564132396 3.3910195609437 0.0187503813507888 

INPP5D 1.75344694752547 1.75382810506403 0.00959237179939735 

MS4A1 1.75680818890055 1.73350271546339 0.0460174210464811 

PICALM 1.23351671718363 1.22172626644825 0.0397182259480443 

PSEN1 1.32982008062806 1.27027779414663 0.106508665186033 

PSEN2 1.75305830561701 1.79695273490297 0.0948991369830086 

SORL1 3.59214412501188 3.58882611515124 0.0229351356177996 

TREM2 1.76732268267582 1.7533405971475 0.0896705497654258 
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5.1 Subsample of Major Proteins from ALL_SNP 

In regards to the results of the three sample Single Nucleotide Polymorphic (SNP) 

mutations from each major protein, the Modeller10.4 application’s module corroborated the 

PyPDB’s validation with the following ratios: three SNPs out of three for ABCA7, APOE, 

CD2AP, and PSEN2; two SNPs out of three for APP, BIN1, CLU, INPP5D, MS4A1, and 

TREM2; and one SNP out of three for CR1, EPHA1, PICALM, PSEN1, and SORL1. Altogether 

these proteins have: 27 true positives, 2 false positives, 14 false negatives, and 2 true negatives. 

This results in the following confusion matrix and statistics (Figure 2 and Table 2). 

  
Figure 2: Subsample’s Confusion Matrix 
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Table 2: Statistics of Three Subsamples for each Major Protein  

Statistic  Percent 

Sensitivity 65.853658536 

Specificity 50 

Precision 93.103448275 

Negative Prediction 

Value 

12.5 

Miss Rate 34.146341463 

False Positive Rate 50 

False Discovery Rate 6.896551724 

False Omission Rate 87.5 

Positive Likelihood 

Ratio 

131.707317073 

Negative Likelihood 

Ratio 

68.292682926 

Prevalence Threshold 46.562780185 

Critical Success Index 62.790697674 

Prevalence 91.111111111 

Accuracy 64.444444444 

Balanced Accuracy 57.926829268 

F1 Score 77.142857142 

5.2 APOE 

APOE protein is evaluated by both Modeller10.4 and PyPDB when run through the 

Structure-Function Prediction Modules. The Structure-Function Prediction Modules determined 

it has: 126 true positives, 114 false positives, 60 false negatives, and 73 true negatives. This 

results in the following confusion matrix and statistics (Figure 3 and Table 3). 
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Figure 3: APOE’s Confusion Matrix 

 

 

 

 

 

 

 

 

 

 

 

 

 



18 

 

Table 3: Statistics of APOE 

Statistic  Percent 

Sensitivity 67.74193548387096 

Specificity 39.037433155080214 

Precision 52.5 

Negative Prediction 

Value 

54.88721804511278 

Miss Rate 32.258064516129037 

False Positive Rate 60.96256684491979 

False Discovery Rate 47.5 

False Omission Rate 45.112781954887216 

Positive Likelihood 

Ratio 

111.12054329371817 

Negative Likelihood 

Ratio 

82.63367211665932 

Prevalence Threshold 48.682237711436105 

Critical Success Index 42 

Prevalence 49.865951742627346 

Accuracy 53.35120643431636 

Balanced Accuracy 53.38968431947559 

F1 Score 59.15492957746479 

5.3 BIN1 

BIN1 protein is evaluated by both Modeller10.4 and PyPDB when run through the 

Structure-Function Prediction Modules. The Structure-Function Prediction Modules determined 

it has: 232 true positives, 1 false positive, 91 false negatives, and 5 true negatives. This results in 

the following confusion matrix and statistics (Figure 4 and Table 4). 
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Figure 4: BIN1’s Confusion Matrix 
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Table 4: Statistics of BIN1 

Statistic  Percent 

Sensitivity 71.826625387 

Specificity 83.333333333 

Precision 99.57081545 

Negative Prediction 

Value 

5.208333333 

Miss Rate 28.173374613 

False Positive Rate 16.666666666 

False Discovery Rate 0.429184549 

False Omission Rate 94.791666666 

Positive Likelihood 

Ratio 

430.959752322 

Negative Likelihood 

Ratio 

0.33808049535 

Prevalence Threshold 32.510207246 

Critical Success Index 71.604938271 

Prevalence 98.176291793 

Accuracy 72.036474164 

Balanced Accuracy 77.57997936 

F1 Score 83.45323741 

5.4 PSEN1 

PSEN1 protein is evaluated by both Modeller10.4 and PyPDB when run through the 

Structure-Function Prediction Modules. The Structure-Function Prediction Modules determined 

it has: 103 true positives, 130 false positives, 94 false negatives, and 117 true negatives. This 

results in the following confusion matrix and statistics (Figure 5 and Table 5). 
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Figure 5: PSEN1’s Confusion Matrix 
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Table 5: Statistics of PSEN1 

Statistic  Percent 

Sensitivity 52.28426395939086 

Specificity 47.368421052631576 

Precision 44.206008583690987 

Negative Prediction 

Value 

55.45023696682464 

Miss Rate 47.715736040609136 

False Positive Rate 52.63157894736843 

False Discovery Rate 55.79399141630901 

False Omission Rate 44.54976303317536 

Positive Likelihood 

Ratio 

99.34010152284263 

Negative Likelihood 

Ratio 

100.73322053017484 

Prevalence Threshold 50.08276060361887 

Critical Success Index 31.49847094801223 

Prevalence 44.36936936936937 

Accuracy 49.54954954954955 

Balanced Accuracy 49.826342506011223 

F1 Score 47.90697674418605 

5.5 PSEN2 

PSEN2 protein is evaluated by both Modeller10.4 and PyPDB when run through the 

Structure-Function Prediction Modules. The Structure-Function Prediction Modules determined 

it has: 325 true positives, 0 false positives, 81 false negatives, and 1 true negative. This results in 

the following confusion matrix and statistics (Figure 6 and Table 6). 
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Figure 6: PSEN2’s Confusion Matrix 
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Table 6: Statistics of PSEN2 

Statistic  Percent 

Sensitivity 80.04926108374384 

Specificity 100 

Precision 100 

Negative Prediction 

Value 

1.2195121951219513 

Miss Rate 19.95073891625616 

False Positive Rate 0 

False Discovery Rate 0 

False Omission Rate 98.78048780487805 

Positive Likelihood 

Ratio 

not a number due to dividing by 0 

Negative Likelihood 

Ratio 

19.95073891625616 

Prevalence Threshold 0 

Critical Success Index 80.04926108374384 

Prevalence 99.75429975429976 

Accuracy 80.0982800982801 

Balanced Accuracy 90.02463054187192 

F1 Score 88.91928864569083 

5.6 TREM2 

TREM2 protein is evaluated by both Modeller10.4 and PyPDB when run through the 

Structure-Function Prediction Modules. The Structure-Function Prediction Modules determined 

it has: 149 true positives, 10 false positives, 32 false negatives, and 1 true negative. This results 

in the following confusion matrix and statistics (Figure 7 and Table 7). 
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Figure 7: TREM2’s Confusion Matrix 
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Table 7: Statistics of TREM2 

Statistic  Percent 

Sensitivity 82.320441989 

Specificity 9.09090909 

Precision 93.710691823 

Negative Prediction 

Value 

3.03030303 

Miss Rate 17.679558011 

False Positive Rate 90.909090909 

False Discovery Rate 6.289308176 

False Omission Rate 96.969696969 

Positive Likelihood 

Ratio 

90.552486187 

Negative Likelihood 

Ratio 

194.475138122 

Prevalence Threshold 51.240252353 

Critical Success Index 78.010471204 

Prevalence 94.270833333 

Accuracy 78.125 

Balanced Accuracy 45.705675539 

F1 Score 87.647058823 
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Chapter 6  

Discussion 

This chapter discusses the results from chapter 5 and ends with this project’s findings 

from these results. 

6.1 Subsample of Major Proteins from ALL_SNP 

For the major proteins, as defined by epigen_pipeline_genes_to_process.dat file, the 

Structure-Function Prediction Modules’ favorable results with their percentages: precision is 

93.10%, false discovery rate is 6.90%, positive likelihood ratio is 131.71%, negative likelihood 

ratio is 68.29%, and F1 Score is 77.14%. On the other hand, the Structure-Function Prediction 

Modules’ unfavorable results for those proteins with their percentages: negative prediction value 

is 12.50%, and false omission rate is 87.50%. The mediocre results with their percentages: 

sensitivity is 65.85%, specificity is 50.00%, miss rate is 34.15%, false positive rate is 50.00%, 

prevalence threshold is 46.56%, critical success index is 62.79%, prevalence is 91.11%, accuracy 

is 64.44%, and balanced accuracy is 57.93%. 

6.2 APOE 

APOE protein’s following statistics are worse than the mean: specificity, precision, false 

positive rate, false discovery rate, positive likelihood ratio, negative likelihood ratio, critical 

success index, accuracy, balanced accuracy, and F1 score, with the most extreme divergence 

coming from a tie between the precision and false discovery rate with a 40.60% difference from 

the mean for each of them. The worst of these worse scores are: precision, false discovery rate, 

and F1 score. On the other hand, the statistics that did not change categories, despite their 

inferiority to the mean, are the following: specificity, false positive rate, positive likelihood ratio, 

negative likelihood ratio, critical success index, accuracy, and balanced accuracy. 
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APOE protein’s following statistics are better than the mean: sensitivity, negative 

prediction value, miss rate, and false omission rate, with the most extreme improvement coming 

from a tie between the negative prediction value and false omission rate with a 42.39% 

difference from the mean for each of them. All of these statistics improved by a category. 

6.3 BIN1 

BIN1 protein’s following statistics are worse than the mean: negative prediction value 

and false omission rate. These statistics did not change categories, despite their inferiority to the 

mean.  

BIN1 protein’s following statistics are better than the mean: sensitivity, specificity, 

precision, miss rate, false positive rate, false discovery rate, positive likelihood ratio, negative 

likelihood ratio, critical success index, accuracy, balanced accuracy, and F1 score, with the most 

extreme improvement coming from positive likelihood ratio with a 299.25% difference from the 

mean. The best of these better scores are: sensitivity, specificity, miss rate, false positive rate, 

critical success index, accuracy, and balanced accuracy. On the other hand, the statistics that 

change categories, despite their superiority to the mean, are the following: precision, false 

discovery rate, positive likelihood ratio, negative likelihood ratio, and F1 score. 

6.4 PSEN1 

PSEN1 protein’s following statistics are worse than the mean: sensitivity, specificity, 

precision, miss rate, false positivity rate, false discovery rate, positive likelihood ratio, negative 

likelihood ratio, critical success index, accuracy, balanced accuracy, and F1 score, with the most 

extreme divergence coming from a tie between the precision and false discovery rate with an 

over 49 percent difference from the mean for each of them. The worst of these worse scores are: 

precision, false discovery rate, positive likelihood ratio, negative likelihood ratio, critical success 

index, and F1 score. On the other hand, the statistics that change categories, despite their 
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inferiority to the mean, are the following: sensitivity, specificity, miss rate, false positivity rate, 

accuracy, and balanced accuracy.  

PSEN1 protein’s following statistics are better than the mean: negative prediction value 

and false omission rate. These statistics both improved categories, when compared to the mean.   

6.5 PSEN2 

PSEN2 protein’s following statistics are worse than the mean: negative prediction value 

and false omission rate. These statistics did not change categories, despite their inferiority to the 

mean. 

PSEN2 protein’s following statistics are better than the mean: sensitivity, specificity, 

precision, miss rate, false positive rate, false discovery rate, negative likelihood ratio, critical 

success index, accuracy, balanced accuracy, and F1 score score, with the most extreme 

improvement coming from a tie between the specificity and false positive rate with a 50 percent 

difference from the mean for each of them. The best of these better scores are: sensitivity, 

specificity, miss rate, false positive rate, critical success index, accuracy, balanced accuracy, and 

F1 score. On the other hand, the statistics that change categories, despite their superiority to the 

mean, are the following: precision, false discovery rate, and negative likelihood ratio.  

6.6 TREM2 

TREM2 protein’s following statistics are worse than the mean: specificity, negative 

predictive value, false positive rate, false omission rate, positive likelihood ratio, negative 

likelihood ratio, and balanced accuracy, with the most extreme divergence being the negative 

likelihood ratio which was worse by over 126 percent. The worst of these worse scores are: 

specificity, false positive rate, positive likelihood ratio, and negative likelihood ratio. On the 
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other hand, the statistics that did not change categories, despite their inferiority to the mean, are 

the following: negative predictive value, false omission rate, and balanced accuracy.  

TREM2 protein’s following statistics are better than the mean: sensitivity, precision, miss 

rate, false discovery rate, critical success index, accuracy, and F1 score, with the most extreme 

improvement coming from a tie between the miss rate and sensitivity with almost 17 percent 

difference from the mean for each of them. The best of these better scores are: sensitivity, miss 

rate, critical success index, and accuracy. On the other hand, the statistics that change categories, 

despite their superiority to the mean, are the following: precision, false discovery rate, and F1 

score.  

6.7 Findings 

This project’s findings with these proteins demonstrate that using Modeller10.4 

application to predict the preservation of the functionality of a mutant’s protein is a viable 

endeavor. To be precise, the positive likelihood ratio of greater than one, for the subsampling of 

the major proteins of ALL_SNP, demonstrates that the algorithm being utilized to evaluate the 

proteins is working. Although the fact that the algorithm produced a low negative prediction 

value, and a high false omission rate is concerning. 

In relation to the existing Mild Cognitive Impairment and Alzheimer’s Disease Detection 

and Testing Interface (MCI-AD-DTI) project’s epigen pipeline sig protein module (EPSPM) 

the Structure-Function Prediction Modules has comparable results to the Biopython methods in 

the EPSPM. 

Findings with unexpected values are the prevalence, with its 91.111111111 percent for 

the major proteins of ALL_SNP, and the likelihood ratios, with its dividing by zero error for the 

positive likelihood ratio of PSEN2 and its 194.475138122 percent for the negative likelihood 
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ratio of TREM2. The prevalence demonstrates that the vast majority of the Single Nucleotide 

Polymorphic (SNP) mutations in ALL_SNP do not actually change the functionality of the 

protein, as opposed to a more balanced dataset with a prevalence of roughly 50 percent. This was 

especially notable for PSEN2 which had a single negative sample and resulted in the dividing by 

zero error as there are no false positives. Whereas the negative likelihood ratio for the TREM2 

protein seems to demonstrate that the Structure-Function Prediction Moduless DOPE score 

algorithm is not optimized for each individual protein. 
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Chapter 7  

Conclusion 

In the current project, an effort has been made to construct a Structure-Function 

Prediction Modules that demonstrates that Modeller10.4 application can be utilized to improve 

the protein evaluation module of the epigenetic pipeline of the Mild Cognitive Impairment and 

Alzheimer’s Disease Detection and Testing Interface (MCI-AD-DTI) project. For this purpose to 

be achieved, the Structure-Function Prediction Modules must successfully emulate the protein 

evaluation module, integrate Modeller10.4 application in a manner that handles the most 

common bugs, and deduce an algorithm that evaluates the protein congruous to the validation 

from the MCI-AD-DTI project’s epigenetic pipeline’s protein evaluation module. 

This project labored under several limitations. The largest imposition was not being able 

to utilize a copy of the epigenetic pipeline of the MCI-AD-DTI project. This meant that, while 

the base of the epigen_pipeline_sig_protein module (EPSPM) could be used as a foundation, an 

entirely new methodology for reading in files to the Structure-Function Prediction Modules had 

to be created. Furthermore, the Structure-Function Prediction Modules was locked out of the 

Entrez library utilized for pulling data in the MCI-AD-DTI’s epigenetic pipeline. 

This project’s contribution to society is twofold. The first contribution is its laying of the 

foundation for integrating Modeller10.4 into the MCI-AD-DTI’s epigenetic pipeline, which will 

serve to enhance the functionality. In turn this will further the MCI-AD-DTI’s epigenetic 

pipeline’s capability to resolve the problem with the amyloid hypothesis and potentially discover 

the true epigenetic relationships underpinning AD. The other contribution is in its enumeration of 

the process by which Modeller10.4 can be utilized to evaluate proteins to determine if a Single 

Nucleotide Polymorphic (SNP) mutation has changed or maintained functionality. 
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Chapter 8  

Future Work 

For almost every project there is always room for future research and development, and 

this project is no exception. For instance, this project did not have an opportunity to test the 

impact of increasing or decreasing the quantity of proteins created by Modeller10.4 application 

as it generates the DOPE scores, although this quantity is suspected to be an important variable 

in both runtime as well as the reliability of the scores it generates. Another approach that this 

project did not have the time and resources to explore is utilizing Modeller10.4 application’s 

family tree algorithm to graph the relatedness between the proteins that the Modeller10.4 

application generated for the wildtype and the mutant respectively, as a way to supplement the 

DOPE scores. Finally, the last major improvement to the project would be integrating the 

Structure-Function Prediction Modules into the epigen_pipeline_sig_protein module (EPSPM) of 

the epigenetic pipeline of the Mild Cognitive Impairment and Alzheimer’s Disease Detection and 

Testing Interface (MCI-AD-DTI). 
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Appendix A 

Methodology for Running the Structure-Function Prediction Modules 

The methodology for running the Structure-Function Prediction Modules is described in 

the five following steps. Step one is to sort the files into the correct folders. The aux_data folder 

should contain the ALL_SNP folder and the aux6 .py file, while the aux_src folder should 

contains aux6help, aux6mutant, and src6 .py files. Step two is removing all .txt files that are 

inside the aux_data folder, aside from those inside the ALL_SNP folder. Step three is transfering 

the .txt files from the ALL_SNP folder into the aux_data folder. Step four is running src6 as 

main, which is primarily done through an IDE like Pycharm. Step five is to interpret the results 

from the Structure-Function Prediction Modules, which is collected in the output.text file in the 

aux_src folder. 
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Appendix B. 

src6 Methodology 

The methodology of src6 is described in the following ten steps. Step one is that the src6 

creates the output file output.text. Step two is src6 reading in all the .txt files from aux_src 

folder. Step three is where src6 converts their data into a Python dictionary, based on each file’s 

wildtype, while also constructing a list of how many unique wildtypes are amongst the files it 

has read in. Step four is where src6 loops through the wildtypes and compares their mutations. 

Step five is when src6 generates a series of .cif files based on the protein sequence of the 

wildtype. Step six is when src6 generates and formats the seq.ali file to contain the protein 

sequence of the wildtype for this iteration of the loop from step four. Step seven is when src6 

loops through the mutants for this iteration of the step four loop where it both performs the 

PyPDB comparison emulating the PyPDB comparison of EPSPM and generates the 

corresponding seqm#.ali files per each mutant. Step eight is when src6 generates the meta files 

that are being utilized to pass information from one module to another. Step nine is where src6 

calls aux6 with the information of the wildtype for this iteration of src6’s step four as well as the 

information of all the mutants that share this iteration’s wildtype. Step ten is when src6 deletes 

the seqm#.ali files from step seven to save memory (Table 8). 
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 Table 8: src6 Process 

Step Files created or 

removed 

Is a substep 

inside of a 

src6 loop 

Description 

One output.text No Readies output 

Two n/a No Reads in input files 

Three n/a No Process text from input files 

Four n/a No Loop through each wildtype 

Five Makes about a dozen 

.cif based on PyPDB 

processing the Wildtype 

yes (step 

four) 

Use PyPDB to make protein files based on 

the wildtype 

Six Makes seq.ali version 

of wildtype sequence 

yes (step 

four) 

Convert wildtype sequence to seq.ali in 

preparation for Modeller10.4 

Seven Makes one seqm#.ali 

per mutant, where # is 

the index of the mutant 

(i.e. seqm1.ali, 

seqm2.ali, etc.) 

yes (step 

four) 

Loop through the mutants for this wildtype 

and generate their PyPDB score as well 

their seqm#.ali file in preparation for 

validating the corresponding Modeller10.4 

scores 

Eight Makes snitchM.text, 

snitchMutant.text, 

snitchW.text, and 

snitchWild.text 

yes (step 

four) 

Generate the files that aux6 will use to give 

or receive information from the other 

modules when other approaches would fail  

Nine See table 2 yes (step 

four) 

Run aux6 with appropriate parameters 

Ten Deletes all seqm#.ali yes (step 

four) 

Delete the seqm#.ali files for this loop 
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Appendix C. 

aux6 Methodology 

The methodology of aux6 can be described in the following twelve steps and occurs 

within the Structure-Function Prediction Modules as a continuation of src6’s step nine. Step one 

is a loop where aux6 finds a .cif file that is compatible with the wildtype and generates five 

normalized DOPE scores. Step two checks if all the .cif generated in src6 step six for this 

wildtype have all been forcefully broken out of their endless loop, if so then it skips to aux6’s 

step six as well as raising a flag for aux6’s step seven that this wildtype has no .cif that is 

compatible with it. Step three both creates the subprocess which is running aux6help, but also 

starts the clock responsible for killing the subprocess if it needs to be interrupted. Step four 

checks if aux6help’s step five triggered the kill clocks, in which case it moves onto aux6 step one 

loop’s next iteration. Step five only occurs when aux6help’s step five successfully generates 

DOPE scores, and is when aux6 deletes the files generated by aux6help to clear up memory. Step 

six is where aux6 loops through each mutant and determines whether the Modeller10.4 

application demonstrates that a mutant has preserved or changed the functionality from its 

wildtype. Step seven checks for the flag from aux6’s step two, if the flag was triggered then aux6 

skips step eight through step twelve as Modeller10.4 application found no .cif that was 

compatible with the wildtype. Step eight both creates the subprocess which is running 

aux6mutant, but also starts the clock responsible for killing the subprocess if it needs to be 

interrupted. Step nine checks if aux6mutant’s step five triggered the kill clocks, in which case 

aux6 notes that this mutation is incompatible with the .cif that aux6 found to be compatible with 

the wildtype and moves onto step six’s next iteration. Step ten only occurs when aux6mutant’s 

step five successfully generates DOPE scores, and is when aux6 deletes the files generated by 



45 

 

aux6mutant to clear up memory. Step eleven checks if one or more of the wildtype’s five 

normalized DOPE scores or the mutant’s five normalized DOPE scores is missing, in which case 

aux6 notes that a DOPE score was missing and it moves onto step six’s next iteration. Step 

twelve analyzes the two sets of DOPE scores to determine Modeller10.4 application’s prediction 

about the mutant, as well as whether this prediction matches with src6’s step seven PyPDB’s 

prediction for the mutant (Table 9).  
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Table 9: aux6 Process 

Step Files 

created or 

removed 

Is a substep 

inside of an 

aux6 loop 

Description 

One n/a no Loop through the .cif files 

Two n/a yes (step one) If out of .cif files move to step six and flags step seven 

Three See table 3  yes (step one) Start a clock and open aux6help in a separate process 

Four n/a yes (step one) If the clock from step four of aux6help and step three 

of aux6 triggered and killed the process running 

Modeller10.4, then start the next iteration of aux6 step 

one’s loop 

Five Delete the 

files from 

aux6help 

yes (step one) if aux6help successfully generates the five DOPE 

scores then it deletes the leftover files from aux6help 

and moves to step six instead on continuing the loop 

Six n/a no Loop through the mutations 

Seven n/a yes (step six) If the flag from step two was raised, then update 

output.text that the mutant’s wildtype had no valid .cif 

and skip steps eight through twelve 

Eight See table 4 yes (step six) Start a clock and open aux6mutant in a separate 

process 

Nine n/a yes (step six) If the clock from step four of aux6mutant and step 

eight of aux6 triggered and killed the process running 

Modeller10.4, then update output.text that this mutant 

doesn’t match the wildtype’s .cif and start the next 

iteration of aux6 step one’s loop 

Ten Delete the 

files from 

aux6muta

nt 

yes (step six) if aux6mutant successfully generates the five DOPE 

scores then it deletes the leftover files from 

aux6mutant 

Eleven n/a yes (step six) If a DOPE score is missing update output.text and 

skip step twelve 

Twelve n/a yes (step six) Calculate mean, median, and standard deviation, then 

update output.text 
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Appendix D. 

aux6help Methodology 

The methodology of aux6help can be described in the following six steps and occurs 

within the Structure-Function Prediction Modules as a continuation of aux6’s step three. Step 

one initiates the Modeller10.4 application’s environment. Step two is where all the necessary 

setup info is appended to the alignment of the protein. Step three is when the salign function of 

Modeller10.4 application is used on alignment to generate a new .ali file. Step four is when the 

aux6help clock is started as a counterpart to the clock from aux6’s step three, as both of them are 

required for the successful killing of the subprocess if Modeller10.4 application gets stuck in an 

endless loop. Step five is when aux6help either successfully generates the DOPE scores or 

triggers the clock from aux6help’s step four to contact the clock from aux6’s step three to kill the 

subprocess that is running aux6help and break the loop. Step six only occurs when aux6help’s 

step five successfully creates the five DOPE scores, and aux6help’s step six is where aux6help 

extracts the normalized DOPE scores and returns them to aux6 (Table 10). 
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Table 10: aux6help Process 

Step Files created or 

removed 

Is a substep inside 

of an aux6help 

loop 

Description 

One n/a no Setup the parameters needed to run 

Modeller10.4 

Two n/a no Setup the Modeller10.4 environment 

Three makes a .ali file no Create an alignment file between wildtype 

and the .cif it is being compared to 

Four n/a no Initiate the kill clock 

Five If successful: makes 

a .ini, .rsr, and .sch 

file and five .b#, .d#, 

and .v# file  

no If caught in an endless loop it triggers the 

kill clocks. Otherwise, it generates several 

files and the five DOPE scores 

Six n/a no If step five succeeds: normalize the DOPE 

scores 
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Appendix E. 

aux6mutant Methodology 

The methodology of aux6mutant can be described in the following six steps and occurs 

within the Structure-Function Prediction Modules as a continuation of aux6’s step eight. Step 

one initiates the Modeller10.4 application’s environment. Step two is where all the necessary 

setup info is appended to the alignment of the protein. Step three is when the salign function of 

Modeller10.4 application is used on alignment to generate a new .ali file. Step four is when the 

aux6mutant clock is started as a counterpart to the clock from aux6’s step eight, as both of them 

are required for the successful killing of the subprocess if Modeller10.4 application gets stuck in 

an endless loop. Step five is when aux6mutant either successfully generates the DOPE scores or 

triggers the clock from aux6mutant’s step four to contact the clock from aux6’s step eight to kill 

the subprocess that is running aux6mutant and break the loop. Step six only occurs when 

auxmutant’s step five successfully creates the five DOPE scores, and aux6mutant’s step six is 

where aux6mutant extracts the normalized DOPE scores and returns them to aux6 (Table 11). 
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Table 11: aux6mutant Process 

Step Files created or 

removed 

Is a substep inside of 

an aux6mutant loop 

Description 

One n/a no Setup the parameters needed to run 

Modeller10.4 

Two n/a no Setup the Modeller10.4 environment 

Three makes a .ali file no Create an alignment file between 

wildtype and the .cif it is being compared 

to 

Four n/a no Initiate the kill clock 

Five If successful: makes 

a .ini, .rsr, and .sch 

file and five .b#, 

.d#, and .v# file  

no If caught in an endless loop it triggers the 

kill clocks. Otherwise, it generates 

several files and the five DOPE scores 

Six n/a no If step five succeeds: normalize the 

DOPE scores 
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