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Abstract

Purpose: Similarity is a key element of machine learning and can make
human learning much more effective as well. One of the goals of this
paper is to expound on this aspect. We identify real-world concepts
similar to hard-to-understand theories to enhance the learning expe-
rience and comprehension of a machine learning student. The second
goal is to enhance the work in the current literature that uses sim-
ilarity for transcoding. We uniquely try transcoding from Python to
R and vice versa, something that was not attempted before, by iden-
tifying similarities in a latent embedding space. Methods: We list
several real-world analogies to show similarities with and simplify the
machine learning narrative. Next, we use Cross-Lingual Model Pretrain-
ing, Denoising Auto-encoding, and Back-translation to automatically
identify similarities between the programming languages, Python and R
and convert code in one to another. Results: In the course of teach-
ing machine learning to undergraduate, graduate, and general pool of
students, the first author found that relating the concepts to real-world
examples listed in this paper greatly enhanced student comprehen-
sion and made the topics much more approachable despite the math
and the methods involved. When it comes to transcoding, in spite of
the fact that Python and R are substantially different, we obtained
reasonable success measured using various evaluation metrics and meth-
ods as described in the paper. Conclusion: Machines and human
beings predominantly learn by way of similarity, a finding that can be
explored further in both the machine and human learning domains.
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1 Introduction

Machine learning takes inspiration predominantly from human learning.
Human learning can take inspiration from how machines learn as well. Recent
research [1] proved that every machine learning algorithm that uses gradient
descent and that includes deep learning, is essentially a kernel machine, where
the kernel function measures the similarity between data points. In this paper,
we extend [2] and explore similarity in both human learning of the subject of
machine learning and in machine learning itself. The former is done through a
series of analogies as in [2] and the latter, by making machines learn to trans-
late from one programming language to another by discovering similarities
between the languages through a shared embedding space. The translation fol-
lows the methodology described in the existing literature [3], but for a different
pair of languages, Python and R.

Similarity has been substantially explored in machine learning algorithms
such as in the K-nearest neighbors, Kernel methods, Support Vector Machines
and can be used to simplify the machine learning narrative as well. Human
beings and machines learn by analogy. Human beings relate new knowledge
to what they already know to help in the assimilation of the new knowledge.
A detailed survey on the role of analogies in the learning process [4] supports
this assertion. It is not possible to easily comprehend an abstract concept,
completely new from thin air if it does not resemble or relate to any known
metaphor. This is similar to how machines learn to classify the test data,
unseen till then, by relating it to the training data that is used to build a model.
Analogies, therefore, play a critical role in comprehending complex topics. This
paper relates some of the concepts, artifacts, and algorithms in machine learn-
ing such as overfitting, regularization, and Generative Adversarial Networks
to the real world, all summarized in a table.

The concepts of similarity, data proximity, and nearest neighbors have
found tremendous applications in machine learning. Given that the dot product
of vectors inherently has the semantics of similarity and matrix multiplications
are essentially a series of dot products, it can be concluded that a significant
part of machine learning is inherently, learning by analogy. While classifica-
tion algorithms such as K-Nearest Neighbors and Non-linear Support Vector
Machines using Kernel Methods use the concept of data proximity directly,
any algorithm that uses the dot product or matrix multiplication is directly
or indirectly leveraging the notion of similarity.

The other way deep learning models can explore similarity in data is by
using a base representation space as we see in the case of automatic transcod-
ing described in detail later in this paper. The power of the transcoder is in
making code translations between Python and R without requiring parallel
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corpora with equivalent code snippets in Python and R for training. We follow
the approach in [3] and use a sequence-to-sequence model with an attention
mechanism, composed of an encoder and decoder with a transformer architec-
ture. We used a single shared model for all languages and trained it using three
unsupervised machine translations, namely, Cross-Lingual Model Pretraining,
Denoising Auto-encoding, and Back-translation to achieve higher accuracy.
As can be seen from the following sections, the design and implementation is
substantially complex, involving multiple techniques. The focus of this paper
is to leverage similarity in both human and machine learning. The former is
done by drawing parallels between real-world and machine learning concepts
in section 3, while the latter is done in section 4 by demonstrating transcoding
which also uses similarity.

2 Related Work

We survey the literature for related work in both the domains as described
below

2.1 Real-world analogies of machine learning concepts

The literature survey to discover analogies related research was carried out by
using search queries such as ‘teaching ”machine learning” ”real world”,’ ‘under-
standing ”machine learning”’ and ‘”machine learning” analogy ”real world”’.
The search results include textbooks such as [5], which explain how machine
learning can be applied to the real world, but not how the machine learning
concepts are similar to the real-world notions, indicating that the work in this
paper is unique and novel. In an extensive 124-page write-up, Mehta et al [6]
draw some parallels between Physics and machine learning to explain vari-
ous concepts. Using what they call a “physics-inspired pedagogical approach,”
they point out that similar to Physics, machine learning emphasizes empiri-
cal results and intuition. They compare the cost function to “energy,” some
of the steps in Stochastic Gradient Descent to the momentum-based methods,
the pooling step in Convolutional Neural Networks to the decimation step of
Renormalization Group (RG).

The human brain and machine learning algorithms both take high-
dimensional data as input and perform classification tasks. In [7], the author
touches upon multiple areas of intersection of neuroscience and machine learn-
ing when giving insights into his laboratory’s research program to decipher
the algorithms in biological computations that go on in human and animal
brains. Analogies accelerate the pace of innovation. Demonstrating this impor-
tant hypothesis, the authors of [8] use recurrent neural networks to mine idea
repositories, specifically, an online crowdsourced product innovation website,
Quirky, to generate analogies. The inspiration from these analogies caused the
participants in their experiments to generate better ideas. Drawing an analogy
to human learning in a teacher-student setup, authors of [9] propose a machine
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learning framework for various DNN models that uses far lesser training data
and executes faster, in fewer iterations, but still achieves similar performance.

Machine learning models, to a substantial extent, are opaque, lacking
explainability. Addressing this issue, the author of [10] describes how this is
a problem for socially significant applications of machine learning. The opac-
ity not only makes it difficult to interpret the results but makes it harder
for the students to get deeper insights. Relating the algorithms to real-world
experiences, as we describe in this paper alleviates the comprehension difficul-
ties. There is hardly any published research that delves into the problem of
teaching machine learning effectively to any population [11]. The functioning
of the human brain has inspired the development of neural networks and deep
learning frameworks. The authors of [12] argue that relating infant and tod-
dler psychology to algorithms used in computer vision such as Convolutional
Neural Networks may result in newer principles of learning.

2.2 Deep learning for exploring similarity

In 2018, the research work by Lample et. all [3] from Facebook AI research
developed a model that uses a shared latent space to map the monolingual
corpora from two languages. Both target and source languages learn to recon-
struct in both the languages by which the model can learn to translate without
using any labeled data. This approach has achieved BLEU scores of 32.8 and
15.1 on English French datasets. There is ample literature on how deep learning
frameworks use similarity to accomplish substantial tasks. In addition to the
approach presented in this paper, the CycleGAN [13] framework has also been
used to discover similarities in images [14] and even Indian Classical Music [15]
and use them for equivalent conversions. For brevity, we suffice it by stating
that there is no evidence of researchers attempting to translate software code
from Python to R and vice versa using the approach presented in this paper.

2.3 Contribution

To the best of our knowledge, as shown in Figure 1 this is the first work in
drawing a parallel between exploring similarity in human and machine learn-
ing. As illustrated in the figure, human learning involves converting concepts
into latent cognitive artifacts such as impressions and thoughts to see simi-
larities between known and new theories. In a similar fashion, deep machine
learning can map programming language constructs into a shared space of
latent embedding to learn similarities between them. This is the first journal
paper to present real-world analogies to explain machine learning concepts.
This is also the first work to use deep learning to convert programs in the
Python programming language to R and vice versa. Section 3 expounds simi-
larity in human learning and section 4 details the use of similarity in machine
learning for transcoding between languages.
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Fig. 1 How similarity plays a role in (a) human and (b) machine learning

3 Exploring Similarity in Human Learning:
Machine Learning Parallels to Real World

Learning, whether in human beings or machines follows similar principles in
certain respects. Machine learning algorithms are associated with considerable
math that can intimidate new learners. Drawing parallels with the real world
is important for improving comprehension in this area. Table 1 lists a few
analogies that help simplify the intuition behind machine learning concepts,
types, and algorithms. For details and explanation of the analogies, please refer
to [2].

Machine Learning
Concept

Real-World /
Simpler Analogy

Similarity

Supervised Learning Parents labeling
what is good and
bad for children

The world is already
classified

Unsupervised
Learning

Students forming
groups without any
supervision

Lack of labels

Matrix
multiplication

Series of “doting”
products

Similarity of two
vectors/entities

Maximum Margin
Classifier

Arbiter Equidistant from
either class

Artificial Neural
Network

Self-starters,
Achievers

Mastering the art of
achieving targets

Hidden Layers in
Artificial Neural
Networks

Departments in an
organization

Division of labor

GAN Akinator game Adversarial nature
Lazy Learning Last-minute exam

preparation
No preparation in

advance
Boosting Student improving

exam over exam
Focus on past

failures
Overfitting Narrow-minded Undue importance

to limited artifacts
Regularization Spirituality Reduce weights

attached to features
PCA Caricature Capturing the

variance
Table 1 A few parallels between machine learning and the Real-World
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4 Transcoding

In this section, we switch gears from the human learning domain into the
machine learning domain and utilize similarity to train machines to convert
code in one programming language to other.

4.1 Methodology

Deep learning algorithms are able to perform complex NLP tasks like language
translation with the advent of Sequence-to- Sequence models. These were pro-
posed in the research done by Google to solve sequence to sequence problems
like translating from English to French [16]. They used Long Short-Term Mem-
ory (LSTM) neural network to map input sequences one word at time and one
more LSTM to produce output sentences in target language from the input
sequence based on encoder-decoder architecture. The results found that LSTM
performed well on long sentences as opposed to regular Deep Neural Networks
(DNNs), but it did not perform well if the input contains vocabulary words
not used in the training data. Also, reversing the order of words in the input
sequence improved the LSTM performance significantly. Later, Bahdanau et
al. came up with Neural Machine Translation by Align and Translate [17]
to improve the performance of the basic encoder-decoder architecture and to
overcome problems faced especially with sentences longer than the sentences
provided in the training data. This new model searches for only relevant infor-
mation provided in the input sequence to predict the target word based on the
context vector generated by input and the previously generated target words.

Later, a new architecture called the Transformer, was proposed by Vaswani
et al. [18] based on the attention mechanism. With this new approach, the
models need significantly less time in training and allows more parallel process-
ing. Transformer uses a self-attention mechanism to generate a representation
of the input sequence by relating different positions. It has been very suc-
cessful in tasks like abstractive summarization, reading comprehension, etc.
Self-attention layers over recurrent layers reduces the complexity of the com-
putation per layer, improves parallel computation and finally reduces the path
length between long-range dependencies. There are three principles of unsuper-
vised machine translation, using which the pretraining is done: initialization,
language modeling and back-translation.

Pretraining is considered the most important part of unsupervised machine
translation according to Lample et al [19]. Encoders are neural networks which
are generally used for feature extraction and feature selection. The encoders
have nodes which are present in the hidden layer and at times outnumber the
inputs being given to the network [20]. In such cases the learning rate of the
encoder is low as it does not perceive its Identity Function, wherein the output
is the same as the unmodified input [21].

A denoising encoder is the solution to the problem, whereby the input
being passed to the nodes is corrupted by masking nonzero items randomly.
The output obtained must be compared to the original input instead of the
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corrupted one to ensure that the features are extracted instead of perceiving an
identity function from the data [22]. Over the past few years, Neural Machine
Translation or NMT has gained its importance in translating one language to
another language. According to a study in [23], the traditional NMT approach
works in a semi-supervised or supervised setting where millions of data need
to be labeled.

To avoid such a time and money consuming approach, the researchers He
et. all [23] proposed an approach where machine translation is done in an
unsupervised setting. The basis of their work is that any machine translation
involves source-to-target and target-to-source translations both of which can
form a close loop and produce feedback signals. These signals are used to train
the translation models without requiring labelling of the data. They referred to
this approach as dual-NMT. The experiments performed in this paper achieved
the best performance in translating the English language into French.

Based on the above approach, the authors Artetxe et. all in the study
[24] also experimented with the NMT system without the need for parallel
data. Their work relies on the monolingual corpora and their model is based
upon unsupervised embedding mappings slightly modified attentional encoder-
decoder models. This model is trained on monolingual corpora and uses the
combination of denoising and back-translation. Lample et. all [3] builds upon
the foregoing research findings and we experimented with this approach to see
how well it works for disparate programming languages like Python and R.

A Transformer Architecture with attention mechanism is the most
advanced technique used in Natural Language Processing. Self-attention lay-
ers over recurrent layers reduce the complexity of the computation per layer,
improves parallel computation and finally reduce the path length between
long-range dependencies. Models using Transformer architecture need signif-
icantly less time in training and allow more parallel processing than LSTM
models. Computational accuracy is used to evaluate the translation models.
The Beam Search decoding algorithm and the Greedy Search algorithm are
proposed to calculate the quality of the text when translating from one lan-
guage to another. Beam Search is an optimization of best-first search to reduce
memory requirements and make it faster for predicting next sequences. The
various phases in the project are illustrated in Figure 2. The flow primarily
comprises of Data collection, Preprocessing, Training, Testing and Evaluation.
Each of these phases are detailed in the following paragraphs.

4.2 Dataset

Our Training data is a collection of JSON files that have R language programs
that need to be converted into Python code and Python programs that are to
be transcompiled to R. In the scope of this project, we only translate functions
instead of complete programs from one language to another.
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Fig. 2 Project flow

4.2.1 Data Collection

The compilation of dataset for this project is obtained from GitHub reposi-
tories through Google Big Query in Google Cloud Platform. The repositories
consist of programs, functions in two programming languages, namely R and
Python. The URL is given below.

https://console.cloud.google.com/marketplace/details/github/
github-repos

4.2.2 Training Dataset

We prepared Python and R datasets as .json files from Google Big Query
Github repositories (5000 repositories each) with repo name, path and content
which contains actual source code of the programs in each line. However, due
to resource constraint, we could use only 2922 program file samples for Python
788 program file samples for R from these repositories.

4.2.3 Test Dataset

Preprocessing step has the option to choose the size of the test/validation sets.
Depending on the input, it divides the whole data set into training, testing
and validation data sets.

For a monolingual dataset of 70 repositories, including 35 repositories for
each Python and R programs, the test dataset consists of 5 repositories for
each R and Python.

4.2.4 Validation Dataset

Prepared our own set of programs both in Python and R as a Validation
Dataset for evaluation. This will be used to evaluate the correctness of the
translations.

https://console.cloud.google.com/marketplace/details/github/github-repos
https://console.cloud.google.com/marketplace/details/github/github-repos
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4.3 Preprocessing

The preprocessing pipeline extracts both R and Python source code from the
training dataset JSON files and performs tokenization training and apply BPE
(Byte Pair Encoding) codes to do sub word tokenization and compression,
extract functions and binarizes the data to be used by XLM (Cross Lingual
Models). These steps are described below.

4.3.1 Tokenization

Tokenizer is used for respective programming languages to generate tokens
for the input source code. The Python module, ‘tokenize’ is used to generate
tokens for Python and ‘tokenizers’ library is used to generate tokens for R lan-
guage and ‘PypeR’ Python library is used to access R Tokenization script from
Python. In the next step, tokens are split into sub word units by learning BPE
(byte pair encoding) codes. Byte Pair Encoding is a simple data compression
technique that works by replacing common pairs of consecutive bytes with a
byte that does not appear in that data. Figures 3 and 4 illustrate the process.

Fig. 3 A Python code snippet that needs to be translated to R

Fig. 4 Tokens generated from the Python code snippet

4.3.2 Function Extraction

Automatic Code Translator only works at the function level and it makes the
process of the model evaluation simpler. Pretraining is done on all the source
code available but denoising auto encoding and back translation models are
trained only on functions. Extraction differentiates class functions and stan-
dalone functions as well. Based on the token (‘def’ in Python and function()
in R) , the logic identifies and extracts functions from the source code.
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4.3.3 Cross Programming Language Model Pretraining

Pretraining is a method of using uncategorized data to aid a Natural Language
Processing (NLP) model performing a task. Recent studies show pretraining
to be an effective and significant practice in cultivating results. Researchers
of Multilingual or Multilingual language pretraining are pioneers who demon-
strated how a new approach in Multilingual pretraining can benefit and
produce better results as compared to generative pretraining. This research
was a part of the Facebook Artificial Intelligence (A.I.) team and extended
to multiple languages other than English. Their technique delivers a signifi-
cant improvement over the previous work in both sub-categories of Machine
Translation; supervised and unsupervised, as well as in multilingual text
classification of languages that have sparse resources.

We use cross-lingual masked language model for pretraining. The idea is
similar to how students are trained to recognize patterns by assigning them
fill-in-the-blank questions. The system learns linguistic patterns from the con-
text of the tokens in the process of trying to fill-in the masked tokens. Masking
happens in a probabilistic manner. Each token has a certain chance, typi-
cally 15%, of getting masked. As a result of this masked language modeling,
fragments of code that express identical processing, although in different pro-
gramming languages are mapped to the identical representation, regardless of
the input programming language. This is a common technique used in NLP
tasks. The pretraining process is illustrated in Figure 5. Research has shown

Fig. 5 Model trained with a Masked Language Modeling objective

that pretraining the complete model in a multilingual manner can result in
improvements in unsupervised machine translation. For this project, we fol-
lowed the strategy of Facebook Artificial Intelligence Research team where a
model is trained with a masked language modeling objective on singular source
code datasets.

The cross-lingual nature of the resulting model comes from the signifi-
cant number of common tokens (anchor points) that exist across languages.
In the context of language-to-language translation, the anchor points consist
essentially of digits and city and people names. In the case of programming
languages like Python and R, these anchor points come from programming
language keywords, for example, ‘for’,‘while’,’try’,’if’,’else’ and math operators
like ‘+’,’- ’,’*’,’/’, also digits (0-9) which appear in the source dataset.

4.3.4 Denoising Auto Encoding

Encoders are artificial neural networks (ANN) which are generally used for
feature extraction and feature selection. The encoders have nodes which are
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present in the hidden layer and at times outnumber the inputs being given
to the network. In such cases the learning rate of the encoder is low as it
does not perceive its Identity Function, wherein the output is the same as the
unmodified input. A denoising encoder is the solution to this problem, whereby
the input being passed to the nodes is corrupted by masking non-zero items
randomly.

Generally, between 30 and 50% of the inputs are masked and fed into
the layers and processed to find the loss function of the network. The output
obtained must be compared to the original input instead of the corrupted
one to ensure that the features are extracted instead of perceiving an identity
function from the data. Once pretraining is done, the decoder is trained to
generate valid code sequences even when fed with noisy data, increasing the
encoder robustness to input noise. The process of denoising auto-encoding is
illustrated in Figure 6.

As can be seen from the figure, the valid code in the leftmost box is cor-
rupted by masking certain tokens and jumbling up certain other tokens. For
instance, piv-1 is corrupted as 1 piv- and piv+1 is corrupted by dropping the
1. The rightmost box shows the recovered code that matches the correct code.

Fig. 6 The model is trained to predict the sequence of tokens given a corrupted sequence
of tokens. Encoder encodes the sequence and produces noisy output. The Decoder is always
trained to generate a valid function, even when the encoder output is noisy

During the computation of the Loss Function, it is of utmost importance to
note that the output generated is tested with the initial input and not the noise
filled input that has been fed to the model. By ensuring the above, the risk of
absorbing the learning function instead of the model extracting attributes is
minimized.

4.3.5 Back Translation

Back Translation is a procedure of re-translating the code to its original
form. This is usually done in a completely unsupervised setting or semi-
supervised setting. The Facebook research team mentioned in their paper that
the translations generated from Cross-Lingual model pretraining and denois-
ing auto-encoding could be of low quality as the model is not actually trained
to make translations from one programming language to another. Back Trans-
lation addresses this issue by leveraging the monolingual in an unsupervised
setting. It is illustrated in Figure 7

In a natural language translation using NMT (Neural Machine Transla-
tion), back translation is used under a semi- supervised setting where both
monolingual and bilingual data is available. Similarly, in this paper, we are
experimenting with this back-translation procedure with the python and R
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Fig. 7 Back Translation. The target-to-source model translates target sequences into the
source language and the source-to-target model is trained to reconstruct the target sequences

datasets. After the translation, the code is generated by Cross-Lingual model
pretraining and denoising auto-encoding, this source-to-target translation is
coupled with the target-to-source translation model trained in parallel. The
target sequences are translated to source sequences by using this target-to-
source model. Finally, the target programming language code is translated back
to original source code and its accuracy is verified against the programming
code given by the user initially.

4.4 Architecture

The CodeTranslator model is essentially a sequence- to-sequence Transformer
with an attention mechanism consisting of encoder and decoder compo-
nents [18]. A Transformer consists of an encoder component and a decoder
component.

4.4.1 Encoder

As described in [18], the encoder comprises a stack of N identical layers. Each
layer has two sub-layers, namely, a multi-head self-attention mechanism, and
a simple, position-wise fully connected feed-forward network. A residual con-
nection [25] is employed around each of the two inner layers, followed by a
layer of normalization [26]. That is, the output of each sub-layer is Layer-
Norm(x+Sublayer(x)), where Sublayer(x) is the function implemented by the
sub-layer itself.

4.4.2 Decoder

Like the Encoder, the decoder too is composed of a stack of N. identical layers.
In addition to the two sub-layers in each encoder layer, the decoder inserts a
third sub-layer, which performs multi-head attention over the output of the
encoder stack. Similar to the encoder, a residual connection [25] is employed
around each of the sub-layers, followed by layer normalization.

We also modify the self-attention sub-layer in the decoder stack to prevent
positions from attending to subsequent positions. This masking, combined with
the output embedding are offset by one position, ensuring that the predictions
for position ‘i’can depend only on the known outputs at positions less than ‘i’.

4.4.3 Attention

As described in [18], the attention function is a mapping. It maps a query and
a set of key-value pairs K,V to an output. The keys, values, and the output
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are vector encoding from the same vector space. Each value is assigned a
weight that is obtained using a function that represents the compatibility of
the query with the corresponding key. The output is the weighted sum of the
values. If the input comprises of queries and keys of dimension dk, the values
of dimension dv, attention is computed using equation 1

attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

4.4.4 Positional encoding

In deep learning, recurrence and convolution are the two often used approaches
to account for the position in the input stream. Since the Transformer archi-
tecture [18] neither uses convolution nor recurrence, a new technique called
positional encoding is used to take into consideration, the position of the
word in the input sequence. Positional encoding can be considered as extra
information about the position that is added to the input embedding at the
bottom of the encoder and decoder stacks. We now have a stacked self-attention
mechanism built into the encoder and the decoder with fully connected layers.

4.5 Implementation

The implementation we attempted is quite straight-forward and follows from
the above discussion as described below. Our end to end project design has
a front end component with a MERN stack, which is not discussed in this
paper for reasons of brevity, a CUDA environment for Training and a neural
transcompiler, called a transformer. The transformer has been pretrained on
C++, Java and Python programs and requires less time to tune and train when
compared to its counterparts like RNN and LSTM. Transfer Learning is applied
when it comes to training the model on R and Python alternatively between
batches of back translation and the denoising auto encoder approaches. The
model uses Adam Optimizer, paired with an attention mechanism to achieve
excellent results. Figure 8 illustrates some of the tools and components used
in the project implementation.

4.5.1 Model Training

The model implements a transformer with dimensionality- 6x8x1024, which
represents the number of layers, attention heads, and model size, respectively.
A single encoder and decoder are used for all the programming languages
supported by the CodeTranslator model. The model has been pretrained on
Python and R programs which have been fed alternately as 32 sequences of
tokens, split across batches of 512 tokens. Transfer learning is applied when it
comes to training the model on R tokens, alternating on training it uses both,
the back translation and the denoising auto encoder approach, respectively.
The model utilizes an Adam Optimizer, with a learning rate like what was
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Fig. 8 Implementation

used in prior approaches. The model is trained on GPU-enabled systems to
speed up training time.

The hyper-parameters we used for this project are listed below. Beam size
is the width of the beam. Without beam search for finding the missing or
masked token, we just go with the token that has the highest probability value
as output by a softmax function. With beam search, instead of just one token,
we start by considering multiple candidate tokens and eventually choose the
best one after evaluating the probabilities of subsequent tokens. That is, we
take a more holistic approach to filling in the blanks. For instance, if the beam
size is 2, we initially consider two tokens instead of just one.

Dropout regularizes the model by randomly multiplying a few activations
by zero. GELU combines Dropout with RELU. Adam Optimizer is Ensemble
optimizer for faster convergence and less computation.

• epoch size - Number of training iterations
• batch size - Number of sentences per batch
• beam size - beam search
• fp16 - 16-point floating point arithmetic for Faster Training and lower

memory requirements
• activation - RELU (Rectified Linear Unit) or GELU (Gaussian Error Lin-

ear Unit activation) function for faster and better convergence of neural
networks and to regularize the model

• optimizer - Adam optimizer with learning rate 0.0001
• stopping criteria - model stops training after reaching lowest score

We used Google Cloud AI Platform Deep learning instance with NVIDIA
Tesla K80 GPU, 4 CPU and 26 GB memory and Pytorch/CUDA11.0.GPU for
our implementation. Some of the Python Libraries we used are listed below.

• NumPy : Libraries to support working with arrays and mathematical
functions
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• PyTorch: Machine learning library for natural language processing
• fastBPE: Neural machine translation (NMT) models with Python API
• Apex: NVIDIA utilities for distributed training in Pytorch
• submitit: Packages to run jobs for concurrent processing
• six: Utility to support python code in different versions

Table 2 lists the challenges we faced during implementation and the resolu-
tions we adopted to get over them. Each experiment took a lot of time. Multiple
GPUs may have helped in speeding up the training with large amounts of data

Table 2 Challenges faced at the time of implementation and their resolutions

Challenge Resolution

Multiple GPUs constraint to train
huge data sets

Combined multiple training files into
a single file

Pytorch CUDA memory error with
batch size 32

Decreased batch size to 16 and
cleared CUDA memory cache

Disk space issue due to periodic
model saving after each epoch

Modified code to store only final
model and increased disk space

4.5.2 Testing

The solutions were a different set of programs from GitHub online platform
that are extracted for Python, and R programming languages and used as
validation and test datasets to test our model. The evaluation of the model was
performed using Accuracy, Loss and Perplexity. The plots that were generated
are discussed in the following paragraphs. One problem with this approach of
using accuracy, loss, and perplexity is that if there are small syntax mismatches
it may generate a high score even the output produced is completely different
from that of the source code. To fix this issue, computational accuracy was
used where the outputs of the source and target programming languages were
compared and given a high score if there was a match with the same input
values. Table 3 summarizes our test strategy. Figure 9 and 10 shows the
success we had with the experiments at translating from Python to R and vice
versa. The command line used is
$python3 <path>translate.py

--src_lang <source language>

--tgt_lang <target language>

--BPE_path <path to BPE codes>

--model_path <model path>

checkpoint.pth < <source file path>



Springer Nature 2021 LATEX template

16 Article Title

Table 3 Test Plan for the Machine Models

Test
Case
ID

Test Case
Description

Test Steps Test Data Expected Results

TC 01 Preprocess Code -
with comments

Pass ‘Yes’ to keep
comments param-
eter

Source code from
Github repo

High accuracy val-
ues

TC 02 Preprocess Code -
with no comments

Pass ‘No’ to keep
comments param-
eter

Source code from
Github repo

High accuracy val-
ues and low per-
plexity values

TC 03 Test with different
number of Trans-
former layers

Pass different
numbers to Trans-
former layers
parameter

Source code from
Github repo

High accuracy val-
ues and low per-
plexity values

TC 04 Test with different
number of Trans-
former heads

Pass different
numbers to Trans-
former heads
parameter

Source code from
Github repo

High accuracy val-
ues and low per-
plexity values

TC 05 Test with different
activation func-
tions

Pass different acti-
vation functions

Source code from
Github repo

High accuracy val-
ues, low perplex-
ity score and low
values of loss.

TC 06 Preprocess for
Python language

Pass language
parameter
‘Python’

Source code from
Github repo

High accuracy val-
ues and low per-
plexity values

TC 07 Preprocess for R
language

Pass language
parameter ‘R’

Source code from
Github repo

High accuracy val-
ues and low per-
plexity values

4.6 Results

The model was evaluated using computational accuracy, wherein the source
keywords and tokens are mapped to the translated tokens to identify the num-
ber of matching elements. Perplexity score was used to measure the translation
capability of the model, wherein a lower score indicates better performance.
Model Loss was also used as a metric, to evaluate the models. The plots of
these metrics were visualized in Tableau software and plotted as accuracy
versus epochs, Batch size, and Beam size.

4.6.1 Model accuracy

Current research has established that for the deep learning models, using more
resources such as by increasing model size, size of the dataset, or training steps,
leads to higher model accuracy. With the computational resources increasing,
there is a critical constraint on improving model accuracy.

Amplifying compute efficiency required reconsidering common assumptions
about model training. The authors of the paper [27] proved the assumption
that models must be trained until convergence, which made larger models
appear less viable for limited compute budgets. In [18], the authors proved that
the fastest way to train the Transformer models was to substantially increase
model size but stop training very early.
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Fig. 9 Screenshots of the transcoding from Python to R and vice versa

In this paper, there is a stopping criterion to stop the training after 20
epochs. An increase in accuracy and better translation in the programming
languages was observed. The results of accuracy versus epochs were recorded
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Fig. 10 Screenshots of the transcoding from Python to R and vice versa

and as can be seen from Table 4 the model received 40% accuracy with 500
epochs.

As can be seen from Figure 11 the hyper-parameter sets (epochs, batch
size, beam size) tried are (47, 16, 1), (100, 32, 1), (200, 32, 25), (151, 32,
25), and (200, 32, 1). The accuracy reached nearly 40% for 200 epochs, which
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Table 4 Computational accuracy vs existing baselines

Baseline 1 Baseline 2 Our Experiments

Python to C++ Python to Java Python to R
32.2 24.7 37.341772

resulted in a better model. It was observed to be wavering around 13% to 14%
for other permutations of the hyper-parameters.

Fig. 11 Model accuracy vs epochs, batch, beam size

4.6.2 Model perplexity

The existing research performed on Transformer models evaluated their per-
plexity on test data and information-theoretic assessment of its predictive
power.

Perplexity PP (W ) is a metric used to evaluate the translation capability
of a language model. It is defined as the inverse probability of the test set,
normalised by the number of words as given in equation 2

PP (W ) =
1

P (w1, w2, ..., wn)
1
N

(2)

where W represents the entire masked code made up of fragments of codes
in a test set (w1, w2, w3...wN ).

A lower perplexity score indicates a better model. The plot of perplexity
and epochs was plotted as in Figure 12 and observed to be decreasing for a
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larger number of epochs while training. The lower value of perplexity resulted
in a better model for translation.

Fig. 12 Model perplexity vs epochs, batch, beam size

4.6.3 Model Loss

The loss of the model is the mean squared error computation. The loss is
observed by comparing the generated output with the initial input and not the
noise filled input that has been fed to the model to ensure better training. The
AE Loss vs Epochs plot was visualized using Tableau and plotted as in Figure
13 for Loss versus epochs. On observation, it was noted that loss decreased as
the epochs increased and a model with lower loss resulted in better translation.

5 Conclusion

Time and again, software concepts continue to draw inspiration from the real
world. Deliberately or unconsciously, many computer science artifacts bear a
striking resemblance to the happenings in the real world. Similarity is proba-
bly the single most important underlying principle of machine learning. From
a linear predictor to advanced deep learning frameworks, all use dot products.
Dot product that is ubiquitously used in machine learning is a measure for
similarity. It can therefore be concluded that machines predominantly learn
by way of similarity. However, this fundamental way of learning remains unex-
plored to a significant extent in human learning of difficult topics like machine
learning itself. Part of this paper and [2] attempted to address that gap. When
the subject is challenging as is the case with machine learning, it helps to draw
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Fig. 13 Model loss vs epochs executed

parallels to the concepts that the students are already familiar with to help
explain the underlying philosophy.

Accordingly, a few real-world analogies for machine learning concepts have
been discussed in this paper in a tabular form. All the analogies are based on
human intuition and ingenuity. A future direction for this work is to evalu-
ate the feasibility of automatic generation of analogies, not just for machine
learning topics, but for any advanced subject with hard-to-understand con-
cepts. The similarity is a fundamental notion in machine learning. Using the
right type of topic, language modeling, and NLP techniques, it may be possi-
ble to discover similarities automatically between topics using deep learning,
particularly given the universal approximation theorem.

We also used similarity to improve the efficacy of machine learning by
developing a software application called Transcoder for programming language
translations between Python to R. The dataset for both programming lan-
guages was generated from Big Query with a collection of R and Python
programs. As part of the preprocessing, tokenization and function extraction
procedures were applied to both programs. As the model was able to identify
the tokens and the functions XLM pretraining and denoising autoencoding
models were applied to generate the translations. To improve the quality of
translations, back translation was applied to this monolingual data generated
from source-to-target and target-to-source models. The target sequences gen-
erated in this process were then translated to source code which was manually
verified against the original target program given by the user. This verification
helps us to corroborate the accuracy of the translation.



Springer Nature 2021 LATEX template

22 Article Title

The performance of the model was evaluated using accuracy, perplexity,
and loss metrics. On observation, it was noticed that in some of the trans-
lations, the name of the function and return keywords were missing when
compared to the original code in the target programming language. Overall,
the translations do not seem to be production ready yet as certain syntax and
logical changes are not recognized for specific languages. Nevertheless, it is a
good start at exploring similarity using machine learning and complements the
work done in the existing literature, as described in the preceding sections.

The software application built for the purpose of unsupervised translation
between Python and R can be extended to other programming languages as
well. Currently, the translations are at function level only but can be extended
to programs as well. We leave this study for further research. The models used
in this paper, do not recognize Python or R libraries such as Pandas, NumPy,
tidyr, ggplot2, etc. In the future, modifications can be made to recognize them
in their equivalent target languages. In this paper, we analyzed function level
translation for standalone functions, which can be extended to class functions
as well. It is sincerely hoped that this research will open up a fruitful discussion
on exploring similarity in the context of machine learning.
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