
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2024

Investigating Uncertainty in Gaussian Process Models Investigating Uncertainty in Gaussian Process Models

Wilson Strasilla
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Data Science Commons

Recommended Citation Recommended Citation
Strasilla, Wilson, "Investigating Uncertainty in Gaussian Process Models" (2024). Master's Projects. 1418.
DOI: https://doi.org/10.31979/etd.ny5e-8jgs
https://scholarworks.sjsu.edu/etd_projects/1418

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1418&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1418&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/1418?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1418&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Investigating Uncertainty in
Gaussian Process Models

Wilson Strasilla
Author

wilson.strasilla@sjsu.edu

Martina Bremer
Academic Advisor

martina.bremer@sjsu.edu

A Writing Project Submitted to
the Department of Mathematics in

Partial Fulfilment of the Requirements for
the MS Degree in Data Science

San Jose State University
May 2024

Contents

1 Introduction . 2
2 Background . 2

2.1 Regression . 2
2.2 Non-Parametric Models 3

3 Gaussian Process Models . 5
3.1 Weight-Space View . 6
3.2 No Noise Function-Space View 8
3.3 Hyper-Parameters . 11
3.4 Hyper-Parameter Optimization 14
3.5 GPM in Scikit-Learn . 16

4 Experiments . 17
4.1 Shifting and Scaling of Data 17
4.2 Effect of Hyper-Parameters on Uncertainty 20
4.3 Hyper-Parameter Re-estimation 24

5 Conclusion . 27

1

1 Introduction

Regression tasks are fundamental in various fields, ranging from machine learn-
ing to engineering, where the objective is to predict a continuous output variable
based on various continuous or discrete input features. Traditional parametric
regression models, such as linear regression, rely on fixed functional forms and
make assumptions about the data distribution. However, these models often
struggle to capture the intricate relationships present in real-world data, lead-
ing to sub-optimal performance in many cases.

Non-parametric models provide a flexible alternative by allowing the un-
derlying function to adapt to the data without imposing rigid assumptions on
the ”shape” of the data. Gaussian Process Models (GPMs) represent a promi-
nent class of non-parametric models that have shown practical use due to their
flexibility and accuracy. Unlike traditional parametric models, GPMs define
a distribution over functions, enabling uncertainty quantification and robust
predictions even in the presence of noise or limited data.

This deep dive into the workings of GPMs will begin with an overview of the
regression task and the rationale behind adopting non-parametric approaches.
Subsequently, this paper delves into the fundamental concepts of GPMs, includ-
ing their mathematical formulation, critical properties, and practical considera-
tions, while largely following the framework of Rasmussen and Williams [3]. Fur-
thermore, the role of uncertainty estimation and marginal likelihood in GPMs
will be investigated through experiments conducted on simulated datasets.

The overarching goal of this paper is to provide an in-depth understanding
of the inner workings of GPMs, in particular, exploring the effects of making
modifications to the model’s hyper-parameters. Concurrently, this research will
look to provide a better understanding of uncertainty in GPMs, and explore
some perhaps unforeseen benefits of using the marginal likelihood as an objective
function for optimization.

2 Background

2.1 Regression

Regression analysis is a technique used for predicting the value of some de-
pendent variable given some set of independent variables. There are many
techniques for approaching this problem, but one of the most intuitive and well-
known is least squares linear regression. The linear regression model gets its
name from the property that there is a linear relationship between the depen-
dent variable and the independent variables. This class of model can result in
all sorts of shapes in their prediction surfaces, as transformations can be applied
to the independent or dependent variables. These models have many excellent
properties, such as ease of use and interpretation, but require the user to define
the type of function the linear regression model will adhere to before fitting the
data. If you have worked with these models, you will know that this can require

2

Figure 1: A simple example of linear regression. The regression hyper-plane (in this
case, a line) is fit to minimize the sum of squared errors of prediction at all observations.

a lot of experimenting to find an appropriate set of transformations on the data,
and even then, the fit may be questionable. This is the primary restriction that
non-parametric models are designed to circumvent.

2.2 Non-Parametric Models

Non-parametric models do away with the traditional parameters used in models
such as linear regression. Instead, the shape of the response surface is deter-
mined by the data itself, making the parameters the target values of the data.
Perhaps the most intuitive non-parametric model is kernel regression. In this
class of model, making a prediction ŷi at x equates to taking the weighted
average of the observed values yj for all observations.

ŷi =

n∑
j=1

wijyj (1)

The weights wij are determined by a parameter called the bandwidth, as
well as some kernel function K (). A kernel function is essentially a measure of
the distance between two observations. In this application, the kernel is used
to determine weights, which must sum to one to be used for prediction through
a weighted average. To this end, the kernel evaluations are normalized, as seen
in (2). The bandwidth represents how much impact observations close to the
predictive point in the domain space should have on prediction in comparison to
farther observations. With a larger bandwidth, all observations will be treated
more equally than with a smaller bandwidth. In a simple case, such as with a
uniform kernel, the bandwidth can represent an interval where observations are
considered, with the weights outside this interval set to zero.

3

Figure 2: An example of kernel regression on data generated from a sine function with
randomness. Unlike linear regression models, the non-parametric model can capture
this shape without knowledge of the function type. Observe the example point in the
center of the shaded region. To make a prediction at X = 0, a weighted average of
the target values Y is taken over all observations with −1 ≤ X ≤ 1 (the shaded area),
which represents the bandwidth (for other choices of smoother all of the data may be
considered but with different weights). As this example uses a uniform smoother, this
is just a simple average of the points within the interval determined by the bandwidth.

wij =
K(

xi−xj

b)∑n
j=1 K(

xi−xj

b)
(2)

As can be seen in figure 2, this method can be very effective at capturing
the shape of the data without much experimentation. There are, however, some
drawbacks to non-parametric models. Perhaps most importantly, the lack of
traditional parameters can make drawing conclusions about the effects of one
variable on another difficult. In a method such as least-squares linear regression,
one can make a statement about what can be expected to happen to the target
value when each variable changes by using the trained weights. However, in
the case of Kernel Regression, no relation between individual variables and the
response is obtained, and every point on the response surface is simply a function
of the training data. In addition to the lack of interpretability, one can very
easily over-fit the data using this class of model. By lowering the bandwidth,
one can create a model that gives a disproportionate amount of weight to the
most similar observations in terms of predictive variables. This will result in
a model that fits the dataset very well but likely will not represent the true
relation between the variables. Interestingly, in the case of a uniform kernel,
the resulting model may even fail to make predictions at some points if there is
no data within the domain defined by the bandwidth. Finally, while the reduced
assumptions of non-parametric models add flexibility, this comes at the cost of

4

some of the power granted through those assumptions. The assumptions of
parametric models generally provide some additional confidence in predictions,
meaning non-parametric models often require more data to achieve this same
confidence.

3 Gaussian Process Models

Definition 3.1 A Gaussian process is a collection of random variables that is
completely specified by its mean and covariance functions [3].

In this paper, the Bayesian approach to Gaussian Process modeling will be
discussed. That is, a prior GPM is constructed with basic assumptions. This
prior distribution is then conditioned on the observed data to get a posterior
distribution for the GPM. This will be further discussed in the following sections,
but for now, it is perhaps most effectively introduced graphically.

Figure 3: The first graph shows three functions drawn from the prior distribution with
mean zero, which is not yet conditioned on the observations. The second graph shows
three functions drawn from the posterior distribution, which is fit to the observations.

This process of conditioning the prior distribution to the observations can
be imagined (in certain conditions) as weeding out functions that do not agree
with the observations. This elimination of functions can be seen in the fact that
all of the functions in the second panel of figure 3 perfectly pass through the
points that represent the training observations. In section 3.3 the inclusion of
noise in the GPM will be discussed, and this addition will allow for the functions
to not align perfectly with the training observations. Information is also gained
about how likely any function may be. In the figure, this is represented by the
highlighted portion of the plot, which is the confidence interval of prediction.
Notice that the shaded region tends to grow in width farther from the observa-
tions, meaning that the model is less certain in areas where it has less training
information to work with.

This, however, is just a glimpse into the intuition of GPMs. The following
sections will show how this Bayesian approach can be linked to linear regression

5

before finally turning to the non-parametric model known as GPM, which will
be the focus of this paper.

3.1 Weight-Space View

Among the several ways to help understand Gaussian process models is the
weight-space view. The weight space view is closely linked to linear regression
in that the goal is to estimate weights w, which will act as the slopes of the
response surface, using the observations. The observed values of the dependent
variable are represented by y, while the independent variables are represented
as X. σ2

n represents the uncertainty of the observed values y. This uncertainty
gives rise to the likelihood of y shown in (3).

p(y|X,w) = N(X ′w, σ2
nI) (3)

It can be seen in (3) that the first term of the normal distribution (the mean)
is simply the application of a weight vector to some dependent variables, which
is how predictions are made in the technique least squares linear regression
discussed in section 2.1. Initially, the model has no information about what
the weights are, but is able to use the training data to find new weights, as
well as confidence intervals for these weights. In addition to being able to make
predictions, information is gained about the certainty of each prediction (which
varies based on the input). As the steps are described, the process will also be
described graphically for an example trained with the following simple data set,
which has already been used to create the plots seen in figure 3.

X =

[
1 1 1
2 5 9

]
y’ =

[
2 5 9

] (4)

Since a prior distribution for the weights is needed, assumptions must be
placed on the distribution of w. Generally, those assumptions are that w has a
mean of 0 and some covariance Σp. In the weight-space model, these weights can
be interpreted as the slopes in simple linear regression and include the intercept.
Thus there are a number of weights equal to one plus the number of variables,
in this simple example that means that there are two slopes. In X the need for
an intercept is reflected with an extra row of ones.

w ∼ N(0,Σp) (5)

The goal now is to find the posterior distribution of w using Bayesian prin-
ciples.

posterior =
likelihood × prior

marginal likelihood
(6)

The marginal likelihood in (6) takes the form seen in (7).

6

p(y|X) =

∫
p(y|X,w)p(w)dw (7)

applying Bayes’ rule,

p(w|X,y) =
p(y|X,w)p(w)

p(y|X)
(8)

the posterior distribution of w can be found to be proportional to (9) by
taking only the terms of (7) which depend on w.

p(w|X,y) ∝ exp(−1

2
(w−w)′(σ−2

n XX ′ +Σ−1
p)(w−w)) (9)

where σ2
n is the noise of the target variable, and

w = σ−2
n (σ−2

n XX ′ +Σ−1
p)−1Xy (10)

making this a Gaussian of the form:

p(w|X,y) ∼ N(w = σ−2
n A−1Xy, A−1) (11)

where

A = σ−2
n XX ′ +Σ−1

p (12)

Using the mean and variance from (11), the posterior’s confidence in the
weights can be visualized by plotting the weights within one standard deviation
of the mean. Notice in figure 4 that the variance for w0 (the intercept) is far
greater than that of w1, as any slight change in the slope can lead to a more
significant change in the intercept.

Figure 4: The dot in the first panel is the mean of the posterior distribution of w. The
ellipse represents the confidence interval of w under the posterior. The second panel
shows multiple lines drawn from the posterior of w. Observe that while the slopes do
not vary too drastically, the intercept does.

7

The weights can finally be used to make predictions. In figure 5, the y-
intercept is the first weight w0, and the slope is the other weight w1. Similarly
to how figure 4 is constructed, the equation of the regression line can be found
through the means of (11), and the confidence can be found using the variance of
(11). Alternatively, one can get the same results through a posterior distribution
on f∗ as in (13) where x∗ is a dense lawn between zero and ten where predictions
are made.

p(f∗|x∗, X,y) = N(σ−2
n x′

∗A
−1Xy,x′

∗A
−1x∗) (13)

Figure 5: In this plot, the blue line represents the regression surface, and the thick
curved red lines represent the one standard deviation bound on predictions. It can be
seen that the certainty gets worse as x gets farther from the center of the plot due to
the increase in the total distance to the data points.

In summary, using this approach, the data is used to update a prior distri-
bution of the weights. The mean of the posterior distribution can be interpreted
as the slopes, and the variance of the posterior can be used to describe the cer-
tainty in both the predictions and the slopes. You likely noticed, however, that
the number of slopes is defined in this case, meaning this approach has the same
limitations as linear regression. In the next section a function space approach
will be discussed, which removes this restriction.

3.2 No Noise Function-Space View

Alternatively to applying Bayesian techniques to weights, one can apply them
to the function space. Similarly to in the weight-space view, the mean of the
prior is initialized to a zero vector, with the difference being that the elements
of this mean represent the target values f∗. Accompanying this discussion will
be an example using the same dataset as the previous section.

8

One of the keys to the GP is the kernel function, which can be manipulated
greatly to best fit the data. In this case, the squared exponential kernel function
seen in (14) will be used due to its simplicity and other nice properties. For
example, every function in its prior has infinitely many derivatives.

ky(xp, xq) = σ2
f exp (−

1

2l2
(xp − xq)

2) (14)

In (14) σ2
f , and l are the signal variance and length-scale respectively, which

will be discussed further in section 3.3. This leads to a prior distribution on the
response where the mean is a 0 vector, and the covariance is determined by the
kernel on all input observations. In section 2.2, the kernels were expressed as
scalars. In (15), the covariance matrix K(X∗, X∗) is a matrix where the kernel
is evaluated for every pair of elements in X∗ using the equation in (14), or any
other appropriate kernel function.

f∗ ∼ N(0,K(X∗, X∗)) (15)

Drawing from this prior distribution, of course, results in rather random
looking functions such as in the first panel of figure 6. This is due to the fact
that the covariance function does not consider the dependent variable.

Figure 6: These curves show functions drawn from the prior distribution. See that the
responses are more or less centered around zero and do not represent the observations.

This information on its own is clearly not very useful. However, if a restric-
tion is placed on these random functions requiring that they pass through the
known observations, these functions immediately become much more interest-
ing. To start, observe the joint distribution of the training and test outputs
given the prior as seen in (16). This is little different from the original prior,
now simply expanding the covariance matrix and mean vector to accommodate
the increased information.

9

[
f
f∗

]
∼ N(0,

[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

]
) (16)

All of the information above in (16) is known besides f∗. The next step is to
restrict this joint prior to functions that agree with the training data. This can
be done by conditioning the joint prior to the observations. It can be shown
that in the following scenario:

X =

[
X1

X2

]
∼ N(µ,Σ) where

µ =

[
µ1

µ2

]
,Σ =

[
Σ11 Σ12

Σ21 Σ22

] (17)

the conditional distribution of X1 given X2 = x2 is normal with

Mean = µ1 +Σ12Σ
−1
22 (x2 − µ2)

Covariance = Σ11 − Σ12Σ
−1
22 Σ21

(18)

This leads to the distribution seen below in (19), as µ = 0 in the prior
distribution of f∗. For the full proof of how to derive the mean and covariance
in (18) see the work of Johnson and Wichern [2].

f∗|X∗, X, f ∼N(K(X∗, X)K(X,X)−1f,

K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗))
(19)

This will result in a mean vector for predictions over the test data and a
covariance matrix for these predictions. The diagonal of the variance portion of
the distribution in (19) gives the variance at each test point. It can be seen that
in the single test point scenario, K(X∗, X∗) = σ2

f (as this is the kernel of a test
observation with itself leading to the exponential portion of (14) becoming equal
to one), and the second term will be the left and right product of the covariance
between the test and training data with the inverse of the within covariance of
the training data. In the scenario where there is no noise in the training data
(or no noise is assumed), the model will always predict the “correct” value at
the training points, as seen below by the curves all passing through the points.
This means that at the observations, the diagonal elements of the second term
are also equal to σ2

f , while points farther from the observations will have small
values for the second term. In section 3.3, the results of adding noise to the
kernel will be explored.

In figure 7, notice the shaded area, which is the mean plus/minus two times
the standard deviation of f∗ at each input value. The functions all have the same
confidence bands, because they are being drawn from the same distribution. A
change to any of the hyper-parameters σ2

f , or l, however, would lead to a new
model with a different confidence band (as well as a different mean vector).

10

Figure 7: Another look at the second panel of figure 3. Three curves are drawn from
the posterior distribution. Note that they are no longer centered around zero and
more closely represent the observations.

3.3 Hyper-Parameters

Hyper-parameters are the free parameters used to modify functions and are
generally set using some prior knowledge of the dataset, trial and error, or
through an optimization process. In the case of Gaussian Process Models, hyper-
parameters modify the kernel function. While these will vary in type and count
depending on the covariance function, this paper will limit its discussion to the
squared-exponential kernel, and thus its three hyper-parameters σ2

f , σ
2
n, and l.

The squared-exponential kernel with noise takes a slightly different form from
what was seen in section 3.2 as seen in (20).

ky(xp, xq) = σ2
f exp (−

1

2l2
(xp − xq)

2) + σ2
nδpq (20)

First, let’s briefly discuss each variable in (20). The length-scale, l, deter-
mines the smoothness of the response surface in the functions drawn from the
posterior by adjusting how much the input needs to vary to result in significant
changes in the output. The signal variance, σ2

f , scales the exponential portion
of the kernel and tends to result in a stretching of the response surface in the
direction of the output. This is because σ2

f leads to a larger variability in the

response. Lastly, σ2
n is the noise variance, representing the measurement error in

the observed data. In the case of zero noise, σ2
n = 0, as was seen in section 3.2.

Changing this can allow the model’s functions to not perfectly pass through all
training points, as well as introduce non-zero uncertainty at these points. The
indicator variable δpq = 1 when xp = xq, and δpq = 0 otherwise. In GPMs, the
noise term is generally used to represent the noise in the training data and thus
is often only included in K(X,X) and is left out in the other kernel evaluations.

To better understand the effects of each hyper-parameter, it is easiest to

11

Figure 8: Observe the effects of varying the length-scale. The function in red was
generated with the hyper-parameters l = 1, σ2

n = 0, and σ2
f = 1, while the function

in blue uses l = 2, and all other variables are held constant. The higher length-scale
results in a smoother function.

view graphical examples where each is varied in isolation, that is to say, with
the other hyper-parameters held constant. Figure 8 shows an example of what
may occur when l is varied. While the restriction of zero noise at times leads
to unexpected functions, this is more or less what one would expect to see
with these hyper-parameters, as the blue function is much smoother due to the
greater length-scale. This is because increasing the length-scale essentially has
the same effect as making the data points closer together, as can be seen by its
presence as a scaling factor on (xp − xq)

2 in (20). Thus, all of the data points
are being treated more equally, as opposed to when l is small, and the closest
points have a more significant relative influence.

In figure 9, one can observe the effect of varying the signal variance. Looking
at the location of σ2

f outside of the exponential in (20), one would expect to
see the function stretched in the direction of the dependent variable,(vertically)
and observing figure 9 that is the case. Notice how the peaks and valleys of the
higher signal variance model are more extreme while the general shape remains
similar.

Adding noise to the equation has a much different effect. In this scenario, the
model is accounting for the potential that the training data is not completely
accurate. This most notably allows the function generated from the posterior
distribution (as well as the mean of f∗) to not pass through the training points.
Of course, then there will also be non-zero variances at the training observations.
This is accomplished by adding σ2

nI to the training data kernel matrix, resulting
in the distribution below in (21).

f∗|X∗, X, f ∼N(K(X∗, X)(K(X,X) + σ2
nI)

−1f,

K(X∗, X∗)−K(X∗, X)(K(X,X) + σ2
nI)

−1K(X,X∗)
(21)

12

Figure 9: Observe the effects of varying the signal variance. The function in red was
generated with the hyper-parameters l = 1, σ2

n = 0, and σ2
f = 1, while the function in

blue uses σ2
f = 2, and all other variables are held constant. The increase in σ2

f leads
to a function stretched in the vertical direction.

Figure 10: Observe the effects of varying the noise variance. Here, the red function
remains the same as the other figures, but σ2

n = .3 when generating the blue function.
The confidence band corresponds to the model generating the blue curve.

As can be seen in figure 10, not only does the curve not pass exactly through
the points, but the confidence interval need not even be centered around the
observations.

Notice that in many of the posterior plots in this section, the curves almost
seem to “pull” away from the data points and towards zero. Remember that
training these models involves conditioning a prior distribution with zero mean.
This effect can be thought of as the model weighing the influence of the prior
assumptions over the observations when farther in the domain space from the
training points. This tendency becomes even more apparent when the length-

13

Figure 11: Observe the effects of a small length-scale relative to the distance between
observations. The functions seem to default to the prior assumptions of mean zero
quickly at test points far from the training points in the domain space.

scale gets very small relative to the distances between training points, as can
be seen in figure 11.

3.4 Hyper-Parameter Optimization

While understanding the effects of the hyper-parameters on the resulting GPM
is useful, one may still wonder how to go about choosing values for these hyper-
parameters. Fortunately, a logical process for this exact purpose is both possible
and easier to derive than in many other machine learning models. Recall the
marginal likelihood in the weight space view, which is expressed as:

p(y|X) =

∫
p(y|X,w)p(w)dw (22)

In the function-space view, the marginal likelihood takes the form:

p(f|X) =

∫
p(f|X, f∗)p(f∗|X)df∗ (23)

A likelihood, as its name suggests, provides information on the likelihood of
the data given the model. Here, the likelihood of the training target values f is
marginalized over the test target values f∗ giving rise to the term “marginal.” As
this marginal likelihood is dependent on the model and, therefore, on its hyper-
parameters, it makes sense to find the hyper-parameters that optimize this value.
To make this easier in practice, the log marginal likelihood is instead used as the
objective function for optimization, which is an equivalent problem. It is already
known that f∗|X ∼ N(0,K), so by the properties of normal distributions:

log (p(f∗|X)) = −1

2
f′∗K

−1f∗ −
1

2
log |K| − n

2
log 2π (24)

14

It is also known that f|f∗ ∼ N(f∗, σ
2
nI). The product of the two Gaussian

densities in (23) can be rewritten as another scaled Gaussian density after several
algebraic steps. Integrating the resulting density and taking the log, it can be
shown that:

log (p(f|X)) = −1

2
f′(K+ σ2

nI)
−1f− 1

2
log |K+ σ2

nI| −
n

2
log 2π (25)

Looking more closely at (25), one can see that only the first term − 1
2 f

′(K+
σ2
nI)

−1f includes the target values f. This term serves the role of the data fit
and changes monotonically with adjustments to each hyper-parameter. That
is to say that the data fit increases when the model becomes more flexible (as
the length-scale decreases or the variances increase). The second term 1

2 log|K+
σ2
nI| is the complexity penalty which has the opposite relation with the hyper-

parameters (in terms of direction not magnitude). Finally n
2 log2π is simply

a constant. Due to the relations between the hyper-parameters and the two
primary terms of (25), as with many optimization problems, one can see that
this optimization comes down to a balancing act between finding the best fit
for the data and keeping the model less complex. One can imagine that this
optimization can be quite difficult when the dataset becomes large in dimension
and observation count due to the many factors affecting the objective function.
In section 4.3, the relation between the hyper-parameters and the marginal
likelihood will be further explored.

To optimize (25), as with most optimization problems, the next step is to
take the derivative of this expression with respect to each hyper-parameter Θj .
Fortunately, of the elements in (25) only K depends on Θ. Using the properties
of matrix derivatives available in [3], along with the chain rule, it follows that:

log (p(f|X,Θ)) =
1

2
f′K−1 dK

dΘj
K−1f− 1

2
tr(K−1 dK

dΘj
)

− 1

2
tr((αα′ −K−1)

dK

dΘj
)

(26)

where K implicitly includes the noise term σ2
nI, and α = K−1f.

While it is technically possible to find the exact solution to this optimiza-
tion problem, given the time complexity of these methods, it is more practical
to approximate the optimal solution through gradient ascent. Gradient ascent
is an optimization technique that repeatedly finds the optimal direction to tra-
verse, given the current parameter values, to give the maximum increase in
some objection function. This is done by taking the derivatives with respect to
each variable needing optimization (the hyper-parameters l,σ2

n, and σ2
f in this

case), and stepping in a direction with the ”steepest” ascent. There are some
drawbacks to this technique, in particular, the possibility of finding a local max-
imum rather than a global maximum. The trade-off is generally worthwhile, as
the risk can be lessened with only a linear increase in runtime by performing
the gradient ascent algorithm multiple times with different initial values and

15

choosing the solution that achieves the highest value for the objective function.
This estimated optimal solution will be referred to as the maximum likelihood
estimate (MLE).

Figure 12: This plot shows the log-marginal likelihood of the GPM trained for many
combinations of length-scale and signal variance on a single dataset (the dataset will
be introduced in section 4.2). The x and y-axes show the length-scale and signal
variance, while the z-axis shows the log-marginal likelihood. The noise variance is
held constant at .3. In this case, the length-scale appears to have a larger impact on
log-marginal likelihood than the signal variance. However, near the right edge, it can
be seen that the two hyper-parameters are not independent in their impact on the
marginal likelihood as the curvature seems to take a sharp turn downward. The red
point marks the maximum likelihood estimate for the hyper-parameters.

3.5 GPM in Scikit-Learn

The Python library sci-kit-learn contains an implementation of these GP mod-
els, as well as hyper-parameter optimization. The GaussianProcessRegressor
function takes in a kernel along with several other optional parameters [4]. One
can define the kernel of the GPM by using any combination of kernel functions
available. In this case, a constant kernel times a radial basis function kernel is
used to create the squared exponential kernel without noise that has been used
up to this point. Here, the constant kernel represents the signal variance, and
the RBF kernel is equivalent to the main portion of the squared exponential
where the only hyper-parameter is l. In this case, the range for the hyper-
parameters was set to fixed, but if it is necessary to train the hyper-parameters,
the range can be set to some reasonable bounds.

C(σ2
f = 1, range = ”fixed”) ∗RBF (l = 1, range = ”fixed”)(27)

Noise variance can also be handled by GaussianProcessRegressor through
the alpha parameter but cannot be optimized. As a result, for the experiments

16

in the rest of this paper, the noise variance is set to some constant, which will
be noted when necessary. Once the parameters of the function are defined,
the model can be fit to the training data using the fit(x,y) function, which is
essentially creating the vector (K(X,X) + σ2

nI)
−1f used to calculate the mean

vector (as well as in the covariance) in the Gaussian posterior. At this point, the
predict(x∗) function can be applied to get the expected value at test points. This
method can also return either the covariance matrix or the standard deviations,
which is simply the diagonal of the covariance matrix with the elements square-
rooted. The sample (x∗.) function draws a sample from the trained posterior
model with a dimension equal to the number of values in x∗.

This library was used to check the implementation of GPM created in the
early stages of this research project. This library will also be used for many
of the future experiments in place of our implementation for efficiency reasons.
Their implementation of the gradient ascent algorithm in particular is much
more efficient and accurate than ours.

4 Experiments

4.1 Shifting and Scaling of Data

Some research, including that of Anirudh et al. [1] has found that non-parametric
models can behave unexpectedly when transformations such as shifting and
scaling are applied to the data. They observe that the resulting models do
not maintain their original shape, albeit only slightly in most cases. They
used this observation as the foundation of their novel uncertainty metric, which
they named ∆ − UQ. In the initial stages of this project, there were plans to
compare this uncertainty metric proposed by Anirudh et al. to the GPM un-
certainty discussed in this paper. However, to pursue this goal, it was found
that the use of non-shift or non-scale invariant kernels would be required, and
thus, the research took another direction. Still, it can be instructive to see how
data transformation impacts the GPM with a squared-exponential kernel and
how the hyper-parameters can be adjusted to counteract these changes. First,
shifting the input data had no impact on the shape of the function, as can be
seen in figure 13. This is because the squared exponential kernel evaluation
discussed in section 3.3 is exactly the same when both xq and xp are shifted by
the same amount.

On the other hand, scaling initially leads to a shocking difference, as seen in
figure 14, where the inputs and outputs are scaled by a factor of 10. However,
digging deeper, this result makes a lot of sense. Here, the hyper-parameters have
not been changed to account for the increase in scale. This may seem familiar
to what was seen in section 3.3 with figure 11, and it is, in fact, the opposite
side of the same coin. The length-scale is once again too small relative to the
distance between observations in the domain, leading to the model relying more
on the prior distribution of the response than on the observations. Adjusting
the length-scale will lead to a more reasonable result, but the shape is still not

17

Figure 13: Notice that the two plots are identical besides the domain of X. This is due
to the fact that shifting the input has no effect on the squared exponential kernel and
thus on the shape of the GPM.

quite the same, as can be seen in figure 15.

Figure 14: Unlike in figure 13, it can be seen here that scaling the data has a huge
impact on the shape of the GPM. This is due to the fact that scaling the domain does
have an impact on the squared-exponential kernel if l is held fixed.

This difference is due to the signal variance not being scaled to account for
the scaling of the output. After adjusting σ2

f by a factor of ten, the same shape
is indeed achieved, as seen in figure 16. The math behind why this scaling of
σ2
f will be further discussed in section 4.2.
Finally, a shift of the output variable was attempted, and it was found that

despite adjusting the hyper-parameters appropriately, the models do not align.
This is due to the prior distribution on the response remaining the same with a 0
mean. With the data now lying farther from the prior assumptions, this original
mean ”pulls” the response towards it. This makes the choice of an appropriate
length-scale all the more important the larger the scale of the response variable
in the data, and may even warrant a data transformation before the training of
the GPM for some datasets.

Seeing how the scale of the domain and length-scale interact may raise an

18

Figure 15: After scaling l, the panels look much more similar but are still not quite
the same. This is because of the presence of f (the observed response) in (19), which
is now scaled, leading to a different evaluation for the mean portion in the posterior
model.

Figure 16: After properly adjusting both l and σ2
n see that the shape of the GPM can

be maintained through scaling of both the domain and range of the data.

important question for the reader. What if the data has many variables, and
the scale of these variables is drastically different? While so far (and for the
rest of this paper) the examples have all been in two dimensions for ease of
visualization, GPMs can be used with any number of variables. In the first
panel figure 18, it can be seen that the wrong choice of length-scale can lead
to poor predictions due to the extreme tendency for the response to be pulled
toward zero. However, increasing length-scale to counteract this may lead to
mistreatment of the variable with a smaller scale. In this case, it is important
to consider re-scaling the data to the same range or using different length-scales
for each variable.

The second panel of figure 18 shows a function drawn from a GPM where a
different length-scale was set for each variable. To account for this change, the
squared exponential kernel requires a slight adjustment. The squared exponen-
tial kernel takes the form seen in (28) in the multivariate case.

19

Figure 17: Shifting of the range of the data is not so easy to adjust for. In this plot,
the blue curve, which tends to sit higher than the red curve, is a transformation of the
output of the GPM trained on the original data. The other curve shows the results
of the GPM trained on the transformed data. The model tends to pull the response
towards zero here due to the prior model’s assumption of zero mean.

k(xp,xq) = σ2
f exp (−

1

2
(xp − xq)

′M(xp − xq)) + σ2
nδpq (28)

In (28) M is a matrix representing the length-scales of the kernel. In the
first panel of figure 18, M = l−2I, to reflect the fact that all length-scales are
the same. Alternately, in panel 2, M = diag(l)−2, where l is a vector of positive
values which need not be the same. This gives the kernel the freedom for l to
vary between variables. A GPM was trained using this slightly modified kernel.
This kernel includes a very small length-scale in the x2 direction and a larger
one in the x1 direction. This alternate posterior generates functions that are
very smooth throughout the domain of the data, as seen in panel 2.

In both of these cases, M is a diagonal matrix. As a result, the entries of M
impact each variable independently. Adding some non-diagonal matrix Λ can
allow the specification of length-scales that handle the interaction of variables.

4.2 Effect of Hyper-Parameters on Uncertainty

It is now clear that hyper-parameters play a significant role in determining the
shape of the predictive surface of the GPM posterior, as well as the shape of
the functions drawn from this posterior. It should come as no surprise then
that the hyper-parameters also influence the uncertainty of the model, as this
uncertainty is also dependent on the kernel function as seen in the distribution
of the posterior (29). In fact, unlike some other models (in particular parametric
models), the hyper-parameters, kernel, and independent variables are the only
contributors to uncertainty in GPMs as seen by the lack of f ’s presence in the

20

Figure 18: The first panel shows what may occur if a length-scale small in scale
relative to the scale of one of the variables is chosen. Notice that in the x2 direction,
the curvature of the surface is quite smooth, while in the x1 direction, the surface is

very jagged. In this case M =

[
.2 0
0 .2

]
The second panel shows the results of assigning

different length-scales to each variable, leading to a smooth surface throughout. Here

M =

[
2 0
0 .2

]
.

covariance matrix in (29).

Figure 19: Data generated from the equation y = X+sin(X)+ϵ, where ϵ is generated
uniformly over a small interval to add randomness.

f∗|X∗, X, f ∼N(K(X∗, X)(K(X,X) + σ2
nI)

−1f,

K(X∗, X∗)−K(X∗, X)(K(X,X) + σ2
nI)

−1K(X,X∗)
(29)

Now consider again the squared exponential kernel shown in (30) below.
Taking a closer look at this equation, one can, at the very least, see the effect

21

each hyper-parameter will have on the kernel. It is very clear to see that as σ2
n

and σ2
f increase, so too does the magnitude of the kernel. The same holds true

for the length-scale, as an increase in l leads to a decrease in the magnitude of
the exponential. Since the exponential is negative, this leads to larger values
for the kernel. This, however, is only a piece of the puzzle when evaluating the
effects of these hyper-parameters on the uncertainty, as the second term in the
variance of (29) is more difficult to understand.

ky(xp, xq) = σ2
f exp (−

1

2l2
(xp − xq)

2) + σ2
nδpq (30)

Before trying to break down (29), it makes sense to look at the relationship
graphically. For this purpose, a two-dimensional dataset of thirty points has
been created. The dependent variable X was generated randomly between zero
and ten, and the dependent variable y = X + sin(X) + ϵ, where ϵ is generated
uniformly over a small interval to add randomness. By training many GPMs
while varying only one hyper-parameter at a time, one can see the effects of
each hyper-parameter upon the uncertainty. Here,“total uncertainty” is used
as an estimate for the uncertainty and is calculated as the sum of the diagonal
entries of the covariance of the response in the posterior model. The diagonal is
used for this purpose as these elements of the covariance matrix correspond to
the variance at each test point used in the model. In contrast, the off-diagonal
elements represent the pair-wise covariance of each test point with each other
and are thus not incorporated into this metric.

The plots in figure 20 suggest that there is a monotonic relation between each
hyper-parameter and the uncertainty, with that relationship being negative for
l, and positive for σ2

f and σ2
n. One may be surprised by this relation, thinking

that choices of hyper-parameters with high marginal likelihood would lead to
models with lower uncertainty. As seen in section 3.4, there is not a monotone
relationship between the hyper-parameters and the marginal likelihood, as that
is the objective function for optimizing these values. If this were the case, the
marginal likelihood would be a poor choice for optimization as there would
never be a bounded solution. The covariance function of the GPM (which is
what is used for uncertainty), however, as mentioned at the start of this section,
is completely independent of f. So if the covariance will be the same no matter
the values of f, so long as X and X∗ remained unchanged, the uncertainty in
GPMs is simply a measure of confidence in prediction under the assumption
that the selected kernel and hyper-parameters are the underlying truth for the
dataset. Figure 21 shows this lack of relation between total uncertainty and
marginal likelihood.

When trying to understand the mathematical reasoning behind these mono-
tonic relationships, it is easiest to start with the first term of the covariance
matrix in (29), which is rewritten on its own below in (31). This term is simply
the kernel evaluated for all test points. Therefore, the diagonal elements are dis-
tances calculated for each test point with itself, meaning the exponential term
will become one regardless of the length-scale’s value, leaving a diagonal with all
elements equal to σ2

f . This means that the first term increases linearly with σ2
f

22

Figure 20: The plots show the relationship between a GPM’s uncertainty and the
three hyper-parameters of the squared exponential kernel. When varying each hyper-
parameter the others were held constant. In these cases their values are l = 1, σ2

f = 1,
and σ2

n = .3.

and is unaffected by length-scale. Noise variance is also irrelevant to this term
as it is only used when evaluating the covariance of the training observations.

If the observation that increased length-scale leads to a decrease in uncer-
tainty holds for all datasets, then the diagonal elements of the second term of
(31) must increase, as the first term’s diagonal is unaffected. While the length-
scale can not be factored out nicely due to the exponential term, one can see
that all elements of K(X∗, X) and K(X,X∗) will increase as the length-scale
increases, as explained previously. The off-diagonal elements of (K(X,X)+σ2

nI)
will also increase, while the diagonal will remain unaffected. Unfortunately, this
covariance function also needs to be inverted, making confirming this relation
quite tricky. In the future, it may be worth exploring this relation mathemati-
cally, but in all experiments, we found that it held.

K(X∗, X∗)−K(X∗, X)(K(X,X) + σ2
nI)

−1K(X,X∗) (31)

It is easy to see why there is a linear relation between uncertainty and signal
variance in the no-noise case. Without the noise term, the signal variance can be

23

Figure 21: Both plots show the lack of relation between uncertainty and log-marginal
likelihood in GPMs trained for many combinations of hyper-parameters. In the first
panel, the color of the points represents the value of l, while in the second panel, it
represents σ2

f . Notice that there seem to be ”strands” of data points and that these
”strands” vary in color in the left graph but not the right. This seems to imply that
proportionally similar changes to l have a smaller impact on the marginal likelihood
than changes to σ2

f . It is also clear to see that not all of these ”strands” take the same
shape, implying that for different values of the σ2

f and σ2
n, l has a different impact on

the marginal likelihood, which will be discussed in section 4.3 Most importantly these
plots once again confirm the lack of relation between marginal likelihood and total
uncertainty.

factored out of each covariance matrix. The inverse in the second term leads to a
canceling of two of these factored signal variances, leaving σ2

f leading both terms.
In the noisy case, an issue similar to the one encountered when analyzing length-
scale arises. Figure 22 shows that for this dataset, the monotonic relation of
the hyper-parameters and uncertainty holds for all used combinations of hyper-
parameters.

One may notice that figure 20 does not reflect this linear relation between
σ2
n and total uncertainty as σ2

n ̸= 0. This is the case because attempting to train
GPM priors with σ2

n ̸= 0 often leads to errors in computation. This is likely
the result of observations that are too close together in the domain, resulting in
kernel matrices that are not well-suited for inversion.

4.3 Hyper-Parameter Re-estimation

In section 3.4, the optimization of hyper-parameters using the log-marginal like-
lihood as the objective function was discussed. Recall that this optimization is
generally performed as an estimation through gradient accent. Gradient accent
is most known to have issues when there are many local maximums or very
”flat” surfaces in the objective function. Figure 23 shows an example of this
log-marginal likelihood surface with varying l, and σ2

f . Even over this small
range of hyper-parameters with a relatively simple dataset, one can see that
this surface is quite complicated. While l is small, even minuscule increases

24

Figure 22: This plot shows the total uncertainty for many combinations of length-scale
and signal variance. The x and y-axes show the length-scale and signal variance, while
the z-axis shows the total uncertainty. The noise variance is held constant at .3. In
this case, the length-scale appears to have a larger impact on uncertainty than the
signal variance. The red point marks the maximum likelihood estimate for the hyper-
parameters, and the color scale shows the log-marginal likelihood. These factors will
be discussed more in the following section.

to l lead to significant improvements in terms of marginal likelihood. On the
other hand, for the most part, over these values of the hyper-parameters σ2

f

seems to have little impact on the marginal likelihood. One can imagine that
when adding more dimensions to the data or more complex relations between
the variables, these objective surfaces will only get more complicated.

The complexity of these surfaces raises questions as to how stable this op-
timization process is and, more specifically, how accurately it can estimate the
hyper-parameters of the true distribution. With this in mind, an experiment
was conducted to test the relationship between hyper-parameter re-estimation,
the marginal likelihood, and the shape of the marginal likelihood surface seen
in figure 23. A GPM was trained for several combinations of hyper-parameters
in the range seen in figure 23. Each model was used to generate 10 sample
datasets of 100 data points, each using the same values for X∗ as in the original
model. Call the j-th sample generated from the i-th original model (trained on
the original dataset with some unique set of hyper-parameters) yij . Each new
dataset [X∗yij] was then used to retrain a new GPM mij and estimate the op-
timal hyper-parameters. Once all 10 of the sample datasets generated from the
same initial GPM were used to re-estimate the hyper-parameters, that is, we
have mij for j = 1, ..., 10, the standard deviation of these new hyper-parameters
was stored as σi. The results of this experiment on the dataset used for section
4.2 and displayed in figure 19 can be seen in figure 24. This figure shows the
same surface as figure 23 but colored by the value of σi found in the experiment
using the corresponding hyper-parameters.

Studying these plots, there does seem to be some relation between the

25

Figure 23: This plot shows the log-marginal likelihood of the GPM trained for many
combinations of length-scale and signal variance on the same dataset. The x and y-axes
show the length-scale and signal variance, while the z-axis shows the log-marginal like-
lihood. The noise variance is held constant at .3. The red point marks the maximum
likelihood estimate for the hyper-parameters.

marginal likelihood seen by the darkest blue regions laying along the ”ridge” that
the optimal combination of hyper-parameters sits on. This is made more inter-
esting by the fact that datasets generated along this ridge are not the datasets
with the lowest uncertainty, as seen in section 4.2. Despite these datasets hav-
ing more variance than some others (particularly where l is larger), the GPM
optimization is more accurately able to re-estimate the hyper-parameters.

When conducting this experiment, we believed that the more likely relation
would be that the hyper-parameter estimation error would be more correlated
with the slope of the surface than the marginal likelihood itself. Looking at the
ridge of the graph mentioned before, it can be seen that for the original dataset,
the marginal likelihood does not drastically favor any particular value for the
signal variance. One might then think that it may be harder to re-estimate
signal variance in this scenario, but that did not seem to be the case. Instead,
both hyper-parameters appeared to follow a similar pattern for all choices of
the original hyper-parameters used in the experiment.

This experiment was repeated five more times on different datasets. It was
somewhat difficult to execute in mass, as the runtime is quite slow due to the
hundreds of models trained, each requiring hyper-parameter optimization. In
addition, the graphical portion of the experiment makes it easiest to interpret
the results of each iteration of the experiment individually. The results of the
other iterations of the experiment did not strongly contradict the observations
above but did not perfectly align with them either. σi was found to be quite
low at the MLE of the hyper-parameters in all cases, but in some cases, more
extreme values of the hyper-parameters seemed to result in lower σi.

26

Figure 24: These plots are the same surface seen in figure 23, where the color depends
on the hyper-parameter re-estimation for data generated from GPMs trained on the
same dataset with different hyper-parameters. The first panel shows the re-estimation
error of l, while the second panel shows the re-estimation error of σ2

f .

5 Conclusion

In conclusion, this paper has provided a detailed examination of Gaussian Pro-
cess Models (GPMs) and their relevance in regression tasks. It began by high-
lighting the limitations of traditional parametric regression models, which often
struggle to capture the complex relationships present in real-world data. Non-
parametric models, such as GPMs, offer a flexible alternative by allowing the
underlying function to adapt to the data without imposing rigid assumptions.

A deep dive was conducted into the fundamental concepts of GPMs, in-
cluding their mathematical formulation, key properties, and practical consid-
erations, such as the potential need for data transformations or modifications
to the properties of hyper-parameters used. It was discussed how GPMs define
a distribution over functions, enabling uncertainty quantification and robust
predictions, even in scenarios with noise or limited data. The role of the hyper-
parameters of the squared-exponential kernel and their effects on the model
predictions and covariance was explored in detail. Furthermore, the role of un-
certainty estimation and marginal likelihood in enhancing the performance of
GPMs was investigated through experiments conducted on simulated datasets.
These simulations made evident just how complicated GPM optimization can be
while discussing the potential of a relationship between the marginal likelihood
and hyper-parameter re-estimation.

The overarching goal of this paper has been to provide a more intuitive in-
troduction to GPMs, answering many questions likely to be posed by anyone
new to these models while attempting to make some useful observations on the
relationship between key components of Gaussian Process modeling, such as
uncertainty, marginal likelihood, and hyper-parameters. While the research did
not conclusively uncover any hidden secrets of GPMs, we hope that by con-
tributing to the understanding of non-parametric methods and their relevance
in data-driven research and applications, further developments or intuition may
come easier.

27

Bibliography

[1] R. Anirudh et al. Single Model Uncertainty Estimation via Stochastic Data
Centering. Tech. rep. Lawrence Livermore National Laboratory, 2022.

[2] R. Johnson and D.Wichern. Applied Multivariate Statistical Analysis. 6th ed.
Result 4.6. Pearson, 2007, p. 160.

[3] C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning.
The MIT Press, 2006.

[4] F Varoquaux et al. “Scikit-learn: Machine Learning in Python”. In: Journal
of Machine Learning Research 12 (2011), pp. 2825–2830.

28

	Investigating Uncertainty in Gaussian Process Models
	Recommended Citation

	tmp.1720162614.pdf.DVP8k

