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ABSTRACT

CHARACTERIZATION OF DERIVATIZED SILICA SURFACES BY
'H-NMR SPECTROSCOPY AND ESCA

by Paul J. Christensen

Metal-oxide surfaces are commonly used in chromatographic applications
such as High Pressure Liquid Chromatography (HPLC); the most commonly
used metal-oxide substrate is silica (SiO,). Because silica surfaces generally
contain hydroxyl groups that can lead to poor chromatographic separations, the
surfaces are derivatized by adding organic linkages. A new method under
investigation, “Silanization,” involves adding organic linkages via a two-step
process: (1) converting the surface-hydroxyl groups (Si-OH)} to surface-hydride
groups (Si-H), and (2) reacting the surface-hydride groups with an olefinic
compound (CH,=CH-R) with the aid of a platinum-based catalyst. This study
shows that the hydride intermediates can be evaluated with solid-state 'H-NMR
using the Combined Rotation and Multiple Pulse Spectroscopy (CRAMPS)
technique. The NMR data provide quantitative information pertaining to hydroxy!
groups and newly formed hydride groups on reaction intermediates. Electron
Spectroscopy for Chemical Analysis (ESCA), a surface analytical technique that
provides elemental composition, shows that some of the derivatized products

contain platinum from catalyst deposition.
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INTRODUCTION

Background Information on HPLC

Since the 1960’s, High Performance Liquid Chromatography (HPLC) has
gained widespread acceptance as a versatile chromatographic technique. In
general, HPLC uses a stationary phase in a column to separate the components
that are dissolved in a mobile phase (i.e., a solvent). Two of the most common
HPLC techniques include size-exclusion chromatography (SEC) and adsorption
chromatography. As the name implies, SEC separates molecules based on size:
larger molecules elute first because they are retained less by the pores of the
stationary phase. With adsorption chromatography, however, the various-
dissolved components interact dynamically with the stationary phase by
undergoing repeated adsorption-desorption processes. These processes are
strongly influenced by the polarity of the stationary phase with respect to the
mobile phase.

Adsorption chromatography can be further subdivided into two main
types: normal-phase chromatography and reversed-phase chromatography. In
normal-phase chromatography, the stationary phase is polar and the mobile
phase is nonpolar; thus nonpolar molecules elute first from the column. Just the
inverse occurs with reversed-phase chromatography; the stationary phase is
nonpolar and the mobile phase is polar. Thus the more polar molecules elute

first.



Stationary Phase in HPLC:

Silica gel, generally expressed as SiO,*xH,0, is the most commonly used
stationary phase in liquid chromatography. The silica particles are porous and
the sizes typically range from 3 to 12 um in diameter. Therefore, silica particles
exhibit a very large surface-to-volume ratio and a corresponding large specific-
surface area, attractive properties for chromatographic adsorbents. The
surfaces of bare silica contain two main types of chemical groups: siloxane (Si-
O-Si) and silanol (Si-OH). The surface chemistry of the silica dictates the type of
HPLC separation. Because hydroxyl groups are polar, bare silica can be used
for normal-phase chromatography. In order to use silica for reversed-phase
chromatography, the hydroxyl groups are typically derivatized by adding organic

linkages, thereby making the stationary phase nonpolar.

Silica-Surface Derivatization:

Various reaction pathways have been exploited to add organic moieties to
silica surfaces. Desirable properties for modified surfaces include a high degree
of surface coverage and chemical stability. Depending on the chemical reactions
employed, three common types of organic linkages can be obtained: | Si-O-R,

| Si-O-Si-R, or || Si-R (where R is an alkyl or substituted-alkyl group).



J/Si-O-R Linkages:
The [ Si-O-R type of bonding was studied early-on. The mechanistic
pathway involves the esterification reaction between surface-hydroxy! groups

and primary-organic alcohols.

| Si-OH + HO(CH,),CH, - | Si-O~(CH,),CH, + H,0

This particular type of bonding configuration, however, exhibits undesirable
properties by hydrolyzing under aqueous conditions. Therefore, the surface-
adsorption characteristics of the stationary phase can readily degrade with time

and usage.

J/Si-O-Si-R Linkages:

The most commonly used reaction pathway for commercially-available-
modified silica gives a siloxane linkage, ||Si-O-Si-R. The reaction scheme is
known as “organosilanization” (7). The process involves first preparing an

organosilane reagent, which is then attached to the silica surface.

XsSiH + CH,=CHR — X,SiCH,CH,R

| Si-OH + X,SiCH,CH,R — ||Si-0-Si-CH,CH,R



The X components can be a combination of alky! group(s) and/or groups that
easily hydrolyze, such as halides or alkoxys. Depending on the number of X
groups that are used, the organosilane attachments can be bonded to the silica
surface in two different fashions: monomeric or polymeric.

For monomeric attachments, monofunctionalized silanes are reacted with
the silica surface. Chlorodimethylalkylsilanes are the most commonly used

reagents to produce monomeric-bonded phases.

| Si-OH + CISi(CH,),-R — [|Si-O-Si(CH,),-R + HCI

The siloxane linkage of the monomeric-bonded phase, however, is particularly
prone to hydrolysis, especially under moderately acidic or slightly alkaline
conditions. Also, the degree of surface coverage tends to be less than ideal,
thereby leaving unreacted hydroxyl groups exposed on the surface. In reversed-
phase chromatography, the hydroxyl groups are undesirable because they can
lead to poor separations.

To overcome the hydrolytic instability of the monomeric-bonded phases
prepared via the organosilation-reaction pathway, the attachments have been
‘polymerized” onto silica surfaces. For polymeric attachments, di- or tri-
functionalized silanes are used. The additional functional groups can undergo
condensation reactions with neighboring attachments and therefore crosslink as

shown.



*,

/
| Si-0-8i.CH,CH,R
| Si-OH + CISI(OH),-CH,CHR ~ | Si-O-S|-CH,CH,R
o)

/
| Si-O-Si-CH,CH,R
£ \

P

The polymeric-bonded phases, however, are reported to be less reproducible
from batch-to-batch compared to the monomeric-bonded phases (2). Also, not
all of the hydroxyl groups on the bonded silane are eliminated through
condensation, thereby contributing to the number of unreacted-undesirable

silanols on the stationary phase.

JSi-R Linkages:

Compared to the || Si-O-R and || Si-O-Si-R types of bonds that have been
discussed, recent studies show that direct Si-C bonds are significantly more
hydrolytically stable than the Si-O bonds (3). Three general synthetic schemes
have been developed to produce silica-modified surfaces with Si-C bonds: (1)
chlorination/alkylation, (2) chlorination/reduction, and (3) silanization.

1) Chlorination/Alkylation: The chlorination/alkylation scheme involves
replacing the surface-hydroxyl groups with chloro groups. An alkylating reagent,
such as a Grignard or organolithium compound, can then be added to the silica

surface.



[|Si-OH + SOCI, — | Si-Cl + SO, + HCI

Grignard Reaction: | Si-Cl + RMgBr — || Si-R + MgCIBr
or
Organolithium Reaction: | Si-Cl + Li-R — ||Si-R + LiCl

Several factors, however, impede the application of the chlorination/alkylation
scheme for commercial use: (1) the two-step reaction is more difficult than the
one-step organosilanization reaction, (2) only a limited number of alkylating
reagents can be adequately prepared, and (3) the by-product salts (i.e., MgCIBr
and LiCl) are difficult to separate and remove from the alkylated products (1.

2) Chlorination/Reduction: This synthetic method also begins by
chlorinating the silica surface. The second step, however, is to replace the

chloro groups with hydride groups.

| Si-OH + SOCI, — ||Si-Cl + SO, + HCI

|Si-Cl + LIAIH, — [|Si-H

The hydride-coated surface can then react with terminal carbon-carbon double

bonds with the aid of a catalyst, a reaction step known as “hydrosilation.”

|Si-H + H,C=CHR — ||Si-CH,CH,R



7
In addition to enhanced hydrolytic stability, the reaction products of hydrosilation

show a more complete surface coverage than the other surface-modification
methods. Also, this procedure offers the ability to attach a wide variety of
organic-functional groups (e.g., ion-exchange, alkyl groups, liquid crystals, etc.),
depending on the particuiar type of chromatographic-separation desired.

The preparation of the hydride intermediate, however, posses difficulties
in the reaction scheme. The conditions must be meticulously free of moisture
and the evolving volatile by-products must be collected with a condenser.

3) Silanization: In an effort to overcome the complexities and time-
consuming steps encountered with the chlorination/reduction method, the
“silanization” procedure was developed to more conveniently prepare the hydride
intermediate. The first step in this method is to hydrolyze triethoxysilane (TES)

to give silanetriol.

H-Si-(CH;CH,-0), + 30H — H-Si-(OH), + 3(CH3CH2-Oy

The silanetriol is then bonded to the silica surface through a condensation

reaction.

| Si-OH + H-Si-(OH); - || Si-0-Si(OH),-H + H,0



The silanol groups are next crosslinked to produce a hydride intermediate.

/
| Si-0-i-H
£ P
|Si-0-8i(OH),H — | Si-0-SitH

0
7|Si-o-s?-H

FARERN

Just as in the hydrosilation step of the “chiorination/reduction” sequence
discussed previously, a wide variety of organic-functional groups with terminal
olefins can be added to the hydride intermediate with the aid of a catalyst. Most
of the reactions studied thus far have involved hexachloroplatinic acid (H,PtCl;)

as the catalyst.

N/ N/

|Si-0-Si-H |Si-0-Si-CH,CH,R
3 0
|Si-0-SicH + H,C=CHR ESl-O-Sl-CH CH,R
0 3
|Si-0-Si-H ISI-O-SI-CH CH,R
/ \
Research Objectives

The chemical nature of the silica surface is extremely important as the
stationary phase in HPLC. To help assess the surface-modification techniques,
newly derivatized silica was chemically characterized by two analytical
techniques: 'H Nuclear Magnetic Resonance ('H-NMR) Spectroscopy and

Electron Spectroscopy for Chemical Analysis (ESCA).



A solid-state 'H-NMR spectroscopy technique known as Combined
Rotation and Multiple-Pulse Spectroscopy (CRAMPS) was evaluated as an
analytical method to directly measure the different types of protons on the silica
surfaces. In particular, we measured the amounts of Si-OH protons on the bare-
silica starting compounds and the amounts of Si-OH and Si-H protons on the
silica-hydride intermediates. Because silica-based compounds are highly
hydrophilic, special precautions were taken to thoroughly dry the samples prior to
the quantitative NMR analyses to remove water protons that have a spectral-
masking effect. Thermogravimetric Analysis (TGA) was used to help identify the
appropriate drying conditions.

ESCA, also commoniy known as X-ray Photoelectron Spectroscopy
(XPS), is a surface-analytical technique. The ESCA data quantitatively identify
the various elements present in the outermost ~70 A (with the exception of H and
He that ESCA does not directly detect). Because some of the silica samples
were discolored, special attention was given for the presence of metal-catalyst
deposition (i.e., platinum from hexachloroplatinic acid, H,PtCl) on the silica

surfaces.

Overview of NMR Spectroscopy
In the mid-1920’s, the Austrian physicist Wolfgang Pauli suggested that
certain atomic nuclei should exhibit properties of both spin and magnetic moment

and that their energy levels would be split upon exposure to a magnetic field (4).
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These postulates were verified by the mid-1930’s. In 1946, two independent

research teams headed by Professors Felix Bloch at Stanford and E. M. Purcell
at Harvard demonstrated that once nuclei are oriented in an external-magnetic
field, transitions between energy levels can be induced by irradiation with radio
waves of the proper frequency. As a result of the energy-absorption process,
the nuclei are considered to be in resonance and “spin-flip” to a higher-energy
state with respect to the external-magnetic field. The 1952 Nobel Prize in
Physics was awarded to Bloch and Purcell for their work in the development of
Nuclear Magnetic Resonance (NMR) spectroscopy (5).

A few years after the physicists discovered NMR spectroscopy, chemists
learned that nuclei in different molecular environments resonate at slightly
different radio-wave frequencies. The frequency of a particular resonance is
commonly known as the “chemical shift.” Chemical shifts are influenced by
nearby circulating-electron clouds that act as secondary-magnetic fields that
oppose the main field, thereby shielding the nuclei from the full effect of the
external-magnetic field. Since it is very difficult to measure absolute frequencies
to the required precision, a reference compound is used to measure the
frequency difference between the protons of the reference and the protons of the
sample. Tetramethylsilane (TMS), (CH,),Si, is generally used as the chemical-
shift reference compound for 'H, *C, and #Si-NMR spectroscopy. With 'H-NMR
spectroscopy, the twelve protons are chemically identical and resonate at a

highly shielded frequency. In fact, very few protons in organic-based compounds
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are surrounded with a greater electron density. Therefore, TMS protons are

typically designated as resonating at 0.0 ppm. The protons of interest for this
research project, Si-H and Si-OH, are less shielded by electrons and resonate
between 1 and 8 ppm downfield with respect to TMS. With the ability to measure
chemical shifts, chemists can use NMR spectroscopy to obtain structural

information, both qualitative and quantitative.

NMR Spectroscopy of Solids verses Liquids:

The ability to collect NMR spectra of solids plays an important role in the
characterization of many different classes of compounds, including insoluble
materials, crosslinked polymers, inorganic compounds, and the surfaces of
solids as reported in this research paper. Under the normal experimental
parameters (i.e., single pulse excitation) used to collect '"H-NMR spectra of
liquids, solid samples typically give extremely broad-featureless spectra. The
basic principles for NMR of liquids and solids are the same, except the rapid-
molecular motion in the liquid state produces narrow isotropic chemical-shift
values for the various types of protons. With rigid solid materials, this motion is
absent. As a result, several interactions broaden the spectral lineshape. In
more recent years, however, line-narrowing techniques such as “magic-angle
spinning” and “multiple-pulse line-narrowing” have been developed to specifically
offset the line-broadening effects encountered with 'H-NMR spectroscopy of

solids.
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NMR Interactions that Broaden Spectra:

Four primary NMR interactions that are anisotropic in nature lead to
spectral broadening in solids: (1) quadrupole coupling, (2) J-coupling (also
known as “scalar coupling” and “indirect dipole-dipole coupling”), (3) chemical-
shift anisotropy, and (4) direct dipole-dipole coupling (both homonuclear and
heteronuclear). Fyfe describes these broadening interactions in quantum

mechanical terms with a general Hamiltonian equation (6).

H=Hg+H, +Hesa + Hp

Depending on the nature of the solid material under study, usually one or two of
these interactions will dominate as the main mechanism(s) for the peak-shape
broadening in solid-state NMR.

If the nuclear spin is greater than % (e.g., "N, ZAl, and *C)), then the
nucleus possesses a nonspherical nuclear electric charge distribution. As a
result, the nucleus has a quadrupole moment and interactions with an electric
field gradient typically generate significant broadening with solids. With the fast
and isotropic motion of molecules in solution, the value for the quadrupole
coupling is zero and is therefore not observed. The nuclei studied in the silica
samples of this research project all contain a % spin, so quadrupole coupling in

this case is not a mechanism for line broadening, H, = 0.
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The J-coupling interactions occur between nearby magneticaily
nonequivalent nuclei through covalent bonds. Molecular motion does not negate
these interactions. Instead, these interactions alter the resonance frequency and
lead to the splitting patterns that are normally observed in NMR spectroscopy of
liquids. Considering the ~0.5 ppm resolution typically obtainable with organic
compounds with solid-state 'H-NMR spectroscopy, J-coupling is not a significant-
broadening mechanism, H, = 0 (7).

Chemical-shift anisotropy arises when the specific magnetic resonance of
a nucleus is dependent upon the orientation of the molecule with respect to the
external-magnetic field. For example, the nuclear resonance of the protons in a
compound such as benzene in the solid state will give different chemical shifts
when the molecule is aligned parallel versus perpendicular to the external-
magnetic field. This anisotropy in the chemical shift of a powdered solid can be
as wide as 100 ppm, which is about ten times the total range for isotropic-
chemical shifts obtained with solutions (8). Chemical-shift anisotropy is actually
spectral broadening due to a multitude of superpositioned, inherently-sharp
chemical shifts of randomly oriented nuclei. To simulate the rapid tumbling of
molecules in solution, a line-narrowing technique known as “magic-angle
spinning” has been developed to remove the broadening effects attributed to
chemical-shift anisotropy, thereby enabling the measurement of isotropic-

chemical shifts, Hega— Hisotropic-chemical shitt
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Direct dipole-dipole coupling is the interaction between nearby magnetic

nuclei (e.g., 'H-"H, ®C-C, and 'H-"*C). The concentration of magnetic nuclei is
an important consideration for the NMR spectroscopy of solids. Because of the
low natural abundance of °C (i.e., ~1.4 %), homonuclear *C-"C coupling in
organic solids is statistically a very weak interaction and does not significantly
contribute to the line broadening in '*C-NMR. Protons, however, with a high
natural abundance (i.e., 100%) can show strong interactions between nuclei.
Therefore, heteronuclear 'H-"*C interactions broaden the '*C-NMR spectra and
'H-'H interactions broaden the 'H-NMR spectra. Similar to chemical-shift
anisotropy, all orientations of direct dipole-dipole interactions of solids are
convoluted, thereby co-adding to give broadened chemical shifts. The technique
that is used to remove 'H-'H dipolar interactions in 'H-NMR is known as

‘multiple-pulse line-narrowing,” H, — 0.

NMR Relaxation Processes:

In the presence of an external-magnetic field of strength B,, the spin %
nuclei will align both with and against the magnetic field. They spin like
gyroscopes at a rate known as the Larmor frequency about the field direction.
Because of a slightly lower energy state, a small excess (~50 ppm in a 7 tesla
field) of nuclei will align with the magnetic field to give a net macroscopic

magnetic moment. Vector diagrams, with the coordinate system rotating at the
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Larmor frequency, can be used to describe the nuclear assembly as shown in

Figure 1 (9).

( H
C) BO
X B,=0 y
(o) B,
X' L ,
Bl = 0 y Bl = 0 y

Figure 1: Vector Diagram of Nuclear Assembly

At equilibrium, the net magnetic moment (M,) is aligned with the z axis, which is
parallel to the external-magnetic field (B,). Upon exposure to a radio-frequency

pulse (B,) at right angles to B,, M, tilts through an angle @ into the x-y plane,



16
where NMR signals can be detected. The NMR signal is maximized when @ is

90°. After the B, pulse, the spin system relaxes in the x-y plane by spin-spin
relaxation (T,). The T, process involves energy transfer between two nuclei. A
nucleus in an excited state relaxes and the energy is transferred to a nucleus in
a lower spin state, which then becomes excited. While the overall spin-state
population remains the same, the average lifetime of a particular excited nucleus
is shortened. The result is line broadening. A short T, implies a broad peak.
Along with the T, process, the excited nuclear spins also relax in the z direction
by a spin-lattice relaxation (T,). With the T, process, thermal energy is
transferred from the excited nucleus to the surrounding lattice through
interactions such as the dipole-dipole coupling previously discussed. Relaxation
parameters such as T,’s have been used to characterize molecular motions of
polymers to relate bulk properties with molecular composition (10). The
magnitude of T, can vary significantly. For liquids T, values typically fall between
0.01-100 seconds; for solids T, values are much longer, sometimes days (17).
For quantitative measurements, the nuclei must be allowed to fully relax.
Therefore, T, values become an important property for determining appropriate
repetition rates. As a result of the T, and T, processes, the M decays back to its

original state along B,.
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High-Resolution Solid-State 'H-NMR Spectroscopy:

As previously mentioned, the rapid molecular motion in liquids leads to
narrow isotropic chemical-shift lines. With the restricted motion in the solid state,
the lines become excessively broadened. With the silica samples under study,
the spectral broadening is attributed to primarily two mechanisms: chemical-shift
anisotropy (Hcsa) and 'H-"H dipolar coupling (H,). Two line-narrowing
techniques, magic-angle spinning and multiple-pulse line-narrowing, have been
developed to minimize the effects of these line-broadening interactions.

The following equation described by Mehring shows the Hamiltonian

expression for the chemical-shift anisotropy interaction (72).

HCSA = Gimolz + %(300329'1 )(Gzz-Gi)O.)olz

The first term on the right-hand side of the equation is an expression that
represents the isotropic-chemical shift (,eropc). The second term, however,
represents the broadening associated with the orientation dependence of the
static nuclei with the external field. By rapidly rotating the sample at 6 = 54.7°
with respect to the external-magnetic field, 3cos? = 1 and the broadening term
in the equation is reduced to zero. In a rotating-frame diagram, this “magic
angle” can be drawn as a vector pointing along the diagonal of a cube as shown

in Figure 2.
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X

Figure 2: Vector Diagram of Magic Angle

Please note that by rapidly spinning at this angle, the sample does not show a
particular bias for any one vector axis, thereby simulating the isotropic molecular

motion of liquid materials.
The Hamiltonian expression for a direct dipole-dipole interaction is

discussed by Gerstein (13).

Hp = 'gNZBNZZ1/rij [(ri.rj - 3rizriz) X (Lel; - 3lizljz)]

The first term in the brackets is related to the spatial arrangements of the nuclear

spins; the second term is related to the actual orientations of the spins.
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The dipolar-broadening interaction can be reduced to zero by making one of

these terms zero. The influences of the first term, at least in theory, can be
reduced to zero by magic-angle spinning. With current technology, the required
spinning speeds are too high (8). The second term, however, can be reduced to
zero by manipulating the 'H-'H nuclear spins via the “multiple-pulse line-
narrowing” technique. With this technique a series of radio-frequency pulses,
with proper widths and intervals, is applied to the sample. The purpose of the
pulse sequence is to give an average-nuclear spin that aligns with the magic-
angle axis, thereby nullifying the nuclear dipole-dipole interactions. So while
magic-angle spinning uses mechanical motion to mimic molecular motion in
‘real” space, multiple-pulse line-narrowing uses radio-frequency pulses te mimic
molecular motion in “spin” space.

The first true multiple-pulse technique to remove the effects of
homonuclear dipole-dipole couplings was introduced in 1968 by Waugh, Huber,
and Haeberlen. The line-narrowing technique is commonly known as the
WAHUHA sequence. The following diagram by Bovey (Figure 3) illustrates the
four-pulse sequence and describes the behavior of the net-magnetization vector

(14).
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Figure 3: Diagram of WAHUHA Sequence

While the magnetization vector does not actually fall on the cube-diagonal axis,
the vector spends an equivalent amount of time along each axis. As a result, the
average vector falls along the diagonal. More sophisticated and complex pulse
sequences such as MREV-8 and BR-24, which are difficult to describe with
vector diagrams, are better at minimizing error by removing higher-order terms

and are therefore more commonly used.

Combined Rotation and Multiple-Pulse Spectroscopy (CRAMPS):
The two line-narrowing techniques that have been discussed each have

their own limitations. Magic-angle spinning reduces both spectral broadening
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interactions under consideration (Hcs, and Hp), but it does not completing

remove the strongly coupled proton dipole-dipole interactions (H,) due to the fast
spinning rates that are required. Multiple-pulse line-narrowing techniques can
achieve these spinning rates, but they do not remove the effects of chemical-
shift anisotropy (Hcsa). By simultaneously applying these two techniques during
an analysis, another high-resolution 'H-NMR technique has been developed and
it is known as Combined Rotation and Multiple-Pulse Spectroscopy (CRAMPS).
For strongly coupled proton systems, CRAMPS provides the highest-resolution
'H-NMR spectra of solid materials. Figure 4 illustrates the CRAMPS strategy
(15). The CRAMPS technique, however, is one of the most difficult high-
resolution '"H-NMR methods available for solid-state NMR spectroscopy. Strict
requirements and programmability are necessary for proper pulse widths,
phases, and amplitudes. Extremely stable high power radio-frequency
amplification is also required. Specially designed probes are needed to provide
narrow, intense radio-frequency pulses. Also, the amplifier, probe, and receiver
must ring down quickly to allow collection of the NMR data immediately after the

radio-frequency pulse.
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Figure 4. Diagram of CRAMPS Strategy
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Quantitative NMR Measurements:

With the ability to collect high-resolution 'H-NMR spectra with the
CRAMPS technique, the various types of protons can be measured
quantitatively. The fact that peak areas can be directly proportional to proton
concentration is an attribute of 'H-NMR spectroscopy. Both internal and external
standards can be used to quantitate the various types of protons. To expedite
the process of dehydrating the silica samples and collecting the NMR data
before water readsorption, an external standard was chosen for this study,
thereby eliminating the need to accurately weigh and mix the dehydrated silica
and internal-standard compounds. A known amount of polydimethyisiloxane
(PDMS) was used as the intensity standard. A recent publication by Maciel and
Liu at Colorado State University shows that PDMS makes a good standard for
quantitative analysis of solids by the CRAMPS technique (76). In their particular
application, they used PDMS as an internal standard. Two types of silica-based
compounds were included in their research: fumed silica and silica gel. They
were able to quantitatively measure isolated Si-OH protons, hydrogen-bonded

Si-OH protons, and physisorbed-water protons.

Overview of ESCA

Kai Siegbahn and his research group at the University of Uppsala,
Sweden, developed Electron Spectroscopy for Chemical Analysis (ESCA), also

commonly known as X-ray Photoelectron Spectroscopy (XPS), into a viable
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analytical technique in the 1960’s. Commercial spectrometers became available

in the early 1970's. In 1981, Kai Seigbahn was awarded the Nobel Prize in
Physics for his research and development of ESCA. ESCA has since become a
widely used surface-analytical technique in both industry and academia. The
technique is based on the photoelectric effect in which the absorption of X-ray
photons causes the emission of photoelectrons. Only electrons from the first 1-
10 atomic layers, however, give distinct signals in the ESCA spectra. All of the
elements, with the exception of hydrogen and helium that are not directly
observed by ESCA, emit photoelectrons with different energy levels. Therefore,
ESCA offers the unique ability to quantitatively and qualitatively identify the
elemental composition of the outer-atomic layers. In the case of silica-surface
modifications, the ESCA data will help us assess catalyst deposition and

chemical reactions taking place on the silica-substrate surfaces.

Fundamental Principles of ESCA:

The method is based on the photoelectric effect, originally discovered by
Hertz in 1887, that involves the emission of electrons from the surface upon
exposure to an X-ray beam (77). With modern-day instrumentation, samples are
iradiated with soft monochromatic X-rays under ultra-high vacuum conditions,
typically 10 to 10 torr. The sample surface emits photoelectrons from the
atomic core and valence levels. The kinetic energies of the emitted

photoelectrons are in turn detected by an electron analyzer. With the
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conservation of energy, the binding energy (BE) of an electron is equal to the

difference between the monochromatic X-ray photon energy (hv) and the kinetic

energy (KE) of the detected photoemitted electron.

BE =hv - KE

Albert Einstein first described this relationship in 1905 and it is one of the first
examples that light, X-rays in this case, behaves like particles rather than waves
(18).

The ESCA data are presented graphically by plotting KE intensity (counts
per second), which is directly related to the number of electrons, as a function of
BE. Essentially all elements give unique photoelectron signals with binding
energies between 0 and 1100 eV. As a result, all elements (with the exception
of hydrogen and helium) provide ESCA spectra that can be used to identify
surface compositions. With appropriate atomic-sensitivity factors for the various
elements, the BE peak areas can be used to quantitatively identify the elemental
composition. In most cases the elements can be detected at concentration
levels greater than 0.1 atom percent and in some cases as low as 0.01 atom
percent.

Another spectral feature prevalent in ESCA spectra are signals due to
Auger electrons. After the emission of a negatively charged photoelectron, an

atom resides in an excited state with a positive charge. As part of a relaxation
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process to achieve a lower-energy state, an outer-shell electron falls into the
inner-orbital vacancy. A concomitant outer-shell electron, known as an Auger
electron, is thus emitted that carries off excess energy. The Auger electron is
emitted approximately 1 x 10™ seconds after the photoemitted electron.
Therefore, irradiating samples with a monochromatic X-ray normally leads to two
different kinds of emitted electrons: photoelectrons and Auger electrons. Figure

5 depicts a graphical representation of the two processes.
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Figure 5: Diagram of ESCA and Auger Electron-Emission Processes

Please note that the nomenclature for describing photoelectrons and
Auger electrons differs. The photoelectrons are described with the appropriate

quantum numbers (e.g., 1s, 2s, 2p,,, and 2p,,). The Auger electrons are
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identified with X-ray notation that describes the various electronic shells involved

in the process (e.g., KiL,,L,;, LM, .M, ,, and MsN, N, 5).

While the incident X-ray photons typically penetrate and ionize the
samples to a depth of about 1-10 um, the photoemitted electrons have a very
short mean-free path of only about 100 A. This is because the size of an
electron is much larger than a photon; thus the probability of an electron
interacting with other matter is much greater. Only electrons at, or near, the
sample surface escape without losing energy by colliding with nearby atoms.
Therefore, the photoemitted electrons that leave the surface without losing
energy produce sharp peaks in the ESCA spectra. These sharp peaks,
however, are superimposed upon a rising background, rather than a flat

baseline, due to electrons that undergo inelastic-loss collision processes.

Elemental-Qualitative Analysis by ESCA:

For essentially all samples, a broad-scan survey spectrum from 0 to 1100
eV is first obtained to investigate and identify the various elements present. The
primary C(1s) line acts as an internal standard with a generally accepted binding
energy of 284.6 eV. The other photoelectron peaks are then evaluated to
identify the elemental composition of the sample surface.

An important feature of ESCA is the ability to identify the chemical state of
an element based on the “chemical shift” of the binding energy. For many

elements, precise measurements of the binding energy can be used to
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distinguish between oxidation states and molecular formulations. For example,

the binding energies for covalently bound fluorine are about 689 + 0.5 eV, while
the binding energies for ionically bound fluorine are about 685 + 2 eV. These
differences in binding energies for fluorine are considered large and can typically
be resolved with survey data. More commonly, however, high-resolution scans
in the spectral regions of interest are necessary to make reliable chemical-state

identifications for most elements.

Elemental-Quantitative Analysis by ESCA:

The photoelectron-peak areas from thg survey data between 0 and 1100
eV are used to determine the relative concentrations of the various elements on
the sample surface. The following equation defines the number of

photoelectrons/second (1) in a spectral peak (19).

| = n(foByAAT)

where n = number of atoms of the element per cm?® of the sample
f = x-ray flux in photons/cm?-sec
o = photoelectric cross-section for the atomic orbital of interest in cm?
8 = angular efficiency factor for the instrumental arrangement based on the
angle between the photon path and the detected electron
y = efficiency in the photoelectric process for the formation of the

photoelectrons of the normal photoelectron energy
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A = mean free path of the photoelectrons
A = sample area from which the photoelectrons are detected
T = detection efficiency for the emitted photoelectrons

After rearranging the equation,

n = I/(foOyAAT)

The denominator in this expression can be defined as the atomic-sensitivity

factor (S) to give:

n=I/S

The values of S for the Perkin-Elmer Phi 5600LS Multi-Technique ESCA
spectrometer have been determined by the instrument manufacturer for all of the
elements. For a chemical system that contains two elements (with the exception

of hydrogen and helium), the ratio of the elements can be given as:

ni/n, = (1./8,)/(1,/S,)

For chemical systems containing more than two elements, a more general
expression for the atomic percent of a particular element (C,) can be given as:

Ci=nJZn; = (i/S,)/ZIS,
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Description of the Perkin-Elmer Phi 5600LS Multi-Technique ESCA
Spectrometer:
Figure 6 shows a schematic diagram of the Phi 5600LS Multi-Technique

ESCA Spectrometer.

Hemispherical-Electrostatic-FieldAnalyzer

Quartz Crystal
Disperser
{monochromator)

——
Sample Stage

X-ray Source (anode)

Figure 6: Schematic of Phi 5600LS ESCA Spectrometer

The spectrometer is equipped with an X-ray source (Model 10-610) that emits Al
Ka photons of energy 1486.6 eV. To reduce the line width, the X-rays are

dispersed through a toroidal-quartz crystal that serves as a monochromator
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(Model 10-420). The monochromatized X-ray radiation is then focused onto the

sample surface. As a result, photoelectrons are emitted from the sample
surface, passed through an Omni Focus Ill lens, and detected by a
hemispherical-electrostatic-field analyzer (Model 10-360). The analyzer
measures electron velocities that differ for the various elements. An Apollo
Series 400 serves as the computer-control/data-acquisition system.

The analytical chamber operates under ultra-high vacuum conditions,
typically ranging from 10 to 10”° torr. The reasons for ultra-high vacuum
conditions are twofold: (1) minimize the scattering of the emitted electrons due
to collisions with gaseous molecules, and (2) minimize the deposition of gaseous
components onto the sample surface during data acquisition. Samples are first
evacuated in a preparation chamber to about 5 x 107 torr before being
introduced into the analytical chamber.

While collecting ESCA data, nonconductive samples can develop a
positive charge on the outer surface due to the emission of the negatively
charged electrons. With conductive samples, the charge is grounded through
the sample stage to the spectrometer. For testing nonconductive samples, the
spectrometer is equipped with an electron “flood” gun. The flood gun dissipates
low-energy electrons onto the sample surface to neutralize the charge.

The Phi 5600LS ESCA spectrometer also contains an argon-ion gun to
etch away surfaces for elemental-composition depth profiling. Because the silica

samples characterized in this study were porous and irregularly shaped rather



than flat, no surface etching was conducted to characterize the elemental

composition as a function of depth.

32
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EXPERIMENTAL DETAILS

Materials

Samples of bare silicas, silica-hydride intermediates, and organically
modified silicas were provided for both 'H-NMR spectroscopy and ESCA
characterization. The catalyst, hexacloroplatinic acid (H,PtCl;), was also tested
as a control sample. For the ESCA analyses, the silica samples were coated
and tested on 3M double-sided-sticky tape. Silicone rubber from Scientific
Polymer Products, Inc., was used as the external standard for the NMR

analyses. The molecular weight of the silicone rubber was 1,010,000 g/mol.

Thermogravimetric Analysis (TGA)

The silica samples were tested on a Thermal Analysis 2950 TGA . The
TGA contains a microbalance that monitors the sample-weight change as a
function of time and temperature. In the first TGA experiment, the temperature
was programmed to ramp from 25 to 900 °C at 20 °C/minute. In other
experiments, isothermal hold times of various durations were incorporated into
the temperature-ramp profile. Either dry nitrogen or dry helium gas purged the
TGA oven at ~50 mL/min throughout each run. The initial sample weights

typically ranged from 10 to 15 mg.



Proton Nuclear Magnetic Resonance (NMR) Analysis

The silica samples were first dried in a vacuum oven (~0.1 torr) at 160 °C
for at least one hour. Samples were then transferred to 5-mm alumina NMR
rotors and weighed in a nitrogen-purged glove bag. The proton spectra were
collected on an MSL-200 Bruker spectrometer which operates at a 'H frequency
of 200 MHz. The time lapse between removing a sample from the vacuum oven
and completing the 'H-NMR data acquisition was about ten minutes. A Doty
probe was used to analyze the silica samples with the CRAMPS technique. The
probe spins the rotors at the magic angle (i.e., 54.7° with respect to the external-
magnetic field). The BR-24 sequence was used to remove the homonuclear
dipole-dipole couplings. The radio-frequency pulse widths were 1.5 us and the
cycle time was 108 ps. The recycle time was set to 8 s. Qualitative
measurements indicated that this delay was sufficient to ensure a compiete
return to thermal equilibrium. A 45° “y” pulse was used as a preparation pulse.
Chemical shifts were determined by referencing to tetramethylsilane (TMS) with

& =0 ppm. All data were collected at ambient temperature.

Electron Spectroscopy for Chemical Analysis (ESCA)

The ESCA data were obtained with a Perkin-Elmer PHI Model 5600LS
Multi-Technique spectrometer. The silica-powder samples were coated onto 3M
double-sided-sticky tape, mounted on a sample stage, and evacuated to a base

pressure of about 1x10”° torr. To enhance the magnitude of the spectral peaks,
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the sample stage was tilted to a take-off angle of 70° with respect to the normal

surface plane. A monochromatic Al Ka X-ray source (1486.6 eV) operating at
400 W irradiated the samples with a spot diameter of 800 um. A hemispherical-
electrostatic-field analyzer with a 187.85 eV pass energy and a 0.4 eV resolution
detected the kinetic energies of the emitted photoelectrons between 0 and 1100
eV. The binding energies were normalized to the C(1s) line at 284.6 eV. Al

ESCA data were collected at ambient temperature.
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RESULTS AND DISCUSSION

Recent studies show that direct silicon-carbon bonds between silica-
based substrates and organic attachments show improved surface coverage and
hydrolytic stability (7, 3, 20). The reaction sequence first involves converting the
surface Si-OH groups into Si-H groups. The Si-H intermediate can then react
with a wide variety of terminal olefins to produce organic-derivatized
chromatographic-stationary phases. The ability to synthesize a Si-H
intermediate with high surface coverage is a critical step in the process. Poor
surface coverage of hydride groups leads to poor surface coverage of the
organic attachments. In more recent years, the newly developed “silanization”
method gives roughly a 4-fold increase in surface Si-H coverage when compared
to the older “chlorination/reduction” method (3).

Several spectroscopic techniques have been used to characterize the
bare silica, the silica-hydride intermediates, and the silica-organic derivatized
products. The most important chemically bonded groups to evaluate on the
silica surface throughout the reaction sequence include Si-OH, Si-H, and Si-C.
Because silica is hydrophilic, physically adsorbed water on the surface is also an
important consideration when measuring the -OH and -H contents quantitatively.

In the past, the Si-OH content on bare-silica samples has typically been
measured by Thermogravimetric Analysis (TGA). Samples are pretreated at 110

°C to remove adsorbed water. As the temperature is then ramped from 110 to
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900 °C, the Si-OH groups condense and liberate water. The amount of weight

loss can be used to estimate the original Si-OH content. Caution must be used
with this technique, however, because silica has been known to retain water at
temperatures up to 180 °C (3). Also, there is the possibility that some of the Si-
OH groups are isolated and therefore do not have the ability to condense with
neighboring groups at high temperatures

A variety of techniques have also been used in previous studies to
evaluate the Si-H content on the intermediate surfaces. Infrared spectroscopy
shows a strong absorption band between 2300 and 2100 cm™ that is attributed to
Si-H bonds. This particular location in the infrared spectrum is advantageous
because very few compounds give absorption bands in this region. Two
thermoanalytical techniques, Differential Scanning Calorimetry (DSC) and
Thermogravimetric Analysis (TGA), can also be used to characterize the Si-H
intermediate under oxidative conditions. DSC shows an exothermic peak due to
thermooxidation between 350 and 400 °C; TGA thermograms show a

corresponding weight gain.

ISi-H + % O, - || Si-OH + heat

Isolated chemical shifts found with *Si magic-angle spinning NMR have also
been used to characterize the Si-H intermediate. Due to the lack of Si-H

standards, the infrared spectroscopy, DSC, TGA, and *Si-NMR techniques only
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provide qualitative analyses and rough semi-quantitative analyses. The best

technique currently available to measure the Si-H content is by reacting the
substrate under alkaline conditions (KOH in H,0/ethanol) and measuring the
liberated hydrogen gas by gas chromatography. The degree of accuracy for the
quantitative aspects of this technique, however, are in still question.

The amount of Si-C on the final product can be determined by elemental
analysis. A Perkin-Elmer model 240C elemental analyzer, which uses a
combustion technique to determine the carbon content, has been used on

derivatized-silica samples in the past.

TGA Analysis to Evaluate Water Content

To better understand the nature of the adsorbed water and to determine
how to dehydrate the silica samples for subsequent 'H-NMR tests, the Vydac
bare silica was characterized by Therogravimetric Analysis (TGA). Figure 7
shows the weight-loss profile and the corresponding derivative profile as the
sample was heated from 25 to 900 °C in a nitrogen-purged environment. The
weight loss between 25 and 150 °C is primarily due to the liberation of water. At
higher temperatures, the Si-OH groups condense to give off additional water with
an associated weight loss. Based on the TGA data, 160 °C was found to be an
appropriate temperature to dehydrate the silica samples without condensing the
surface Si-OH groups of interest. Figure 8 shows the thermogram of the bare

silica heated to 160 °C and held isothermally for two hours. The weight iost was
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about 6%. The data indicate that a hold time of at least one hour is sufficient to

dehydrate the silica samples for the NMR characterization.

A few interesting observations were noted during the TGA analyses.

Silica samples begin loosing weight immediately upon enclosure in the TGA
furnace. Figure 9 shows the weight-loss profile for the bare silica that was first
held isothermally at 25 °C for one hour before ramping up the temperature.
Under the conditions of semi-dry gas purging the silica samples at room
temperature, the sampie weight decreases about 2%. We also found that after
dehydrating the samples at 160 °C, the samples readily regain weight in the TGA
furnace upon cooling. Figure 10 shows the temperature profile and
corresponding weight-change profile for a sample of bare silica that was heated
to 160 °C, held isothermally for one hour, and then rapidly cooled back down to
25 °C. Even though the TGA furnace was purged with dry helium in this case,
there was enough moisture in the system for the silica material to rapidly regain
~1.5% of the original weight during the cool-down cycle. Similar observations
were made when the TGA furnace was purged with dry nitrogen instead of dry
helium.

The rehydration rate under normal open-air laboratory conditions was next
determined. The purpose of this test was to measure how much water the silica
samples can readsorb in the first ten minutes after the 160 °C dehydration
procedure, which is roughly the amount of time required to collect the '"H-NMR

CRAMPS data. About 0.1 grams of the TES-hydrosilanized silica was baked at
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160 °C for one hour in a vacuum oven (~1.0 x 102 torr). The sample was

removed from the oven at the elevated temperature and placed onto an
analytical balance. Under these conditions, the weight gain was hand recorded
as a function of time; the data points are plotted in Figure 11. The rehydration
rate is rapid. Most of the water is readsorbed within ten minutes. Therefore,
special precautions must be taken to effectively dehydrate the silica samples and
to minimize the readsorption of water prior to completing the acquisition of the

'H-NMR data.

IH-NMR CRAMPS Analysis

To compliment the data that has been previously collected by other
spectroscopic techniques (e.g., DSC, TGA, GC, *Si-NMR, and infrared
spectroscopy), 'H-NMR data were collected via the CRAMPS technique on three
sets of silica samples: Vydac, Davisil, and Kromasil. With the ability to obtain
high-resolution data, the Si-OH and Si-H protons on the silica surfaces can be
evaluated. By using an external standard, polydimethylisiloxane (PDMS) in this
case, the integrals of the chemical-shift bands provide quantitative information
pertaining to the various protons.

A recent study by Maciel and associates at Colorado State University
shows that silica-based compounds give an intense chemical-shift band around
4.0 ppm due to physically adsorbed water (21). They also report that the broad

band between 2 and 8 ppm can be assigned to Si-OH groups in various
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hydrogen-bonded environments. The narrow band around 2.0 ppm can be

assigned to isolated Si-OH groups.

Figure 12 shows the overlaid spectra of the “non-dried” Vydac-bare silica,
the hydride intermediate, and the octyl-derivatized product. The spectra of the
Vydac bare silica and hydride intermediate are essentially identical. The
chemical shift for Si-H has not been found in the literature, but it is expected to
appear around 4-5 ppm. With the data collected at this point, we suspected that
physically adsorbed water masked the chemical-shift band of the Si-H groups.
As previously mentioned, the TGA data of the Vydac-bare silica (Figure 8) show
that the material is about 6% by weight physically adsorbed water. For the case
of the Viydac silica with a surface area of about 106.5 m?/g as shown in Table i,
the proton content on the silica surface due to water is calculated to be about
62,600 umol/m?. The surface density of silanol groups on silica surfaces is
generally accepted as about 8 umol/m? (3). With the abundance of water
protons superimposed upon the Si-H chemical-shift band, the need to effectively
dehydrate the silica samples prior to collecting the 'H-NMR CRAMPS data is
essential.

Based on the TGA data, the silica samples were dehydrated at 160 °C for
at least one hour. The samples were then weighed on a balance located in a
nitrogen-purged glove bag and immediately analyzed by the 'H-NMR CRAMPS
technique. The overlaid spectra for the bare silica and the hydride intermediates

for the Vydac, Davisil, and Kromasil samples are shown in Figures 13-15,
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respectively. Upon close examination of the bare-silica spectra, the chemical-
shift band that was assigned to the adsorbed water around 4-5 ppm has been
effectively removed by the dehydration process. As Maciel reported in the
literature, a sharp peak for the isolated Si-OH groups is observed at about 2.0
ppm and a broad band for the hydrogen bonded Si-OH groups is observed
between 2 and 8 ppm. Also, the chemical-shift band for Si-H was found to be
located at about 4.5 ppm.

The total area under the chemical-shift bands can be integrated for a
quantitative analysis to determine the total proton content on the various silica
samples. The CRAMPS spectrum for 0.00522 grams of PDMS is shown in
Figure 16. The chemical shift appears at about 0.2 ppm. By calculating the
number of protons in the PDMS standard, the area under this peak can be used
to calculate the number of protons on the silica samples. The PDMS standard
was tested four times throughout the duration of the NMR tests on the silica
samples. The average area for the PDMS protons was found to be 1.28 x 10°.
The number of protons per PDMS chain and the number of moles of PDMS in

the standard were first determined as follows.

No. of Hepus chan = [(MWepus, g/mOl)/ (MW gpeet unes @/MONJ(NO. Of H,pea une) = 8.17 x 10*

Moles of PDMS standard = (mass PDMS, g)/(MW,gys, 9/mol) = 5.17 x 10 moles PDMS

where,

MW;ous = 1,010,000 g/mol
MW peatuni = 74.16 g/mol {repeat unit = (Si(CH,),-O)}
No. of Hepeat unit = 6
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Therefore, the total number of protons in the PDMS standard can be determined.

Moles Hepys sto = (NO. of Hepus anain) (Moles PDMS) = 4.22 x 10~ moles H

The peak areas can then be used in the following equation to calculate the total

number of hydrogens in the various silica samples.

Moles Hy;.= [(Peak Areay;.,)/(Peak Areappys sm)l(Moles Heoms sto)

By substituting in the known values shown above,

Moles Hg;e, = (3.30 x 10°'? moles H)(Peak Area,;.,)

Table | lists the weights of the various silica samples, the total areas under the

integrated CRAMPS spectra, the surface areas (3, 22), and the total number of
moles of hydrogen per sample calculated with the equation shown above. The
number of hydrogen atoms were also normalized to the sample weights and

corresponding surface areas as shown in Table I.



Table I: Total Proton Content on Silica Samples

Sample ID Mass,g TotalPeak Surface H Atoms, HAtoms, H Atoms.
Area Area, m¥g  mmole mmol/g umol/m?
Davisil, Bare 0.03935 6.30x 107 480 0.21 5.3 11
Davisil, Hydride 0.03595 5.50 x 107 480 0.18 5.0 10
Kromasil, Bare 0.02380 5.87 x 107 3291 0.19 8.0 24
Kromasil, Hydride | 0.03770 6.35x 10’ 329.1 0.21 5.6 17
Vydac, Bare 0.02643 3.82 x 107 106.5 0.13 49 46
Vydac, Hydride 0.03747 5.93 x 107 106.5 0.20 5.3 50

For the bare-silica samples shown above, assuming all of the adsorbed
water was effectively removed, the total proton content is attributed to the Si-OH
groups. These values are relatively close (i.e., within an order of magnitude) of
the generally accepted value of 8 umol/m?. Although the Vydac silica has the
smallest surface area, it has the highest Si-OH content; this trend is consistent
with data from previous studies (3, 20). Also, the Si-OH content on the Vydac
silica has been previously reported to be about 50 pmol/m? based on TGA
weight-loss data (3), which agrees very well with the 40-50 umol/m? values
shown in Table I.

To determined the relative populations of the various types of protons on

the silica surfaces, the total-peak areas of the CRAMPS spectra (as reported in
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Table 1) were deconvoluted with curve-fitting software. Table Ii lists the results of

the deconvolution process.

Table lI: Relative Populations of Each Proton Species

Sample ID Relative Proton Populations, %

H-Bonded Si-OH  Isolated Si-OH Si-H

Davisil, Bare 64.8 35.2 -
Davisil, Hydride 30.1 16.3 53.6

Kromasil, Bare 82.1 17.9 -
Kromasil, Hydride 30.7 6.9 62.4

Vydac, Bare 52.8 472 -
Vydac, Hydride 34.2 6.8 59.0

The data in Table Il show that roughly 55-65% of the original Si-OH groups are

converted to Si-H groups. The conversion efficiencies for the three different

types of silica samples are fairly similar.

With the total-proton

populations in Table | and the relative-proton

populations expressed as percentages in Table 1l, the amounts of the H-bonded

Si-OH groups, the isolated Si-OH groups, and the Si-H groups can ultimately be

determined as shown in Table lil.



Table Ili: Proton Content for Each Species
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Sample ID H-Bonded Si-OH Isolated Si-OH Si-H
mmol/g  umol/m*> mmollg pmol/m* mmollg pmol/m?

Davisil, Bare 3.4 7.1 1.9 3.9 - -
Davisil, Hydride 1.5 3.0 0.8 1.6 2.7 54
Kromasil, Bare 6.6 19.7 14 43 - -
Kromasil, Hydride 1.8 5.2 0.4 1.2 3.7 10.6
Vydac, Bare 2.6 243 2.3 21.7 - -
Vydac, Hydride 1.8 17.1 0.4 34 3.1 295

ESCA Analysis

ESCA provides a surface-analytical technique for characterizing materials.

ESCA-survey data give the elemental composition of the outermost ~70 A. With

the exception of H and He, all elements can be detected. Because the

sensitivity for the various elements differs, the peak areas in the ESCA spectra

are not directly proportional to the atomic concentration. With known sensitivity

factors for the elements, however, the peak areas can be used to calculate the

relative amounts of the elements present. A previous report shows that low

levels of Pt on the silica surface can lead to deleterious effects on the
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chromatographic properties with some solutes (23). In this study, special

attention is being given for the presence of Pt on the silica surfaces as a result of
catalyst deposition (i.e., H,PtCl,).

Because the silica samples are nonconductive, the emission of the
photoelectrons leads to a net positive charge on the sample surface. As a result,
this positive charge alters the kinetic energy of the emitted photoelectrons and
causes the measured binding energies to shift and broaden. To minimize the
influences of sample charging, a flood gun sprays low-energy electrons (usually
10 eV or less) onto the sample surface. Peak shape is the most important
feature to optimize when adjusting the flood gun parameters. The positive
charge on the sample shifts and broadens all the binding energies in the
spectrum to the same degree. For each of the silica samples, the C(1s) band
was used to optimize the flood gun parameters to give sharp-intense signals.
The appropriate flood gun settings varied from sample to sample. After
collecting the data, the spectra were normalized by shifting the entire spectrum
by aligning the C(1s) band with 284.6 eV as suggested by the Perkin-Elmer PHI
5600LS Multi-Technique spectrometer instruction manual. Other instrument
manufactures, however, recommend shifting the C(1s) band to slightly different
values ranging from 284.6 to 285.2 eV, so care must be taken when comparing
data collected on different spectrometers.

After optimizing the flood gun parameters with the C(1s) band, ESCA data

were collected on each sample in the survey mode. The survey mode gives a
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broad-scan spectrum for photoelectron binding energies ranging from 0 to 1100

eV. Essentially all detectable elements show major photoelectron peaks in this
region. To collect data in the survey mode, a “pass energy” of 187.85 eV was
used for the electron analyzer. In principle, the pass-energy parameter functions
similarly to the slit-width parameter on a dispersive monochrometer. A higher
pass energy allows more throughput to produce a greater signal intensity, thus
better detection limits. A lower pass energy, however, improves the signal
resolution to give more precise measurements of the binding energies.
Chemical state information on many elements can often be obtained with high-
resolution data. After identifying the various elements present with the survey
scan, lower pass energies of 58 and 5 eV were used in certain cases to collect
high-resolution spectra on certain elements. The time required to collect high-
resolution data is significantly longer. Therefore, only data in narrow spectrai
windows (~30 eV wide) around the elements of interest are acquired. High-
resolution data for the C(1s) signal is almost always collected for the
normalization process.

Hexachloroplatinic acid (H,PtCl;) was used as the catalyst for most of the
reactions involving the addition of organic linkages to the silica-hydride
intermediates. A Rh-based catalyst and 2,2’-azobisisobutyronitrile (AIBN), a
common radical initiator in polymer chemistry, were also used in a few cases.
Figure 55 shows the ESCA-survey spectrum of a control sample of H,PtCl;. The

most intense peaks for Pt fall between 65 and 85 eV and they are attributed to



49
the emitted photoelectrons from the Pt(4f,,) and Pt(4f,,) orbitals, respectively.

Therefore, the regions between 65 and 85 eV of the silica spectra were carefully
evaluated for the presence of Pt.

The samples that have been analyzed by ESCA fit into three categories:
Davisil silica, Vydac silica, and various miscellaneous samples. Tables IV-VI list
the surface-elemental compositions for the three sets of samples. Figures 17-66
show the corresponding spectra. Platinum was detected on several of the silica
samples at levels ranging from 0.01 to 0.12 atom percent. With the standard
experimental parameters used to collect the ESCA-survey data, the lower

detection limit for Pt is estimated to be about 0.01 atom percent.
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In an attempt to detect lower levels of Pt on the silica surfaces, a greater

number of scans were collected to enhance the signal-to-noise ratios. The PHI
5600LS spectrometer does not report levels below 0.01 atom percent. To
evaluate a method for detecting lower levels, two samples from the
miscellaneous group [NC(CH2)4CN and 2-methyi-3-butenitrile] were scanned
with narrow analysis windows for just C and Pt. The other instrumentali
parameters used to obtain the data in this “high-sensitivity mode,” particularly the
pass energy of the electron analyzer, were the same as those used to collect the
ESCA-survey data. By testing in this mode, many more scans can be collected
on specific-spectral regions than in the survey mode (e.g., 4300 vs 32 numbers
of scans) for a given amount of time, thereby increasing the signal-to-noise
ratios. With the areas from these spectral windows and the corresponding
sensitivity factors for each element, the ratio of Pt (if present) with respect to
carbon can be determined. With this ratio and the amount of carbon from the
survey data, lower levels of Pt can be evaluated. The following general equation
can be used to determine the amounts of the elements at lower levels tested in

this manner.

% of element X = [(Areay)/(SF,)/[(Areacason)/(SFcasen)] X (% carbon from survey data)

where SF, = sensitively factor for specific element
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Even after 4300 scans in the Pt(4f) region with these two samples, no

spectral bands were detected. This technique, however, can still be used to

establish lower-level detection limits for Pt. The C and Pt spectra for the two

samples are shown in Figures 69-72. The integrated areas for C and Pt (which

is the baseline noise in this case) are listed in Table VII. The sensitively factors

for C and Pt, provided by the software of the Perkin-Elmer Phi 5600LS Muiti-

Technique ESCA spectrometer, and the carbon-content data from the survey

spectra are also listed.

Table VIl: ESCA Data for High-Sensitivity Analysis of Pt

Sample ID | Element | Area, | Sensitivity % C % Pt
cts- Factor (from survey | (calculated)
eV/s data)

NC(CH2)4CN C 69,319 | 58.185 36.14 N/A
Pt 57 939.769 N/A 0.002
2-methyl-3- C 57,001 | 58.185 26.53 N/A
butenitrile
Pt 69 939.769 N/A 0.002

As shown in Table VI, the integrated area of the flat baseline in the Pt(4f)

region gives a value for Pt at 0.002 atom percent for both samples. By assuming

that a signal-to-noise ratio of at least 3 is needed to assign a peak to Pt, then the



55
lower detection limit for Pt by testing in this manner is about 0.006 atom percent.

Compared to the lower detection limit of about 0.01 atom percent obtainable with
the survey mode, this high-sensitivity technique for acquiring data was not found
to significantly enhance the detection limits for Pt.

The ESCA data collected thus far also revealed the presence of some
unexpected elements on the surfaces of several silica samples. Chlorine,
presumably from the H,PtCl, catalyst, was detected on a variety of samples at
concentrations ranging from 0.22 to 1.16 atom percent. Although no F was
found on the bare silica samples and the hydride intermediates, levels between
0.17 and 3.09 atom percent were observed on many of the organic-derivatized
samples, especially the derivatives of the Davisil silica. Based on the ESCA-
survey data, the binding energy for F was about 689 eV in all cases, which is
consistent with F in the covalent state rather than the ionic state. For a more
thorough analysis to accurately characterize the molecular environment of F,
high-resolution spectra were collected on F and C of two samples: Davisil Diol
Ally!l Glycidy! Ether and Davisil 4-Phenyl-1-Butene. The ESCA spectra for F are
shown in Figures 73 and 74, respectively. As with the ESCA-survey data, the F
was found to be covalent with a binding energy of about 689 eV.

The only apparent source of covalently bound F on the silica surfaces was
from Teflon-coated stirring bars used during the derivatization process. To test
this hypothesis, a sample of bare silica (Vydac TPB5, E950505-31) was stirred

with three Teflon-coated stirring bars for five days. ESCA-survey data were then
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collected on the “stirred” silica and compared to a “control” sample. Table Viil

lists the surface-elemental compositions: the corresponding spectra are shown in

Figures 75 and 76.

Table VIil: ESCA Data of Silica Stirred with Teflon-Coated Bars

Sample ID C O Si F

Stirred Sample 171 | 657 | 25.0 | 2.2

Control Sample 174 | 576 | 25.0 -

Based on the data shown in Table VIiI, the F detected on most samples
described in this report comes from the Teflon coating on the stir bars,

presumably through an abrasion-type process.
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CONCLUSION

CRAMPS, which is a solid-state 'H-NMR technique that combines “magic-
angle spinning” with “multiple-pulse line-narrowing,” was used to acquire high-
resolution spectra on the silica-based compounds. The 'H-NMR spectra were
deconvoluted and integrated with curve-fitting software. With the use of an
external standard (i.e., PDMS in this case), the data provide a way to
quantitatively measure the Si-OH protons on the bare silica and both the Si-OH
and Si-H protons on the silica-hydride intermediates.

ESCA, which is a surface-analytical technique that gives the elemental
composition of the outermost ~70 A, showed that Pt from the catalyst deposited
on some of the organically derivatized-silica products. Covalent F was also
detected on most of the derivatized-silica samples. A series of controlled
experiments showed that the F comes from Teflon-coated stir bars that are used
while bonding the organic groups to the silica surface with the “silanization”

technique.
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VYDAC SILICA GEL. NET

VYDAC SILICA GEL. MYORIDE., WET

WET VYDAC SILICA GEL. DERIVATIZED MATERIAL

Figure 12: CRAMPS Spectra of Non-Dried Vydac Samples
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VYDAC SILICA GEL

VYDAC SILICA GEL. HYDRIDE

Figure 13: CRAMPS Spectra of Vydac-Bare Silica and Vydac Hydride
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DAVISIL SILICA GEL. DAY

DAVISIL SILICA GEL. HYDRIDE

10.0 5.0 0.0
PPN

Figure 14: CRAMPS Spectra of Davisil-Bare Silica and Davisil Hydride
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KROMASIL SILICA GEL. DAY

KROMASIL SILICA GEL. HYDRIDE

Figure 15: CRAMPS Spectra of Kromasil-Bare Silica and Kromasil Hydride
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Figure 16: CRAMPS Spectrum of PDMS
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