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A B S T R A C T

Brain cancer is one of the most deadly cancers, with a very low survival rate. By understanding the factors that
lead to cancer spreading, practitioners can concentrate their efforts on providing the most effective treatment,
and they can modify the treatment plan as necessary. Also, knowing the likelihood of a patient’s survival over
a specified time period can enable them to make informed decisions about adjusting their routines, future
investments, and other health-related decisions. The use of data-driven models in cancer research has gained
increased popularity over the past several decades. Moreover, there is still much uncertainty surrounding the
factors that contribute to survival of cancer, making it difficult to develop a model. The existing literature
on brain cancer contains a variety of machine learning models. However, many of them lack a high degree
of accuracy, and, in medical research, accuracy is essential to the proper guidance of treatment decisions.
Therefore, we have proposed a framework comprising multiple phases of classical statistics and machine
learning methods to find a parsimonious model with a high degree of accuracy (98.9%) for predicting brain
cancer survivability. Furthermore, we develop a prototype web-based interactive tool to facilitate the practical
implementation of the proposed model and provide a deeper understanding of how a particular factor affects
survival when other factors remain unchanged. By integrating this tool into healthcare settings, medical
professionals can rapidly detect potentially vulnerable patients, and it can also be useful in determining the
most effective treatment plan.

1. Introduction

Brain cancers, a term used to describe various forms of cancerous
tumors growing in the brain and spinal cord, are often fatal due to
their invading nature and the tendency to resist traditional surgical
treatments [1]. Brain cancers are one of the most lethal cancers and
are responsible for significant morbidity and mortality in the United
States [2]. According to the Surveillance, Epidemiology, and End Re-
sults Program, the annual incidence of brain cancers is 6.3 cases per
100,000 people. There will be 25,050 new cases and 18,280 deaths
from brain cancers in 2022 [3]. Despite the rarity of brain cancers,
they have a significant economic and social impact on individuals,
families, and the community [4]. Furthermore, brain cancers have a
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great impact on the healthcare system because they have an inherently
disabling effect on patients by preventing them from being able to
function independently [5]. There have been few significant advances
in prevention, early detection, and treatment of such illnesses over
the past four decades. There was only a marginal improvement in the
5-year survival rate of glioblastoma patients, a major brain cancer, from
4 to 7% [2]. An accurate understanding of cancer survival after the first
diagnosis is essential for both doctors and patients. This enables the
medical practitioner to make better treatment planning decisions [6].
Additionally, the patient may be able to consider possible lifestyle
changes, determine treatment options and make important financial
decisions [7]. A wide range of techniques has become increasingly
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common in recent years to predict cancer survival after the first diagno-
sis [7–24]. Researchers have pioneered machine learning algorithms to
predict the survival rates of patients with brain cancer using magnetic
resonance imaging (MR) [8–12]. Some research focuses on identifying
essential features, primarily from groups of genes, that can assist in
discovering the causes of cancer [13–16,25–29]. However, in recent
years, researchers have focused their attention on identifying demo-
graphic and clinical features associated with cancer and predicting
survival using various supervised models [7,24,30–39]. To identify the
limitations of the existing literature, we summarize these studies in the
following subsections.

1.1. Research based on image processing

The analysis of medical images can help physicians reduce their
workload and identify the type and class of brain tumors. In con-
junction with machine learning algorithms, detecting the tumor region
in Magnetic Resonance(MR) brain images can furnish physicians with
detailed information about the location and size of the tumor so that
appropriate treatment can be administered. Clustering algorithms are
among the most widely applied algorithms in the field of image seg-
mentation. For example, Srinivas et al. used a Fuzzy C-means clustering
algorithm along with K-means clustering for segmentation of the MR
image of the brain [40]. Vithanuvarthanan et al. employed a hybrid
self-organized map along with the Fuzzy k-means algorithms to accu-
rately identify tumors and segment brain tissue regions [41]. Several
other image segmentation algorithms are designed through the use of
Artificial Neural Networks (ANN) [42–45]. The models are vital for
identifying cancers and hence, may facilitate the development of more
effective treatment methods. However, none of the above models were
used to predict cancer survival, which is vital information for patients
and their families so that they can adjust their living styles and make
informed financial decisions.

However, authors have pioneered this field recently by predicting
the survival rates of patients with brain cancer based on MRI images
using machine learning algorithms [8–12]. Chato et al. for example,
utilized the BraTS2017 dataset, which consists of 163 samples with
four sequences of MRI brain images, the overall survival period in days,
and the age of the patients [8]. The authors applied multiple machine
learning algorithms and found that they achieved the best accuracy
using pre-trained AlexNet and trained by Linear Discriminants. Due
to the noise present in the MRI images, histogram features attained
an accuracy of 68.5%. Another research study aims to evaluate the
survival rate for glioma (one of the major brain tumors) using different
MRI techniques. A decision tree and cross-validation techniques were
used to calculate survival estimations based on 4524 radiomic features
derived from segmented tumor regions. Three different CNN architec-
tures were used to improve the performance of the network in tumor
segmentation. This study achieved an accuracy of 61.0% in identifying
short-, mid-, and long-term survivors [12]. In all of the studies above,
the accuracy scores were found to be very low (maximum accuracy
of 68.5%). Additionally, according to Kickingereder et al. the relation-
ships between MR images and underlying tumor characteristics did not
appear strong enough for the generation of reliable and clinically mean-
ingful classification models through machine learning [46]. Therefore,
the above MRI-based models may not be reliable in any real healthcare
setting.

1.2. Research based on gene expression

Comparing genes expressed in normal tissue and diseased tissue
may provide physicians with better insights into the pathology of
cancer and assist in making decisions. In order to assess the molecular
and physiological mechanisms of disease, it is crucial to examine gene
expression patterns for characteristics associated with clinical behavior,

thereby providing alternative approaches to understanding the molec-
ular and physiological mechanisms of disease [25–27]. A genome-scale
gene expression profile is useful for the identification of intertumor
heterogeneity and homogeneity [28,29]. Recent studies have been con-
ducted to identify glioma subtypes associated with certain molecular
characteristics [13–16]. As genetic data is better fitted for unsupervised
methods like clustering [7], the majority of studies [47,48] in this field
have utilized data sets containing various genetic profiles associated
with specific cancers. An unsupervised algorithm was used in a recent
study by Li et al. to predict the prognostic features and prognostic
groups for gliomas [48]. The authors employed two unsupervised
machine learning approaches to look at genome-wide gene expression
profiles for 159 different gliomas, ultimately resulting in a model for
glioma classification that relied exclusively on molecular data. Infor-
mation provided by the above study is essential for identifying cancer
subtypes and was not intended to predict cancer survival. However,
these models, despite their value for analyzing data, may not be suitable
to predict survival or make therapeutic decisions as genetic factors are
unable to provide information on whether cancer has spread or if a
specific treatment is required [7].

1.3. Research based on clinical data

Numerous models have been developed to address the above con-
cerns based on commonly available clinical features such as grade, age,
cancer size, node size, laterality, surgery, etc. Existing studies have
used statistical and machine learning algorithms to predict the survival
of cancer patients based on clinical data. The following subsections
provide a brief overview of the literature review based on the clinical
data.

1.3.1. Traditional statistical analysis
For survival analysis, Cox proportional hazards models and Kaplan–

Meier methods are among the most frequently used statistical methods
for clinical data.

Cox proportional hazards models: Existing studies that use clinical
data tend to use Cox proportional hazards regression models to de-
termine how covariates affect disease-specific survival [17–22]. For
example, Rosenberg et al. explored 72,367 breast cancer patients aged
between 21–91 years from the Surveillance, Epidemiology, and End
Results (SEER) database from 1973 to 1998 and analyzed the effect
of patient and tumor characteristics on survival using a proportional
hazards model [18]. The authors found that larger tumor sizes and
higher tumor grades negatively correlated with survival, and the year
of diagnosis was positively associated with survival. Patients’ age and
stage of disease violated the proportional hazards assumption since
distant diseases had a much lower short-term survival rate than one
would predict from a proportional hazards model. In spite of the fact
that the Cox proportional hazard regression model can be utilized to
extract valuable information from clinical data, there are few studies
that have verified the validity of the proportional hazards assumptions.
It has been noted that the Cox proportional hazard regression model
critically relies on the assumption that hazards between comparison
groups are in a constant proportion over time [18]. Additionally,
Cox proportional hazard regression models assume that each predictor
variable is a linear factor, ignoring any nonlinear effects on outcome
variables. Since tumor development and changes depend on a variety
of factors, it is unlikely that models can accurately predict patient
outcomes for cancer patients [49].

Kaplan–Meier method: Further, the Kaplan–Meier method [20,50–
52] is used to estimate overall survival (OS) over a fixed period of
time, which is a very common way of analyzing clinical data. Using
the SEER database, Fang et al. obtained data on bladder cancer cases
between 2010 and 2015 [50]. The Kaplan–Meier survival analysis and
nomogram analyses were used to visually and effectively predict the
3- and 5-year overall survival of patients with bladder cancer. The
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authors found that based on all Kaplan–Meier survival curves, there are
no significant differences in the survival rates of blacks and American
Indians/Native Alaskans, but these two races have lower survival rates
than whites and Asian and Pacific Islanders. In a recent study, Liu
et al. analyzed data on brainstem gliomas diagnosed between 2004 and
2016 from the SEER database that comprised 3387 cases of brainstem
gliomas [51]. Using Kaplan–Meier curves and the Cox proportional
hazards model, the author concluded that patients with tumors of less
than 3 cm in diameter had a better chance of survival, and surgery
was effective in improving overall survival rates. Radiotherapy and
chemotherapy did not appear to improve overall survival. Despite the
fact that traditional statistical methods are better suited for investi-
gating the relationship between covariates and end-point events, some
factors were not included in the model due to a lack of statistical
significance [53]. While the Kaplan–Meier method is the most popular
method for survival analysis, it only examines the effects of one factor
at a time and is therefore unsuitable for multivariate analysis [54].

1.3.2. Machine learning algorithms
For traditional statistical techniques, we have seen that there are

many assumptions that must be followed in order to apply the method.
However, machine learning techniques typically rely on fewer assump-
tions and provide superior and more reliable results [30]. Existing
studies have increasingly utilized clinical data to develop supervised
machine learning algorithms, for example, artificial neural networks
(ANNs) [7,31–33], support vector machines (SVMs) [33,36,55,56],
logistic regression (LR) [7,33,36,55,56], K-nearest neighbors (KNNs)
[55], decision tree (DT) [33,36], etc., for cancer survival prediction.
The researchers employed a variety of machine learning algorithms to
predict the 1-year [7,34–36], 2-year [36], 5-year [7,24,37,38,57–59],
10-year [7,23,24] and 15-year [24,60] survival of different cancer types
based on clinical data.

While there has been considerable research on machine learning,
relatively few articles have discussed machine learning algorithms
for modeling and validating brain cancer based on clinical data. A
majority of the articles analyzed traditional statistical analysis and MRI
images to predict patient survival or compare survival rates among
brain cancer patients; however, these models have some limitations
(as discussed in previous subsections). Samara et al. were amongst the
very few authors to use the SEER dataset for glioblastoma, one of the
most common forms of brain cancer, and to develop a prognostication
system based on ensemble learning to predict short-, intermediate-,
and long-term survival [36]. The authors of this study conclude that
age, CS tumor size, county, month of diagnosis, RX Sum, primary site,
and laterality are the most significant features for glioblastoma cancer
survival. Even though the top model achieved an AUC score of 94%,
the authors used some features, such as the insurance Recode, which
may not be useful to practitioners exploring factors directly linked to
cancer prognosis. In an earlier study, Senders et al. designed an online
calculator to assess survival in patients with glioblastoma by combining
classical statistics and machine learning algorithms [61]. The authors
included insurance as one of the features; additionally, the authors did
not report performance metrics as part of the model validation process.
Thus, the above models may not be helpful to practitioners in exploring
factors directly associated with brain cancer and predicting patient
survivability.

1.4. Contribution of our study

As discussed in the previous sections, the prevailing literature focus-
ing on predicting the survival of brain cancer patients has limitations.
In light of these deficiencies, the present study has adopted clinical
data and developed a machine learning model with a high degree of
accuracy for brain cancer survivability. Therefore, to find the most
parsimonious models for brain cancer survival, we have taken the
following steps.

Using statistical methods to eliminate inconsistent observations: Based
on the discussion in the preceding sections, we have chosen to use
clinical data (SEER) and machine learning for this study as they offer
a number of advantages. Since medical data is collected from various
sources, such as images, interviews, physician notes, etc. [39], it is
possible to have inconsistent information due to errors in data entry.
The authors of studies that use SEER data derived from the National
Institutes of Health (NIH) tend to remove inconsistent or redundant
observations manually or with expert knowledge without performing
statistical analysis [38,62–66]. Delen et al. for example, removed pa-
tients with tumors that measured greater than 200 mm for predicting
breast cancer survival [38]. The authors of a recent study by Gupta
et al. eliminated outliers or inconsistent records without performing
any statistical analysis and then utilized restricted Boltzmann machines,
deep autoencoders, and convolutional neural networks (CNNs) to ana-
lyze the postoperative survival of breast cancer patients [63]. We have,
therefore, identified outliers or inconsistent observations and removed
them during preprocessing of the data, but not manually; we instead
employed a statistical technique proposed by Cook [67] in 1977. Ac-
cording to our knowledge, the technique has never been applied in this
field. There are many researchers throughout the world who are study-
ing Surveillance, Epidemiology, and End Results(SEER) data resources
extensively. In search of PubMed (www.ncbi.nlm.nih.gov/pubmed) us-
ing the keywords Surveillance, Epidemiology, and End Results between
1973 and 2015, 40,031 citations were found, which demonstrates the
research productivity generated by this program [68]. Therefore, our
proposed preprocessing statistical method can be implemented in other
types of cancer for SEER data.

Features selection, balancing techniques, cross-validation and classifica-
tion models: By employing the Least Absolute Shrinkage and Selection
Operator (LASSO) [69] an embedded technique [70], we extract the
features that contribute significantly to the model’s predictive power,
subsequently yielding highly parsimonious models. A significant differ-
ence in survival classes results in imbalance problems in most survival
datasets [7]. Thus, to solve the imbalance problem, two sampling
techniques, random under-sampling (RUS) [71] and synthetic minority
over-sampling (SMOTE) [72] were used to increase the sensitivity of
the classification models. Furthermore, to reduce the bias estimation
of the performance metrics [73], we have performed 5-fold stratified
cross validation [74]. Finally, we used Random Forests (RF) [75] and
Artificial Neural Networks (ANN) [76] on the training dataset and
validated our results using testing dataset with various performance
metrics. As a result of implementing all of the techniques, the model is
capable of predicting brain cancer survival with an accuracy of 98.9%
and an AUC score of 97.2%. To our best knowledge, a classification
algorithm with such a high degree of accuracy has not been reported
in extant studies on brain cancer based on clinical data.

A web-based predictive tool: Finally, by integrating the best per-
forming model, we have developed a web-based interactive tool that
facilitates the application of the proposed model and allows a deeper
understanding of how a particular factor influences survival when other
features remain constant.

As a result of developing the algorithm with a high level of accuracy
and web-based prediction tools, practitioners will be able to gain valu-
able insight from clinical data that could help them estimate a patient’s
chance of surviving this deadly disease. With this system, physicians
can create treatment plans that are tailored to the specific needs of
the patient, rather than relying on personal experience, anecdotes,
or aggregate risk assessments [77]. Additionally, the web-based tool
automatically incorporates the machine learning algorithm, offering a
simple user interface to get information from the model. Therefore, doc-
tors can make more informed decisions without needing any knowledge
of machine learning.

Following is an outline of the remainder of this paper. Section 2
describes the data preprocessing, cleaning, balancing, and variable
selection techniques and the classification models employed in the
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Fig. 1. An overview of the study methodology.

current study. Results and a web-based prediction tool are presented in
Section 3. The limitations of the current study are discussed in
Section 4. The paper concludes with a summary, conclusions, and gui-
delines for future research directions, which are presented in Section 5.

2. Materials and methods

As discussed previously, the objective of this study is to propose a
comprehensive, data-driven method that will provide better predictions
of cancer survival over a specific period of time. We will cover all the
methods and procedures with short descriptions for the proposed study
in the following subsections.

2.1. An overview of the study design

An extensive data-driven procedure comprising five consecutive
stages was employed in the present work, as illustrated in Fig. 1. The
first stage was to finish registration. Upon receiving approval, we were
able to download three sets of raw data pertaining to patients with
brain cancer through the use of SEER*Stat software. In the second stage,
three datasets were merged, missing values were eliminated, a regres-
sion diagnostic test was performed to clean the redundant observations,
and a target feature was created. In stage three, significant features
were selected through LASSO, then testing and training datasets were
created using five-fold-stratified cross-validation, and balancing tech-
niques were applied to the training dataset. In the fourth stage, we
trained multiple machine learning models, validated their performance
on test data, and then chose the best model based on its performance.
Finally, a web-based decision support tool was developed to facilitate
the practical implementation of the most appropriate model that can
be used by practitioners without requiring any previous knowledge
of machine learning algorithms. The following subsections provide
additional details about some key steps in the research methodology.

2.1.1. Data source, access, and collection
After submitting the request form and receiving approval, data

for this study was obtained from the Surveillance, Epidemiology, and
End Results (SEER) program of the National Cancer Institute using
SEER*Stat software. Three datasets of clinical and histological records
of patients with brain tumors and other central nervous system tu-
mors were collected from 9, 13, and 18 registries between 1975 and
2018 [78].

2.1.2. Data pre-processing
Three datasets have been combined into one dataset and the missing

values and unnecessary features that are not relevant to brain cancer
have been removed. It has been determined that a number of features
are not available for a particular year, and these are indicated by
‘‘Blank(s)’’; we have removed the rows of data that contain at least one
‘‘Blank(s)’’.

2.1.3. Cook’s distance to detect redundant observations
In regression analysis, Cook’s distance is used to identify influential

outliers in a set of independent features [79]. The Cook distance was
first proposed by American statistician Dennis Cook in 1977 [67].
Cook’s distance, D, is generally calculated after removing the 𝑖th data
point from the model and recompiling the regression estimate. It indi-
cates, in essence, how much the values of the outputs in the regression
model change when the 𝑖th observation is eliminated [80]. We used
a regression model in which survival months (before transforming into
binary) is a dependent feature and independent features are presented
in Table 1. Detailed information about the features documentation can
be found at https://seer.cancer.gov/analysis/. A regression diagnostic
is used to determine which outliers are influential after a model fitting
process for 90,390 records of cancer patients has been performed.
The results of the regression diagnostic are shown in Fig. 2. Fig. 2(A)
illustrates that some cook’s distances are significantly large, which
indicates the presence of influential outliers. Furthermore, Fig. 2(B) is
a bubble plot, where the 𝑥-axis represents the fitted values, the 𝑦-axis
represents the standardized residuals, and the proportional size of each
bubble represents the Cook’s distance. We can see that some bubbles
are larger than others, confirming the presence of influential outliers
in the data. Even though the scale location plot in Fig. 2(C) shows
some minor deviations from the homogeneity of variance, Fig. 2(D)
shows that the points broadly fall along the reference line (red dashed
line). Therefore, overall the assumption of normality was met for the
regression model. We have used the recommended threshold value of
4/n [80,81] for Cook’s distance, which implies that observations with
Cook’s distance higher than 4/n are considered to be influential outliers
and have been eliminated from the dataset. As a result of applying
the Cook distance, approximately 9% of the 90,390 records were
removed. It is recommended to consult a physician before determining
an appropriate threshold value and discarding outliers, since removing
outliers may result in the loss of information. For simplicity, the method
of eliminating redundant observations using Cook’s distance threshold
value is referred to as CDE.

4
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Fig. 2. Diagnostic plots for analyzing redundant or influential observations.

Table 1
Feature selection using LASSO.

Feature Feature coefficients Selected feature

Age −2.31 ✓

CS version input original −1.103 ✓

RX Summ-Surg Prim 0.418 ✓

Year of diagnosis −0.340 ✓

ICD-O-3 Hist behav −0.308 ✓

CS extension −0.260 ✓

First malignant primary indicator 0.240 ✓

Grade −0.171 ✓

CS version input current 0.032 ✓

Primary site 0.029 ✓

SS-seq −0.001 ✓

Laterality −0.001 ✓

CS tumor size 0
ICD-O-3 Hist behav malignant 0
Combined summary stage 0
Regional nodes 0
Histologic ICD-O-3 0
Total number of malignant tumors 0
Total number of benign tumors 0
CS site specific factor 1 0

2.1.4. Formulate the target feature
After performing all pre-processing steps as outlined above for data

cleaning, we are left with 83,599 observations and 20 independent
features, and a dependent feature, survival months. The main purpose
of this study is to predict the 10-year survival of brain cancer patients.
Therefore, a patient who has a value higher than 120 for survival months
is considered to survive. Otherwise, we consider them to not survive.
Hence, the target feature is derived using the following piece-wise
function

Survival 10-year =
{

0 if 𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑚𝑜𝑛𝑡ℎ𝑠 ≤ 120
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)

2.1.5. Feature selection
Feature selection techniques are primarily used to identify the key

feature contributing to the forecasting target from a number of fea-
tures [82]. Moreover, it enhances the overall predictive power of the
classifier [83] and significantly reduces the computational cost [84].
In addition, having fewer features makes models easier to understand
and reduces their complexity, which makes them more useful to practi-
tioners and decision makers in healthcare settings [7]. Three effective
methods currently are available for selecting features: filter, wrap-
per, and embedded techniques [70]. We selected the Least Absolute
Shrinkage and Selection Operator (LASSO, an embedded technique)
for this study due to its simplicity and because it outperformed other
techniques in the preliminary analysis phase. LASSO was originally
proposed by Robert Tibshirani [85]. For linear regression with a stan-
dardized independent feature 𝑥𝑎𝑏 and response values 𝑦𝑎 for 𝑎 =
1, 2,… , 𝑛 and 𝑏 = 1, 2,… , 𝑟, LASSO solves the 𝐿1-penalized regres-
sion problem of computing 𝛾 = {𝛾𝑏} by minimizing the following
equation [85]
𝑛
∑

𝑎=1

(

𝑦𝑎 −
∑

𝑏
𝑥𝑎𝑏𝛾𝑏

)2

+ 𝛼
𝑟
∑

𝑏=1
|𝛾𝑏| (2)

where 𝑛 and 𝑟 are the numbers of observations and independent fea-
tures, respectively. It is equivalent to minimizing the sum of squares
with a restriction of the form ∑

|𝛾𝑏| ≤ 𝑡.

2.1.6. Stratified 5-fold cross-validation
There are several problems that occur during the training of a

classifier, including overfitting, in which the error on the training set
is driven to a very small value, but the error increases when new
data is presented. Thus, cross-validation is used to prevent overfit-
ting [86]. The main objective of cross-validation in machine learning
is to increase the predictive power of machine learning algorithms for
unseen data. The 𝐾-fold cross-validation technique is applied due to
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its simplicity and ease of use in training and validating the model. The
𝐾-fold partition may be purely random; however, some folds will have
distinct distributions [87]. Therefore, we applied 5-fold stratified cross-
validation techniques by randomly splitting the dataset into 5 equal
folds, each fold containing the same class distribution [88].

2.1.7. Balancing techniques
A dataset that has uneven amounts or distributions of data among

classes is imbalanced. Often, a classifier that is optimizing for a high
performance metric will make biased predictions towards classes with
more available data points, a majority class. This causes classes with
less available data points, the minority classes, to be underpredicted
[89]. In survival problems, such as the one being explored in this paper,
a significant difference in the survival classes can result in a problem of
inbalance in the dataset [7]. To deal with these imbalance problems, we
perform two methods of sampling: random under-sampling (RUS) [71]
and the synthetic minority over-sampling technique (SMOTE) [72]. We
perform these two sampling methods on the training data for our mod-
els. This helps our models learn the differences in each class equally
and ensures that the test and validation data remains untouched, as
close to real world data as possible.

Random under-sampling is a simple method of balancing classes.
In RUS, a random data point from the majority class is selected. This
data point is then removed from the dataset. This continues until the
majority class has the same amount of data as the minority class [71]. A
clear potential downside of this method is we are reducing the amount
of data available for training.

The synthetic minority over-sampling technique is a technique that
increases the amount of data in the minority classes. It does this by
creating synthetic data for the minority classes. The synthetic data is
generated by joining a random minority class data point with its k
nearest neighbors. This creates a line segment joining the point to each
of its neighbors. After randomly selecting which neighbor to generate
data from, SMOTE randomly picks a point along the line segment
joining the two neighbors as a new minority class data point [72]. By
repeating this process, SMOTE creates new data for the minority class.
This data is synthetic and therefore has the potential to incorrectly
represent the true minority training data, a potential downside of
SMOTE.

2.1.8. Random forest
Random Forests are a type of machine learning model that can

be used for both classification and regression problems [90]. Random
Forests are composed of many Decision Trees that have aspects of
randomness in them [75]. Decision Trees are prediction models that
recursively partition the space of the data they are classifying into
smaller regions. While doing so, they build a tree with decisions at
each node. The leaves of the tree are the prediction category associated
with the decisions leading to that terminal leaf [91]. Random Forests
typically make a prediction by training many Decision Trees and taking
the most voted class as the final prediction, improving the predictive
capabilities over a single Decision Tree [75].

2.1.9. Artificial neural networks
An artificial neural network is a representation of the human

brain [92]. It consists of neurons that can be activated. These neurons
are connected to other neurons in layers, creating a neural network.
An artificial neural network typically consists of an input layer, one
or more hidden layers, and an output layer. The connections be-
tween the neurons across layers are weighted, and each neuron has
a bias [93]. Each neuron contains an activation function that takes the
weighted sum of the previously connected nodes’ outputs as and the
current bias as its input. The output of the activation function is the
output of a neuron. The amount that an artificial neural network is
incorrect can be quantified through a loss function. This loss function
can be minimized using an algorithm called backpropagation [94].

Backpropagation updates the weights and biases from the error of
the network, enabling the artificial neural network to approximate
unknown nonlinear functions based on data, i.e. learn [93]. Artificial
neural networks are the foundation for deep learning and have had
large impacts in fields such as image recognition, natural language
processing, medicine, and more [95].

2.1.10. Performance metrics
In order to understand how well our machine learning models are

performing and compare performance among models, we calculate the
accuracy, F1-score, and AUC score of our models.

Accuracy: Accuracy is an essential metric that demonstrates how cor-
rect a models predictions are. It can be defined as follows for a binary
classification problem [96].

Accuracy = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(3)

In the above equation, 𝑇𝑃 is the number of true positives, 𝑇𝑁 is
the number of true negatives, 𝐹𝑃 is the number of false positives, and
𝐹𝑁 is the number of false negatives. In problems where classes are
imbalanced, such as in the dataset we are looking at in this paper,
accuracy can misrepresent the success of the model [96]. Consider a
situation where a minority class label belongs to 5% of the data. In
that case, a model with 95% accuracy could theoretically always be
incorrect about the predictions for that class. In order to mitigate this
issue, we can introduce precision, recall, and the F1-score.

Precision: Precision can quantify how well a model can predict positive
values and is defined as follows [96].

Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(4)

Recall: Recall quantifies the proportion of positive outcomes the model
correctly identifies and is defined as follows [96].

Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(5)

F1-Score: The F-measure considers both the precision and recall, and
is defined as follows [97].

𝐹 − score = (1 + 𝛼2) 𝑃 × 𝑅
𝛼2(𝑃 + 𝑅)

(6)

In the above equation, 𝑃 is precision, 𝑅 is recall, and 𝛼 repre-
sents their balance. When 𝛼 = 1, the F-measure can be called an
F1-score [98].

ROCs and the AUC score: The receiver operating characteristic (ROC)
curve is a popular method of showing the tradeoff between the recall
and the false positive rate. Typically, it is plotted on a graph with the
false positive rate on the 𝑥 axis and the recall on the y axis [99]. The
top left point of the curve is the best tradeoff of the two. By finding
the area under the ROC curve, the area under curve (AUC) metric can
be calculated. This will be a value between 0 and 1 that quantifies the
performance of the model in terms of its ROC curve. The higher the
AUC, the better the classification model is.

3. Results

3.1. Feature selection and classification results

To perform feature selection, we have applied several well-known
feature selection techniques (Random Forest importance, Forward se-
lection, etc.). LASSO proved to be more effective in our experimen-
tal study than other techniques. Therefore, we have included only
LASSO in this study for simplicity. Based on their absolute value,
we have presented the relative importance of each of the features
from most important to least important in Table 1. We observe that
only twelve (indicated by a checkmark) of the twenty features are
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Table 2
Performance metrics for stratified 5-fold cross-validation with RF and ANN.

Model Balancing technique Confusion matrix Accuracy F1-score AUC score

CDE + RF

SMOTE 15 273 121 0.989 0.930 0.972
66 1259

RUS 14 634 760 0.954 0.775 0.973
8 1317

RF

SMOTE 15 684 245 0.975 0.901 0.948
189 1960

RUS 14 700 1229 0.929 0.766 0.949
52 2097

CDE + ANN

SMOTE 14 529 865 0.936 0.681 0.899
193 1132

RUS 13 695 1699 0.895 0.591 0.924
54 1271

ANN

SMOTE 14 347 1582 0.869 0.536 0.768
782 1367

RUS 12 922 3007 0.810 0.501 0.807
424 1725

selected by LASSO. Again, the coefficient [100] for 𝐴𝑔𝑒 is negative,
which is the highest, suggesting that brain cancer survival is nega-
tively associated with age. It is consistent with the findings of Fisher
et al. [101], who demonstrated that the survival probability for brain
cancers (Glioma and glioma subtypes, including glioblastoma) is lower
for older individuals.

Furthermore, based on our comprehensive experimental analysis,
we found that RF and ANN classification models outperformed other
classification models (such as more complicated neural network archi-
tectures such as LSTMs). Therefore, in this study, we have considered
only these two models for the sake of simplicity. We evaluated the
models using the performance metrics (accuracy, F1-score, and AUC
score) described above. The results were achieved using five-fold strat-
ified cross-validation for each model. The final results were derived
by averaging the results across all folds and are presented in Table 2.
Our study showed that RF and ANN with CDE outperform RF and ANN
independently, which should help the reader understand what contri-
butions are being made by applying CDE. However, the CDE with RF
outperformed the CDE with ANN in both cases of SMOTE and RUS. We
presented the detailed prediction results of the validation data sets in
the form of confusion matrices [38] in Table 2. It will assist in selecting
the appropriate balancing techniques. Although the AUC of the models
based on RUS is marginally higher than SMOTE, when it comes to
the F1-score, SMOTE outperformed RUS in all scenarios. Furthermore,
the confusion matrix also indicates that the number of false positives
and false negatives with SMOTE is similar; however, with RUS, the
number of false positives and false negatives differs significantly. Thus,
SMOTE outperformed RUS on an overall basis across all scenarios. This
result is not surprising when a dataset contains many features. To train
the model effectively, the number of observations should also increase
exponentially as the number of features increases [102]. Hence, rather
than decreasing the number of observations (as in RUS), increasing
the number of observations (as in SMOTE) might improve the model’s
predictive power, as there is no data loss [7].

Therefore, we propose to use RF combined with CDE and SMOTE,
which achieved a classification accuracy of 0.989 with an F1-score of
0.930 and an AUC score of 0.972 for the prediction of brain cancer
survival (10-year) on SEER data. We have used a 10-year survival
to conduct this study, as many studies have employed 10-year sur-
vival [7,23,24] in the extant literature on cancer. In addition, Kim
et al. concluded in their study that it takes at least five years for a
specific cancer patient’s record to be marked as survived or dead [103].
It should be noted that there is no universally accepted best method to
use when making predictions. To find the best model for each scenario,
it is necessary to conduct trial and error experiments [104].

3.2. Interactive web-based prediction tool

Implementing a machine-learning algorithm for predicting cancer
survivability can be quite complex and time-consuming, as it requires
an in-depth knowledge of mathematics, statistics, and machine learn-
ing, and requires programming proficiency. Therefore, developing an
interactive web-based tool that incorporates our proposed high degrees
of accuracy model for examining cancer survivability can be a helpful
medium between physicians and machine learning algorithms. Thus,
we have developed a prototype of a web-based interactive tool to
benefit the readers of this study. Accordingly, RF was selected for the
prototype based on the results of the performance metrics explored
in the previous subsection. This prototype was developed using the
Streamlit environment, an open-source Python platform for developing
web-based interactive applications. Upon gathering patient informa-
tion, the end-user can input the data. By clicking on the Predict button,
the tool will calculate and display the patient’s survival probability.
Based on providing all information for the hypothetical patient (named
as A), the tool predicts that the 10-year brain cancer survival chance is
70.2%; the screenshot of the results is presented in Fig. 3. Note that the
classifier in RF is designed to make a binary prediction in each tree by
taking a majority vote in the terminal node of the tree. Based on their
findings, Malley et al. [105] concluded that RF algorithms are valid
machine learning methods for estimating individual probabilities for
binary responses. Moreover, this tool is not only useful for predicting
survival probability, but it is also useful for practitioners to perform
scenario analysis. For example, suppose we increase the age of our
hypothetical patient (A) from 8 to 13, given that the other attributes
remain constant. In that case, the 10-year survival probability of the
patient decreases from 70.2% to 67.6%. This scenario analysis for a
particular feature may lead practitioners to more efficient and effective
treatments or may allow them to adjust their treatment plans for cancer
patients. It is important to note that the prototype was developed for
demonstration purposes only and was developed based on the first
20,000 records. Therefore, this prototype cannot be used for medical
consultation, diagnosis or treatment.

4. Limitations

Assessment of limitations in a research project can serve as a base
for further enhancements or improvements to the study. There are a
number of limitations to the study, some of which we highlight here.
First, prognostic factors such as Karnofsky performance status at the
time of diagnosis and other comorbidities were not included [106].
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Fig. 3. A screenshot of the prototype tool. You can find a detailed description and related information about the features at http://seer.cancer.gov/seerstat/variables/seer/ajcc-stage.
The tool predicts that the 10-year survival probability is 70.2% based on the information of the patient. The link for this tool is available at https://share.streamlit.io/gopalnath1926/
brain_cancer/main/app_BCNS.py.

Second, the SEER dataset has no record regarding disease-free pro-
gression or corresponding treatment choices. Furthermore, all patients
included in the study underwent both initial chemotherapy and radio-
therapy [36]. Third, even though the SEER dataset for this study is from
1973 to 2018, some important features have been recorded after 2003
(CS version input original, CS tumor size, Combined summary stage, etc.).
We, therefore, removed a large number of observations before 2003
that contained missing observations. Moreover, with larger sample
sizes, prediction accuracy increases [107]. It is likely since smaller
training sets tend to be more heterogeneous [108], and some models
are more robust when the sample size is small [109]. Fourth, several
essential new features have been added to the SEER dataset recently.
For example, 𝐻𝐸𝑅2 (included after 2010) represents a gene type that
can contribute to cancer development, and 𝐴𝐽𝐶𝐶 −7 𝑇 ∕𝑁∕𝑀contains
information regarding tumors, lymph nodes, and metastasis of the
cancer tumor [110]. However, they were not included in the study
because the data was collected over a limited time, and it usually takes
at least five years after diagnosis for a cancer patient’s record to be
marked as survival or death [103]. Fifth, the collection, coding, and
quality assessment of SEER data may require up to three years. For
instance, SEER data for 2019 cases will be available for analysis in
2022. It is unlikely that this unexpected delay will significantly affect
most studies, but it may play a role in particular experiments [111]. It

is important to note that, even though data mining can assist in making
a diagnosis or prescribing a treatment, it cannot replace a physician’s
intuitive judgment and interpretive ability [112]. Finally, the findings
that are obtained through the use of machine learning in this study
should be evaluated by medical specialists to determine if they are valid
and applicable.

5. Overview, conclusions, and future research plan

This paper presents a comprehensive analysis with a novel frame-
work comprising multiple phases aiming to predict brain cancer surviv-
ability with high accuracy. The proposed methodology was developed
employing three independent sets of SEER datasets (9, 13, and 18
registries) from 1973 to 2018. Having obtained a large dataset from
the SEER program, we underwent a long process of transforming the
data to use it. As medical data is obtained from many sources, such as
images, interviews, physician notes, etc., there is a possibility of data
entry errors leading to some redundant or inconsistent observations.
We have therefore applied statistical diagnostic techniques (Cook’s
distances) to check and clean the data rather than relying solely on
personal assumptions. We have then transformed the target variable
from continuous to binary. If a patient survives ten years from the time
of initial diagnosis of brain cancer, the survival value is 1; otherwise,
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the survival value is 0. We have applied two balancing techniques
(SMOTE and RUS) to address the imbalance issues induced by the
binary classification (8% survival, 92% death) of the target feature.
We have used LASSO to select the most significant factors related to
brain cancer survival and subsequently deployed two popular machine
learning models, RB and ANN. After performing all of the steps above,
the most parsimonious model was developed, as shown in Table 2,
where the top model achieved a score of 0.989, 0.93, and 0.972 for ac-
curacy, F1, and AUC, respectively. Thus, the present study contributes
significantly to the existing literature on brain cancer by predicting
brain cancer survivability with a high degree of accuracy.

Furthermore, we have developed a prototype for the purpose of
proving the concept. Our prototype automatically incorporates our
chosen machine learning model, so it is ready to be used by doctors
who have no prior knowledge of machine learning. Upon making minor
adjustments and consulting with a medical practitioner, this tool can
be very useful for identifying high-risk patients. Additionally, the web-
based interactive tool can be used not only for survival prediction but
also for scenario analysis, as discussed previously, without an extensive
understanding of machine learning algorithms. Medical practitioners
may utilize this tool to adapt patients’ treatment plans quickly.

In this study, we used data mining techniques to develop a par-
simonious prognosis model with high accuracy without collaboration
and guidance from medical specialists. Furthermore, the trends that
are identified by using data mining approaches may not necessarily
be associated with the cancer prognosis or may not be relevant to
healthcare professionals. Thus, an in-depth evaluation by a medical
professional in this field is necessary to apply the proposed method in
a health care setting.

A research extension of this study could be to validate our compre-
hensive techniques with the help of medical experts on other types of
cancer and to compare with the current literature to see whether there
is an improvement in the model accuracy.
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