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Cooperative Filtering and Parameter Identification for
Advection-diffusion Processes Using a Mobile Sensor Network

Jie You, Ziqiao Zhang, Fumin Zhang, and Wencen Wu∗

Abstract—This paper presents an online parameter identifica-
tion scheme for advection-diffusion processes using data collected
by a mobile sensor network. The advection-diffusion equation
is incorporated into the information dynamics associated with
the trajectories of the mobile sensors. A constrained cooperative
Kalman filter is developed to provide estimates of the field values
and gradients along the trajectories of the mobile sensors so that
the temporal variations of the field values can be estimated. This
leads to a co-design scheme for state estimation and parameter
identification for advection-diffusion processes that is different
from comparable schemes using sensors installed at fixed spatial
locations. Utilizing state estimates from a constrained cooperative
Kalman filter, a recursive least square (RLS) algorithm is de-
signed to estimate unknown model parameters of the advection-
diffusion processes. Theoretical justifications are provided for
the convergence of the proposed cooperative Kalman filter by
deriving a set of sufficient conditions regarding the formation
shape and the motion of the mobile sensor network. Simulation
and experimental results show satisfactory performance and
demonstrate the robustness of the algorithm under realistic
uncertainties and disturbances.

I. INTRODUCTION

Many environmental processes are characterized by both
spatial and temporal dynamics and often represented math-
ematically by partial differential equations (PDEs). One of
the typical PDEs is the advection-diffusion equation, which
has been widely used to model phenomena such as the
propagation of chemical in water or air [1]. In many practical
problems, parameters in the advection-diffusion equation such
as the diffusion coefficient may be unknown or inaccurate.
Therefore, to better understand the processes, there is a need
to use parameter identification methods to refine, update, or
estimate these unknown parameters [2], [3]. The parameter
identification problem for PDEs has received significant re-
cent research interest [4]–[6] with emerging applications in
environmental monitoring, pollution control, and search/rescue
missions [7], [8]. In particular, the dispersion of biological or
chemical contaminant obeys the advection-diffusion equations.
Knowledge of the diffusion coefficient would help in the
estimation and prediction of the degree of contamination [9].

In the case when large numbers of static sensors are
deployed in the spatial domain in question, various aspects
of parameter identification of PDEs have been investigated in
[4], [7], [10]–[16] and references therein. Many of these earlier
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research follow a general framework of inverse problems in
which, given a model, it is necessary to identify the system
parameters from available information about the process [16].
Although the solutions to the inverse problems of PDEs are
achievable, specific inverse problems must often seek for
specific solutions [16]. Among recent works, the nonlinear
regression framework is used to estimate PDE parameters
from noisy data [17], [18]. This nonlinear regression method
requires the estimation of initial conditions of the PDEs.
Furthermore, a number of contributions appear in the two-
step method aiming at decreasing the computational cost
of nonlinear regression [14], [19]. In the first step, all the
state variables and derivatives are estimated from the noisy
data by using the multivariate polynomials or nonparametric
regression methods. In the second step, PDEs parameters are
estimated. [14]. Although the second step can be signifi-
cantly simplified, this two-step method depends heavily on
the estimation accuracy of derivatives [20]. As it is shown in
[21], parameter cascading method can provide more accurate
PDE parameter estimates than the two-step method. Bayesian
approaches are also studied for estimating parameters in linear
PDEs in the literature [15].

It is rather difficult to envisage static sensor networks
continuously monitoring vast spatial regions over long time
horizons due to the size of the spatial domain and the high
cost of installing large number of static sensors [22] [23].
For parameter identification purpose, a preferable approach
would be using mobile sensor networks, which are collec-
tions of robotic agents with computational, communication,
sensing, and locomotive capabilities [24]–[32]. There exist
some contributions on the issue of parameter identification
of PDEs using mobile sensor networks [3], [27], [33]–[35].
One of the general approaches of parameter identification is to
first decide optimal locations or trajectories of sensors offline,
then, formulate a least square problem and search for the
parameters that minimize the error between measurements of
the true state (with true parameters) and the estimated state
[24], [36], [37]. This is usually referred to as performing the
twin experiments in data assimilation literature [38] [39]. To
find parameters that minimize the least square cost function,
PDEs have to be solved using finite element methods over
the entire spatial domain, and the optimal solution is obtained
through numerical methods for each time step, which gener-
ates high computational load. Although these works provide
a complete sensor motion along with a parameter update
scheme, most of these studies develop offline schemes with
few exceptions that investigate online parameter identification
[2], [40], [41]. A crucial factor in responding to an emergence
chemical or biological disaster is speed. Thus, it is desirable
and more practical to achieve online parameter identification



while a mobile sensor network is exploring a field instead of
performing parameter identification afterwards. For example,
in chemical plume tracking, the mobile sensor network has no
prior knowledge of the diffusion process, thus, it’s preferable
that the mobile sensor network can estimate the unknown
diffusion coefficient while detecting and tracking the plume
to obtain real-time information about the process. Therefore,
different from existing works on offline parameter estimation
for mobile sensor networks [24], [36], [37], we aim to develop
an online parameter identification algorithm that estimates
parameters along the trajectories of the mobile sensors, which
provides benefits of reduced computational needs.

There are a number of difficulties inherent in the online pa-
rameter identification along the sensing trajectories of mobile
sensor networks. First, this is an ill-posed inverse problem,
which requires the identification of system parameters from
the collected finite-dimensional measurements [3]. As such,
one needs to assure that the unknown parameters are iden-
tifiable taking into account finite-dimensional measurements,
which has been discussed in the literature [42]. For online
implementation, we would prefer a recursive design so that the
estimated parameters can track the measurement data and new
measurements can be effectively incorporated. This recursive
design becomes more difficult in a mobile sensor network
scenario than the static sensor network scenario, due to a
limited number of moving agents [3], [43]. With the extremely
limited measurement resources in space and time, developing
a proper recursive sensing and identification scheme is key
to mission success. Unfortunately, the number of publications
to above problems is limited so far owing to the inevitable
increase in problem complexity.

In this paper, a novel cooperative filtering scheme is devel-
oped for online parameter identification of advection-diffusion
processes using a mobile sensor network. We incorporate the
advection-diffusion equation into the information dynamics
and develop a cooperative Kalman filter. Compared to the
cooperative Kalman filter in [26], the proposed filter deals
with a spatial-temporal varying field instead of a static field.
The proposed Kalman filter can achieve online estimation of
the temporal variations of the field values along the trajectories
of a mobile sensor network. Utilizing the estimates from the
filters, we employ the recursive least square (RLS) method to
iteratively update the estimate of the unknown parameter in the
advection-diffusion equation. Furthermore, we justify a set of
sufficient conditions regarding the formation shape and motion
of the mobile sensor network that guarantee convergence of the
proposed filter. We further provide necessary bias analysis of
the proposed method. Simulation and experimental results are
given to demonstrate effectiveness of the proposed approach.

In our previous conference paper [2], we designed a co-
operative filtering scheme for online parameter estimation of
diffusion processes using four sensing agents arranged in a
symmetric formation. This work was extended in another
conference paper [44] where we initialized the discussion
of using the finite volume method to allow four agents in
arbitrary formation to perform the parameter identification.
We further extended the work in our recent article [45] where
experimental results on real mobile robots measuring a CO2

field have been achieved. In this paper, by using the finite
volume method, we extend the cooperative filtering scheme
[2], [45] to the case with N≥ 4 agents in an arbitrary formation
to allow flexibility in practical scenarios. This paper also re-
derived the discretized information dynamics and discovered
a simpler structure that better motivates the design of a
cooperative Kalman filter under state constraints, which is
not used by [44], [45]. Furthermore, the new structure is
leveraged to perform convergence analysis of the cooperative
Kalman filter that has not been addressed in previous work.
The experimental data of a real CO2 field collected in [45]
is used in this paper to verify the new algorithms, which
demonstrates the applicability of the algorithms in practice.

Other than the work already mentioned, some of our earlier
work explored the parameter identification problem for DPS
in different theoretical directions than this paper. In [41], we
developed a distributed online passive identifier to estimate
the unknown parameter iteratively along the trajectory of
the mobile sensor network. In [46], we proposed a multi-
model structure to represent the advection-diffusion equation,
which was parameterized as blended linear PDE models.
These earlier works use very different models and filtering
techniques, hence are complement to the effort in this paper.

The rest of the paper is organized as follows. Section
II introduces the problem formulation. Section III presents
the discretization and numerical approximation. Section IV
derives the constrained cooperative Kalman filter for state
estimation and parameter identification. Section V provides
convergence analysis of the filtering scheme and bias analysis.
Simulation and experiments results are given in Section VI.
Conclusions and further works follow in Section VII. To
increase the readability of the paper, some proofs are given
in the Appendix.

II. PROBLEM FORMULATION

Consider the two-dimensional (2D) scalar field z(r, t) where
r represents space coordinates and t represents time. Suppose
the spatial domain Ω⊂R2 is given such that r ∈Ω. The spatial
gradient of the field is represented by ∇z(r, t) and the time
variation is denoted as ∂ z(r,t)

∂ t .

A. Environmental Model

For real-life environmental modeling, it is often necessary
to accept certain restrictions for z(r, t) to reduce the complex-
ity and computational load. In this paper, we consider the
restriction on the the field z(r, t) where it must satisfy the
two-dimensional (2D) advection-diffusion process

∂ z(r, t)
∂ t

= θ∆z(r, t)+ vT
∇z(r, t),

∂∇z(r, t)
∂ t

= 0, (1)

where θ > 0 is a constant unknown diffusion coefficient, ∆

represents the Laplacian operator, and v is a known constant
vector representing flow velocity. Note that we require that the
time derivative of the spatial gradient ∂∇z(r,t)

∂ t to vanish. This
will simplify the model for estimation.



Assumption II.1 The field z(r, t) must satisfy the constrained
advection-diffusion equation (1).

Equation (1) can be viewed as a regularization constraint for
the agents aiming to learn the underlying field z(r, t). The
equality constraint (1) reduced the number of possible fields
that can be constructed from limited data.

Remark II.2 The real-life spatial-temporal processes often
contain significant uncertainty and are affected by many un-
known factors. It is a common practice to use models based on
physical principles, such as the advection-diffusion equation,
and impose constraints on the model. Our filtering method can
also apply to the case where ∂∇z(r,t)

∂ t behaves randomly with a
known mean function.

Remark II.3 There is no need to specify the boundary con-
ditions for the advection-diffusion equation because our goal
is to estimate z(r, t) from sensor measurements. In practical
applications, the exploration domain Ω is much larger than
the source and sensor dimensions so that the shape of the
boundary of the domain Ω does not play a role in the
estimation of z(r, t) from sensor measurements.

B. Model for Mobile Sensing Agents

Consider a formation of N coordinated agents moving in
the field, each of which carries a sensor that takes point
measurements of the field z(r, t). We consider the agents with
single-integrator dynamics given by

ṙi(t) = ui(t), i = 1,2, ...,N, (2)

where ri(t) and ui(t)⊆R2 are the position and the velocity of
the ith agent, respectively.

Let rc = [rc,x,rc,y]
T be the center of the formation formed

by the mobile sensing agents at t, i.e., rc = 1
N ∑

N
i=1 ri(t).

The dynamics of the field value along the trajectory of the
formation center rc according to

ż(rc, t) =
∂ z(rc, t)

∂ rc

drc

dt
+

∂ z(rc, t)
∂ t

= ∇z(rc, t) · ṙc +
∂ z(rc, t)

∂ t
,

(3)
where ∇z(rc, t) is the spatial gradient of z(rc, t). Furthermore,
the gradient ∇z(rc, t) also evolves along the trajectory of the
formation center, which satisfies

∇̇z(rc, t) = H(rc, t) · ṙc +
∂∇z(rc, t)

∂ t
, (4)

where H(rc, t) is the Hessian matrix.
In most applications, the measurements are taken by the

agents discretely over time. Let the moment when new mea-
surements are available be tk, where k is an integer index.
Denote the position of the ith agent at the moment tk be rk

i
and the field value at rk

i be z(rk
i ,k).

We have the following assumption for the sensing agents.

Assumption II.4 We assume the number of agents N ≥ 4.
Each agent can measure its position rk

i and field value z(rk
i ,k).

Each agent shares the measurements with all other agents.

The measurement of the ith agent can be modeled as

p(rk
i ,k) = z(rk

i ,k)+ni, (5)

where ni is assumed to be i.i.d. Gaussian noise.

C. Formation and Motion Control
Control laws for the velocities of the agents are required

so that the mobile sensor network can move along a certain
trajectory while maintaining a desired formation. We can view
the entire formation as a deformable body with its shape
under control. We assume that the control laws used by the
agents have been designed to achieve both motion control and
formation control.

Motivated by [25], [26], [47], we apply the following
consensus tracking algorithm for each agent to achieve for-
mation control: ui(t) = ṙi(t) = ṙd

i − ϕi(ri − rd
i ), where ui(t)

is the control input of the ith robot, ϕi is a positive scalar,
and rd

i represents the desired position of the ith agent. rd
i

is determined by rd
i = rc +Ri · rd

iF , where rd
iF represents the

desired deviation of the ith agents relative to the formation
center rc and Ri is the rotation matrix from body frame to
inertia frame.

If the spatial gradient can be estimated, the motion con-
trol for the agents can be designed to achieve interesting
behaviors. For example, we may set the velocities of the
agents to be aligned with the estimated gradient direction
rk+1

c = rk
c + τ0

∇z(rk
c ,k)

‖∇z(rk
c ,k)‖2

, where τ0 is the speed of the sensing
agent and ∇z(rk

c ,k) is the spatial gradient at the center of
the formation. Then the formation can move along the spatial
gradient for source seeking. For more details about the motion
design, interested readers can refer to our papers [41], [48].

D. Design Goals
Now combining Equations (3), (4), and (1) together, we

obtain the following equations, which we call the continuous
time information dynamics:

ż(rc, t) = ∇z(rc, t) · (ṙc + v)+θ∆z(rc, t), (6)

∇̇z(rc, t) = H(rc, t) · ṙc. (7)

Our goal is to utilize measurements collected by the mobile
sensors to estimate the field z(r, t) and to identify the diffu-
sion parameter θ in the information dynamics. The difficulty
associated with this problem is that we relies on a relatively
small number of moving sensors. The measurements are finite
dimensional time series that need to be processed to estimate
the field, which is an infinite dimensional object. This problem
is different from the case where large number of static sensors
are available to provide coverage of the spatial domain.

We solve this problem within the theoretical framework
of state estimation and parameter identification. A two-step
scheme, such as those in [14], [19], can be employed to solve
our problem. Specifically, we iteratively perform the following
steps.

1) Under Assumption II.1, we estimate the states z(rc, t)
and ∇z(rc, t), as well as the Hessian H(rc, t) and the
Laplacian ∆z(rc, t) based on the collected measurements
in Equation (5).

2) Utilizing the estimated states, an online parameter iden-
tification algorithm will estimate the unknown constant
diffusion coefficient θ .



For the first step, we have developed a cooperative filtering
algorithm that convert the measurement time series to the
estimates of the field modeled by Equation (1). For the second
step, we have developed an recursive least square algorithm
to estimate the diffusion coefficient.

III. DISCRETIZATION AND NUMERICAL APPROXIMATION

We will discretize the information dynamics (6) (7) and the
constraint equation (1) properly to facilitate the state estima-
tion and parameter identification problem. The discretization
involves both the spatial and the time domain. The errors
associated with the descretization can be controlled to be
small.

A. The Finite Volume Approximation

Suppose the current time instant is tk. Let rk
c = [rk

c,x,r
k
c,y]

T

be the center of the formation at tk, i.e., rk
c = 1

N ∑
N
i=1 rk

i .
Most terms in the information dynamics can be approximated
using finite difference method. The term that needs special
attention is the Laplacian term ∆z(rk

c ,k). Finite difference
method only works for the case when four agents are arranged
in a symmetric formation [2]. Thus, we apply the finite volume
method [6], [49] to approximate ∆z(rk

c ,k) with N ≥ 4 agents
in an arbitrary formation. The details of the calculations are
shown in Appendix I.

Using the finite volume approximation, and let δ t = tk+1−
tk = tk − tk−1 be the sampling interval, we discretize the
advection-diffusion PDE (1) at the formation center rk

c as

z(rk
c ,k+1)− z(rk

c ,k)
δ t

− vT
∇z(rk

c ,k) = θ∆z(rk
c ,k), (8)

where δ t = tk+1− tk is the sampling interval. Then we can
rewrite Equation (54) as follows:

z(rk
c ,k+1)− z(rk

c ,k)
δ t

− vT
∇z(rk

c ,k) = Γkθ − e(rk
c ,k), (9)

where Γk is defined in Equation (60) and e(rk
c ,k) is defined in

Equation (59) in Appendix I.
The sampling time δ t must obey the inequalities δ t ≤ 4θ

|v|2

and δ t ≤ Ωc
4θ

for the discretization method to converge to
the continous dyanmics when the volume of Ωc is arbitrarily
small [6]. Many results have shown that the convergence and
accuracy of the above finite volume approximation (9) under
mild technical assumptions [6], [49], [50]. Therefore, we make
the following idealized assumption:

Assumption III.1 We assume that the formation is sufficiently
small, and the discretization in both space and time is suffi-
ciently accurate so that the approximation error e(rk

c ,k) is
arbitrarily small e.g. e(rk

c ,k)≈ 0.

The assumption is made for the convenience of theoretical
analysis. Violation of this assumption will not affect the
design of the filtering algorithm and the parameter estimation
algorithm. The effect of nonzero e(rk

c ,k) is on the accuracy
of the filter and estimates. In simulation and experimental
studies, we observed some bounded errors, which caused
limited performance degradation shown in Fig. 2.

B. Discrete Information Dynamics

We observe from Equation (9) that both z(rk
c ,k) and z(rk

c ,k+
1) need to be modeled by discretizing the information dynam-
ics. We first model z(rk

c ,k). The finite difference approximation
of each term of (6) at time t = tk−1 and at position rc = rk−1

c
give:

ż(rc, t)| t=tk−1,rc=rk−1
c
≈ z(rk

c ,k)− z(rk−1
c ,k−1)

δ t
,

∇z(rc, t) · ṙc| t=tk−1,rc=rk−1
c
≈ (rk

c− rk−1
c )T ∇z(rk−1

c ,k−1)
δ t

. (10)

Substituting Equation (10) into Equation (6) gives the infor-
mation dynamics of z(rk

c ,k) as

z(rk
c ,k) =

(
1− αcθ̂kδ t

Ωc

)
z(rk−1

c ,k−1)

+
θ̂kδ t
Ωc

N

∑
i=1

αi · z(rk−1
i ,k−1) (11)

+(rk
c− rk−1

c + vδ t)T
∇z(rk−1

c ,k−1)+w1(rk−1
c ,k−1),

where θ̂k represents the estimate of θ at time tk, which
will be obtained from parameter identification later. w1(rk

c ,k)
represents the modeling error, which accounts for positioning
errors, estimation errors for the Hessian matrix, and other
approximation errors including e(rk

c ,k) of (59) caused by
higher-order terms omitted from the finite volume scheme.

Similarly, Equation (7) can also be discretized at
t = tk−1,rc = rk−1

c as

∇z(rk
c ,k) =∇z(rk−1

c ,k−1)+H(rk−1
c ,k−1)(rk

c− rk−1
c )

+w2(rk−1
c ,k−1).

(12)

We define the information state as Xa(k + 1) =
[z(rk

c ,k),∇z(rk
c ,k)

T ]T . We define the noise vector
wa(k) = [w1(rk−1

c ,k − 1),w2(rk−1
c ,k − 1)]T . Then define

the matrix

Aa
θ̂
(k) =

[
1− αcθ̂kδ t

Ωc
(rk

c− rk−1
c + vδ t)T

0 I2×2

]
, (13)

and the input vector as

Ua(k) =

[
θ̂kδ t
Ωc

∑
N
i=1 αi · z(rk−1

i ,k−1)
H(rk−1

c ,k−1)(rk
c− rk−1

c )

]
. (14)

The information dynamics now has the simplified form

Xa(k+1) = Aa
θ̂
(k)Xa(k)+Ua(k)+wa(k). (15)

By applying formation control, rk−1
i can be controlled to

be close to rk−1
c . Therefore, the field value can be locally

approximated by a Taylor series up to second order as

z(rk−1
i ,k−1)≈z(rk−1

c ,k−1)+(rk−1
i − rk−1

c )T
∇z(rk−1

c ,k−1)

+
1
2
(rk−1

i − rk−1
c )T H(rk−1

c ,k−1)(rk−1
i − rk−1

c ),

(16)



Let Za(k) = [z(rk−1
1 ,k−1) · · ·z(rk−1

N ,k−1)]T be the vectors of
true field values. Define the matrices Ca(k) and Da(k) as

Ca(k) =

 1 (rk−1
1 − rk−1

c )T

...
...

1 (rk−1
N − rk−1

c )T

 , (17)

and

Da(k) =

 1
2 ((r

k−1
1 −rk−1

c )
⊗
(rk−1

1 −rk−1
c ))T

...
1
2 ((r

k−1
N −rk−1

c )
⊗
(rk−1

N −rk−1
c ))T

 , (18)

where
⊗

is the Kronecker product. The Taylor expansions (16)
for all sensors near rk−1

c can be rewritten in a vector form as

Za(k) =Ca(k) ·Xa(k)+Da(k)Ha(k), (19)

where Ha(k) is a column vector obtained by rearranging
elements of the Hessian H(rk−1

c ,k−1).
Suppose Ĥa(k) represents the estimate of the vector form

Hessian Ha(k) at the center rk−1
c , Equation (5) can be remod-

eled as

Pa(k) =Ca(k) ·Xa(k)+Da(k)Ĥa(k)+Da(k)εa(k)+na(k),
(20)

where Pa(k) = [p(rk−1
1 ,k− 1) · · · p(rk−1

N ,k− 1)]T is the mea-
surement vector, εa(k) represents the error in the estimation
of the Hessian matrices, and na(k) is the vector of Gaussian
measurement noise ni in Equation (5).

The next goal is to model z(rk
c ,k + 1). The information

dynamics (6) can also be discretized at time t = tk and at
position rc = rk−1

c using

ż(rc, t)| t=tk ,rc=rk−1
c
≈ z(rk

c ,k+1)− z(rk−1
c ,k)

δ t
,

∇z(rc, t) · ṙc| t=tk ,rc=rk−1
c
≈ (rk

c− rk−1
c )T ∇z(rk−1

c ,k)
δ t

. (21)

Substituting Equation (21) into Equation (6) leads to

z(rk
c ,k+1)− z(rk−1

c ,k)
δ t

=
(rk

c− rk−1
c )T ∇z(rk−1

c ,k)
δ t

(22)

+ vT
∇z(rk−1

c ,k)+θ∆z(rk−1
c ,k).

According to Equation (8) and Equation (9) at time tk and
position rk−1

c , Equation (22) can be rewritten as

z(rk
c ,k+1) =

(
1− αcθ̂kδ t

Ωc

)
z(rk−1

c ,k)+
θ̂kδ t
Ωc

N

∑
i=1

αi · z(rk
i ,k)

(23)

+(rk
c− rk−1

c + vδ t)T
∇z(rk−1

c ,k)+w1(rk−1
c ,k).

Equation (7) can also be discretized at t = tk,rc = rk−1
c to

obtain the following equation:

∇z(rk
c ,k+1) =∇z(rk−1

c ,k)+H(rk−1
c ,k)(rk

c− rk−1
c )

+w2(rk−1
c ,k).

(24)

We define the information state as Xb(k + 1) = [z(rk
c ,k +

1),∇z(rk
c ,k + 1)T ]T , the state noise vector as wb(k) =

[w1(rk
c ,k),w2((rk

c ,k))]
T , the state transition matrix as

Ab
θ̂
(k) =

[
1− αcθ̂kδ t

Ωc
(rk

c− rk−1
c + vδ t)T

0 I2×2

]
, (25)

and the input vector as

Ub(k) =

[
θ̂kδ t
Ωc

∑
N
i=1 αi · z(rk

i ,k)
H(rk−1

c ,k)(rk
c− rk−1

c )

]
. (26)

The information dynamics now has the simplified form

Xb(k+1) = Ab
θ̂
(k)Xb(k)+Ub(k)+wb(k). (27)

By applying formation control, rk
i can be controlled to

be close to rk−1
c . Therefore, the field value can be locally

approximated by a Taylor series up to second order as

z(rk
i ,k)≈z(rk−1

c ,k)+(rk
i − rk−1

c )T
∇z(rk−1

c ,k) (28)

+
1
2
(rk

i − rk−1
c )T H(rk−1

c ,k)(rk
i − rk−1

c ). (29)

Let Zb(k) = [z(rk
1,k) · · ·z(rk

N ,k)]
T be the vectors of true field

values. Deifne the matrices Cb(k) and Db(k) as

Cb(k) =

 1 (rk
1− rk−1

c )T

...
...

1 (rk
N − rk−1

c )T

 , (30)

and

Db(k) =

 1
2 ((r

k
1−rk−1

c )
⊗
(rk

1−rk−1
c ))T

...
1
2 ((r

k
N−rk−1

c )
⊗
(rk

N−rk−1
c ))T

 , (31)

The Taylor expansions (16) for all sensors near rk−1
c can be

rewritten in a vector form as

Zb(k) =Cb(k) ·Xb(k)+Db(k)Hb(k), (32)

where Hb(k) is a column vector obtained by rearranging
elements of the Hessian H(rk−1

c ,k).
Suppose Ĥb(k) represents the estimate of the vector form

Hessian Hb(k) at the center rk−1
c , Equation (5) can be remod-

eled as

Pb(k) =Cb(k) ·Xb(k)+Db(k)Ĥb(k)+Db(k)εb(k)+nb(k),
(33)

where Pb(k) = [p(rk
1,k) · · · p(rk

N ,k)]
T is the measurement vec-

tor, εb(k) represents the error in the estimation of the Hessian
matrices, and nb(k) is the vector of Gaussian measurement
noise ni in Equation (5).

Remark III.2 We can observe that the discretized informa-
tion dynamics and measurement equations actually contain
two sets of equations. One set on (z(rk

c ,k),∇z(rk
c ,k)) and

another set on (z(rk
c ,k + 1),∇z(rk

c ,k + 1)). These two sets
of equations appear to be uncoupled. Hence it may not be
obvious why both sets are needed. We will show next that
using both sets of equations will help guarantee the state
constraints imposed by the advection-diffusion equation after
the discretization. This will also lead to the identification of
the parameter θk.



C. Discretized State Constraints

The discretized advection-diffusion equation (9) will be
used in two ways in this paper. First, if we assume that an
estimation of the parameter θ is available as θ̂k, then the states
z(rk

c ,k+1) and z(rk
c ,k) are the “future and present” field values

at a given position r = rk
c . The constraint between the states

z(rk
c ,k+1) and z(rk

c ,k) at each step is

z(rk
c ,k+1)−

(
1− αcθ̂kδ t

Ωc

)
z(rk

c ,k)− vT
δ t∇z(rk

c ,k)

=
θ̂kδ t
Ωc

N

∑
i=1

αi · z(rk
i ,k). (34)

This provides an equality constraint on the states Xa(k) and
Xb(k). Define X(k) = [XaT (k),XbT (k)]T . The state constraint
is an equality constraint induced by the discretized advection-
diffusion equation, which can be rewritten in a vector form
as:

G(k) ·X(k) = d(k), (35)

where G(k) = [(−1 +
αcθ̂k−1δ t

Ωc
),−vT δ t,1,0] and d(k) =

θ̂k−1δ t
Ωc

∑
N
i=1 αi · z(rk−1

i ,k−1).
Since the two systems marked by the superscripts a

and b are now coupled by the state constraint. We de-
fine a set of equations without the superscripts to rep-
resent the equations for the overall state dynamics and
observation equations. Let A

θ̂
(k) = diag[Aa

θ̂
,Ab

θ̂
], C(k) =

diag[Ca,Cb], D(k) = diag[Da,Db] be the relevant matri-
ces. Let w(k) = [waT (k),wbT (k)]T , U(k) = [UaT (k),UbT (k)]T

P(k) = [PaT (k),PbT (k)]T , H(k) = [HaT (k),HbT (k)]T , ε(k) =
[εaT (k),εbT (k)]T and n(k) = [naT (k),nbT (k)]T be the relevant
vectors. Then the overall state and observation equations are:

X(k+1) = A
θ̂
(k)X(k)+U(k)+w(k)

d(k) = G(k) ·X(k)

P(k) =C(k) ·X(k)+D(k)Ĥ(k)+D(k)ε(k)+n(k).(36)

The goal is to estimate the state X(k) and the parameter θ

given the measurements P(k) for time up to k.

IV. STATE ESTIMATION AND PARAMETER IDENTIFICATION

Our solution is based on the derivation of a constrained
cooperative Kalman filter. The following assumption is needed
to enable the Kalman filter.

Assumption IV.1 We assume that w(k), ε(k), and n(k)
are i.i.d Gaussian noises with zero mean. We assume
E[w(k)w(k)T ] =W, E[n(k)n(k)T ] = R and E[ε(k)ε(k)T ] = Q
are known once the positions of the sensors are known.

Remark IV.2 The assumption is made for theoretical conve-
nience to enable convergence analysis of the Kalman filter.
The assumption that w(k) and ε(k) are i.i.d Gaussian with
zero mean may be unrealistic. However, this assumption is
needed to justify the application of filtering techniques for
state estimation. Once enough data is gathered, the estimates
of W, Q, and R can be performed through offline system
identification techniques. Therefore, the assumption about W,

Q, and R is reasonable in many applications, for example,
oceanography and meteorology. In these applications, the
statistical properties of ocean fields and atmospheric fields
are usually known from accumulated observational data over
a long period of time. [26], [43]. Since the error covariance
of w(k) and ε(k) are not theoretically characterized and
depend on heuristics and simulations [26], we will validate
the assumption through simulation.

A. Constrained Kalman Filter

We observe that the discretized information dynamics is
constrained. Extension to the Kalman filter was made by [51]
to incorporate equality constraints, leading to the cooperative
Kalman filter design as follows:

(1) the one-step prediction,

X̂−(k) = A
θ̂
(k−1)X̃+(k−1)+U(k−1); (37)

where X̃+(k−1) is the current constrained state estimate and
X̂−(k) is a prior unconstrained state estimate.

(2) error covariance for the one-step prediction,

R−c (k) = A
θ̂
(k−1)R+

c (k−1)AT
θ̂
(k−1)+Q; (38)

(3) optimal gain,

K(k) = R−c (k)C
T (k)[C(k)R−c (k)C

T (k)+D(k)QDT (k)+R]−1;
(39)

(4) updated unconstrained estimate,

X̂+(k) = X̂−(k)+K(k)(P(k)−C(k)X̂−(k)−D(k)Ĥ(k));
(40)

(5) error covariance for the updated estimate,

R+
c (k)

−1 = R−c (k)
−1 +CT (k)[D(k)QDT (k)+R]−1C(k); (41)

(6) updated constrained estimate,

X̃+(k) = X̂+(k)−G(k)T [G(k)G(k)T ]−1[G(k) · X̂+(k)−d(k)].
(42)

It should be noted that we derive the constrained Kalman filter
(42) by directly projecting the unconstrained state estimate
X̂+(k) onto the constraint surface [51]. This requires the term
G(k)G(k)T to be invertible. In our case, G(k)G(k)T = (1−
αcθ̂kδ t

Ωc
)2+1+vT v ·δ t2, which is nonsingular at each time step.

B. Parameter Identification

The Hessian Ĥ(k) in the term U(k) can be viewed as a
parameter that needs to be identified to enable the cooperative
Kalman filter. By time step k−1, we have obtained an estimate
of X̃+(k− 1) from the cooperative Kalman filter. Using the
computed estimates X̃+(k−1) and U(k−1), before the arrival
of measurements at time step k, we can obtain a prediction
for X(k) as X̂−(k) = A

θ̂
(k− 1)X̃+(k− 1) +U(k− 1). If we

assume the number of sensors N ≥ 4 and the formation is
not co-linear, we have P(k) = C(k) · X̂−(k)+D(k)Ĥ(k). The
Hessian estimate can be solved by using the least mean square
method,

Ĥ(k) =
(
D(k)T D(k)

)−1
D(k)T (P(k)−C(k)X̂−(k)

)
. (43)



Remark IV.3 To enable the Hessian estimation in (43), the
matrix D(k)T D(k) must be nonsingular. Thus, the minimum
number of agents that enables the Hessian estimation is
four in 2D. In real applications, it is better to select some
redundant agents and a nonsymmetric formation to guarantee
the nonsingular property.

Remark IV.4 Since the sensor measurements p(rk
i ,k) and

p(rk−1
i ,k− 1) are available in the measurement vector P(k),

one straightforward and simple way is to replace z(rk
i ,k)

and z(rk−1
i ,k−1) with the sensor measurements p(rk

i ,k) and
p(rk−1

i ,k − 1), which is adopted in this paper. The other
way is to design a separate one-step filter to reduce the
noise of measurements [26]. Running the one-step filter makes
our closed loop process more complex and increases the
computation cost, which is omitted here. Interested readers
can refer to [26] for more details.

Once the state of the cooperative Kalman filter is estimated
sequentially over time, we use the recursive least square
method to iteratively update the estimate of θ based on the
discretized model (9). An estimate of the information state
X(k+1) is available as X̂(k+1) = [ẑ(rk

c ,k),∇ẑ(rk
c ,k), ẑ(r

k
c ,k+

1),∇ẑ(rk
c ,k + 1)]T , then by combining the terms on the left

hand side of Equation (9), we define the term Ŷ (rk
c ,k) as

Ŷ (rk
c ,k) =

ẑ(rk
c ,k+1)− ẑ(rk

c ,k)
δ t

− vT
∇ẑ(rk

c ,k). (44)

Next, the field value z(rk
i ,k) is replaced by the measurement

p(rk
i ,k). Define the estimate of Γ̂k as the estimate for Γk as

follows:

Γ̂k =
1

Ωc
[

N

∑
i=1

αi · p(rk
i ,k)−αc · ẑ(rk

c ,k)].

This leads to

Ŷ (rk
c ,k) = Γ̂kθ +η(k), (45)

where ηk represents the approximation error.

Assumption IV.5 We assume η(k) is a noise term with zero
mean and bounded covariance matrix Rη .

Note that the term ηk contains approximation errors from
several sources of approximations. Hence it might not be
Gaussian noise, and it may also be correlated in time k.
Nevertheless, based on the cooperative filtering scheme, the
diffusion coefficient can be directly estimated without the need
of numerically solving the diffusion equation. Given an initial
estimate for the diffusion coefficient, a simple application of
the RLS method can iteratively update the estimate of θ .
Following the canonical procedure of RLS estimation outlined
in [52], we derive the following equations to update the
estimate θ .

θ̂k = θ̂k−1 +Kθ (k)
(

Ŷ (rk
c ,k)− Γ̂kθ̂k−1

)
; (46)

Kθ (k) = Λ(k−1)Γ̂T
k
(
Γ̂kΛ(k−1)Γ̂T

k +Rη

)−1
; (47)

Λ(k) =
(
I−Kθ (k)Γ̂k

)
Λ(k−1), (48)

where θ̂k is the estimate of θ , Kθ (k) is the estimator gain
matrix, Λ(k) is the estimation error covariance matrix.

The proposed recursive cooperative filtering scheme is
based on two subsystems: the cooperative Kalman filtering
subsystem (Equations (37)-(42)) and the RLS subsystem in
(46). In the cooperative Kalman filtering subsystem, assuming
that the parameter θ̂k is constant and known, we run the
cooperative Kalman filter to estimate the states based on the
collected measurements. In the RLS subsystem, assuming that
the estimated states can track the true values, we employ the
RLS method to iteratively update the estimate of θ .

V. CONVERGENCE AND BIAS ANALYSIS

In this section, we prove the convergence of the cooperative
Kalman filter. Theorem 7.4 in [53] states that if the time-
varying system dynamics are uniformly completely control-
lable and uniformly completely observable, the Kalman filter
for this system converges. With this result, we will establish
a set of sufficient conditions for the mobile sensors such that
the uniformly complete controllability and observability of the
unconstrained Kalman filter can be guaranteed.

A. Convergence of the Cooperative Kalman Filter

From Remark III.2, the two subsystems marked by super-
scripts a and b are uncoupled if the state constraint is not
considered. In the proof of uniformly complete controllability
and observability of the unconstrained Kalman filer, the system
will be decoupled into two subsystems marked by superscripts
a and b. We will first analyze the convergence of the Kalman
filters for the two subsystems separately, and then analyze the
convergence of the Kalman filter for the whole system.

Let Φ(k, j) be the state transition matrix from time
t j to tk, where k > j. Then, Φ(k, j) = A

θ̂
(k − 1)A

θ̂
(k −

2) · · ·A
θ̂
( j) = Φ−1( j,k) and we define Φ(k, j) = diag[Φa,Φb],

where Φa(k, j) = Aa
θ̂
(k−1)Aa

θ̂
(k−2) · · ·Aa

θ̂
( j) and Φb(k, j) =

Ab
θ̂
(k− 1)Ab

θ̂
(k− 2) · · ·Ab

θ̂
( j). Since Aa

θ̂
( j) = Ab

θ̂
( j) for any

j, we can have Φa(k, j) = Φb(k, j) for any j < k and the
following lemma.

Lemma V.1 For Φ(k, j) as defined above and C(k) as defined
in (20), we can have

Φ
a(k, j) = Φ

b(k, j) =
[

ξ
θ̂

φ T

0 I2×2

]
,

Φ
a( j,k) = Φ

b( j,k) =

[
1

ξ
θ̂

− φ T

ξ
θ̂

0 I2×2

]
,

(49)

and

Ca( j)Φa( j,k) =


1

ξ
θ̂

(r j−1
1 − r j−1

c − φ

ξ
θ̂

)T

...
...

1
ξ

θ̂

(r j−1
N − r j−1

c − φ

ξ
θ̂

)T

 ,

Cb( j)Φb( j,k) =


1

ξ
θ̂

(r j
1− r j−1

c − φ

ξ
θ̂

)T

...
...

1
ξ

θ̂

(r j
N − r j−1

c − φ

ξ
θ̂

)T


(50)



where ξ
θ̂
= (1− αcθ̂k−1δ t

Ωc
)(1− αcθ̂k−2δ t

Ωc
) · · ·(1− αcθ̂ jδ t

Ωc
),

φ
T = (rk−1

c − rk−2
c + vδ t)T

+
k− j−1

∑
n=1

(
n

∏
m=1

(1− αcθ̂k−mδ t
Ωc

)

)
(rk−n−1

c − rk−n−2
c + vδ t)T ,

and C( j)Φ( j,k) = diag[Ca( j)Φa( j,k),Cb( j)Φb( j,k)]

Let’s first restate the definitions of uniformly completely
controllability and uniformly complete observability, respec-
tively (modified from Definitions in [53]).

Definition V.2 The proposed cooperative filter is uniformly
completely controllable if there exist τ1 > 0, λ1 > 0, and
λ2 > 0 such that the controllability Grammian C(k,k− τ1) =

∑
k
j=k−τ1

Φ(k, j)WΦ(k, j)T satisfies λ1I6×6 ≤ C(k,k − τ1) ≤
λ2I6×6 for all k > τ1. Here W is the covariance for the state
error w(k).

In the following procedures, we provide a set of sufficient
conditions such that the uniformly complete controllability
and observability of the proposed filter can be satisfied by
showing the upper and lower bounds of the controllability and
observability Grammian. In the procedure, there exist some
positive real numbers λ1,λ2, · · · ,λ23. All of these real numbers
are time-independent bounds for various quantities, the values
of which do not affect the correctness of our discussions.
Note that, in this paper, a relation between two symmetric
matrices A1 ≤ A2 means that for any vector s with compatible
dimension, there exists sT A1s≤ sT A2s. We have the following
proposition for uniformly complete controllability.

Proposition V.3 The proposed cooperative filter is uniformly
completely controllable if the following conditions are satis-
fied:

(Cd1) The covariance matrix W is bounded, i.e., λ3I ≤W ≤
λ4I for some constants λ3,λ4 > 0.

(Cd2) The speed of each agent is uniformly bounded, i.e.,
‖r j

i − r j−1
i ‖ ≤ λ5 for all time j, for i = 1, · · · ,N, and for some

constant λ5 > 0.
(Cd3) The estimated parameter θ̂ j is bounded, i.e., 0≤ θ̂ j <

λ6. By properly selecting the sampling interval δ t and forma-
tion size Ωc, we can make θ̂ j satisfy that 0 < 1− αcθ̂ jδ t

Ωc
≤ 1

for all time j, which means λ6 =
Ωc

αcδ t .

Proof See the Appendix.

Definition V.4 The proposed cooperative filter is uniformly
completely observable if there exist τ2 > 0, λ9 > 0, and
λ10 > 0 such that the observability Grammian
O(k,k − τ2) = ∑

k
j=k−τ2

ΦT ( j,k)CT ( j)[D( j)QDT ( j) +

R]−1C( j)Φ( j,k) satisfies
λ9I6×6 ≤ O(k,k− τ2) ≤ λ10I6×6 for all k > τ2. Here Q and
R are the covariance matrices for Hessian estimation error
ε(k) and the measurement noise n(k), respectively.

To prove the uniformly complete observability, we also
require one elementary lemma [26]. The proof just uses basic
linear algebra knowledge, and thus omitted here.

Lemma V.5 Suppose two 2×1 vectors a = [a1 a2]
T and b =

[b1 b2]
T form an angle Ψ such that 0 < Ψ < π . Then the

minimum eigenvalue λmin of the 2×2 matrix M = a ·aT +b ·bT

is strictly positive, i.e. λmin > 0

For uniformly complete observability, the following suffi-
cient conditions are established for a moving formation.

Proposition V.6 The proposed Kalman filter is uniformly
completely observable if (Cd2), (Cd3) and the following con-
ditions are satisfied:

(Cd4) The number of agents N is greater than or equal to
3.

(Cd5) The covariance matrices R and Q are bounded,
i.e., λ11I ≤ R ≤ λ12I and 0 ≤ Q ≤ λ13I for some constants
λ11,λ12,λ13 > 0.

(Cd6) The distance between each agent and the formation
center is uniformly bounded from both above and below, i.e.,
λ14 ≤ ‖r j−1

i − r j−1
c ‖ ≤ λ15 for all j, for i = 1,2, ...,N, and for

some constants λ14,λ15 > 0.
(Cd7) There exists a constant time difference τ2, and for all

k > τ2, there exists a time instance j1 ∈ [k− τ2,k], as well as
two agents indexed by i1 and i2, such that r j1−1

i1
, r j1−1

i2
, r j1−1

c
are not colinear; and for all k > τ2, there exists a time instance
j2 ∈ [k− τ2,k], such that r j2

1 , · · · ,r j2
N are not colinear.

Proof See the Appendix.
By applying Theorem 7.4 in [53], we guarantee the conver-

gence of the unconstrained filter from the uniformly complete
controllability and observability properties.

Now consider the state equality constraint (35), the conver-
gence analysis for a Kalman filter under equality constraints
on the states has been performed in [51]. Our problem can
be addressed similarly. Equation (42) indicates that the con-
strained estimate X̃+ can be viewed as the projection of the
unconstrained state estimate X̂+ on to the constrained state
space defined by G(k) and d(k). Given that G(k) is full rank,
according to Theorem 4 in [51], if X is the true value of the
state then the following holds

‖X− X̃+‖ ≤ ‖X− X̂+‖, (51)

where ‖·‖ is the l2 norm. This shows that the estimation
error of the constrained Kalman filter is bounded by the
estimate error of the unconstrained Kalman filter. Because the
unconstrained Kalman filter is convergent, the convergence of
the constrained Kalman filter can also be guaranteed.

Remark V.7 Compared to the cooperative Kalman filter in
[26], the proposed filter deals with a spatial-temporal varying
field instead of a static field. Thus, the performance of the
filter depends on the parameters of the spatial-temporal vary-
ing field. It should be noted that (Cd3) is essential, which
indicates that if the estimated parameter θ̂ is bounded by
0≤ θ̂ < Ωc

αcδ t , the convergence of the cooperative Kalman filter
can be guaranteed. That means the cooperative Kalman filter
can successfully track the states even though the estimated
parameter θ̂ is biased or slightly different from the true
parameter.

B. Parameter Identification

First, We can show that the Hessian estimate is unbiased.



Proposition V.8 The estimate of the Hessian term Ĥ(k)
given in (43) is unbiased with error covariance matrix(
D(k)T D(k)

)−1 D(k)T [R−C(k)R−c (k)C(k)]D(k)[
(
D(k)T D(k)

)−1
]T .

Proof
From the analysis of the property of Kalman filter, we
have P(k) = Z(k) + n(k) and X̂−(k) = X(k) +ψ1(k), where
E[n(k)n(k)T ] =R and E[ψ1(k)ψ1(k)T ] =R−c (k). Then we have

Ĥ(k) =
(

DT D
)−1

DT (P−CX̂−
)
(k)

=
(

DT D
)−1

DT (Z−CX +n−Cψ1)(k)

= H(k)+
(

D(k)T D(k)
)−1

D(k)T (n(k)−C(k)ψ1(k)) .

(52)

Since n(k) and ψ1(k) have zero mean, the expectation value
E[Ĥ(k)] equals E[H(k)]. The error covariance can be directly
calculated to be(

DT D
)−1

DT [R−CR−c C]D[
(
DT D

)−1
]T (k).

�
Unfortunately, the recursive least square method in Equation

(46) may not produce an unbiased estimate for θ . It is well
known that least square methods generate biased parameter
estimates when time correlated noise terms are presented (see
Section 7.3 of [52]). In our case, even though the online
estimate of θ may be biased, performance of the parameter
identification method can be further refined offline by using
the methods such as the bootstrap method [54], [55]. We will
employ this method in the simulation results to improve the
accuracy of the estimation of θ .

It should be noted that the convergence of the Kalman filter
is not sensitive to the biases in parameter θ̂k. In other words,
the estimated states from the cooperative Kalman filtering can
successfully track the true values even though the estimated
parameter θ̂k is biased or slightly different from the true
parameter.

Remark V.9 One may conjecture that the extended Kalman
filter (EKF) approach [7], [52] can be used to treat unknown
parameters θ̂k as an additional state variable and define
an augmented system. However, this augmented system is
nonlinear, since parameter θ̂k is multiplied by state variable
X(k) in (36). In this case, the corresponding state dynamics
are nonlinear and time-varying, which makes it difficult to an-
alyze the convergence of the resulting constrained cooperative
Kalman filter.

VI. SIMULATION AND EXPERIMENTAL RESULTS

A. Measuring a Simulated field

To demonstrate the performance of the proposed approach
for online parameter estimation, we consider the 2D advection-
diffusion equation (1) with the nominal value of θ = 0.066
and the flow velocity v = (0.05,0) for a simulated domain.
The initial condition is illustrated in Fig.1 (b), in which the
maximum value is at point (20,30). The whole domain of
PDE is a rectangular area 0≤ x≤ 90, 0≤ y≤ 90 with spatial
discretization of 1. We implement an alternating direction

implicit (ADI) finite volume scheme in MATLAB, with 90-by-
90 spatial grid. To simulate the modelling error of the discrete
presentation, a Gaussian noise with the magnitude of about
1% of the noise-free field value is added to the field values.
We also add 5% (in variance) Gaussian noise to measurements
taken by sensors. A computational time step of 0.1s is chosen
for the simulation, which satisfies the stability requirement of
finite volume method.

In the simulation, we select the asymmetric initial locations
of four sensing agents represented by the red, blue, green, and
black stars as shown in Fig. 1 (a). In Fig. 1 (b) and (c), the
contours represent the level curves of the field values and the
blue doted line is the trajectory of agents. At each time step,
the agents take measurements of the field, run the proposed
cooperative Kalman filter as well as the RLS algorithm to
obtain the estimates of the diffusion coefficient θ , and move
along the gradient direction estimated by the cooperative
Kalman filter while converging to a desired formation. The
performance of the state estimation and the gradient estimation
is illustrated in Figs. 2 (a) and (b).

Fig. 1. Gradient climbing trajectory of the mobile sensor network and
evolution of the field values. (a) Asymmetric formation of the mobile sensor
network at beginning time. (b) Field values at beginning time. (c) Field values
at final time and the trajectory of agents.

Fig. 2. State estimation at the formation center along trajectory. (a) Field
value estimation. (b) Gradient estimation.

Initially, we set the estimate θ̂0 = 2. The online estimate of
the parameter is compared to the nominal diffusion coefficient
in Fig. 3, to show its accuracy. One can see that θ̂ converges
to the nominal value with 1.95% error, confirming the effec-
tiveness of the proposed algorithm. Even though the online
RLS only can provide a generally biased result, we show that
this slight bias in Fig. 3 can be further tuned offline using the
bootstrap method.

The Bootstrap method is a Monte Carlo simulation based
statistical technique. The basic idea of bootstrap methods for
refining the bias estimation is resampling the original training
samples of size n to produce M bootstrap training sets of size
n, each of which is used to train a bootstrap estimate. To obtain



TABLE I
COMPARISON OF RLS AND BOOTSTRAP METHODS

Nominal value 0.3 0.4 0.5 0.6 0.7

Online RLS 0.2626 0.3755 0.4534 0.5696 0.6451

Bootstrap 0.2686 0.3873 0.4704 0.5965 0.6849

Online RLS Standard Deviation is 15×10−4

Bootstrap Standard Deviation is 4×10−4

an efficient bootstrap estimate, the number of resampling times
M is ordinarily chosen in the range 25− 200. In this work,
we set M = 50, which is often enough to give a good estimate
[55]. Readers can refer to [55] for more details of the bootstrap
methods.

To achieve a fair validation, we randomly choose 100 nomi-
nal values in the range [0.3 0.7] and compare the performance
of RLS and bootstrap methods. We tabulate the standard
deviation of the errors and specify some results in Table I.
One can see that with the bootstrap method [54], [55], the
bias of the parameter has now been significantly reduced.

Fig. 3. Estimation of diffusion coefficient θ with the initial value 2. The blue
solid line represents the estimated coefficient θ̂ and the red solid line is the
nominal value, which is set to 0.06.

We also look into the case with bad initial guess where
we set the initial estimate θ̂0 = 2, ẑ0 = 85.9156 and ∇ẑ0 =
[45.6427,53.7009]ᵀ with true initial state value z0 = 0.5510
and ∇z0 = [−0.0365,−0.0082]ᵀ. The estimated field value
soon converges to the true field value. Here the nominal value
of the parameter is set as θ = 5.5834, and the estimated
parameter converges to θ̂ = 5.7382 with bias=−0.1548. This
shows that even with bad initial guess, the state estimation and
parameter estimation still converge to the true value using our
proposed method.

B. Experimental Data and Simulated Agent Motion

A controllable CO2 diffusion field in a lab setup was
introduced in [45]. As illustrated in Fig. 4, the CO2 field
is distributed in an area with 3.5 × 3.5 m2. A sensor grid
which consists of 24 CO2 sensors is assembled to measure
the concentration of the gas over the area. The sensors are
calibrated so that they all have consistent measurement values

when we reproduce the experiment in the same environment.
During the diffusion process of CO2 gas, the sensor grid mea-
sures the gas concentration at the fixed locations and sends the
data to MATLAB running in the central computer. MATLAB
then reproduces the diffusion process by interpolating the field
values collected by the sensor grid at every discrete time
instant. The diffusion process obtained from the real field on
November 7, 2016 is shown in Fig. 5. CO2 begins diffusing at
step t = 0s and ends at t = 120s. The computational time step
is 1s. Given the measurements collected from the sensor gird,
the nominal value of diffusion coefficient θn can be determined
as θn = 0.239. For more detatils about the experimental data
collection, please refer to recent work [45].

(a) (b)

Fig. 4. The illustration of the experimental setup and the sensor grid [45].

(a) (b)

Fig. 5. Snapshots of the diffusion field collected by the sensor grid and
visualized by MATLAB [45].

We verify the experimental performance for diffusion co-
efficient identification with four simulated sensing agents
deployed in the reconstructed field based on the experimental
data. To achieve a fair experimental validation, the experiment
is performed using two different starting points for the agents
marked by “A” and “B” in Fig. 6. Note that the field data is
collected while there is no air movement. Hence our filtering
equations do not contain the advection terms.

We control the sensing agents to move along the estimated
gradient direction while keeping a constant formation. In
Fig. 6, the contours represent the level curves of the diffusion
field, the colored dots represent the four sensing agents, the
black star represents the source, the orange line and purple line
represent the trajectories of the center of the mobile sensor
network staring from A and B, respectively. The experiment
begins at step t = 0s and ends at t = 120s. The measuring fre-
quency of the sensors is set to 0.5Hz. As we can observe from
the figure, the agents trace the gradient of the diffusion field
in both experiments to find the diffusion source of the CO2
gas, which is the point with the highest CO2 concentration.



Fig. 6. The trajectories of the agents in the two experiments. The black star
marks the source of the field.

While the mobile sensor network is moving towards the
source, it also achieves real-time identification of the diffusion
coefficient by implementing the cooperative Kalman filter and
the RLS algorithm. Initially, we set the estimate θ̂0 = 1. The
estimation results of the diffusion coefficient are shown in
Fig. 7. As we can observe from Fig. 7 that, the estimates
of the parameter converge to stabilized values in both experi-
ments, both of which are very close to the estimated nominal
value. The two values differ by a small amount of 0.0212.
Nevertheless, it demonstrates that the proposed algorithm is
robust under realistic uncertainties and disturbances.

Fig. 7. The estimated diffusion coefficients staring from A and B point are
shown in the dotted black line and dashed blue line, respectively. The nominal
value of diffusion coefficient (the red line) is 0.239, which is estimated from
measurements collected by the static sensor grid.

VII. CONCLUSION

This work presented a cooperative filtering and parameter
estimation algorithm for advection-diffusion processes mea-
sured by a mobile sensor network. We provide an approach to
discretize the advection-diffusion equation in both space and
time domain leading to the information dynamics equations.
Based on the information dynamics, a constrained Kalman
filter is proposed for state estimation and a RLS estimation is
proposed for parameter estimation. Theoretical justifications
are provided for the convergence analysis of the cooperative
filter. Simulation and experimental results are provided to
demonstrate the efficiency of the proposed method. Future

work includes extending the proposed algorithm to PDE
models with spatially varying parameters.

APPENDIX I

Finite volume approximation of ∆2z
We first construct a volume Ωc around the formation center

rk
c . The constructions can be performed in different ways, such

as the cell-centered scheme and the vertex-centered scheme
[49], [50]. In this work, the volume Ωc is constructed as a
closed polygon that is formed by the perpendicular bisectors of
the line segments rk

1rk
c ,r

k
2rk

c , · · · ,rk
Nrk

c . We choose the midpoints
of the line segments rk

1rk
c ,r

k
2rk

c , · · · ,rk
Nrk

c . For segment rk
i rk

c ,
a perpendicular bisector is a line that passes through the
midpoint on rk

i rk
c . These perpendicular bisectors will intersect

each other and form a closed polygon with a simple loop
boundary. The area enclosed by this polygon is the finite
volume Ωc. To illustrate the idea, we plot the case when N = 4,
in Fig. 8. Ωc is the volume that is enclosed by the polygon
A1A2A3A4. The points M1,M2,M3,M4 are the midpoints of the
line segments rk

1rk
c ,r

k
2rk

c ,r
k
3rk

c ,r
k
4rk

c , respectively.
Let Si = AiAi+1 where AN+1 = A1, and let n̂i be the

outward unit normal vector on the boundary segment Si. Let
the boundary of Ωc be S that now contains the segments
Si for i = 1,2, ..,N. We can see that n̂i is constant and
aligned with rk

i rk
c for each segment Si for i = 1,2, ...,N. Our

construction using the perpendicular bisectors guarantees that
n̂i is perpendicular to the boundary on each segment Si.

Fig. 8. Finite-volume construction for a mobile sensor network in 2D.

By applying the Green’s theorem to the integration of
equation ∆z(r, t) over the finite volume Ωc, we can have the
following expression [56]:∫ ∫

Ωc

∆z(r, t) dΩc =
∮

S
(∇z(r, t))T n̂dr (53)

The integration of (53) over a finite volume Ωc shown in Fig. 8
results in a spatially discretized equation that holds when the
volume of Ωc is small:

∆z(rk
c ,k) =

1
Ωc

(
N

∑
i=1

∫
Si

(∇z(r, t))T n̂i dr). (54)



Next, we will derive ∇z(r, t), r ∈ Si in equation (53) at time
step k. For any given i = 1,2, ...,N, with rk

i being close to rk
c ,

z(rk
i ,k) can be locally approximated as follow,

z(rk
i ,k)− z(rk

c ,k)≈(∇z(r,k))T (rk
i − rk

c) (55)

+
∫ 1

0

(
Hrk

i
(ξ )−Hrk

c
(ξ )
)

ξ dξ , r ∈ Si,

where Hrk
i
(ξ ) = (rk

i − r)T H
(
ξ r+(1−ξ )rk

i ,k
)
(rk

i − r) with
H
(
ξ r+(1−ξ )rk

i ,k
)

being the Hessian matrix at the point
ξ r+(1−ξ )rk

i , r ∈ Si. By the construction of the finite volume,
we have

(∇z(r, t))T n̂i =(∇z(r,k))T (rk
i − rk

c)

| rk
i − rk

c |

≈
z(rk

i ,k)− z(rk
c ,k)

| rk
i − rk

c |

− 1
| rk

i − rk
c |

∫ 1

0

(
Hrk

i
(ξ )−Hrk

c
(ξ )
)

ξ dξ . (56)

Substituting the expression of ∇z(r, t) · n̂i into
∫

Si
θ∇z(r,k) ·

n̂i dr gives,∫
Si

θ∇z(r,k) · n̂i dr

≈θ
| Si |
| rk

i − rk
c |

(
z(rk

i ,k)− z(rk
c ,k)

)
− θ

| rk
i − rk

c |

∫
Si

∫ 1

0

(
Hrk

i
(ξ )−Hrk

c
(ξ )
)

ξ dξ dr, (57)

where | Si | is the length of the boundary segment Si.
Define the coefficients αi and αc as follows:

αi =
| Si |
| rk

i − rk
c |

, (58)

αc =
N

∑
i=1

| Si |
| rk

i − rk
c |

,

Define an approximation error term as

e(rk
c ,k) =

1
Ωc

N

∑
i=1

θ

| rk
i − rk

c |

∫
Si

∫ 1

0
(Hrk

i
(ξ )−Hrk

c
(ξ ))ξ dξ dr.

(59)

e(rk
c ,k) is the sum of integration of the differences of two

Hessian matrices at rk
i and rk

c , which is the higher order term
relative to the geometric distance ‖rk

i −rk
c‖. To further simplify

the notations, we define

Γk =
1

Ωc

[
N

∑
i=1

(αiz(rk
i ,k))−αcz(rk

c ,k)

]
. (60)

Then
θ∆z(rk

c ,k) = Γkθ − e(rk
c ,k) (61)

It should be noted that the αi and αc coefficients are related
to the shape of the formation that the mobile agents form. In
a special case where four agents form a symmetric formation,
α1 = α2 = α3 = α4 = 1 and αc = 4, which agree with the
coefficients obtained by the finite difference method [2].

APPENDIX II

Proof of Proposition V.3
Based on condition (Cd1), we obtain that the controllability
Grammian satisfies

λ3

k

∑
j=k−τ1

Φ(k, j)Φ(k, j)T ≤ C(k,k− τ1)

and

C(k,k− τ1)≤ λ4

k

∑
j=k−τ1

Φ(k, j)Φ(k, j)T

for any k and τ1 such that k > τ1. Therefore, if we can find
the uniform bounds for each of these semi-definite symmetric
matrices, i.e., Φ(k, j)Φ(k, j)T , the overall bound for the con-
trollability Grammian can be obtained readily. We first apply
Lemma V.1 to compute Φa(k, j)Φa(k, j)T , i.e.,

Φ
a(k, j)Φa(k, j)T =

[
ξ

θ̂
φ T

0 I2×2

][
ξ

θ̂
φ T

0 I2×2

]T

=

[
ξ 2

θ̂
+‖φ‖2 φ T

φ I2×2

]
.

(62)

Using basic linear algebra, we can obtain the eigenvalues
of matrix (62) as follows

λ1 =
1
2

(
1+ξ

2
θ̂
+‖φ‖2 +

√
(1+ξ 2

θ̂
+‖φ‖2)2−4ξ 2

θ̂

)
,

λ2 = 1,

λ3 =
1
2

(
1+ξ

2
θ̂
+‖φ‖2−

√
(1+ξ 2

θ̂
+‖φ‖2)2−4ξ 2

θ̂

)
=

ξ 2
θ̂

λ1
.

It is easy to show that

λ1 =
1
2

(
1+ξ

2
θ̂
+‖φ‖2 +

√
(1+ξ 2

θ̂
+‖φ‖2)2−4ξ 2

θ̂

)
≥ 1

2

(
1+ξ

2
θ̂
+‖φ‖2 +

√
(1+ξ 2

θ̂
)2−4ξ 2

θ̂

)
=

1
2

(
1+ξ

2
θ̂
+‖φ‖2 +1−ξ

2
θ̂

)
≥ 1,

and

λ1 =
1
2

(
1+ξ

2
θ̂
+‖φ‖2 +

√
(1+ξ 2

θ̂
+‖φ‖2)2−4ξ 2

θ̂

)
≤ 1

2

(
1+ξ

2
θ̂
+‖φ‖2 +

√
(1+ξ 2

θ̂
+‖φ‖2)2

)
= 1+ξ

2
θ̂
+‖φ‖2.



Due to condition (Cd3), we can see that 0 < ξ
θ̂
≤ 1.

‖φ‖

=

∥∥∥∥(rk−1
c − rk−2

c + vδ t)T

+
k− j−1

∑
n=1

(
n

∏
m=1

(1− αcθ̂k−mδ t
Ωc

)

)
(rk−n−1

c − rk−n−2
c + vδ t)T

∥∥∥∥
≤
∥∥∥(rk−1

c − rk−2
c + vδ t)T

∥∥∥
+

k− j−1

∑
n=1

(
n

∏
m=1

(1− αcθ̂k−mδ t
Ωc

)

)∥∥∥(rk−n−1
c − rk−n−2

c + vδ t)T
∥∥∥

≤
∥∥∥(rk−1

c − rk−2
c + vδ t)T

∥∥∥+ k− j−1

∑
n=1

∥∥∥(rk−n−1
c − rk−n−2

c + vδ t)T
∥∥∥

≤‖rk−1
c − rk−2

c ‖+‖vδ t‖+
k− j−1

∑
n=1

(
‖rk−n−1

c − rk−n−2
c ‖+‖vδ t‖

)
≤(k− j)(λ5 +‖vδ t‖)
≤τ1(λ5 +‖vδ t‖).

Hence we can show that λ1 is bounded both above and below,

1≤ λ1 ≤ 2+ τ1(λ5 +‖vδ t‖),

and the maximum value of λ1 is λ8 = 2+ τ1(λ5 +‖vδ t‖).

Since λ3 =
ξ 2

θ̂

λ1
, we can have that

0 <
ξ 2

θ̂

2+ τ1(λ5 +‖vδ t‖)
≤ λ3 ≤ ξ

2
θ̂
≤ 1,

and the minimum value of λ3 is λ7 =
minξ 2

θ̂

λ8
> 0.

Therefore, we can conclude that λ7I3×3 ≤
Φa(k, j)Φa(k, j)T ≤ λ8I3×3 for all time j ∈ [k − τ1,k].
Since Φa(k, j) = Φb(k, j), we can also have
λ7I3×3 ≤ Φb(k, j)Φb(k, j)T ≤ λ8I3×3 for all time
j ∈ [k− τ1,k]. This means that for Φ(k, j) = diag[Φa,Φb],
λ7I6×6 ≤ Φ(k, j)Φ(k, j)T ≤ λ8I6×6 holds for all time
j ∈ [k−τ1,k]. Hence, λ3λ7τ1I6×6 ≤ C(k,k−τ1)≤ λ4λ8τ1I6×6.
Let λ1 = λ3λ7τ1 and λ2 = λ4λ8τ1. Thus, according to
Definition V.2, we have proved the uniformly complete
controllability claim. �
Proof of Proposition V.6
Based on condition (Cd6), we first observe that every el-
ements in D(k) is bounded. Hence, from conditions (Cd5)
and (Cd6), we can prove that there exists two posi-
tive constants λ16,λ17 such that λ16IN×N ≤ [D(k)QDT (k) +
R] ≤ λ17IN×N . Then, the observability Grammian satis-
fies λ

−1
17 ∑

k
j=k−τ2

ΦT ( j,k)CT ( j)C( j)Φ( j,k) ≤ O(k,k − τ2) ≤
λ
−1
16 ∑

k
j=k−τ2

ΦT ( j,k)CT ( j)C( j)Φ( j,k) for any k and τ2 such
that k > τ2. Then the uniformly completely observability can
be proved by finding the positive uniform upper and lower
bounds for ∑

k
j=k−τ2

ΦT ( j,k)CT ( j)C( j)Φ( j,k) for all k > τ2.

Since C( j)Φ( j,k) = diag[Ca( j)Φa( j,k),Cb( j)Φb( j,k)], we
can have

Φ
T ( j,k)CT ( j)C( j)Φ( j,k)

= diag
[
(Ca( j)Φa( j,k))T Ca( j)Φa( j,k),(

Cb( j)Φb( j,k)
)T

Cb( j)Φb( j,k)
]
.

In order to find the positive uniform upper and lower bounds
for ∑

k
j=k−τ2

ΦT ( j,k)CT ( j)C( j)Φ( j,k) for all k > τ2, we will
look into subsystems marked by a and b first.

According to Lemma V.1 and the definition of forma-
tion center that r j−1

c = 1
N ∑

N
i=1 r j−1

i , we can get the matrix
ΦaT ( j,k)CaT ( j)Ca( j)Φa( j,k) in Equation (63) for subsystem
with superscript a.

Φ
aT ( j,k)CaT ( j)Ca( j)Φa( j,k)

=


1

ξ
θ̂

(r j−1
1 − r j−1

c − φ

ξ
θ̂

)T

...
...

1
ξ

θ̂

(r j−1
N − r j−1

c − φ

ξ
θ̂

)T


T 

1
ξ

θ̂

(r j−1
1 − r j−1

c − φ

ξ
θ̂

)T

...
...

1
ξ

θ̂

(r j−1
N − r j−1

c − φ

ξ
θ̂

)T


=

 N
ξ 2

θ̂

− N
ξ 2

θ̂

φ T

− N
ξ 2

θ̂

φ ∑
N
i=1

(
r j−1

i − r j−1
c

)(
r j−1

i − r j−1
c

)T
+ N

ξ 2
θ̂

φφ T

 .
(63)

Due to conditions (Cd2) and (Cd6), we can observe that
each element of the matrix (63) is bounded above, i.e.,
ΦaT ( j,k)CaT ( j)Ca( j)Φa( j,k) ≤ λ18I3×3 for some constant
λ18 > 0.

Similarly for subsystem with superscript b, we can get the
matrix ΦbT ( j,k)CbT ( j)Cb( j)Φb( j,k) in Equation (64).

Φ
bT ( j,k)CbT ( j)Cb( j)Φb( j,k)

=


1

ξ
θ̂

(r j
1− r j−1

c − φ

ξ
θ̂

)T

...
...

1
ξ

θ̂

(r j
N − r j−1

c − φ

ξ
θ̂

)T


T 

1
ξ

θ̂

(r j
1− r j−1

c − φ

ξ
θ̂

)T

...
...

1
ξ

θ̂

(r j
N − r j−1

c − φ

ξ
θ̂

)T


=

 N
ξ 2

θ̂

1
ξ

θ̂

∑
N
i=1(r

j
i − r j−1

c − φ

ξ
θ̂

)T

1
ξ

θ̂

∑
N
i=1(r

j
i − r j−1

c − φ

ξ
θ̂

) Σ

 ,
(64)

where Σ = ∑
N
i=1(r

j
i − r j−1

c − φ

ξ
θ̂

)(r j
i − r j−1

c − φ

ξ
θ̂

)T .
Due to conditions (Cd2) (Cd6) and that φ and ξ

θ̂
are

bounded above, we can observe that each element of the matrix
(64) is bounded above, i.e., ΦbT ( j,k)CbT ( j)Cb( j)Φb( j,k) ≤
λ19I3×3 for some constant λ19 > 0.

Hence the upper bound for ΦT ( j,k)CT ( j)C( j)Φ( j,k) ex-
ists and ΦT ( j,k)CT ( j)C( j)Φ( j,k) ≤ λ20I6×6, where λ20 =
max{λ18,λ19}.

For the lower bound, we can first show
that the matrix ΦaT ( j,k)CaT ( j)Ca( j)Φa( j,k) and
ΦbT ( j,k)CbT ( j)Cb( j)Φb( j,k) are positive semidefinite
for any j ∈ [k− τ2,k]. Then we can use conditions (Cd4),
(Cd6) and (Cd7) to show that ΦaT ( j,k)CaT ( j)Ca( j)Φa( j,k)
and ΦbT ( j,k)CbT ( j)Cb( j)Φb( j,k) are strictly positive
definite for some time instance j1 ∈ [k − τ2,k], which
means that there exists the lower bound λ21 > 0 such that
λ21I6×6 ≤ ∑

k
j=k−τ2

Φ( j,k)TC( j)TC( j)Φ( j,k).



Consider any nonzero vector x∈R3, and for any subsystem
we can find that

xT
Φ

y( j,k)TCy( j)TCy( j)Φy( j,k)x

= (Cy( j)Φy( j,k)x)T (Cy( j)Φy( j,k)x)≥ 0, y ∈ {a,b}.

This shows that the matrix Φ( j,k)TC( j)TC( j)Φ( j,k) is pos-
itive semidefinite for any j ∈ [k− τ2,k], which implies that
∑

k
j=k−τ2

Φ( j,k)TC( j)TC( j)Φ( j,k) is also positive semidefi-
nite.

Consider the time instance j1 given in (Cd7), and the matrix
Φa( j1,k)TCa( j1)TCa( j1)Φa( j1,k) can be reduced using row
operations as follows,

Φ
a( j1,k)TCa( j1)TCa( j1)Φa( j1,k)

=

 N
ξ 2

θ̂

− N
ξ 2

θ̂

φ T

− N
ξ 2

θ̂

φ ∑
N
i=1

(
r j1−1

i − r j1−1
c

)(
r j1−1

i − r j1−1
c

)T
+ N

ξ 2
θ̂

φφ T


→

 N
ξ 2

θ̂

− N
ξ 2

θ̂

φ T

0 ∑
N
i=1

(
r j−1

i − r j−1
c

)(
r j−1

i − r j−1
c

)T

 .
Since for each i ∈ {1, · · · ,N} matrix(

r j−1
i − r j−1

c

)(
r j−1

i − r j−1
c

)T
is positive semidefinite,

∑
N
i=1

(
r j−1

i − r j−1
c

)(
r j−1

i − r j−1
c

)T
is also positive

semidefinite.
Consider the two agents i1, i2 ∈ {1, · · · ,N} given

condition (Cd7). Since r j1−1
i1

, r j1−1
i2

, r j1−1
C are not colinear,

the two vectors
(

r j−1
i1
− r j−1

c

)
and

(
r j−1

i2
− r j−1

c

)
form

an angle Ψ such that 0 < Ψ < π . According to
Lemma V.5, the minimum eigenvalue of the 2 × 2

symmetric matrix M =
(

r j−1
i1
− r j−1

c

)(
r j−1

i1
− r j−1

c

)T
+(

r j−1
i2
− r j−1

c

)(
r j−1

i2
− r j−1

c

)T
is strictly positive and

M is strictly positive definite. This means that

∑
N
i=1

(
r j−1

i − r j−1
c

)(
r j−1

i − r j−1
c

)T
is strictly positive

definite and has full rank. Since N
ξ 2

θ̂

6= 0, the matrix

Φa( j1,k)TCa( j1)TCa( j1)Φa( j1,k) is strictly positive definite,
and ∑

k
j=k−τ2

Φa( j,k)TCa( j)TCa( j)Φa( j,k) is strictly positive
definite. Hence, there exists a lower bound λ22 > 0 such that
λ22I3×3 ≤ ∑

k
j=k−τ2

Φa( j,k)TCa( j)TCa( j)Φa( j,k).
For subsystem marked by superscript b, consider

the time instance j2 given in (Cd7), and the matrix
Φb( j2,k)TCb( j2)TCb( j2)Φb( j2,k) can be reduced using row
operations as follows,

Φ
b( j2,k)TCb( j2)TCb( j2)Φb( j2,k)

=

 N
ξ 2

θ̂

1
ξ

θ̂

∑
N
i=1(r

j2
i − r j2−1

c − φ

ξ
θ̂

)T

1
ξ

θ̂

∑
N
i=1(r

j2
i − r j2−1

c − φ

ξ
θ̂

) Σ


→

 N
ξ 2

θ̂

1
ξ

θ̂

∑
N
i=1(r

j2
i − r j2−1

c − φ

ξ
θ̂

)T

0 ∑
N
i=1(r

j2
i − r j2−1

c − φ

ξ
θ̂

)∑
N
k=1(r

j2
k − r j2

i )T

 ,
where Σ = ∑

N
i=1(r

j2
i − r j2−1

c − φ

ξ
θ̂

)(r j2
i − r j2−1

c − φ

ξ
θ̂

)T .

For the term ∑
N
i=1(r

j2
i − r j2−1

c − φ

ξ
θ̂

)∑
N
k=1(r

j2
k − r j2

i )T , ex-
changing index will not change the result, which implies that

N

∑
i=1

(r j2
i − r j2−1

c − φ

ξ
θ̂

)
N

∑
k=1

(r j2
k − r j2

i )T

=
N

∑
k=1

(r j2
k − r j2−1

c − φ

ξ
θ̂

)
N

∑
i=1

(r j2
i − r j2

k )T

=
1
2

( N

∑
i=1

(r j2
i − r j2−1

c − φ

ξ
θ̂

)
N

∑
k=1

(r j2
k − r j2

i )T

+
N

∑
k=1

(r j2
k − r j2−1

c − φ

ξ
θ̂

)
N

∑
i=1

(r j2
i − r j2

k )T
)

=
1
2

N

∑
i=1

N

∑
k=1

(
(r j2

i − r j2−1
c − φ

ξ
θ̂

)(r j2
k − r j2

i )T

+(r j2
k − r j2−1

c − φ

ξ
θ̂

)(r j2
i − r j2

k )T
)

=−1
2

N

∑
i=1

N

∑
k=1

(
r j2

k − r j2
i

)(
r j2

k − r j2
i

)T
.

Since for any i,k ∈ {1, · · · ,N}
(

r j2
k − r j2

i

)(
r j2

k − r j2
i

)T
is

positive semidefinite,

∑
N
i=1 ∑

N
k=1

(
r j2

k − r j2
i

)(
r j2

k − r j2
i

)T
is also positive semidefi-

nite.
According to condition (Cd7), r j2

1 , · · · ,r j2
N are not col-

inear, which implies that there exists at least two vec-
tors

(
r j2

k1
− r j2

i3

)
and

(
r j2

k2
− r j2

i4

)
form an angle Ψ′ such

that 0 < Ψ′ < π . According to Lemma V.5, the min-
imum eigenvalue of the 2 × 2 symmetric matrix M′ =(

r j2
k1
− r j2

i3

)(
r j2

k1
− r j2

i3

)T
+
(

r j2
k2
− r j2

i4

)(
r j2

k2
− r j2

i4

)T
is strictly

positive and M′ is strictly positive definite. This means

that ∑
N
i=1 ∑

N
k=1

(
r j2

k − r j2
i

)(
r j2

k − r j2
i

)T
is strictly positive

definite and has full rank. Since N
ξ 2

θ̂

6= 0, the matrix

Φb( j2,k)TCb( j2)TCb( j2)Φb( j2,k) is strictly positive definite,
and ∑

k
j=k−τ2

Φb( j,k)TCb( j)TCb( j)Φb( j,k) is strictly positive
definite. Hence, there exists a lower bound λ23 > 0 such that
λ23I3×3 ≤ ∑

k
j=k−τ2

Φb( j,k)TCb( j)TCb( j)Φb( j,k), and there
exists a lower bound λ21 = min{λ22,λ23} > 0 such that
λ21I6×6 ≤ ∑

k
j=k−τ2

Φ( j,k)TC( j)TC( j)Φ( j,k).
Therefore, we can conclude that λ21I6×6 ≤

∑
k
j=k−τ2

Φ( j,k)TC( j)TC( j)Φ( j,k) and
Φ( j,k)TC( j)TC( j)Φ( j,k) ≤ λ20I3×3 for all j ∈ [k − τ2,k].
Hence λ

−1
17 λ21I3×3 ≤ O(k,k − τ2) ≤ λ

−1
16 λ20τ2I3×3. Let

λ9 = λ
−1
17 λ21 and λ10 = λ

−1
16 λ20τ2. Thus, according to

Definition V.4, we have proved the uniformly complete
observability claim. �
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