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Disequilibrium river networks dissecting the western slope 
of the Sierra Nevada, California, USA, record significant late 

Cenozoic tilting and associated surface uplift: Comment

Emmanuel Gabet†

Department of Geology, San Jose State University, San Jose, California 95123, USA

INTRODUCTION

Beeson and McCoy (2022) present several 
interesting methods for detecting uplift from 
river profiles; however, these techniques rely on 
conditions and assumptions that are not met in 
the Sierra Nevada. Moreover, one of the key pre-
dictions from their numerical model, the pres-
ence of migrating knickpoints along the Sierra’s 
trunk streams, is not supported by field observa-
tions or digital elevation model (DEM) analyses.

TIMING OF UPLIFT

Numerical Model

In the model used by the authors, estimates of 
the timing of tectonic activity rely on the migra-
tion rate of uplift-induced knickpoints. According 
to their Equation 8, knickpoint location is linearly 
dependent on K, a variable that accounts for bed-
rock erodibility and climate. In their approach, 
bedrock erodibility is assumed to be uniform 
throughout the entire Sierra Nevada. However, 
in the Sierra, bedrock erodibility is known to 
change significantly over short distances (e.g., 
Gabet, 2020); for example, the migrating knick-
point identified by the authors on the North Fork 
Feather River would have had to travel across at 
least eight different rock units and two fault zones 
(Saucedo and Wagner, 1992). Given that K can 
vary by many orders of magnitude according to 
lithology and fault damage (Gabet, 2020; Stock 
et al., 2005) and, also, that the knickpoint migra-
tion rate is linearly dependent on this variable, 
estimates of the timing of tectonic activity will be 
acutely sensitive to errors in properly accounting 
for spatial variations in bedrock erodibility.

Runoff, which is also incorporated into the 
variable K, is also assumed by the authors to be 

spatially uniform. However, total annual precip-
itation in the range decreases tenfold from the 
north to the south and also varies strongly with 
elevation (Bales et al., 2006). While Beeson and 
McCoy (2022) note that snow water equivalent 
is higher in the south, the streampower formu-
lation depends on runoff, which is correlated 
with total precipitation. In addition, whereas 
the authors assume that runoff has not changed 
throughout the late Cenozoic, it has, in fact, 
experienced profound climate-driven changes 
(Phillips, 2008). The importance of account-
ing for spatial and temporal variations in run-
off when analyzing channel profiles within the 
streampower framework has been emphasized 
in multiple studies (e.g., Leonard and Whipple, 
2021; Roe et al., 2002).

The knickpoint migration rate is also depen-
dent on drainage area, A, which the authors 
assume has not varied with time in the late 
Cenozoic. However, many of the mainstem riv-
ers over this time period have been beheaded, 
indicating significant reductions in drainage 
area (e.g., Busby, 2013; Schweickert, 2009). 
Moreover, for much of the late Cenozoic, the 
bedrock surface in the northern Sierra was bur-
ied by such thick deposits of volcanic rocks 
that only the highest peaks rose above them 
(Bateman and Wahrhaftig, 1966; Slemmons, 
1966); for example, Lyon Peak, one of the tall-
est summits in the American River watershed 
is capped with 3.3 Ma andesitic lahars (Har-
wood, 1986, in Saucedo, 1992). Lyon Peak and 
other similar sites demonstrate that, in the late 
Cenozoic, this portion of the Sierra Nevada 
was a vast volcanic plain with a drainage net-
work that would have borne little resemblance 
to the modern system (Fig. 1; Lindgren, 1911; 
Whitney, 1880). Therefore, the claim that indi-
vidual trunk streams have maintained the same 
drainage area throughout the late Cenozoic is 
not supported.

Finally, the application of the streampower 
model, which only simulates erosion, assumes 

that (1) the rivers have been continually incis-
ing through basement rock throughout the late 
Cenozoic, and (2) that the landscape has not 
experienced aggradation over this time period. 
However, these assumptions are contradicted 
by field evidence in the northern Sierra. From 
the Eocene to the early Oligocene, the accu-
mulation of fluvial gravels was so thick that 
drainage divides in the Sierran foothills were 
overtopped by the deposits (Whitney, 1880). 
From the early Oligocene to the early Miocene, 
the northern Sierra Nevada was blanketed by 
rhyolitic ash tuffs, up to 500 m thick near the 
crest of the range and thinning down to ∼100 m 
in the foothills, that were conformably and 
unconformably deposited on the gravels (Henry 
et al., 2012; Slemmons, 1966). Following these 
rhyolitic eruptions, andesitic eruptions buried 
the eastern portion of the range under volca-
nic deposits that were up to 900 m thick near 
the range-crest, thinning down to ∼100 m in 
the foothills (Slemmons, 1966). These andes-
itic eruptions continued until at least 3.3 Ma 
(Harwood, 1986, in Saucedo, 1992). There-
fore, northern Sierran rivers have not been 
continually incising through basement rock 
throughout the late Cenozoic. Instead, they 
were aggrading with volcanic deposits into 
the Pliocene and even the Pleistocene in some 
watersheds (Fig. 1). When the rivers began to 
incise following the end of the Pliocene and 
Pleistocene eruptions, many of them mostly cut 
down through volcanic and fluvial deposits, not 
basement rock (Fig. 2). Pliocene volcanic rocks 
throughout the Kings River watershed indicate 
that some portions of the southern Sierra also 
experienced aggradation in the late Cenozoic 
(Moore and Sisson, 1987).

Evidence for Migrating Knickpoints

The estimates for the initiation and cessation 
of uplift rely on the identification of migrating 
knickpoints on the mainstem rivers and the inter-
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pretation that they were triggered by uplift (Bee-
son and McCoy, 2022). While the recent bedrock 
incision claimed by the authors should have left 
behind strath terraces immediately downstream 
of the knickpoints (e.g., Crosby and Whipple, 
2006), none have been identified (other than 
those associated with local uplift of the Kern 
Arch in the southern tip of the range; Saleeby and 
Saleeby, 2019). Eocene–early Oligocene grav-
els and Oligocene volcanic deposits on benches 
throughout the northern Sierra (e.g., Cassel and 
Graham, 2011; Whitney, 1880) attest to the 
high preservation potential of strath terraces 
that would have formed in the late Cenozoic in 
the northern part of the range. Importantly, we 
should be able to observe strath terraces form-
ing today, yet such observations are lacking. 

In addition, if these knickpoints are migrating, 
hillslopes downstream of them should be steeper 
than those upstream because of a lag in hillslope 
response time (Hurst et al., 2013); instead, hill-
slopes downstream of large knickpoints in the 
Sierra are often gentler (Gabet, 2020).

In the absence of physical evidence that 
these mainstem knickpoints are migrating, 
Beeson and McCoy present a plot of distance 
versus drainage area for these features (their fig. 
15A) as their model predicts a strong power-
law relationship between the two. Although 
they report a high R2 (0.8) for this relationship 
when including the data from all knickpoints 
(mainstem and tributary), the data from just the 
mainstem knickpoints yield an R2 approaching 
zero (Fig. 3), thereby providing strong evidence 

that the knickpoints are not migrating but are, in 
fact, stationary.

The breaks-in-slope interpreted by the authors 
to be migrating knickpoints appear to be, 
instead, lithological knickpoints (Gabet, 2020); 
indeed, many of them are at (or very near to) 
mapped lithological contacts and/or fault zones 
(note the overlap between the tectonic and the 
lithological knickpoints in Beeson and McCoy’s 
fig. 15A). For example, the authors conclude that 
a knickpoint on the Stanislaus River is a migrat-
ing knickpoint (their fig. 11); however, it is at 
a contact between augen gneiss bedrock and 
the Calaveras Complex, a sheared subduction 
mélange (Snow and Scherer, 2006) that would 
be expected to be considerably more erodible 
(thereby having gentler slopes) than the quartz-
rich gneiss (Fig. 4). Other examples where pre-
sumed tectonic knickpoints are at lithological 
and/or structural transitions include the North 
Fork Feather River, where the base of the knick-
point is in a fault zone juxtaposing metavolca-
nic and ultramafic rocks; the South Yuba River, 
where the knickpoint is at a contact between 
gabbroic rocks and quartz diorite; the Middle 
Fork American River, where the knickpoint is at 
a contact between the Shoo Fly Complex and 
the Calaveras Complex; the South Fork Ameri-
can River, where the knickpoint is at a contact 
between the Calaveras Complex and granite; 
and the Merced River, where the knickpoint is 
at a contact between plutonic and metamorphic 
units (Bateman and Krauskopf, 1987; Gabet, 
2020; Saucedo and Wagner, 1992; Wagner et al., 
1981). Note, in my experience, the locations of 
contacts on the digital map used by the authors, 
which is a preliminary map (Ludington et al., 
2005), often do not coincide with those on the 
original paper maps.

While the examples above are limited to the 
northern Sierra where obvious lithological con-
tacts can be identified, the southern Sierra is 
dominated by batholithic rocks where individ-
ual plutons are often not mapped. However, the 
Kings River presents an important test case for 

Figure 1. Cross section across 
the North Yuba River canyon, 
∼50 km from the range-front 
(Saucedo and Wagner, 1992). 
Inferred contacts are dashed; 
dotted line represents the es-
timated elevation of the valley 
bottom during the Eocene–
early Oligocene (Gabet and 
Miggins, 2020). The basalt flow 
demonstrates that, as late as 

the Pleistocene, the fluvial system was not incising through basement rock, as claimed by Beeson and McCoy, but was, instead, flowing 
across a volcanic plain.

Figure 2. Cross section across 
the South Fork American River 
canyon, ∼55 km from the range-
front (Strand and Koenig, 1965; 
Wagner et al., 1981). Dotted line 
is an inferred contact; shaded 
bands represent eroded valley 
fill; symbols represent remnant 

deposits. Auriferous gravel deposits, subaerial and within a mine, indicate that this canyon 
was within ∼160 m of its modern depth by the early Oligocene (Gabet and Miggins, 2020; 
Lindgren, 1911). The canyon subsequently filled with volcanic deposits which have mostly 
been eroded away since the Pliocene.

Figure 3. Distance vs. drainage 
area plot for mainstem knick-
points from Beeson and Mc-
Coy’s figure 15A. According 
to the streampower model, if 
these knickpoints were migrat-
ing, there would be a significant 
relationship between distance 
and drainage area; the absence 
of a relationship indicates that 
the knickpoints are stationary. 

Processes other than mainstem migrating knickpoints could explain the weak distance-area 
relationship for the tributary knickpoints (R2 = 0.45; plot not shown).
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this region. Beeson and McCoy (2022) identify 
a migrating knickpoint on the Kings River that is 
∼20 km downstream of a site where the river has 
already incised deeply through a band of marble 
2.7–1.4 Ma (Stock et al., 2004). To explain how 
this upstream site could have incised before 
the arrival of the conjectured migrating knick-
point, Beeson and McCoy suggest that tilting 
of the range led to localized incision within 
the marble, which they presume to be weaker 
than the surrounding bedrock. According to 

this hypothesis, the reach of river through the 
marble should now have a lower gradient than 
the reach below it (their fig. 5C); instead, the 
marble reach is steeper, challenging their analy-
sis (their fig. S11B). Moreover, hanging tributary 
valleys, inner gorges, and truncated spur ridges 
in granitic bedrock downstream of the marble 
indicate that the wave of incision traveled up to 
the marble and did not originate within it (Stock 
et al., 2004).

TILT ESTIMATES

Beeson and McCoy (2022) estimate the 
amount of late Cenozoic tilting presumably 
experienced by the Sierra Nevada on the basis 
of a west-to-east increase in canyon depths 
below Mio-Pliocene volcanic deposits, which 
they interpret to be a result of basement incision 
since the deposition of the volcanic rocks (their 
fig. 11 insets). The assumption underpinning 
this interpretation is that the base of these Mio-
Pliocene deposits represents a late Cenozoic 
pre-uplift bedrock surface. However, Oligocene 
ash-flow tuffs and Eocene–early Oligocene 
fluvial deposits underneath the Mio-Pliocene 
deposits demonstrate that the bedrock paleosur-
face was significantly lower and, therefore, the 
base of the Mio-Pliocene deposits do not provide 
information on basement incision (Fig. 2). The 
presence of these older deposits deeper within 
the canyons can be seen in the authors’ plots 
of incision depths (Fig.  5). The authors sug-
gest that reorganization of the drainage network 
could lead to variations in incision depths (their 
fig. S8); this observation, which has been made 
by others (e.g., Lindgren, 1911), emphasizes 
the importance of making measurements of net 
basement incision from the oldest and deepest 
deposits (Gabet and Miggins, 2020). The authors 
also suggest that faulting could be responsible 
for these older, deeper deposits but do not iden-
tify the affected deposits or the faults that would 
have offset them.

Another technique used in Beeson and 
McCoy (2022) to detect uplift involves analyz-
ing channel profiles as they pass over a band of 
weaker rock sandwiched between stronger rock 
(their fig. 5). This approach, based on a numeri-
cal model detailed in Beeson and McCoy (2020), 
relies on several specific conditions. First, the 
authors assume that, in addition to presumed 
late Cenozoic tilting, the Sierra Nevada has 
experienced uniform uplift (fig. 5 in Beeson and 
McCoy, 2020), which is a novel claim unsup-
ported by evidence. Second, this technique 
assumes that the erodibility of the weaker rock 
is, in every case, an order of magnitude less 
than the stronger rock; however, no evidence is 
presented to support this assumption. Finally, 
some of the reaches analyzed do not conform to 
the condition of a single weak unit sandwiched 
between two stronger units; for example, a reach 
on the Middle Fork Yuba River incorporates gra-
nitic rock (a typically strong lithology) into the 
weak rock (their fig. 11).
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