
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Faculty Research, Scholarly, and Creative Activity

2-28-2023

GeoYCSB: A Benchmark Framework for the Performance and GeoYCSB: A Benchmark Framework for the Performance and

Scalability Evaluation of Geospatial NoSQL Databases Scalability Evaluation of Geospatial NoSQL Databases

Suneuy Kim
San Jose State University, suneuy.kim@sjsu.edu

Yvonne Hoang
San Jose State University

Tsz Ting Yu
San Jose State University

Yuvraj Singh Kanwar
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/faculty_rsca

Recommended Citation Recommended Citation
Suneuy Kim, Yvonne Hoang, Tsz Ting Yu, and Yuvraj Singh Kanwar. "GeoYCSB: A Benchmark Framework
for the Performance and Scalability Evaluation of Geospatial NoSQL Databases" Big Data Research
(2023). https://doi.org/10.1016/j.bdr.2023.100368

This Article is brought to you for free and open access by SJSU ScholarWorks. It has been accepted for inclusion in
Faculty Research, Scholarly, and Creative Activity by an authorized administrator of SJSU ScholarWorks. For more
information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/faculty_rsca
https://scholarworks.sjsu.edu/faculty_rsca?utm_source=scholarworks.sjsu.edu%2Ffaculty_rsca%2F2234&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1016/j.bdr.2023.100368
mailto:scholarworks@sjsu.edu

Big Data Research 31 (2023) 100368

Contents lists available at ScienceDirect

Big Data Research

journal homepage: www.elsevier.com/locate/bdr

GeoYCSB: A Benchmark Framework for the Performance and Scalability

Evaluation of Geospatial NoSQL Databases

Suneuy Kim ∗, Yvonne Hoang, Tsz Ting Yu, Yuvraj Singh Kanwar

Department of Computer Science, San José State University, San Jose, CA 95192, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 June 2020
Received in revised form 4 October 2022
Accepted 3 January 2023
Available online 11 January 2023

Keywords:
Geospatial Big Data
NoSQL
Benchmark
MongoDB
Couchbase
Apache Accumulo

The proliferation of geospatial applications has tremendously increased the variety, velocity, and volume
of spatial data that data stores have to manage. Traditional relational databases reveal limitations in
handling such big geospatial data, mainly due to their rigid schema requirements and limited scalability.
Numerous NoSQL databases have emerged and actively serve as alternative data stores for big spatial
data.
This study presents a framework, called GeoYCSB, developed for benchmarking NoSQL databases with
geospatial workloads. To develop GeoYCSB, we extend YCSB, a de facto benchmark framework for NoSQL
systems, by integrating into its design architecture the new components necessary to support geospatial
workloads. GeoYCSB supports both microbenchmarks and macrobenchmarks and facilitates the use of
real datasets in both. It is extensible to evaluate any NoSQL database, provided they support spatial
queries, using geospatial workloads performed on datasets of any geometric complexity. We use GeoYCSB
to benchmark two leading document stores, MongoDB and Couchbase, and present the experimental
results and analysis. Finally, we demonstrate the extensibility of GeoYCSB by including a new dataset
consisting of complex geometries and using it to benchmark a system with a wide variety of geospatial
queries: Apache Accumulo, a wide-column store, with the GeoMesa framework applied on top.

Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

Geospatial data – data associated with a location on Earth – is
created and captured in large volumes from numerous sources ev-
ery day. “A significant portion of big data is geospatial data, and
the size of such data is growing rapidly at least by 20% every
year” [1]. The rapidly increasing number of location-based ser-
vices and applications are developed to deliver the full benefits
of geospatial data to industry, business, and the general public.
Traditionally, spatial data is housed in relational databases. How-
ever, relational databases encounter challenges when managing big
geospatial data, mainly due to their rigid schema requirements and
limited scalability. Therefore, there has been a constant search for
innovative data management solutions for geospatial data.

NoSQL (Not-Only-SQL) databases came into the picture as al-
ternative data stores that exchange some of the guarantees and
functionality of relational databases for higher performance, es-
pecially when working with big data. NoSQL databases provide
a flexible data model that accommodates big data for the needs

* Corresponding author.
E-mail address: suneuy.kim@sjsu.edu (S. Kim).

of modern applications. NoSQL databases are designed to run on
clusters of commodity computers and are optimized for horizon-
tal scalability, which is an essential system requirement for big
data management. Recently, NoSQL databases for geospatial data
has emerged as an active area of research [2–7], and a consid-
erable number of geospatial applications are now operating with
NoSQL databases in the back-end. Foursquare (MongoDB), Simple-
Geo (Cassandra), PokemonGO (Couchbase), Google Earth (Google
Big Table), and Scrabbly (MongoDB) are just a few example appli-
cations using NoSQL databases to manage spatial data.

Identifying the most performant data store for an application
entails evaluating the performance and scalability of different sys-
tems for the application use cases. Benchmarking is an evaluation
methodology to examine a system with respect to performance
metrics (e.g., throughput and latency), system parameters (e.g., the
number of CPU cores, RAM size, and disk size), and workload pa-
rameters (e.g., query density in the workload mix and distribution
of data access) in a cost-effective manner. A well-tuned benchmark
allows developers to make an unbiased decision on an efficient and
scalable database for a given application in the early phases of its
development. Benchmarks can also be used to discover the perfor-
mance bottlenecks of systems under diverse workloads.

https://doi.org/10.1016/j.bdr.2023.100368
2214-5796/Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.bdr.2023.100368
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bdr.2023.100368&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:suneuy.kim@sjsu.edu
https://doi.org/10.1016/j.bdr.2023.100368
http://creativecommons.org/licenses/by/4.0/

S. Kim, Y. Hoang, T.T. Yu et al. Big Data Research 31 (2023) 100368

In this study, we develop a benchmark framework, GeoYCSB,
for the performance and scalability evaluation of NoSQL databases
for geospatial workloads. We extend YCSB (Yahoo! Cloud Serving
Benchmark) [8] to design GeoYCSB. YCSB is the most prominent
NoSQL database benchmark used by big data enterprises. Develop-
ment of YCSB has promoted active research in the NoSQL bench-
marking field [9–11]. However, YCSB currently does not support
geospatial workloads. To our knowledge, there is no prior work
using YCSB for geospatial workloads. The task of extending YCSB
to support spatial workloads is not just about implementing a
new workload. We develop an architecture over the current im-
plementation of YCSB by integrating new components and then
implement geospatial workloads using them. GeoYCSB supports
both microbenchmarks and macrobenchmarks and facilitates the
use of real datasets in both. A microbenchmark is to test the effi-
ciency of basic spatial operations in isolation. A macrobenchmark
consists of a series of logically related operations that describe an
application’s use case and thus reflect the access pattern typical of
the application.

This paper extends our previous publication [12] which presents
the development of GeoYCSB and its microbenchmarks for geospa-
tial workloads. The specific extension to the former publication
is the development of GeoYCSB macrobenchmarks, which allow
NoSQL databases to be tested for more realistic use cases rele-
vant to the application. This paper now presents GeoYCSB as a
comprehensive benchmark framework that can support both mi-
crobenchmarks and macrobenchmarks. Another extension is our
demonstration of the extensibility of GeoYCSB by including a new
dataset consisting of complex geometries and using it to bench-
mark a system with a wide variety of geospatial queries.

Using GeoYCSB, we conduct benchmark experiments and
present the analysis of their results. The purpose of the pre-
sented experiments is twofold - (1) to demonstrate the capability
of GeoYCSB to evaluate and compare the performance of NoSQL
systems. We evaluate two leading document stores, MongoDB and
Couchbase, and make apples-to-apples comparisons. These docu-
ment stores were chosen for this study because both databases
support geospatial queries, GeoJSON data types, and spatial in-
dexes. Also, both support comparable sharding and replication
strategies, which allows us to conduct comparisons of MongoDB
and Couchbase at equivalent levels. (2) to demonstrate GeoYCS-
B’s extensibility for new datasets, various NoSQL data models,
and complex geospatial operations. We test MongoDB with new
datasets. Then, we choose Accumulo, a wide-column data store, as
a different data store and evaluate it with workloads consisting of
complex geospatial queries. The use of Accumulo is for the extensi-
bility test, and thus, we did not conduct a performance comparison
between Accumulo and another NoSQL system.

Our contributions are the following.

• We develop GeoYCSB, an extensible benchmark framework
that can handle geospatial workloads, by integrating new com-
ponents into the design architecture of YCSB.

• We develop a microbenchmark consisting of geospatial queries
that are parameterized by a real dataset, specifically, the Graf-
fiti Abatement Incidents dataset of the city of Tempe. Mi-
crobenchmarking experiments are conducted to evaluate the
performance and scalability of MongoDB and Couchbase under
geospatial workloads.

• We develop a macrobenchmark based on four common use
cases for graffiti abatement applications. These use cases com-
prise of geospatial queries that are also parameterized by real
datasets, namely, the Graffiti Abatement Incidents, Building
Footprints, and Tempe Public Schools datasets. Macrobench-
marking experiments are conducted to evaluate the perfor-

mance and scalability of MongoDB in the context of the ap-
plications’ use cases.

• We examine the impact of a tunable consistency level on the
performance and scalability of multiple clusters by deploying
both replication and sharding.

• We present and analyze experimental results to identify fac-
tors that affect the performance of geospatial queries and sys-
tems.

• We demonstrate the extensibility of GeoYCSB by including a
new dataset, specifically, a combination of the Japan’s Counties
dataset and the Japan’s Routes dataset, consisting of complex
geometries that we then use to benchmark a system with a
wide variety of geospatial queries: Apache Accumulo, a wide-
column store, with the GeoMesa framework applied on top.

The remainder of this paper is organized as follows. We describe
the main features of MongoDB and Couchbase, focusing on geospa-
tial supports, sharding, and replication in Section 2. GeoYCSB is in-
troduced in Section 3. GeoYCSB microbenchmark and macrobench-
mark are presented in Sections 4 and 5, respectively, along with
the benchmarking experiments and our analysis. In Section 6,
we demonstrate the extensibility of GeoYCSB. Related work is re-
viewed in Section 7. Finally, we present conclusions and future
work in Section 8.

2. NoSQL databases under performance comparison test

This section presents the main features of MongoDB and Couch-
base, focusing on their geospatial supports and distributed data
management using sharding and replication.

2.1. MongoDB

A MongoDB database is a set of collections, each of which
consists of JSON-like documents. A shard key for a collection is
a field or two that MongoDB uses to partition data. A chunk
is a continuous range of shard key values, and documents are
mapped to chunks according to their shard key values. MongoDB
stores a chunk (i.e., documents mapped to the same chunk) in an
available server. A chunk should split if its size grows beyond a
specified threshold. The balancer migrates chunks around, evenly
distributing them among nodes in the cluster. MongoDB ensures
that documents with the same shard key values stay together in
the same chunk to minimize the amount of probing for a given
query. Hashed sharding and range-based sharding are representa-
tive sharding strategies offered by MongoDB. The hashed shard-
ing strategy uses hashed shard key values while the range-based
sharding strategy uses shard key values as they are for the chunk
ranges. The shard key greatly affects the performance and effi-
ciency of sharding. It is hard to change the shard key after sharding
is deployed, and thus, one should carefully choose it. A shard key
must be indexed, and the shard key index performs a crucial role
in improving query performance as the data size grows. MongoDB
config servers store the list of chunks on every shard and the
ranges that define the chunks. A mongos instance, which is usu-
ally per application server, routes application requests to correct
shards by consulting config servers.

MongoDB replication provides redundancy and increases data
availability. MongoDB replicates data in a replica set. A replica set
consists of one primary server and multiple secondary servers that
replicate the primary’s data by replaying the operation log (oplog)
of the primary. The primary can serve both read and write oper-
ations while secondaries only serve read operations. Therefore, if
the primary goes down, the cluster becomes unavailable for writes
until a new primary is elected among the secondaries. Reading
from a replica can introduce data inconsistency if the recent write

2

S. Kim, Y. Hoang, T.T. Yu et al. Big Data Research 31 (2023) 100368

is not copied to the replica for the read operation. By default, read
operations are sent to the primary. An application can specify a
read preference to send read operations to secondaries. An appli-
cation can also specify read and write concerns for read and write
operations, respectively, to set the consistency level of the opera-
tion. The consistency level is tunable so that applications can trade
off consistency for latency.

MongoDB stores geospatial data as GeoJSON objects or legacy
coordinate pairs. A geospatial query uses one of the geospatial
selectors $near/$nearSphere, $geoWithin, or $geoIntersects, along
with a geometry specifier such as $box or $geometry, to specify
target data to manipulate [13]. MongoDB offers 2dsphere and 2d
indexes for geospatial queries. The 2dsphere index is for spher-
ical earth maps and supports both GeoJSON objects and legacy
coordinate pairs. For a 2dsphere index, MongoDB partitions the
earth’s surface and structures them in a B-tree [14]. The 2d in-
dex is for flat maps and supports legacy coordinate pairs. To create
a 2d index, MongoDB evaluates hash values for coordinate pairs
and builds an index on top of these evaluated hashes.

2.2. Couchbase

As a descendant of Membase and Apache CouchDB, Couch-
base is both a key-value store and a document store. The caching
layer of Couchbase follows the Membase distributed key-value data
model. Its persistence layer largely inherits the capabilities from
CouchDB, a JSON document store, for storage, indexing, and query-
ing. A key-value data store treats their values as opaque BLOBs,
supporting fast key-value lookups. Document stores are aware of
the internal structure of documents, which allows indexing and
querying the contents of the documents. Logically related docu-
ments are stored in a bucket that corresponds to a collection in
MongoDB.

Couchbase provides two different ways of querying geospatial
data: Full-Text Search (FTS) [15] and Spatial Views [16]. Couchbase
N1QL (a SQL-like-language of Couchbase) may emulate geospatial
queries. However, it is currently not supported by the geospatial
index and can cause significant query performance degradation, es-
pecially in dealing with complex geospatial queries. Therefore, we
do not address N1QL in this study. Also, in Couchbase Server 6.0,
spatial views are no longer supported. This decision indicates that
geospatial queries and indexes provided by FTS are a more efficient
choice than those of spatial views. Our experimental results sup-
port this presumption. We find that with a workload consisting of
10% within queries, the use of FTS for the within query results in
higher throughput (875 ops/sec) than that of a spatial view (340
ops/sec), with 88% difference.

Couchbase FTS uses Bleve, an open-source search and indexing
library written in Go, for indexing of documents. Bleve supports
various types of queries, including geospatial queries. It stores in-
dexes in a single key-value store table where it handles index
keys and values as byte arrays. A spatial view defines a MapRe-
duce function in JavaScript. A spatial view produces a spatial index
based on the spatial content of JSON documents of the bucket
to which the view belongs. Spatial views store spatial indexes in
R-trees. In both the FTS and spatial view approaches, a spatial
index can be built upon a geospatial field of any GeoJSON type,
including points, multi-points, linestrings, polygons, and geometry
collections.

Couchbase also supports sharding and replication. Each bucket
is logically partitioned into 1,024 vBuckets (virtual buckets). Like
MongoDB chunks, Couchbase evenly distributes vBuckets across
nodes in the cluster. The hashed document ID is used to assign a
document into a vBucket. An application server maintains a cluster
map, which stores the bindings of vBuckets to nodes in the cluster.
vBucket is the unit of sharding and replication in Couchbase.

Data replication in Couchbase is mainly for resilience. When
a node fails, another node carrying its replica helps the recovery
of the failed node. Couchbase supports up to three replicas, mak-
ing up one active data and up to three replicas. An application
reads and writes from active nodes. Each write operation can spec-
ify a consistency level using the optional parameter replicated_to.
Couchbase has to wait for acknowledges from the specified num-
ber of replicas to notify the client that the write is successful.
Replicas cannot serve writes and serve reads when active data is
not available before failover takes place. Couchbase ensures that
active data and its replicas are distributed over different nodes.

3. GeoYCSB

This section describes the design architecture of GeoYCSB, the
representative geospatial queries used to define GeoYCSB bench-
mark workloads, and the primary performance metric used in the
benchmarking experiments.

3.1. Design architecture of GeoYCSB

YCSB is an open-source extensible benchmark framework for
cloud serving systems [8]. It comes with a workload generator,
known as the YCSB client, and a set of core workloads to evaluate
the performance of various database systems running on clusters.
To implement a new workload, one can modify the parameter file
to tune the specific workload and/or write a new workload Java
class. While YCSB has served as a de facto benchmark framework
for NoSQL database systems, it currently does not support geospa-
tial features.

The task of extending YCSB to support spatial workloads is not
just about implementing a new workload. Another layer needs to
be added to the YCSB design architecture to define a base class
representing a geospatial database interface. The client class that
implements binding to a specific spatial NoSQL database can ex-
tend this class to implement the common geospatial operations
in their dialect. Then, a new geospatial workload class, which de-
scribes an experiment scenario with the spatial operations defined
in the base class, is implemented. In this way, GeoYCSB can pre-
serve the extensibility of YCSB while supporting geospatial work-
loads. Also, the geospatial queries that comprise the workloads
should be parameterized with spatial data. YCSB perceives data
as key-value pairs and populates data in the database by gen-
erating random bits for the values. The queries, which comprise
workloads, will read and write a value as opaque flat data with-
out being aware of its internal structure. This pattern of perceiving
data does not work for geospatial queries. To be answered, geospa-
tial queries inherently rely on the content of values. For example,
spatial operations involve fetching points within a specified dis-
tance or fetching geometries intersecting, crossing, or overlapping
another geometry. Without awareness of the value contents, exe-
cuting such operations as well as measuring corresponding execu-
tion times will be meaningless. We adopt the idea of using real
data for benchmark operations from [17] and load real spatial data
to an in-memory data structure to feed geospatial queries with real
spatial parameters.

Fig. 1 depicts the design architecture of GeoYCSB in UML (Uni-
fied Modeling Language). In Fig. 1, GeoDB, GeoDBWrapper, Ge-
oWorkload, ParameterGenerator, DataFilter and SpatialDBClient are
the new components we added to YCSB to make up GeoYCSB. For
brevity purposes, we describe these classes only. The description
of the complete set of GeoYCSB classes can be found in [12].

• The GeoDB class represents a geospatial database interface
layer. It abstracts representative geospatial operations includ-

3

S. Kim, Y. Hoang, T.T. Yu et al. Big Data Research 31 (2023) 100368

Fig. 1. GeoYCSB Design Architecture.

ing nearness, within, and intersection operations, hiding their
implementation details from the YCSB client.

• The GeoDBWrapper class provides a geospatial database inter-
face layer with the capability to measure performance metrics.

• The GeoWorkload class implements one experiment scenario
with geospatial workloads. It is also in charge of setting up
the connection to the in-memory data store and parsing the
workload configuration file for the particular query mix. It also
holds some metadata about the dataset(s) in use, relevant to
the geospatial workloads under test.

• The ParameterGenerator class defines an in-memory data
structure that houses spatial data loaded from the database
and also defines associated accessors. The Graffiti Abatement
Incidents, Building Footprints, and Tempe Public Schools data
of the city of Tempe are loaded to the in-memory data struc-
ture for use as the parameters of geospatial queries. Its other
responsibilities consist of synthesizing additional geospatial
data based on the workload parameters, populating the in-
memory data store with geospatial data from the database,
and preparing parameter values for the workload by fetch-
ing them from the in-memory data store. Any in-memory
key-value data store can be used without disturbing the func-
tionality of GeoYCSB. In this study, we use Memcached.

• The DataFilter class specifies fields and embedded documents
to be loaded into the in-memory store of the ParameterGener-
ator.

• The SpatialDBClient class represents the spatial NoSQL database
binding for GeoYCSB. The class overrides the geospatial opera-
tions defined in the GeoDB class in terms of the dialect of the
given NoSQL database.

3.2. Geospatial benchmark workloads

GeoYCSB benchmark workloads are defined by the representa-
tive geospatial queries such as nearness, within, and intersection.

• The nearness query takes a point in terms of latitude and lon-
gitude and returns documents in the order of their distance
from the specified point. The query sorts the documents from
nearest to farthest with respect to the distance from the spec-
ified point.

• The within query specifies a bounding box and finds docu-
ments for which their spatial data is completely contained in
the bounding box.

• The intersection query takes a location of any GeoJSON type
and returns documents for which their spatial data intersects
with the specified GeoJSON location. Unlike the within query,
this query returns a document for which their spatial data

merely passes through or overlaps the specified GeoJSON lo-
cation.

The GeoYCSB framework preserves the extensibility of YCSB in a
way that a new geospatial workload can be implemented. Also, the
client implementing the binding for any spatial NoSQL database
can be integrated into the framework. To use other datasets, some
modifications are necessary, the majority of which taking place in
the ParameterGenerator class. We detail the particulars of these
extensions in Section 6.

3.3. Performance metric

Throughput is the primary performance metric used in this
study. Specifically, throughput in this study’s context means the
maximum throughput that a system can achieve for the given
workload and system configuration. The arrival rate of requests is
increased until the system is stably saturated for the given work-
load and system configuration, and then the throughput is mea-
sured. The number of GeoYCSB threads and operation count to
saturate a cluster varies depending on each experiment’s system
configuration, such as the number of nodes in the cluster. We cal-
ibrated them for each experiment.

4. GeoYCSB microbenchmark

The GeoYCSB microbenchmark comprises of both data-loading
queries and representative geospatial queries, namely, nearness,
within, and intersection. For an apples-to-apples comparison in
our experiments, the geospatial queries of MongoDB and Couch-
base are written according to the common interface defined in the
base type, the GeoDB class. These queries are also written so that a
MongoDB query and the corresponding Couchbase query with the
same goal return the same result for the same input. This section
presents the dataset and workloads used for the microbenchmark-
ing experiments conducted in this study, followed by the results of
the experiments and our analysis.

4.1. Dataset

Creating read and write operations for benchmarking any
given database system requires understanding the structure of the
dataset. In the microbenchmarking experiments, we use the Graf-
fiti Abatement Incidents dataset of the city of Tempe [18]. The city
of Tempe Public Works department has an active graffiti abatement
program. Hotspot regions are identified by government agents, po-
lice, and lawmakers, enabling town planners to devise policies and
strategies to remove graffiti promptly. The original Graffiti Abate-
ment Incidents dataset has about 13,000 entries. We synthetically

4

S. Kim, Y. Hoang, T.T. Yu et al. Big Data Research 31 (2023) 100368

generate geospatial data according to the schema of this dataset,
increasing its size to about 4GB with 10 million documents.

4.2. Microbenchmark workloads

Three workload mixes, Workloads A, B, and C are used for mi-
crobenchmarking. The type and density of queries can be easily
tuned by modifying the configuration file.

• Workload A consists of 100% specific geospatial read (near-
ness, within, or intersection) operations. This workload serves
to isolate the impact of write operations from the system per-
formance.

• Workload B consists of 80% specific geospatial read (in this
case, nearness only) operations and 20% geospatial write oper-
ations.

• Workload C consists of 30% nearness operations, 25% within
operations, 25% intersection operations, and 20% geospatial
write operations. A more complex ratio for query density is
chosen to simulate a real workload.

In real scenarios of serving applications, the data access dis-
tribution may vary across applications. YCSB comes with several
built-in random distributions, including Uniform, Zipfian, and Lat-
est. GeoYCSB leverages these built-in distributions and fetches pa-
rameters for the geospatial queries from the ParameterGenerator
according to the specified distribution.

4.3. Microbenchmarking experiments and result analysis

4.3.1. Experimental setup
Microbenchmarking experiments are conducted on a single

node system first, and then on multiple-node clusters for horizon-
tal scalability evaluation. We use Couchbase Server Edition 5.1.0
and MongoDB Community Edition version 3.4 in the experiments.
For the single node and cluster setup, we use AWS EC2 m4.large
instances with two vCPU, 8 GB of memory, and 16 GB of storage.
All instances are provisioned within the same AWS rack and data
center.

4.3.2. Performance evaluation of a single node system
The goal of the following experiments is to analyze how effi-

ciently systems support individual geospatial queries for the given
workload and system parameters. We also aim to study any per-
formance impacts caused by a query’s type and density in a mixed
workload setting. We use a uniform data access distribution for all
single node experiments.

Workload A In this experiment, we evaluate the performance of
MongoDB and Couchbase under Workload A. Workload A consists
of 100% specific geospatial read (nearness, within, or intersection)
operations in a way that we can analyze the results without the
impact of write operations.

In Workload A of Couchbase, nearness and within queries use
FTS and are supported by a FTS-based spatial index. It is not
straightforward to use FTS for intersection queries. Therefore, we
used a spatial view for the intersection queries. The results are
presented in Fig. 2.

We observe that the throughput of intersection queries is sub-
stantially lower than that of nearness and within queries in both
MongoDB and Couchbase. We consider this result is due to the
different levels of calculation complexity that the queries in-
volve. Intersection queries require considerably more calculations
than nearness and within queries. The results also show that the
throughput difference between nearness and within queries of
MongoDB is 21.3% while the corresponding throughput difference

Fig. 2. Throughputs of Individual Geospatial Queries from MongoDB and Couchbase
under Workload A.

Fig. 3. Throughputs of Topological Relationship Functions defined by OGC.

in Couchbase is only 8.5%. In Couchbase benchmarking, because
both nearness and within queries are supported by a FTS-based
spatial index, they result in a similar performance. In MongoDB
benchmarking, we use the geometry specifier $box for the $ge-
oWithin operator to make it comparable to the box-based within
query of Couchbase. Since $box is only supported by 2d indexes,
within queries use the 2d index while nearness queries use the
2dsphere index. The use of different types of indexes can fur-
ther contribute to the throughput difference between the near-
ness and within queries of MongoDB. It is interesting to note that
the throughput of the intersection queries of Couchbase is higher
than that of MongoDB. We consider that the R-tree spatial index
of Couchbase, which can accommodate multi-dimensional data,
works better than the B-Tree spatial index of MongoDB for com-
plex geospatial queries such as intersection queries.

Workload A is extended to test topological relationship func-
tions defined by the Open Geospatial Consortium (OGC) [19]. The
results are presented in Fig. 3. This experiment demonstrates that
various geospatial functions can be described in terms of nearness,
within, and intersection queries to make up GeoYCSB workloads.

Workload B In this experiment, we study the impact of geospa-
tial write operations on the throughput of the systems. The insert
operation is chosen as a representative write operation. Workload
B consists of 80% of nearness queries and 20% of geospatial insert
operations. Both reads and writes are counted to calculate through-
put. The results are presented in Fig. 4.

In MongoDB, the throughput measured under Workload B does
not degrade significantly as compared to the throughput measured
under Workload A for all the geospatial queries tested. However,
the throughput degradation under Workload B is notable for near-
ness and within queries in Couchbase. There are a couple of factors
to consider for further performance optimization. With 20% insert

5

S. Kim, Y. Hoang, T.T. Yu et al. Big Data Research 31 (2023) 100368

Fig. 4. Throughput Comparisons between Workloads A and B for Individual Geospatial Operations in MongoDB and Couchbase.

Fig. 5. Throughputs from MongoDB and Couchbase under Workload A with Various Data Access Distributions.

operations, the database size grows as insertions are in progress.
Therefore, the sensitivity of the FTS-based nearness and within
queries to the database size can be examined. Also, the overhead
of the insertion algorithm of Bleve can be further investigated.

4.3.3. Horizontal scalability evaluation of a multi-node cluster
In the following scalability benchmarking experiments, the

number of nodes in the cluster is varied while workload parame-
ters are fixed. The throughput is measured for the given number
of nodes. The ultimate goal of our scalability benchmarking is to
find the impact of sharding and replication on the scalability of
MongoDB and Couchbase running on a cluster of multiple nodes.

We set the replication factor to 3 for both systems so that
for every primary copy (or active copy) within the cluster, there
exists two replicas of the same data. The replication is config-
ured in a way that the primary nodes of MongoDB and the active
nodes of Couchbase serve both reads and writes. A consistency
level specifies how many replicas should acknowledge for the sys-
tem to consider the given operation successful. Therefore, with a
higher consistency level, the system has to wait longer to com-
plete a given operation. The client may consider the system is not
available for the operation if the waiting time exceeds a specified
threshold. We study the impact of the consistency level on the
throughput by comparing throughputs measured with a low con-
sistency level to those with a high consistency level.

MongoDB currently does not support a geospatial shard key.
We follow the recommendation from the MongoDB documenta-
tion [13] and choose a non-spatial field as a shard key, namely,
the ObjectID. Due to the monotonically increasing feature of Ob-
jectIDs, the hash-based sharding strategy is adopted to eliminate
the maximum chuck problem (that is, all new inserts are routed to
one chunk) and thus evenly distribute data across nodes. Couch-
base uses the hash value of document ID, which is a synonym for
ObjectID, to assign documents to vBuckets. This configuration of
sharding and replication of MongoDB and Couchbase are compara-
ble.

We also test the impact of data access patterns, namely, Uni-
form, Zipfian, and Latest, on the scalability and performance of
these systems.

Workload A With 100% read (nearness) operations, the results in
Fig. 5 show that the throughput increases as more nodes are
added. With well-tuned sharding, requests are evenly distributed
across multiple nodes, and thus, the system horizontally scales. An
interesting phenomenon observed from the results is that there
are diminishing returns to scale in MongoDB. Adding three more
nodes to make a six node cluster increases throughput by 56%
while adding another three nodes to make a nine node cluster
increases the throughput by only 13%. From a nine to 12 and
12 to 15 node cluster, we can observe a similar trend of a ma-
jor throughput increase followed by the diminishing return of a
minor throughput increase. Couchbase scales almost linearly with
the number of nodes. The results also show that the impact of
data access distribution on performance and scalability is not sig-
nificant. This indicates that a system can be robust in handling
different data access patterns from various applications if sharding
and replication are properly deployed.

Workload B The goal of this experiment is to examine the impact
of the consistency level on throughput. An application can tune
the level of consistency to increase the consistency of data at the
cost of higher latency for individual operations accessing replicated
data. For both MongoDB and Couchbase, the read consistency level
is set to default which makes a read considered successful as soon
as it gets data from a primary (or an active) node.

In this experiment, we focus on the impact of the write con-
sistency level of MongoDB and Couchbase on the throughput. For
MongoDB, w:1 and w:all are chosen to represent a low consistency
level and a high consistency level, respectively. A write opera-
tion with w:1 is successful when the primary node responsible
for the write acknowledges. With w:all, a write is successful when
both the primary and all involved replicas, that is, 2 replicas, ac-

6

S. Kim, Y. Hoang, T.T. Yu et al. Big Data Research 31 (2023) 100368

Fig. 6. Throughputs from MongoDB and Couchbase under Workload B.

Fig. 7. Horizontal Scalability Comparison between MongoDB and Couchbase under
Workload C.

knowledge it. The Couchbase write consistency level corresponding
to w:1 is replicated_to: NONE, which makes a write operation
successful when the active node responsible for it acknowledges
without replicating the write to any replica. Replicated_to:2 corre-
sponds to w:all, which makes a write operation successful when
the write is done in the active node as well as its 2 replicas.
By default, journaling is disabled in MongoDB, and the persist_to
parameter is set to NONE in Couchbase. In this way, a write is ac-
knowledged when the data is written in memory for both systems.

The results of these experiments are presented in Fig. 6. In
both MongoDB and Couchbase, a higher consistency level lowers
the throughput. In MongoDB, the percentage difference between
the throughput with a low consistency level and the throughput
with a high consistency level lies in the range between 6.5% and
8.3%. In Couchbase, the corresponding percentage difference lies
between 11% to 15%. This experiment was conducted on a clus-
ter of healthy nodes. In practice, if a replica is down, an operation
with a high consistency level may result in an intolerably long la-
tency, and the client may perceive that the system is not available
for the operation. Our results confirm that the consistency level is
an important factor that affects the query performance when data
are replicated.

Workload C The goal of this experiment is to study the scalability
of MongoDB and Couchbase under a workload with a more com-
plex ratio for query density. Specifically, the workload consists of
30% nearness operations, 25% within operations, 25% intersection
operations, and 20% spatial write operations. It is desirable to find
out real workload mixes from applications using the actual query
logs of a system. However, generally, query logs are not available
for benchmarking due to many reasons, including privacy concerns.
One of the essential features of any benchmark framework is its
ability to easily tune the workload mix to simulate various real
workloads. The results of this experiment are presented in Fig. 7.
MongoDB and Couchbase scale well under Workload C, with the
differences in performance between the two reaching as high as

37%. When these systems scale to a cluster size of 18 nodes, the
performance difference between MongoDB and Couchbase shrinks
to as low as 6%.

5. GeoYCSB macrobenchmark

The GeoYCSB macrobenchmark comprises of four common use
cases for graffiti abatement applications. This section presents the
datasets and workloads used for the macrobenchmarking experi-
ments, followed by the results of the experiments and our analy-
sis. We chose MongoDB for the macrobenchmarking experiments
considering its spatial support and scalability tested in the mi-
crobenchmarking experiments and its popularity [20].

5.1. Dataset

We use two additional datasets with the Graffiti Abatement In-
cidents dataset in the macrobenchmarking experiments: Building
Footprints [21] and Tempe Public Schools. For the Tempe Pub-
lic Schools dataset, we went to each public school district page
from the Tempe School website [22], found their list of schools
and compiled them all into one list as long as they are within the
boundaries of the city of Tempe. These two datasets provide more
context and purpose to our geospatial queries. For example, find-
ing graffiti around a school is meaningful and more realistic than
searching for graffiti around a randomly selected point that may
translate to an inaccessible location, such as an airport runway.
The random location may have a low priority for cleaning, such
as an abandoned bridge that sees little foot traffic. The building
dataset contains a record of every building in the city of Tempe
for a total of 55,000 original documents, while the public school
dataset contains 34 public schools from 3 different school districts.
These datasets are expanded with the graffiti dataset to layer with
the synthesized data points. In addition to datasets, we also layer
a grid of neighborhoods, defined as a 1-mile square block, across
the entire range to demarcate meaningful units in which graffiti
can cluster.

For macrobenchmarking experiments, we adopted a synthesis
method that would maintain the distribution of data and geospa-
tial meaningfulness between the datasets.

The method is to replicate the original dataset along the for-
mation of a grid: each cell in the grid is the size of a minimum
bounding box surrounding the city of Tempe, Phoenix. The first
cell is located at the upper left corner of the grid and contains
documents of the original dataset. Then, these documents are du-
plicated and their coordinates shifted into the next cell over, with
little to no overlap between the cells. The ultimate result is a large
dataset of a synthetic city with no two documents possessing the
same geometrical coordinates while still maintaining the original

7

S. Kim, Y. Hoang, T.T. Yu et al. Big Data Research 31 (2023) 100368

distribution of the dataset. We replicate the original Graffiti Abate-
ment Incidents dataset over a 9x9 grid for a total of roughly 1
million documents. The Building Footprints dataset and the Tempe
Public Schools dataset are synthesized in the same manner. The re-
sultant building and school collections contain roughly 4.5 million
and 3000 documents, respectively. The total size of the synthesized
data is about 4GB. These three datasets may be layered like maps
to perform queries with meaningful and realistic uses, as we dis-
cuss in the next section.

5.2. Macrobenchmark workloads

We develop four common use cases for graffiti abatement appli-
cations to simulate realistic workloads. Three pertain to geospatial
queries, including common GIS operations, while the fourth is a
write-intensive use case.

Use Case 1: This use case is to perform a series of point-of-
interest searches using nearness operations. The graffiti abatement
team using the application may wish to find the school with the
most graffiti, the point-of-interests, in a 500-meter distance to
clean. All schools are checked in random order and the graffiti be-
longing to the school with the highest amount are returned.

Use Case 2: This use case is to perform basic data analysis using
a spatial join performed by within operations. Instead of searching
by school, the graffiti abatement team may want to find the neigh-
borhood, defined as a 1-square-mile block, with the highest graffiti
density. Neighborhoods are spatial joined with the incident collec-
tion and the graffiti counts of the neighborhoods are recorded. The
graffiti belonging to the neighborhood with the highest amount is
returned.

Use Case 3: This use case involves two spatial join operations
performed by intersection operations. Spatial joins are done be-
tween the layer of neighborhoods and the building collection as
well as the layer of neighborhoods and the graffiti collection. The
graffiti abatement team may initiate this use case to find graffiti
within the neighborhoods with the highest building density. For
each neighborhood, an intersect operation is performed to find all
buildings within the neighborhood, and the coverage of buildings
in the neighborhood is tallied. Then, the top five densest neighbor-
hoods are spatially joined with the incident collection, and their
graffiti are retrieved.

Use Case 4: This use case involves a write operation that re-
moves graffiti found from Use Case 1.

Each use case scenario is implemented in the MongoDB query
language and used to constitute macrobenchmark workloads.

5.3. Macrobenchmarking experiments and result analysis

5.3.1. Experimental setup
We experienced that the macrobenchmarking experiments en-

tail more system resources than the microbenchmarking exper-
iments. There is significant performance degradation when the
working set exceeds both the WiredTiger cache and the file sys-
tem cache. Queries from macrobenchmark workloads need a larger
working set than those from microbenchmark workloads. For in-
stance, if a query involves both the graffiti collection and the build-
ing collection, which are sharded and also maintain a 2dsphere
index, its working set size will likely increase. Therefore, we scale
the AWS EC2 instances to m4.xlarge with four vCPUs, 16GB of
memory, and 16GB of storage to keep the working set size within
memory and avoid evictions.

In macrobenchmarking experiments, we define throughput as
the number of completed use case executions per second. Also,
the specifier $geometry is used for the $geoWithin operator to de-
scribe the boundary of searches in terms of a GeoJSON Polygon.

(In microbenchmarking experiments, the specifier $box is used for
$geoWithin for comparability with Couchbase.)

5.3.2. Impact of data size on throughput in a single node system
In this experiment, we study the impact of data size on the

performance of a single node system. As we have synthesized data
according to a grid formation, the data size is represented in terms
of the expansion of that grid—a polynomial increase of n2 or nxn
in size, where n is the number of rows in the grid. For example,
1x1 would refer to the original dataset of 13,000 graffiti incident
documents, while 2x2 would refer to that amount multiplied by
four. As the data size increases, a given use case requires more
queries to achieve its goal. For example, with the data size 1x1, Use
Case 1 is required to search through 34 schools, and this number
increases to 136 with the data size 2x2.

The results are presented in Fig. 8. Noticeably, there is a large
throughput gap under the data size 1x1, where Use Case 3 signif-
icantly underperforms compared to Use Cases 1 and 2. The per-
formance difference is due to the disparity between the number
of geospatial operations involved in each use case and the perfor-
mance of the operations themselves. Use Case 1 is comprised of
nearness queries that probe schools. Use Case 2 and Use Case 3
mainly involve within and intersection queries, respectively, and
probe neighborhoods, of which there are twice as many when
compared to the number of schools. Nearness also outperforms
both within and intersection, as seen in the results of the mi-
crobenchmarking experiment under Workload A. In addition, Use
Case 3 has two parts: first, to find the number of buildings inside
each neighborhood along with their areas, and second, to sum and
sort the results of the first step before performing additional in-
tersection operations on the densest neighborhoods, retrieving the
overlapping graffiti as the final result. At low data sizes, where the
number of queries involved in the first step is small, this additional
work is significant.

As the data size and, consequently, the number of queries sent
to the system grows, the single node system saturates, resulting
in extremely low throughputs regardless of the type of use cases.
With the system fixed at a single node, this increase stresses the
system, and therefore, the queries comprising the use cases experi-
ence longer latency. This is reflected in the latency graph in Fig. 8.
Continuing to increase the data size further — and thus, the num-
ber of queries to serve — on a saturated single node system will
only result in higher latency while the throughput is unable to im-
prove.

In the following section, we present the scalability of the Mon-
goDB sharded cluster in supporting these use cases running over
the largest data size 9x9 under our consideration.

5.3.3. Horizontal scalability evaluation in a cluster of multiple nodes
In this experiment, we study the horizontal scalability of the

system against Use Cases 1, 2, and 3. The most demanding data
size 9x9 under our consideration is chosen.

To focus on examining the impact of sharding on the system’s
scalability, we do not replicate the shards. Replicating shards not
only requires additional storage space but also uses system re-
sources to maintain secondary servers, and thus the throughput
can be affected. Since MongoDB enforces that each shard is im-
plemented as a replica set, we use a replica set of one member,
which will serve as the primary shard, and direct all queries to
the primary shard. We keep mongos and the config server on
two separate machines to separate the use of resources consumed
by the mongod processes and mongos maintaining connections
to all servers. A bottleneck of mongos resources would affect the
throughput of the entire system.

The results presented in Fig. 9 show that sharding horizontally
scales the system, and thus the throughputs of all use cases in-

8

S. Kim, Y. Hoang, T.T. Yu et al. Big Data Research 31 (2023) 100368

Fig. 8. Impact of Data Size on Throughput (use case executions/sec) and Latency.

Fig. 9. Horizontal Scalability Evaluation with Various Use Cases.

crease as more nodes are added to the cluster. The throughput
of Use Case 1 significantly improves, but the throughput improve-
ment of Use Cases 2 and 3 is minor. Also, for any given number of
nodes, it is observed that the throughput of Use Case 1 is higher
than those of Use Cases 2 and 3 while the throughputs of Use
Cases 2 and 3 are more closely aligned.

Use Case 1’s throughput difference can be contributed to its
nearness operations. Due to using points in the query parameter,
the computation involved with nearness operations is significantly
less than within and intersection, which use polygons. Polygons
require a substantially higher amount of computation. We can thus
see that Use Case 1 comprising of nearness operations performs
and scales better than Use Cases 2 or 3.

The alignment of Use Cases 2 and 3 can be explained similarly.
In our macrobenchmarking experiments, within and intersection
operations function similarly because both of them use a polygon
for the $geometry specifier and a 2dsphere index. That explains the
similar behaviors of Use Cases 2 and 3 which rely on within and
intersection operations, respectively. However, Use Case 3 performs
some additional queries to retrieve the target graffiti. Therefore,
the throughput of Use Case 3 is still lower than that of Use Case 2.

As shown in Fig. 9, with well-tuned sharding, the latency re-
mains stable while the throughput increases as more nodes are
added to the system.

5.3.4. Impact of write consistency level on the performance of
write-intensive use cases

This experiment is to examine the impact of write consistency
level on the performance of write-intensive use cases running over
replicated data. The graffiti collection is sharded into the given
number of nodes and each shard is replicated in a replica set of
three members. We set up this experiment in a way that pri-
mary shards are held on their own AWS instance while the two
secondary shards share an AWS instance. The write concern w:1

is used to represent weak write consistency level while w:all is
used for strong write consistency level. Then, we measure the
runtime in milliseconds of write operations involved in Use Case
4—specifically, deleting roughly 400 graffiti documents found by
a single Use Case 1. (Use Case 1 finds the school with the most
surrounding graffiti and returns the corresponding graffiti.) The
runtime includes the time to delete the found graffiti, excluding
the time to find it. For the given number of nodes, after each run
of Use Case 4, the database is reloaded with the removed data so
the next run can delete the same documents.

As can be seen in Fig. 10, when the write concern is set to w:all,
the runtime is increased by roughly 20% as compared to the case
of write concern w:1. This is in line with expectations, as the write
operation must be replicated to the number of nodes specified by
the write concern for the operation to be acknowledged.

Another factor we are interested to examine is the impact of
sharding overhead on the performance of write queries. As the
number of shards increases, the overhead involved in maintaining
connections among the shards also increases. We fix the arrival
rate of write operations and only increase the number of shards
in each run. The result shows that runtimes do not change signif-
icantly as the number of shards increase, indicating the impact of
sharding overhead on query performance is not substantial.

6. The extensibility of GeoYCSB

A benchmark framework should be extensible to create new
workloads and add support for new systems. In this section, we
demonstrate the extensibility of GeoYCSB.

We first present MongoDB benchmarking experiments using a
combination of two datasets with a wider spatial extent and many
complex geometries such as polygons and linestrings. The origi-
nal datasets cover Japan’s entirety in JSON documents with a total
size of about 1GB. We synthesize the combined datasets to make

9

S. Kim, Y. Hoang, T.T. Yu et al. Big Data Research 31 (2023) 100368

Fig. 10. Impact of Write Consistency Level on the Performance of Write-Intensive Use Cases.

it 40GB and conduct a horizontal scalability test by increasing the
number of nodes in the cluster up to 18. We detail the component
of GeoYCSB, ParameterGenerator, responsible for accommodating
the various geospatial geometries of a new dataset. One of the fu-
ture works of the GeoYCSB project is to automate the end-to-end
benchmarking process for reliable and reproducible benchmarking.
We present the cornerstone of this plan in the horizontal scalabil-
ity test by automating cloud resource allocation and DBMS deploy-
ment.

Next, we present another set of experiments to demonstrate the
extensibility of GeoYCSB for benchmarking NoSQL systems that use
different data models. We chose Accumulo, a wide-column store,
with GeoMesa, an open-source framework, applied on top. Ge-
oMesa enables a wide range of geospatial queries on distributed
computing systems as well as geospatial indexing. Therefore, we
can benchmark Accumulo under workloads consisting of a broader
range of geospatial operations than what is supported by Mon-
goDB. Specifically, the workloads consist of nine spatial predicate
functions derived from the DE-9IM (Dimensionally Extended Nine-
Intersection Model) [23].

6.1. Dataset

We use a combination of two open-source datasets in GeoJSON
format provided by the Japanese Ministry of Land, Infrastructure,
Transport, and Tourism (MLIT) [24,25]: one containing all coun-
ties and another containing all bus routes in Japan. The counties
dataset comes native in JSON format, but the bus routes dataset is
converted from shapefile to JSON using QGIS, an open-source soft-
ware that provides visualization of spatial data and data editing
[26]. The counties dataset consists of around 100,000 polygons and
the bus routes dataset consists of around 26,000 linestrings, total-
ing roughly over 1 GB. Using the same synthesis method covered
in the macrobenchmark section, we synthesize this dataset twice:
once to form a 2x2 grid, approximately 4GB in size with roughly
475,000 polygons and 100,000 linestrings, and again to form a 7x7
grid approximately 40GB in size with roughly 5,800,000 polygons
and 1,300,000 linestrings.

6.2. GeoYCSB components responsible for supporting a new dataset and
a new database system

Several GeoYCSB components are involved in supporting a new
dataset and a new database. The ParameterGenerator class holds
the most responsibility when adding a new dataset to GeoYCSB. It
possesses the following important roles: to synthesize new docu-
ments as needed based on the workload’s parameters, to populate
the in-memory data store (e.g., Memcached), and to fetch parame-
ters from the in-memory data store for the queries that constitute

the workload. Note that for large datasets, such as in our follow-
ing experiments, it may be unrealistic to store the entirety of a
table in the in-memory data store, as the data store occupies a
portion of RAM on the same machine as GeoYCSB. In this case,
the ParameterGenerator class populates the in-memory data store
with document geometries at a random 5% rate to ensure the
even distribution of potential parameters while still maintaining a
large pool to pull from, without reserving too much memory from
GeoYCSB. Some modifications are necessary to add support for a
new dataset. The ParameterGenerator class must be modified to
ensure its synthesis logic properly accounts for the new dataset’s
geometry types. In addition, the GeoWorkload class’ metadata for
the given dataset must be updated, such as the new tables, their
document counts, and the new longitude and latitude values of the
dataset’s bounding box.

To add support for a new database system, the Parameter-
Generator and GeoWorkload classes need to be modified. Also, a
SpatialDBClient that implements the binding of the new database
needs to be added. The ParameterGenerator is updated to fetch
all required geometries according to the needs of the database’s
queries. Additionally, if the new database system expects data in
a non-JSON format, the ParameterGenerator needs to convert JSON
to the expected data type. For example, the ParameterGenerator
class converts JSON to WKT in the case of GeoMesa so that the
parameters are prepared in WKT before they are fetched for pa-
rameterization. The GeoWorkload class receives minor additions to
add support for any new operation required by the workload.

6.3. Scalability benchmarking experiment using a large dataset with
complex geometries

6.3.1. Workloads
In order to observe scaling with a large dataset consisting of

complex geometries, we perform 100% intersection operations be-
tween polygons from the counties dataset and linestrings from the
bus routes dataset. The intersection operation is chosen as the
most expensive geospatial query of MongoDB to form the work-
load. The type and density of queries can be tuned as shown in
the microbenchmarking experiments. This workload is run on both
the 4GB dataset and the 40GB dataset for single node, 6-node,
12-node, and 18-node sharded clusters where the throughput is
captured at the point the system saturates. We make a cold-run of
each experiment three times, and the throughputs are averaged for
the final result.

6.3.2. Experimental setup
We deploy GeoYCSB on an AWS EC2 m5a.4xlarge instance with

16 vCPUs, 64GB RAM, and 32GB storage. Mongos, config servers,
and shards are each deployed on a m5a.xlarge instance with 4
vCPUs, 16GB RAM, and 64GB storage. All machines are running

10

S. Kim, Y. Hoang, T.T. Yu et al. Big Data Research 31 (2023) 100368

Fig. 11. Impact of Data Size on Horizontal Scalability.

Ubuntu 18.04 and MongoDB Community Edition version 4.4. We
deploy the mongos process on its own instance to ensure through-
put is not throttled by sharing memory with other mongod pro-
cesses, and the config server is also isolated on its own instance
for the same reason. As sharding is the key contributor to the hori-
zontal scalability of distributed NoSQL systems, we deploy sharding
without replicating data, and thus the shards as well as the config
server are implemented in a replica set of size 1. We use Ansible
[27] to assist in automating the configuration of AWS EC2 instances
as well as quickly restarting our instances for cold-run benchmark-
ing. The entire MongoDB configuration in the scalability test is set
up, started up, and shut down through Ansible, allowing the main
focus to be running GeoYCSB.

6.3.3. Results and analysis
The experimental results are presented in Fig. 11. As we in-

crease the number of nodes, both throughputs from the 4GB
dataset and the 40GB dataset experiments increase. However, the
impact of sharding on the horizontal scalability is stronger with
the 40GB dataset than the 4GB dataset, as 4GB is not big enough
to take proper advantage of sharding at larger cluster sizes. This
is most evident in the 18-node experiment, where the through-
put increment from a 12-node to an 18-node cluster with the 4GB
dataset is not as steep as that with the 40GB dataset. The dif-
ference in their performance gains is as high as 30%. When the
bottleneck for performance is the amount of available system re-
sources, the system effectively scales as we add more nodes to the
cluster. However, depending on the size of the dataset, there is a
point at which adding nodes to the sharded cluster will result in
diminishing returns, as the amount of resources becomes sufficient
to serve the dataset. Eventually, continuing to add shards to this
cluster will not result in any significant performance gains. These
points are reached faster by smaller datasets than larger datasets,
due to larger datasets naturally requiring more resources, such as
memory and storage, to index and query efficiently. Larger datasets
therefore have a higher potential for performance growth using
horizontal scaling.

6.4. Benchmarking GeoMesa on top of Accumulo, a wide-column
database, with a wide range of geospatial queries

The purpose of these experiments is to demonstrate the ex-
tensibility of GeoYCSB for new systems using different NoSQL
data models with a wide range of geospatial queries. We chose
GeoMesa running on top of Apache Accumulo, a wide-column
database, for this purpose.

6.4.1. GeoMesa and Accumulo
GeoMesa is an open-source framework that makes geospatial

indexing and querying possible on wide-column databases, such
as Google Big Table, Apache Cassandra, and Apache Accumulo [28].

Fig. 12 presents the main components of the GeoMesa and Accu-
mulo architecture under test.

We use GeoMesa with Apache Spark (a.k.a. the GeoMesa-Spark
module) to test a wider range of geospatial queries, specifically
nine geospatial operations from the DE-9IM, than GeoMesa alone
can support. Spark’s parallel computation enables GeoMesa to sup-
port more complex geospatial operations. Zookeeper is responsible
for coordinating Accumulo processes and maintains the metadata
to route client requests to the Accumulo tablet servers. An effective
geospatial index is crucial to improve the performance of geospa-
tial queries. By default, GeoMesa creates a Z2 index and a record
table for points as well as a XZ2 index and a record table for spa-
tially extended objects, defined as non-point objects, such as poly-
gons and linestrings [29]. The datasets we use in this experiment
contain extended geometries only. For each dataset, GeoMesa cre-
ates the XZ2 index using the XZ-ordering space-filling curve along
with an Accumulo table of key-value pairs where the row key con-
sists of the XZ2 value followed by the UUID of the record. The
XZ-ordering is a technique to approximate geometries with spatial
extensions into single integer representations while preserving the
locality between the geometries. We disabled the creation of an ID
index because it will not be used under our workloads.

The GeoMesa-Spark module processes a query through two
steps. First, GeoMesa-Spark will connect to Zookeeper to find out
the tablet server addresses of the table it is looking for. After ob-
taining the addresses, GeoMesa-Spark will access the tablet servers
and submit read requests to obtain a superset of data. When data
is returned to GeoMesa-Spark, GeoMesa-Spark will perform a sec-
ond round of filtering to find out actual matching records and
report back to the client, GeoYCSB.

6.4.2. Workloads
We create nine workloads, each consisting of 100% of a geospa-

tial predicate function from the DE-9IM: equals, disjoint, intersects,
touches, within, contains, crosses, covers, and overlaps. We fetch a
parameter from the routes dataset for the first four operations and
a parameter from the counties dataset for the following four oper-
ations, all of which are applied to the routes dataset. The overlaps
operations are applied to the counties dataset, but we parameter-
ize them with synthesized polygons. According to the DE-9IM, the
overlaps operation takes two geometries with the same dimension,
and their interiors must intersect to be considered overlapping.
Since none of the counties’ interiors overlap with one another, we
use a synthesized polygon for the overlaps operation’s parameter.
The parameters fetched from the counties dataset and the routes
dataset are polygons and linestrings, respectively.

6.4.3. Experimental setup
We deploy our client machine and Spark 2.4.7 on an AWS EC2

m5a.4xlarge instance with 16 vCPUs, 64GB RAM, and 32GB stor-
age. GeoMesa 3.0.0 is applied on top of Accumulo 2.0.1. For a

11

S. Kim, Y. Hoang, T.T. Yu et al. Big Data Research 31 (2023) 100368

Fig. 12. GeoMesa Accumulo Architecture.

single node experiment, an Accumulo master, tablet server, and
Zookeeper are deployed across two m5a.xlarge instances with 4
vCPUs, 16GB RAM, and 64GB storage. We isolate the tablet server
from the Accumulo master and Zookeeper. For a multi-node ex-
periment, we add two additional tablet servers on two m5a.xlarge
instances with 4 vCPUs, 16GB RAM, and 64GB storage. Each tablet
server is installed with Hadoop 3.2.2 as the internal file storage
system. All machines are running Ubuntu 18.04.

6.4.4. Results and analysis
We measure the throughput of the system with 4GB and 40GB

of data under each workload. We also scale the system from a sin-
gle node to a three-node cluster to see the impact of sharding on
the query performance. The experimental results are presented in
Figs. 13 and 14, respectively.

The within and contains operations are logically equivalent ac-
cording to the DE-9IM standard, with inverted parameters. The
results consistently show that the within and contains operations
perform similarly. For the overlaps operation, the use of a synthe-
sized simple polygon as the parameter decreases the complexity
of the operation’s computations, explaining its comparatively high
throughput.

The intersects operation is the inverse of disjoint. We confirm
this in a separate experiment by finding that the query results
returned by the disjoint operation and the negated intersects oper-
ation are the same. The reason for disjoint performing better than
intersects is likely implementation-specific, depending on how Ge-
oMesa optimizes the computation of these operations. To our best
knowledge, there is no public documentation available to investi-
gate this internal matter of GeoMesa.

The throughput of equals, touches, and covers is measured very
low across all experiments. According to the DE-9IM, all three of
these operations have stricter definitions than the rest of the op-
erations, possibly indicating a heavier computational requirement.
The results consistently show the throughput of these operations
is significantly lower than that of the rest. We found that these
operations’ query performance is correlated to the low seek values
monitored by the Accumulo Monitoring System. However, no doc-
umentation is available that defines the meaning of the seek value
in the monitoring system’s context. Thus, we could not derive any
conclusion from the correlation. In separate experiments, we in-
crease the number of spark servers from 1 (by default) to 2 to test
the impact of parallel processing done by multiple spark servers
on the query performance, but their query performance is not im-
proved. However, when we double the number of shards from 3
to 6, keeping one spark server per node to decouple the gains of
the spark servers’ parallel processing from the query performance,
the query performance is improved by about 30-40%. We presume
that the cause of low query performance is the combination of the
complexity of these operations and the lack of index efficiency.

The results show that increasing nodes improves the system
performance for both the 4GB dataset and the 40GB dataset, as ex-
pected. Something to note is for the three-node 4GB experiment,
the intersects operation, which performed better than within and
contains for a single node, is worse than its three-node counter-
parts. This result is not reflected in the 40GB dataset experiment.

7. Related work

YCSB (Yahoo Cloud Service Benchmark) is an extensible open-
source benchmarking framework aimed at cloud systems, mainly
including NoSQL databases. Cooper et al. proposed YCSB in [8]
and presented the performance comparison of Cassandra, HBase,
PNUTS, and MySQL using YCSB. YCSB promoted active research for
benchmarking distributed databases. Using YCSB, Rabl et al. evalu-
ated representative key-value stores, wide-column stores, and dis-
tributed MySQL for the use cases of application management mon-
itoring tools [9]. Khuhlenkamp et al. evaluated the scalability and
elasticity of Cassandra and HBase [10]. The authors first reproduce
the benchmarking results from [9] and then extend the experi-
ment scope by including vertical scaling experiments and elasticity
benchmarking. Neither of these two studies considers the impact
of sharding and replication together on system performance. Using
YCSB, Haughian et al. studied the impact of replication, consis-
tency levels, and data access distributions on the performance of
sharded Cassandra and MongoDB [11]. While YCSB is a prominent
benchmarking tool for NoSQL systems, it currently does not sup-
port geospatial workloads. GeoYCSB is developed based on YCSB,
inheriting its extensibility while enhancing it with new compo-
nents that allow geospatial workloads to be supported. To our
knowledge, there is no prior work on benchmarking replicated and
sharded NoSQL databases using YCSB for geospatial workloads.

As spatial data and the popularity of location-based ser-
vices surge, geospatial workloads become increasingly important.
The characteristics of geospatial workloads differ from traditional
database workloads, as represented by TPC benchmarks. Simion
et al. stated the key differences are the computational complex-
ity involved in spatial queries’ evaluation of relationships between
spatial objects and the unstructured nature of spatial data, which
hinders storage optimization [30]. They developed a framework
that can categorize spatial queries in terms of resource consump-
tion, such as CPU intensity and I/O intensity, and can also char-
acterize spatial workloads by varying the buffer size and query
density in the workload mix.

Since the spatial queries that constitute geospatial workloads
query the spatial relations of spatial entities [31], characterizing
them naturally starts with the characterization of spatial relations.
DE-9IM (Dimensionally Extended 9-Intersection Model) has been
used by the Open Geospatial Consortium (OGC) for the defini-
tion of topological relationships in spatial databases. DE-9IM has

12

S. Kim, Y. Hoang, T.T. Yu et al. Big Data Research 31 (2023) 100368

Fig. 13. GeoMesa Accumulo Throughput with 4GB data.

Fig. 14. GeoMesa Accumulo Throughput with 40GB data.

been widely adopted by various database systems (e.g., Oracle, IBM
DB2, PostgreSQL) to define the topological operators of their spa-
tial query language [32]. With GeoYCSB, one can evaluate a wide
range of such spatial operations, as demonstrated by the use of
workloads consisting of nine operations from DE-9IM in our exten-
sibility test. Spatial joins are one of the most resource-demanding
spatial queries, and thus a plethora of research has been done in
the area of optimizing spatial joins [30]. GeoYCSB’s macrobench-
marks involve intensive use of spatial joins and can be used to
effectively evaluate spatial databases’ performance for spatial joins.

Spatial NoSQL databases emerged with the essential features
needed in geospatial scenarios, namely, flexible schema, cloud scal-
ability, and geospatial data storage, management, and queries. Guo
et al. surveyed the top 10 popular NoSQL systems’ geospatial fea-
tures in terms of supported geometry objects, geometry functions,
spatial indexes, and data format [33].

A considerable amount of research has also been conducted
in evaluating spatial data stores and big data processing infras-
tructures for efficient geospatial data management and processing.
Ray et al. developed Jackpine [34], a spatial database benchmark
that can support any database with a JDBC driver implementation.
Jackpine comes with a microbenchmark to evaluate basic topo-
logical relationships and spatial analysis functions individually as
well as a macrobenchmark that describes common use cases of
geospatial applications. These benchmarks are used to evaluate
PostgreSQL, MySQL, and Informix. Geographica [35] is a represen-
tative benchmark developed for geospatial RDF stores supporting
the OGC GeoSPARL, an extension to the SPARQL query language for
processing geospatial RDF data. It is developed following the ap-
proach of Jackpine benchmark [34]. Geographica comes with micro
and macrobenchmarks composed of both synthetic and real-world
workloads. Baralis et al. presented a performance evaluation of
Azure SQL database and Azure Document DB for two common use
cases of geospatial applications, retrieving location within a bound-
ing box and writing geolocalized reports [2]. They studied the im-
pact of the number of concurrent users, the number of records,
and the performance level (configuration cost) on the average re-

sponse time of queries. Their experiments were performed using
a synthetically generated dataset. Duan et al. compared the effi-
ciency of retrievals of a specified number of location points within
a fixed bounding box for ArsGIS and MongoDB [3]. Alam et al. in-
troduced SpatialIgnite, an extended Apache Ignite data system with
geospatial operations, and conducted benchmarking experiments
to compare the performance of SpatialHadoop (a Hadoop-based
spatial data system), GeoSpark (a Spark-based spatial data system),
and SpatialIgnite [36] using microbenchmarks similar to that of
[34], with some extension.

8. Conclusions and future work

In this paper, GeoYCSB, a benchmark framework for geospa-
tial NoSQL databases, was presented. GeoYCSB supports both mi-
crobenchmarks and macrobenchmarks.

Microbenchmarking experiments were conducted to evaluate
the performance and scalability of MongoDB and Couchbase and
the experimental results were analyzed. We found that the effi-
ciency of the search algorithm of the spatial index structure is
one important factor that affects query performance, especially for
complex spatial queries such as intersection queries. We demon-
strated that GeoYCSB allows for the description of various geospa-
tial operations defined by OGC. Under workloads involving writes,
the write overhead that the spatial index structure carries should
be carefully studied to avoid performance degradation. Our experi-
mental results show that both MongoDB and Couchbase scale well
under various workload mixes, including a workload with a com-
plex ratio for query density. Both systems exploit sharding, which
contributes to their horizontal scalability by parallelizing user re-
quests over multiple servers. With replication, the consistency level
is a very important factor that trades off latency, and therefore
subsequently affects the throughput of the system.

By extending GeoYCSB to include macrobenchmarks, a database
can be tested under more realistic use cases relevant to the appli-
cation. Macrobenchmarking experiments were conducted on Mon-
goDB. We were able to test geospatial use cases such as point-

13

S. Kim, Y. Hoang, T.T. Yu et al. Big Data Research 31 (2023) 100368

of-interest searches, spatial joins, and basic data analysis. We ob-
served that with the use of sharding, MongoDB scaled well under
all use cases, but observed use cases involving points scaled better
than use cases involving polygons due to computational complex-
ity. Careful selection of the geospatial operations involved and their
parameters can decrease computational complexity and improve
performance. We also demonstrated the exchange of performance
for consistency by increasing the write consistency level in write-
intensive use cases. In addition, we evidenced the extensibility of
GeoYCSB by utilizing a large dataset consisting of complex geome-
tries, a new database system, and workloads of a vast range of
geospatial operations. These results emphasize the importance of
an extensible benchmark framework, such as GeoYCSB, in evaluat-
ing geospatial NoSQL systems so that the most suitable data store
can be chosen for the given application use cases.

Future work includes benchmarking various spatial databases
beyond NoSQL, including relational systems, using GeoYCSB. Au-
tomating the GeoYCSB benchmarking process is another future
work that will help boost the framework’s usability and extensi-
bility.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

References

[1] J.-G. Lee, M. Kang, Geospatial big data: challenges and opportunities, Big Data
Res. 2 (2015) 74–81.

[2] E. Baralis, A.D. Valle, P. Garza, F. Scullino, SQL versus NoSQL databases for
geospatial applications, in: Proceedings of 2017 IEEE International Conference
on Big Data (Big Data), Boston, MA, USA, 2017, pp. 3388–3397.

[3] M. Duan, G. Chen, Assessment of MongoDB’s spatial retrieval performance,
in: Proceedings of International Conference on Geoinformaticss, Wuhan, China,
2015.

[4] M.B. Brahim, W. Drira, F. Filali, N. Hamdi, Spatial data extension for Cassandra
NoSQL database, J. Big Data 3 (2016) 118–173.

[5] S. Agarwal, K. Rajan, Analyzing the performance of NoSQL vs. SQL databases for
spatial and aggregate queries, in: Proceedings of Free and Open Source Soft-
ware for Geospatial (FOSS4G), vol. 17, 2017, pp. 6–13.

[6] A. Makris, K. Tserpes, G. Spiliopoulos, D. Anagnostopoulos, Performance evalu-
ation of MongoDB and PostgreSQL for spatio-temporal data, in: The Workshop
Proceedings the EDBT/ICDT 2019 Joint Conference, Lisbon, Portugal, 2019.

[7] M. López, S. Couturier, J. López, Integration of NoSQL databases for analyzing
spatial information in geographic information system, in: Proceedings of the
8th International Conference on Computational Intelligence and Communica-
tion Networks, CICN, 2016.

[8] B.F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, R. Sears, Benchmarking
cloud serving systems with YCSB, in: Proceedings of the 1st ACM Symposium
on Cloud Computing, Indianapolis, Indiana, USA, 2010, pp. 143–154.

[9] T. Rabl, S. Gómez-Villamor, M. Sadoghi, V. Muntés-Mulero, H.-A. Jacobsen, S.
Mankovskii, Solving big data challenges for enterprise application performance
management, in: Proceedings of the VLDB Endowment, Istanbul, Turkey, 2012,
pp. 1724–1735.

[10] J. Kuhlenkamp, M. Klems, O. Ross, Benchmarking scalability and elasticity
of distributed database systems, in: Proceedings of the VLDB Endowment,
Hangzhou, China, 2014, pp. 1219–1230.

[11] G. Haughian, R. Osman, W.J. Knottenbelt, Benchmarking replication in Cassan-
dra and MongoDB NoSQL datastores, in: DEXA 2016. Lecture Notes in Computer
Science, 2016, p. 9828.

[12] S. Kim, Y.S. Kanwar, GeoYCSB: a benchmark framework for the performance
and scalability evaluation of NoSQL databases for geospatial workloads, in:
2019 IEEE International Conference on Big Data, Los Angeles, CA, USA, 2019,
pp. 3666–3675.

[13] MongoDB geospatial queries, https://docs .mongodb .com /manual /geospatial -
queries/.

[14] New Geo Features in MongoDB 2.4, https://www.mongodb .com /blog /post /new-
geo -features -in -mongodb -24.

[15] GeospatialQueries, https://docs .couchbase .com /server /6 .5 /fts /fts -geospatial -
queries .html.

[16] Couchbase views, https://docs .couchbase .com /server /6 .0 /learn /views /views -
intro .html.

[17] A. Gyryk, YCSB-JSON: implementation for couchbase and MongoDB, https://
blog .couchbase .com /ycsb -json -implementation -for-couchbase -and -mongodb/.

[18] Graffiti abatement incidents data set, https://catalog .data .gov /dataset /graffiti -
abatement -incidents -bbbaf.

[19] Open Geospatial Consortium, http://www.opengeospatial .org /ogc.
[20] DB-engines ranking, https://db -engines .com /en /ranking.
[21] Building footprints dataset, https://catalog .data .gov /dataset /building -footprints -

usgs -91e75.
[22] Tempe schools, https://www.tempe .gov /government /community-development /

neighborhood -services /new-resident -directory /tempe -schools.
[23] C. Strobl, Dimensionally extended nine-intersection model (DE-9IM), in: Ency-

clopedia of GIS, Springer, Boston, MA, 2008, pp. 240–245.
[24] Japan’s counties dataset, https://nlftp .mlit .go .jp /ksj /gml /datalist /ksjtmplt -n03 -

v2 _4 .html.
[25] Japan’s routes dataset, https://nlftp .mlit .go .jp /ksj /gml /datalist /ksjtmplt -n07.

html.
[26] QGIS, https://www.qgis .org /en /site/.
[27] Red Hat Ansible, https://www.ansible .com.
[28] Apache Accumulo, https://accumulo .apache .org/.
[29] GeoMesa index, https://www.geomesa .org /documentation /stable /user /

datastores /index _overview.html.
[30] B. Simion, S. Ray, A.D. Brown, Surveying the landscape: an in-depth analysis

of spatial database workloads, in: Proceedings of 2012 ACM SIGSPATIAL GIS,
Redondo Beach, CA, USA, 2012, pp. 376–385.

[31] L. De Floriani, P. Marzano, E. Puppo, Spatial queries and data models, spatial
information theory a theoretical basis for GIS, in: COSIT 1993, in: Lecture Notes
in Computer Science, vol. 716, Springer, 1993, pp. 113–138.

[32] E. Clementini, Dimension-extended topological relationships, in: Encyclopedia
of Database Systems, Springer, New York, NY, 2018, pp. 1115–1119.

[33] D. Guo, E. Onstein, State-of-the-art geospatial information processing in NoSQL
databases, Int. J. Geo-Inf. 9 (5) (2020) 331, 1–20.

[34] S. Ray, B. Simion, A.D. Brown, Jackpine: a benchmark to evaluate spatial
database performance, in: Proceedings of IEEE 27th International Conference
on Data Engineering, Hannover, Germany, 2011, pp. 1139–1150.

[35] G. Garbis, K. Kyzirakos, M. Koubarakis, Geographica: a benchmark for geospatial
RDF stores, in: Proceedings of International Semantic Web Conference, ISWC
2013, 2013, pp. 343–359.

[36] M.M. Alam, S. Ray, V.C. Bhavsar, A performance study of big spatial data sys-
tems, in: Proceedings of ACM SIGSPATIAL International Workshop on Analytics
for Big Geospatial Data, BigSpatial 2018, Seattle, WA, USA, 2018.

14

http://refhub.elsevier.com/S2214-5796(23)00001-1/bib5C9361FDA8CF0D6016E3DAD9C6F6C250s1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib5C9361FDA8CF0D6016E3DAD9C6F6C250s1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bibDB5459D53705B67E05468EAB7C9B8961s1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bibDB5459D53705B67E05468EAB7C9B8961s1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bibDB5459D53705B67E05468EAB7C9B8961s1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bibEA1D41F2035218E99BE74A2CD067B17Es1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bibEA1D41F2035218E99BE74A2CD067B17Es1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bibEA1D41F2035218E99BE74A2CD067B17Es1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib0BE4D769E8D8392AB59A3FDBC11B5DBAs1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib0BE4D769E8D8392AB59A3FDBC11B5DBAs1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bibCE5798958A912069ACA892BA801316C3s1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bibCE5798958A912069ACA892BA801316C3s1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bibCE5798958A912069ACA892BA801316C3s1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib3F5D0D2EC4425CD229CFB71DB1C9570Es1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib3F5D0D2EC4425CD229CFB71DB1C9570Es1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib3F5D0D2EC4425CD229CFB71DB1C9570Es1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib0321DE643A00B16DD0BCA47A0DFFB323s1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib0321DE643A00B16DD0BCA47A0DFFB323s1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib0321DE643A00B16DD0BCA47A0DFFB323s1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib0321DE643A00B16DD0BCA47A0DFFB323s1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib44503578713CAEA48BBE7FEC1ADFD5A0s1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib44503578713CAEA48BBE7FEC1ADFD5A0s1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib44503578713CAEA48BBE7FEC1ADFD5A0s1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib1DD88E9603B950C90F25BE25CC417468s1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib1DD88E9603B950C90F25BE25CC417468s1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib1DD88E9603B950C90F25BE25CC417468s1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib1DD88E9603B950C90F25BE25CC417468s1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bibF1E5DE3CEAE0B3BA2ADD3D162F3D5402s1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bibF1E5DE3CEAE0B3BA2ADD3D162F3D5402s1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bibF1E5DE3CEAE0B3BA2ADD3D162F3D5402s1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib4E942BEC82DE9D5E939F9A744302701Fs1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib4E942BEC82DE9D5E939F9A744302701Fs1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib4E942BEC82DE9D5E939F9A744302701Fs1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib59EDC438D84DEBA7DC0407B926D8AB7Cs1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib59EDC438D84DEBA7DC0407B926D8AB7Cs1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib59EDC438D84DEBA7DC0407B926D8AB7Cs1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib59EDC438D84DEBA7DC0407B926D8AB7Cs1
https://docs.mongodb.com/manual/geospatial-queries/
https://docs.mongodb.com/manual/geospatial-queries/
https://www.mongodb.com/blog/post/new-geo-features-in-mongodb-24
https://www.mongodb.com/blog/post/new-geo-features-in-mongodb-24
https://docs.couchbase.com/server/6.5/fts/fts-geospatial-queries.html
https://docs.couchbase.com/server/6.5/fts/fts-geospatial-queries.html
https://docs.couchbase.com/server/6.0/learn/views/views-intro.html
https://docs.couchbase.com/server/6.0/learn/views/views-intro.html
https://blog.couchbase.com/ycsb-json-implementation-for-couchbase-and-mongodb/
https://blog.couchbase.com/ycsb-json-implementation-for-couchbase-and-mongodb/
https://catalog.data.gov/dataset/graffiti-abatement-incidents-bbbaf
https://catalog.data.gov/dataset/graffiti-abatement-incidents-bbbaf
http://www.opengeospatial.org/ogc
https://db-engines.com/en/ranking
https://catalog.data.gov/dataset/building-footprints-usgs-91e75
https://catalog.data.gov/dataset/building-footprints-usgs-91e75
https://www.tempe.gov/government/community-development/neighborhood-services/new-resident-directory/tempe-schools
https://www.tempe.gov/government/community-development/neighborhood-services/new-resident-directory/tempe-schools
http://refhub.elsevier.com/S2214-5796(23)00001-1/bibA658CA6DF9611DB4F89A6CA4EB6D9E47s1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bibA658CA6DF9611DB4F89A6CA4EB6D9E47s1
https://nlftp.mlit.go.jp/ksj/gml/datalist/ksjtmplt-n03-v2_4.html
https://nlftp.mlit.go.jp/ksj/gml/datalist/ksjtmplt-n03-v2_4.html
https://nlftp.mlit.go.jp/ksj/gml/datalist/ksjtmplt-n07.html
https://nlftp.mlit.go.jp/ksj/gml/datalist/ksjtmplt-n07.html
https://www.qgis.org/en/site/
https://www.ansible.com
https://accumulo.apache.org/
https://www.geomesa.org/documentation/stable/user/datastores/index_overview.html
https://www.geomesa.org/documentation/stable/user/datastores/index_overview.html
http://refhub.elsevier.com/S2214-5796(23)00001-1/bibB0227C3ED46E63AC208035F5EA1DAA04s1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bibB0227C3ED46E63AC208035F5EA1DAA04s1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bibB0227C3ED46E63AC208035F5EA1DAA04s1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib95398205E863256F8721F27614E44A1Es1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib95398205E863256F8721F27614E44A1Es1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib95398205E863256F8721F27614E44A1Es1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib48F9C9D55174767C7EBCA235EE4E6DCCs1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib48F9C9D55174767C7EBCA235EE4E6DCCs1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib9ED39E2EA931586B6A985A6942EF573Es1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib9ED39E2EA931586B6A985A6942EF573Es1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib5C7D01832B0236DDAC06FB70FBEEA9A2s1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib5C7D01832B0236DDAC06FB70FBEEA9A2s1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib5C7D01832B0236DDAC06FB70FBEEA9A2s1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib6C967974ED60FD430B468BB9A8ECD2E3s1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib6C967974ED60FD430B468BB9A8ECD2E3s1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bib6C967974ED60FD430B468BB9A8ECD2E3s1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bibDF12D77E5120EBABA61C72B6DCA889A3s1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bibDF12D77E5120EBABA61C72B6DCA889A3s1
http://refhub.elsevier.com/S2214-5796(23)00001-1/bibDF12D77E5120EBABA61C72B6DCA889A3s1

	GeoYCSB: A Benchmark Framework for the Performance and Scalability Evaluation of Geospatial NoSQL Databases
	Recommended Citation

	GeoYCSB: A Benchmark Framework for the Performance and Scalability Evaluation of Geospatial NoSQL Databases
	1 Introduction
	2 NoSQL databases under performance comparison test
	2.1 MongoDB
	2.2 Couchbase

	3 GeoYCSB
	3.1 Design architecture of GeoYCSB
	3.2 Geospatial benchmark workloads
	3.3 Performance metric

	4 GeoYCSB microbenchmark
	4.1 Dataset
	4.2 Microbenchmark workloads
	4.3 Microbenchmarking experiments and result analysis
	4.3.1 Experimental setup
	4.3.2 Performance evaluation of a single node system
	Workload A
	Workload B

	4.3.3 Horizontal scalability evaluation of a multi-node cluster
	Workload A
	Workload B
	Workload C

	5 GeoYCSB macrobenchmark
	5.1 Dataset
	5.2 Macrobenchmark workloads
	5.3 Macrobenchmarking experiments and result analysis
	5.3.1 Experimental setup
	5.3.2 Impact of data size on throughput in a single node system
	5.3.3 Horizontal scalability evaluation in a cluster of multiple nodes
	5.3.4 Impact of write consistency level on the performance of write-intensive use cases

	6 The extensibility of GeoYCSB
	6.1 Dataset
	6.2 GeoYCSB components responsible for supporting a new dataset and a new database system
	6.3 Scalability benchmarking experiment using a large dataset with complex geometries
	6.3.1 Workloads
	6.3.2 Experimental setup
	6.3.3 Results and analysis

	6.4 Benchmarking GeoMesa on top of Accumulo, a wide-column database, with a wide range of geospatial queries
	6.4.1 GeoMesa and Accumulo
	6.4.2 Workloads
	6.4.3 Experimental setup
	6.4.4 Results and analysis

	7 Related work
	8 Conclusions and future work
	Declaration of competing interest
	Data availability
	References

