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Abstract: In this study, triterpenoid compounds from Poriae Cutis were separated by high-speed coun-
tercurrent chromatography (HSCCC) and identified using ultra-high performance liquid chromatog-
raphy quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS/MS) and nuclear
magnetic resonance (NMR). The in vitro anti-inflammatory activities of the purified triterpenoids
on RAW 264.7 cells were also investigated. Triterpenoids, poricoic acid B, poricoic acid A, dehydro-
trametenolic acid, and dehydroeburicoic acid were obtained; their levels of purity were 90%, 92%,
93%, and 96%, respectively. The results indicated that poricoic acid B had higher anti-inflammatory
activity than those of poricoic acid A by inhibiting the generation of NO in lipopolysaccharide
(LPS)-induced RAW 264.7 cells. However, dehydrotrametenolic acid and dehydroeburicoic acid
had no anti-inflammatory activity. In addition, the production of cytokines (TNF-α, IL-1β, and IL-6)
in cells treated with poricoic acid B decreased in a dose-dependent manner in the concentration
range from 10 to 40 µg/mL. The results provide evidence for the use of Poriae Cutis as a natural
anti-inflammatory agent in medicines and functional foods.

Keywords: Poriae Cutis; triterpenoid; purification; identification; anti-inflammatory

1. Introduction

Poria cocos (Schw.) Wolf (“fuling” in Chinese) is a widely used medicinal fungus.
According to the Chinese Pharmacopoeia, about one-tenth of traditional Chinese medicine
preparations include P. cocos [1]. Additionally, P. cocos is used as a dietary supplement and
in foods such as soups, dishes, snacks, and desserts for its health-promoting benefits. It
can be divided into four parts, namely, Poriae Cutis (the epidermis, “fulingpi” in Chinese),
Rubra Poria (the pink part near the epidermis), White Poria (the middle part, “baifuling” in
Chinese), and Poria cum Radix Pini (the middle-plus-inner part, “fushen” in Chinese) [2].
Different parts of Poria cocos have different pharmacological effects and clinical applications.
Both P. cocos and Poriae Cutis are officially included in the Chinese Pharmacopoeia. Clearing
damp and promoting diuresis are traditional Chinese medicinal uses for Poria cocos. Poriae
Cutis is mainly used to promote urination in clinics. Nowadays, White Poria is widely
used due to its diuretic, tonic, and sedative functions. However, Poriae Cutis is treated as
agricultural waste during the harvest periods and is rarely used [1,3].

The functional constituents in P. cocos mainly contain triterpenes and polysaccharides,
while the main bioactive constituent of Poriae Cutis is triterpenoid. Triterpenes isolated from
P. cocos can be divided into four subgroups based on their chemical structure: lanosta-8-ene
type, lanosta-7,9(11)-diene type, 3,4-seco-lanostan-8-ene type, and 3,4-seco-lanostan-7,9(11)-
diene type compounds [4]. In prior research, 59 types of triterpenoids were separated
from P. cocos; 41 types were isolated from Poriae Cutis [2,4]. The total content of triterpenes
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and bioactive triterpenes in Poriae Cutis was found to be higher than in the sclerotia of
P. cocos [1,5–7], and triterpenoids from the sclerotia of P. cocos showed anti-inflammatory
activity [8,9]. It was reported that seco-lanostane triterpenoid come from the sclerotia of P.
cocos and could be a promising lead compound for the development of anti-inflammatory
agents for use in pharmaceuticals and functional foods [8]. Triterpenes have attracted
attention due to their anti-inflammatory [8,10,11], anticancer [12–14], and diuretic proper-
ties [3,15]. Of the many reports on the biological activity of triterpenes in Poriae Cutis, most
have focused on antitumor and diuretic activities. However, there are few studies on the
anti-inflammatory activity of triterpenoids in Poriae Cutis.

The objectives of this study were to separate triterpenoids from Poriae Cutis by HSCCC
chromatography, and then identify them with UHPLC-QTOF-MS/MS and NMR spectra.
The anti-inflammatory activity of triterpenoids was also determined using RAW 264.7
mouse macrophage cells.

2. Materials and Methods
2.1. Crude Sample Preparation

Poria cocos was obtained from the local market in Lou tian (Hubei Province, China).
The powder of Poriae Cutis (50 g) was extracted with n-butanol-water (1:1, v/v) solution
(2 L) at 60 ◦C under reflux for 40 min. After filtration, the filtrate was concentrated by a
rotary evaporator. Concentrated filtrate was suspended in distilled water and extracted
with ethyl acetate three times. The combined ethyl acetate solution was evaporated to
dryness to yield crude triterpenes from Poriae Cutis, which were used for subsequent
HSCCC separation [16].

2.2. HSCCC Separation

A high-speed counter-current chromatography (HSCCC) with a two-phase solvent
system (TBE-300C, Shanghai Tauto Biotech Co., Ltd., Shanghai, China) with n-hexane-
ethyl acetate-MeOH-water (3:6:4:2, v/v/v/v) was used; the stationary phase was the
upper phase, and the mobile phase was the lower phase. Crude triterpene (100 mg) was
dissolved in the mobile phase (10 mL). After two-phase ultrasonic degassed for 15 min, the
sample solution was injected through the injection valve when it reached hydrodynamic
equilibrium. Following the stationary phase, the column was filled entirely at a flow rate of
30 mL/min; the lower phase was pumped at a flow rate of 3 mL/min. The rotation was set
at 800 rpm with a detection wavelength of 242 nm. Six peaks (P-1, P-2, P-3, P-4, P-5, and
P-6) were separately collected and evaporated to dryness to yield purified fractions [16].

2.3. HPLC Analysis

The six purified fractions (P-1, P-2, P-3, P-4, P-5, and P-6) were dissolved in methanol
and then filtered by a 0.45 µm syringe filter for HPLC analysis. HPLC (e2695, Waters
Corporation, Milford, MA, USA) analyses were performed with an InertSustainTMAQ-C18
column (4.6 mm × 250 mm, 5 µm, Shimadzu, Shanghai, China) at 25 ◦C. The mobile phase
was composed of solvent A (0.05% (v/v) phosphoric acid) and solvent B (methanol). The
gradient mode was as follows: 0–15 min, 30–25% A, 70–75% B; 15–25 min, 25–21% A,
75–79% B; 25–40 min, 21–10% A, 79–90% B; 40–65 min, 10% A, 90% B. The injection volume
was 10 µL and the flow rate was 1.0 mL/min with a detection wavelength of 242 nm.

2.4. UHPLC-QTOF-MS/MS Analysis

UHPLC (1100-VL, Waters Corporation, Milford, MA, USA) analyses were performed
with an ACQUITY UPLC® BEH C18 column (2.1 mm × 100 mm, 1.7 µm, Waters Corpora-
tion, Milford, MA, USA) at 30 ◦C. The mobile phase was composed of solvent A (water)
and solvent B (methanol). The gradient mode was as follows: 0–7 min, 44–23% A, 56–77%
B; 7–14 min, 23–15% A, 77–85% B; 14–24 min, 15% A, 85% B. The injection volume was 1 µL
and the flow rate was kept at 0.3 mL/min. Mass spectrometry conditions were set with the
ESI source in negative ionization mode, drying gas temperature at 350 ◦C, drying gas flow
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600 L/h, and capillary voltage 2.4 kV. The full scan range of m/z 10–1000 was performed
for mass detection.

2.5. NMR Spectra Analysis

Samples were dissolved in methanol-d4 and pyridine-d5 for NMR spectra measure-
ment. NMR spectra analyses were performed by an AVANCE III 400 MHz NMR spec-
trometer (Bruker Corporation, Zurich, Switzerland). 1H-NMR and 13C-NMR data were
analyzed and processed by Meatrenove 14.0.

2.6. Anti-Inflammatory Activity of Triterpenoids from Poriae Cutis In Vitro
2.6.1. Cell Viability Assay

RAW 264.7 cells (acquired from Chinese Academy of Sciences) were maintained in
Dulbecco’s modified Eagle’s medium (DMEM, Gibco Company, New York, NY, USA), sup-
plemented with fetal bovine serum (FBS) (10%, v/v) (Gibco Company, USA) and antibiotics
(1%, v/v) (penicillin (100 U/mL) and streptomycin (100 µg/mL)) in a humidified incubator
at 37 ◦C with 5% CO2. Cells were plated into 96-well plates at 1 × 105 cells/mL. After
incubating for 24 h, the RAW 264.7 cells were added to 100 µL of four triterpenoids from
Poriae Cutis with different concentrations (poricoic acid A and poricoic acid B: 10, 20, 30, 40,
and 50 µg/mL; dehydrotrametenolic acid and dehydroeburicoic acid: 0.125, 0.25, 0.5, 1, and
5 µg/mL), DMEM basic medium (control group) or lipopolysaccharide (LPS) (Sigma Com-
pany, St. Louis, MO, USA) (1 µg/mL, positive control) for 24 h. Next, the growth medium
was removed and 100 µL of 3-(4,5-dimethylthiazole-2)-2,5-diphenyltetrazolium bromine
salt (MTT) (American Biosharp Company, Houston, TX, USA) solution (0.5 mg/mL) was
added for 4 h. Subsequently, the conditioned medium was eliminated and DMSO (150 µL)
was added, and cell viability was detected using optical density (OD) at 490 nm using a
Multiskan GO automatic microplate reader (Thermo, Waltham, MA, USA) [17].

2.6.2. NO Determination

RAW 264.7 cells were plated into 24-well plates (8 × 105 cells/mL) and cultured as
described above. The cells were then simultaneously induced with LPS (1 µg/mL) and
various doses of the four triterpenoids from Poriae Cutis (poricoic acid A and poricoic
acid B, 10, 20, 30, and 40 µg/mL; dehydrotrametenolic acid and dehydroeburicoic acid,
0.125, 0.25, 0.5, and 1 µg/mL), DMEM basic medium (control group), or LPS (1 µg/mL,
positive control) for 24 h. Next, the conditioned medium (100 µL) was mixed with Griess
reagent (100 µL) in each well and incubated for 10 min. Finally, the absorbance at 540 nm
was measured using a Multiskan GO automatic microplate reader. NaNO2 was used as a
standard to calculate the released NO concentration [18].

2.6.3. Cytokines Assays of TNF-α, IL-1β, and IL-6

RAW 264.7 cells were cultured in 24-well plates (8 × 105 cells/mL), to which LPS
(1 µg/mL) was added and various doses of poricoic acid B (10, 20 and 40 µg/mL), DMEM
basic medium (control group), or LPS (1 µg/mL, positive control) for 24 h. The cells were
then centrifuge at 2400 r/min for 5 min and the supernatant was collected. The secretions
of cytokines in the supernatant were tested using a TNF-α, IL-1β, and IL-6 ELISA kit
(Guangzhou Xinbosheng Biotechnology Co., Ltd., Guangzhou, China).

2.7. Data Analysis

The structural formula of the compound was drawn by ChemDraw 16.0. Statistical dif-
ferences between treatments were determined using ANOVA and Duncan’s or Tamhane’s
test at a significance level of 0.05 or 0.01.
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3. Results and Discussion
3.1. HSCCC Separation

HSCCC is widely utilized in the isolating of natural products. It has high stability,
good reproducibility, the non-requirement of a solid carrier, a low risk of nonreversible
adsorption, and a high sample recovery rate [19,20]. Fractions of P. cocos were often
obtained by means of a silica gel column chromatography and eluted successively [21], but
this requires a complicated operation process and causes sample loss. It was reported that
HSCCC is an effective methodology for isolating of high-purity triterpenoid compounds
in Inonotus obliquus [20]. In the present study, HSCCC was used to separate triterpenoid
compounds from Poriae Cutis. As shown in Figure 1, compounds P-1 (14.37%), P-2 (7.93%),
P-3 (20.38%), P-4 (35.64%), P-5 (19.07%), and P-6 (2.59%) were efficiently separated within
360 min with a 50% retention rate. After elution, all of the fractions were dried and the
collected fractions were identified by HPLC.

Foods 2021, 10, x FOR PEER REVIEW 4 of 12 
 

2.7. Data Analysis 

The structural formula of the compound was drawn by ChemDraw 16.0. Statistical 

differences between treatments were determined using ANOVA and Duncan’s or 

Tamhane’s test at a significance level of 0.05 or 0.01. 

3. Results and Discussion 

3.1. HSCCC Separation 

HSCCC is widely utilized in the isolating of natural products. It has high stability, 

good reproducibility, the non-requirement of a solid carrier, a low risk of nonreversible 

adsorption, and a high sample recovery rate [19,20]. Fractions of P. cocos were often 

obtained by means of a silica gel column chromatography and eluted successively [21], 

but this requires a complicated operation process and causes sample loss. It was reported 

that HSCCC is an effective methodology for isolating of high-purity triterpenoid 

compounds in Inonotus obliquus [20]. In the present study, HSCCC was used to separate 

triterpenoid compounds from Poriae Cutis. As shown in Figure 1, compounds P-1 

(14.37%), P-2 (7.93%), P-3 (20.38%), P-4 (35.64%), P-5 (19.07%), and P-6 (2.59%) were 

efficiently separated within 360 min with a 50% retention rate. After elution, all of the 

fractions were dried and the collected fractions were identified by HPLC. 

 

Figure 1. Elution profile of triterpenoids by HSCCC chromatogram. n-hexane-ethyl acetate-MeOH-

water (3:6:4:2, v/v/v/v); flow rate: 3 mL/min; detection wavelength: 242 nm; rotational speed: 800 

rpm; sample size: 100 mg. 

3.2. HPLC Analysis 

Among the six fractions collected through HSCCC, only P-3, P-4, P-5, and P-6 had a 

purity of higher than 90% (90%, 92%, 93%, and 96%, respectively). Therefore, the follow-

up experiments focused on these four fractions, and we named them compound-1, 

compound-2, compound-3, and compound-4, respectively. A total of 5.20 mg of 

compound-1, 20.50 mg of compound-2, 0.4 mg of compound-3, and 0.1 mg of compound-

4 were separated from the above sample (100 mg) by HSCCC. As shown in Figure 2, the 

retention time of the four fractions was 33.23 min (compound-1), 36.20 min (compound-

2), 55.45 min (compound-3), and 59.88 min (compound-4). 

Figure 1. Elution profile of triterpenoids by HSCCC chromatogram. n-hexane-ethyl acetate-MeOH-
water (3:6:4:2, v/v/v/v); flow rate: 3 mL/min; detection wavelength: 242 nm; rotational speed: 800
rpm; sample size: 100 mg.

3.2. HPLC Analysis

Among the six fractions collected through HSCCC, only P-3, P-4, P-5, and P-6 had a
purity of higher than 90% (90%, 92%, 93%, and 96%, respectively). Therefore, the follow-up
experiments focused on these four fractions, and we named them compound-1, compound-
2, compound-3, and compound-4, respectively. A total of 5.20 mg of compound-1, 20.50 mg
of compound-2, 0.4 mg of compound-3, and 0.1 mg of compound-4 were separated from
the above sample (100 mg) by HSCCC. As shown in Figure 2, the retention time of the four
fractions was 33.23 min (compound-1), 36.20 min (compound-2), 55.45 min (compound-3),
and 59.88 min (compound-4).
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Figure 2. HPLC chromatogram of four kinds of triterpenoids obtained by HSCCC.

3.3. Identification of Compounds

The structures of all compounds were characterized by ESI–MS, 1H-NMR, and 13C-
NMR spectra and are shown in Figures S1–S4. Compound-1 (Figure S1): ESI-MS (m/z):
483.3104 [M-H]-. UV λmax: 242 nm. The 1H- and 13C-NMR spectra revealed H-11 (δ 5.21)/C-
11 (δ 120.7), H-7 (δ 5.17)/C-7 (δ 119.0), C-9 (δ 138.3), C-8 (δ 142.3), H-18 (δ 0.99), H-19 (δ 0.93),
H-26 (δ 1.50), H-27 (δ 1.58), H-29 (δ 1.68), H-30 (δ 1.50), H-16 (δ 4.54), H-28 (δ 4.67, 4.76),
H-24 (δ 5.27), C-3 (δ 178.3), C-21 (δ 180.0). Based on the structural features of triterpene
compounds and the data given in the literature, compound-1 was identified as poricoic
acid B [1,17,20,22–24]. Poricoic acid B belongs to the 3,4-seco-lanostan-7,9(11)-diene type
triterpenes [4]. Its chemical structure is shown in Figure 3.

Compound-2 (Figure S2): ESI-MS (m/z): 497.3266 [M-H]-. UV λmax: 242 nm. The
1H- and 13C-NMR spectra presented H-11 (δ 5.27)/C-11 (δ 119.5), H-7 (δ 5.21)/C-7 (δ
117.8), C-9 (δ 137.1), C-8 (δ 141.1), H-18 (δ 1.09), H-19 (δ 1.02), H-26 (δ 0.98), H-27 (δ 0.99),
H-29 (δ 1.74), H-30 (δ 1.50), H-16 (δ 4.54), H-28 (δ 4.77, 4.82), C-3 (δ 176.9), C-21 (δ 178.5),
C-24 (δ 155.3), C-25 (δ 33.6), C-31 (δ 106.7). Based on the structural features of triterpene
compounds and the data given in the literature, compound-4 was identified as poricoic
acid A [1,16,19,21,22]. Poricoic acid A belongs to the 3,4-seco-lanostan-7,9(1 1)-diene type
triterpenes [4]. Its chemical structure is shown in Figure 3.

Compound-3 (Figure S3): ESI-MS (m/z): 453.3370 [M-H]-. UV λmax: 243 nm. The
1H- and 13C-NMR spectra indicated that H-11 (δ 5.37)/C-11 (δ 116.5), H-7 (δ 5.61)/C-7
(δ 121.0), C-9 (δ 146.4), C-8 (δ 142.7), H-18 (δ 1.01), H-19 (δ 1.07), H-26 (δ 1.67), H-27
(δ 1.62), H-28 (δ 1.22), H-29 (δ 1.13), H-30 (δ 1.06), H-3 (δ 3.46), H-24 (δ 5.33), C-3 (δ
77.9), C-21 (δ 178.9), C-24 (δ 124.8), C-25 (δ 131.5). Based on the structural features of
triterpene compounds and the data given in the literature, compound-4 was identified as
dehydrotrametenolic acid [1,2,19]. Dehydrotrametenolic acid belongs to the lanosta-7,9(11)-
diene type triterpenes [4]. Its chemical structure is shown in Figure 3.

Compound-4 (Figure S4): ESI-MS (m/z): 467.3518 [M-H]-. UV λmax: 243 nm. The 1H-
and 13C-NMR spectra showed that H-11 (δ 5.62)/C-11 (δ 116.5), H-7 (δ 5.61)/C-7 (δ 121.0),
C-9 (δ 146.4), C-8 (δ 142.7), H-18 (δ 1.02), H-19 (δ 1.08), H-26 (δ 1.04), H-27 (δ 1.05), H-28 (δ
1.23), H-29 (δ 1.14), H-30 (δ 1.08), H-3 (δ 3.46), H-31 (δ 4.90, 4.95), C-3 (δ 77.9), C-21 (δ 178.9),
C-24 (δ 160.8), C-31 (δ 106.8). Based on the structural features of triterpene compounds and
the data given in the literature, compound-4 was identified as dehydroeburicoic acid [1,24].
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Dehydroeburicoic acid belongs to the lanosta-7,9(11)-diene type triterpenes [4]. Its chemical
structure is shown in Figure 3.
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3.4. In Vitro Anti-Inflammatory Activity of Triterpenoids
3.4.1. Effects of Triterpenoids on Viability of RAW264.7 Cells

The cytotoxic effect of poricoic acid A, poricoic acid B, dehydrotrametenolic acid,
and dehydroeburicoic acid on RAW 264.7 cells was evaluated by an MTT assay. It is
generally acknowledged that when adding samples, if the cell viability is below 90%, it
indicates cytotoxicity. If the cell viability is higher than this critical value, the sample is
non-cytotoxic and can be used for further research [25]. The viabilities of the RAW 264.7
cells of the four triterpenoids from Poriae Cutis were different and are shown in Figure 4.
As shown in Figure 4A, the two treatment groups of poricoic acid A and poricoic acid B at
concentrations of 10–30 µg/mL and 10–40 µg/mL had no cytotoxicity on macrophages.
As shown in Figure 4B, the non-cytotoxic concentrations of dehydrotrametenolic acid and
dehydroeburicoic acid were 0.125–1 and 0.125–0.5 µg/mL, respectively. However, Lee
et al. [8] reported a the cell viability of >90% for n-butanol fraction concentrations of up to
50 µg/mL. This could be due to the differences in the sample purities.
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Figure 4. The effects of various concentrations of poricoic acid A and poricoic acid B (A), dehydro-
trametenolic acid and dehydroeburicoic acid (B) on the cell viabilities of murine macrophage cells
(RAW 264.7). The values are expressed as the mean ± SD (n = 3). Different letters (a–g) indicate
significant differences (p < 0.05). LPS, lipopolysaccharide.

In summary, the maximum concentrations of poricoic acid A, poricoic acid B, dehy-
drotrametenolic acid, and dehydroeburicoic acid without significant cell activity inhibition
on RAW264.7 cells were 30, 40, 1, and 0.5 µg/mL, respectively. The difference may be
related to their chemical structures. Poricoic acid A and poricoic acid B belong to 3,4-
seco-lanostan-7,9(11)-diene type triterpenes, which were less cytotoxic to RAW264.7 cells;
dehydrotrametenolic acid and dehydroeburicoic acid are both lanosta-7,9(11)-diene type
triterpenes, which were reported to have a higher cytotoxicity [4]. Dong et al. [26] also
reported that seco-lanostane triterpenoid from the epidermis of Poria cocos showed weak
cytotoxic activities on MGC-803 and HepG2 cell lines.

3.4.2. Effects of Triterpenoids on NO Production of RAW 264.7 Cells

Nitric oxide (NO) has been acknowledged as an important signaling molecule related
to inflammatory responses [24]. Natural compounds were reported to affect the secretion
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of NO, which helped to develop drugs to treat inflammatory diseases [27,28]. LPS is an
important proinflammatory factors, which can increase the production of NO [29]. The
inhibitory effects of four triterpenoids from Poriae Cutis on NO production in LPS-induced
RAW 264.7 cells in co-culture experiments are shown in Figure 5. The NO production level
of macrophages in the control group was weak, but the NO production level increased
significantly after LPS stimulation, which indicated that RAW264.7 cells had already
developed an inflammatory state under the induction of LPS. As shown in Figure 5A,
the RAW 264.7 cells treated with either poricoic acid A at concentrations of 10–20 µg/mL
or poricoic acid B at concentrations of 10 µg/mL showed no change in the secretions of
NO (p > 0.05), but the change became significant with a further increase in concentration.
The NO production in cells treated with poricoic acid A significantly decreased to 47% at
30 µg/mL. Poricoic acid B dose-dependently decreased NO production at concentrations
of 20, 30, and 40 µg/mL, and considerably suppressed NO production to 29%, 34%, and
68%, respectively. However, we found that the IC50 of poricoic acid A that inhibited NO
production in LPS-activated cells was 18.12 µM (8.77 µg/mL) [8]. As shown in Figure 5B,
dehydrotrametenolic acid and dehydroeburicoic acid had no effect on the secretions of NO
and they seemed to have no anti-inflammatory activity. The results are consistent with
those in a previous report [9]. Additionally consistent with the report is that the inhibition
of NO of seco-lanostane triterpenoid was higher than that of lanostane triterpenoid [8].
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Figure 5. The effects of various concentrations of poricoic acid A and poricoic acid B (A), dehy-
drotrametenolic acid and dehydroeburicoic acid (B) on the NO production in lipopolysaccharide
(LPS)-stimulated murine macrophage cells (RAW 264.7). The values are presented as the mean ± SD
(n = 3). Different letters (a–f) indicate significant differences (p < 0.05).
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3.4.3. Effects of Poricoic Acid B on Cytokines Production of RAW 264.7 Cells

The anti-inflammatory activities of four triterpenes (poricoic acid A, poricoic acid B,
dehydrotrametenolic acid, and dehydroeburicoic acid) were assessed by an LPS-stimulated
NO production model on RAW 264.7 cells. The results revealed that poricoic acid B
exhibited a strong NO production inhibitory activity in a dose-dependent manner. Thus,
the secretion of cytokines including tumor necrosis factor (TNF)- α, interleukin (IL)-1β,
and interleukin (IL)-6 was measured with poricoic acid B in a medium of RAW 264.7 in
co-culture experiments, which were quantified by an ELISA assay.

It has been reported that LPS-induced RAW 264.7 cells secrete pro-inflammatory
factors TNF-α, IL-1β, and IL-6 during the inflammation process [30,31]. As shown in
Figure 6, the production of TNF-α, IL-1β, and IL-6 by cells treated with poricoic acid B
showed a dose-dependent decrease in the concentration range from 10 to 40 µg/mL in the
co-culture experiments, all of which were more than in the control group (193 pg/mL),
but less than in the LPS-treated group (2.63 × 105 pg/mL). The result indicated that LPS
increased the release of pro-inflammatory cytokines [28], and poricoic acid B reduced the
secretion of cytokines. TNF-α secretion from the poricoic acid B treated group decreased
significantly in the concentration range of 10–40 µg/mL. The value was the lowest at a
concentration of 20 µg/mL, which was reduced by 32% compared to that in the LPS-treated
group (Figure 6A). The poricoic acid B treated group did not show a significant difference
in IL-1β at relatively lower concentrations (10 µg/mL) but displayed significant decreases
at higher concentrations. At the doses of 20 and 40 µg/mL, the secretion of IL-1β decreased
by 41% and 77% in comparison to the LPS-treated group (Figure 6B), respectively. With the
increase in the concentration of poricoic acid B, the amount of IL-6 production gradually
decreased. Compared to the LPS-treated group, the secretion of IL-6 decreased by 30%,
53%, and 66% under the poricoic acid B treatment concentrations of 10, 20, and 40 µg/mL,
respectively (Figure 6C). 3,4-seco-dammarane triterpenoid saponins isolated from the
leaves of Cyclocarya paliurus showed similar inhibition of IL-6 and TNF-α [32].
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Figure 6. The effect of various concentrations of poricoic acid B on the productions of TNF-α (A),
IL-1β (B), and IL-6 (C) in lipopolysaccharide (LPS)-stimulated murine macrophage cells (RAW 264.7).
The values are presented as the mean ± SD (n = 3). * p < 0.05, ** p < 0.01 vs. LPS group.

4. Conclusions

In this study, four triterpenoids were isolated from Poriae Cutis: two 3,4-seco-lanostan-
7,9(11)-diene type triterpenes (poricoic acid B and poricoic acid A) and two lanosta-7,9(11)-
diene type triterpenes (dehydrotrametenolic acid and dehydroeburicoic acid). The cy-
totoxicity of the 3,4-seco-lanostan-7,9(11)-diene type triterpenes was lower than that of
the lanosta-7,9(11)-diene type triterpenes. The 3,4-seco-lanostan-7,9(11)-diene type triter-
penes were found to inhibit the NO generation in LPS-induced RAW264.7 cells. However,
the lanosta-7,9(11)-diene type triterpenes had no effect on the production of NO. In ad-
dition, poricoic acid B significantly inhibited the secretion of TNF-α, IL-1β, and IL-6 in
LPS-induced RAW 264.7 cells. Our results indicated that 3,4-seco-lanostan-7,9(11)-diene
type triterpenes exhibited more anti-inflammatory activities than lanosta-7,9(11)-diene type
triterpenes, and provided experimental evidence that Poriae Cutis is a potential source of
natural anti-inflammatory agents for use in pharmaceuticals and functional foods.
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