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Abstract: Current maintenance intervals of mechanical systems are scheduled a priori based on
the life of the system, resulting in expensive maintenance scheduling, and often undermining the
safety of passengers. Going forward, the actual usage of a vehicle will be used to predict stresses
in its structure, and therefore, to define a specific maintenance scheduling. Machine learning (ML)
algorithms can be used to map a reduced set of data coming from real-time measurements of a
structure into a detailed/high-fidelity finite element analysis (FEA) model of the same system. As a
result, the FEA-based ML approach will directly estimate the stress distribution over the entire
system during operations, thus improving the ability to define ad-hoc, safe, and efficient maintenance
procedures. The paper initially presents a review of the current state-of-the-art of ML methods applied
to finite elements. A surrogate finite element approach based on ML algorithms is also proposed
to estimate the time-varying response of a one-dimensional beam. Several ML regression models,
such as decision trees and artificial neural networks, have been developed, and their performance is
compared for direct estimation of the stress distribution over a beam structure. The surrogate finite
element models based on ML algorithms are able to estimate the response of the beam accurately,
with artificial neural networks providing more accurate results.

Keywords: finite element; beam analysis; structural monitoring; machine learning; random forest
trees; artificial neural networks; gradient boosting regression trees

1. Introduction

Structural health monitoring (SHM) aims at accurately identifying the current state
and the behavior of a structure by analyzing data collected through various monitoring
devices and sensors over the structure [1–3]. Stress analysis is a pivotal part of any me-
chanical system design. A finite element analysis (FEA) is generally used to perform stress
analysis of complex structures and systems for design, maintenance, and safety evalua-
tion across many industries, such as aerospace, automotive, architecture, and biomedical
engineering [4–7].

A review of literature, presented in Section 2 of this work, describes preliminary
attempts to use machine learning (ML) algorithms in conjunction with finite element anal-
yses, mostly to approach static biomechanical systems. However, the evaluation of the
performance of regression ML algorithms in real-time estimation and prediction of stresses
in time-varying mechanical systems is a rarely addressed area of research. This study
aims to apply, validate and compare the performance of ML methods in accurate estima-
tion of time-varying stresses as a surrogate for an FEA in a one-dimensional framework
(beam structure).
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This study contributes to the rare literature on practical applications of ML in stress
prediction in an autonomous system by evaluating the performance of artificial neural
networks (ANN), random forest decision trees, and optimized gradient boosting trees.
The main contribution of this study is proposing the use of supervised ML techniques
to build a surrogate finite element model of a time-varying, one-dimensional mechanical
system. In addition, the analysis of results provides insights into the challenges and
opportunities of creating an ML pipeline as surrogate for an FEA that has broad applications
for stress prediction in other industries. The second section of the paper includes a literature
review of ML methods and their application for stress prediction purposes. Section 3
includes a discussion of the data set on which the modeling was based on, followed by a
brief discussion of the methodology. Section 4 presents, assesses, and compares the results
from each regression ML model, that are discussed in Section 5. Conclusions about the
performance of the prediction methods, and the application of the proposed analyses in
improving a real-time FEA complete the paper in Section 6.

2. Machine Learning Modeling for Finite Element Analysis

ML techniques have the ability to automatically generate a model using data from
past experiences. The number of applications is extensive and includes self-driving cars,
high-frequency trading, house price estimation, search engines, bioinformatics, chemistry,
and material science, for which a large amount of data is available [8]. Cases involving
large amounts of variables, high levels of uncertainty, and rapid changes in behavior are
among the typical scenarios. In this paper, we propose to use supervised ML to generate
surrogate models of dynamic systems for accurate stress predictions.

Supervised ML estimates the relationship between some input variables and one or
more numeric outputs using optimization algorithms that minimize the approximation
error. The error function defines the distance between an output value in the dataset and
the output produced by the approximated model. Each particular ML method contains its
own error function and optimization algorithm. The optimization process over the data is
known as model training. ML algorithms are very powerful predictive tools, but due to
their complexity, they generally don’t provide analytical relationships between the input
and output data, and are often referred to as “black boxes” as the user loses insight into
the underlying physics. The use of ML approaches in conjunction with finite element
approaches has recently seen a lot of interest from the research community. The common
interest is to improve the trade-off between computational accuracy and computational
costs. Before describing the approach proposed in this paper, the authors have identified
the main research contributions to the topic, as well as challenges and opportunities in the
different research areas.

A few recent attempts exist to use supervised ML algorithms as finite element sur-
rogates to tackle biomechanical problems, such as the stress analysis of the aorta [5,9],
the biomechanical behavior of human soft tissue [10], breast tissue [11], and of the human
liver [12]. Liang et al. [5] developed patient-specific models of the stress distribution of the
aorta using ML algorithms trained using as input the finite element model data and directly
outputting the aortic wall stress distribution. The trained model is capable of predicting
the stress distributions with errors less than 1% (Von Mises stresses) and demonstrates the
feasibility and great potential of using the ML technique as a fast and accurate surrogate
finite element for real-time static stress analysis of patient-specific geometries. The au-
thors use an encoding-decoding deep neural network algorithm to model the complex,
non-linear relationships between input (anatomical models and finite element results)
and output variables (aortic wall stress distribution). Madani et al. [9] develop a finite
element surrogate model to compute the aortic wall stress distribution in patients affected
by atherosclerosis that learn the underlying mapping between the aortic input parameters
(tissue geometry, composition, and arterial pressure) and the output stress distribution,
in a highly non-linear environment. Their analyses show that, given a geometry, they can
predict real-time the peak von Mises stress magnitude with an average error of less than
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10% without the need of highly trained finite element specialists, therefore allowing quick
clinical analysis of the patient health. Clinicians can, in fact, use this information dur-
ing patient examination, evaluation, and treatment for potential areas of high rupture
risk. Martinez-Martinez et al. [11] present a data-driven method to simulate, in real-time,
the biomechanical behavior of the breast tissues. Decision tree and random forest ML
models were trained with data from finite element simulations given the geometry of the
tissue. The surrogate model was then used to predict real-time the deformation under
compression. A similar approach was used in Reference [12] to predict the biomechanical
behavior of the human liver during the breathing process, which is crucial for guiding
surgeons during interventions where it is critical to track this deformation. These examples
in the biomechanical field show that creating surrogate finite element models using ML is
a feasible approach to provide a case-specific approximation of the response of the system
(stresses in this case). More validation of the approaches is, however, necessary with a
larger sets of data. A major limitation of the approaches [5,9–12] is their focus on static
stress analysis: No time dependency is considered, and only stresses are predicted by the
ML approach. In aerospace and mechanical applications, vibrations and time-dependent
analysis are of paramount importance, as well as predictions of accelerations, velocities,
and displacements in addition to stresses.

ML has recently been used in computational mechanics to formulate multiscale el-
ements [13,14], enhance the performance of traditional elements [15], and produce data-
driven solvers [16]. For example, Capuano et al. [14] use ML techniques to formulate a
novel multiscale finite element algorithm, called “Smart Element” that is characterized
by low computational cost. The approach utilizes ML to generate a direct relationship
between the element state (outputs) and its forces (inputs) and avoids the complex task of
finding the internal displacement field, and eliminates the need for numerical iterations.
The finite element of interest is fed to an ML algorithm that generates an approximated
model (surrogate) of the element that can be used in the same context and that is physically
accurate. The approach is general, and it is not tied to any specific ML algorithm because
the authors separated the element behavior, the learning process, and the solution method.
Therefore, the assembling and solution of the system of equations can be performed using
traditional techniques.

The main challenge in using ML approaches is that the approximation error converges
to reasonable values only with a large amount of data, which is often difficult and expensive
to obtain for complex numerical models, such as finite elements. To reduce the amount of
data needed to train the ML algorithm, Raissi and his team [17–19] have developed physics-
informed ML approaches. The hypothesis is that if we can encode information based on
the underlying physics of the system, less data will be necessary for the ML algorithm
to learn. Capuano et al. [14] demonstrate that the use of physics-based information,
such as corotational displacements, drastically reduces the samples required for training.
Physics-based ML is a promising field, and requires the use of governing partial differential
equations to inform the ML algorithm. To the authors’ knowledge, the approach has not
been applied using weak-form governing equations, nor more general discretized models,
such as finite element models.

A few attempts also exist in building surrogate modeling of fluid dynamic systems
using ML [20,21]. For example, Martinez et al. [21] developed a mid-fidelity approach
using an ML surrogate model that can learn the aerodynamic behavior of rotor blades from
higher fidelity CFD simulations. The authors obtained an efficient and accurate compu-
tational tool that is one order of magnitude faster compared to full CFD simulation and
provides superior predictions than traditional lower fidelity approaches. The ML model
consists of a Deep Convolutional Neural Network (uses an encoder-decoder architecture
with eight convolutional layers and 1024 neuron units) trained with supervised learning
techniques on high fidelity CFD simulations which encompass a large range of operating
environments for rotor blades. Aero-elastic deformations are initially prescribed as inputs
to the ML model that returns the pressure coefficient and skin friction distribution. The pa-
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per develops a physics informed neural network (PINN) in which the non-linear partial
differential equations that describe the laws of physics for rotorcraft aeromechanics act as
a regularization agent that constrains the solution space by discarding any non-realistic
flow solutions that violate physical principles. Encoding this information into the learning
algorithm enables it to find solutions quicker, as well as improving predictions of unseen
data. The predictions are inherently unsteady, three-dimensional, coupled, and highly
turbulent, and capture high-dimensional and non-linear observations. Accuracy on aero-
dynamic loads (normal force and pitching moment) is improved by 97% in the two flight
conditions analyzed by the authors (high-speed flight condition and stall flight condition).
The analysis is, however, incomplete in the analysis of additional conditions, such as
hovering and low-speed flight, and is highly limited by the flight conditions included in
the initial dataset. Comparisons on the resulting blade bending and torsional moments
are not provided, and therefore, it not possible to conclude the accuracy in structural
loads/stresses computation.

In the domain of geotechnical engineering analysis, Gao et al. [22] use deep learning
algorithms (enhance-and-split feature capsule network embedded in fully convolutional
neural networks) to generate a surrogate model to predict in-situ static stresses (intrinsic
stress of the crust and rock formations in their original state without being disturbed
by artificial engineering). The authors use fast Lagrangian analysis based on the finite
difference method and the model geometry to train the ML algorithm, and obtain fast
and accurate predictions. However, Gao et al. [22] obtain “incomprehensive” features,
and remain a promising but not adequate approach yet.

The review of current work described in this section highlights the lack of investigation
of the applicability of surrogate finite elements to transient vibration analysis, which is the
main goal of this paper. Based on the time-dependent response at a few reference locations,
the ML method will predict the time-dependent response over the spatial domain of the
entire beam, as described in the next section.

3. Materials and Methods

This section discusses how training data have been generated, the development of
ML models, and the evaluation criteria for the performance of the developed models as a
surrogate for an FEA in a one-dimensional time-varying mechanical system.

3.1. Concept

The surrogate FEA approach combines finite element models, supervised ML algo-
rithms, and measured response. Supervised ML is used to create a mid-fidelity surrogate
model that learns the stress distribution from rich FEA simulations and predicts stress
distributions in real-time based on actual measurements. As the stress of a one-dimensional
beam is directly related to the acceleration, the algorithm will focus on predicting overall
accelerations. Accelerations are also used as actual real-time measurements because ac-
celerometers are typically and conveniently used to monitor the behavior of a time-varying
system. The approach is, however, very flexible, and any type of response variable (dis-
placement, velocity, acceleration, strain, stress) could be used for training and predictions.

The goal of this approach is to obtain a mid-fidelity algorithm that can provide
sufficiently accurate numerical predictions of the response of a dynamic system during
actual conditions in a very short time [23,24]. The finite element model is informed of the
actual condition a time-varying mechanical system is experiencing through the measure
response (i.e., acceleration) and the ML algorithm that will evaluate the response of the
system at any other location.

The conceptual vision of this approach is that after training, the surrogate finite
element will provide a mid-fidelity estimate of the response of a vehicle at any instant of
time during operations, and at any locations of interest (see Figure 1).
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To achieve this objective, the following sequence of steps is proposed.

1. Construct a finite element model of the system of interest, in the form:

M
..
u(t) + C

.
u(t) + Ku(t) = f (1)

where u(t) is a vector containing the nodal degrees of freedom that depends on time
t, and

.
u(t) and

..
u(t) are its first and second derivative in time, respectively. M is the

mass matrix, C is the damping matrix, K is the stiffness matrix and f is the vector
containing the discretized applied loads for each degree of freedom. The formulation
is general and can accommodate for non-linearities in the model.

2. Run a series of time-varying FEA simulations to create a sufficiently large training
dataset that represents the expected loading conditions. Several loading conditions
(f1, . . . , fn) are applied to the model to obtain the response of each degree of freedom
and its derivatives

(
u1,

.
u1,

..
u1, . . . , un,

.
un,

..
un
)

f1 → u1,
.
u1,

..
u1

f2 → u2,
.
u2,

..
u2

...
fn → un,

.
un,

..
un

(2)

The loading conditions can also be applied sequentially to represent continuous
variations in the external loads such that

f = [f1, . . . , fn]→ u,
.
u,

..
u = [u1, . . . , un], [

.
u1, . . . ,

.
un], [

..
u1, . . . ,

..
un
]

(3)

Based on the results, compute stresses S, strain ε and all desired quantities.
3. Identify a few reference locations in the system at which the response will be measured.

The quantities at these locations are defined as p1(t), p2(t), . . . , pm(t). Counter m
corresponds to the total number of reference locations. Variables pi(t) can be in the
form of strains, accelerations, displacements, velocities, stresses or a combination of
them, depending on available sensing capabilities.

4. Set the results of FEA simulations as input to the ML approach. At each time step,
the ML algorithm establishes a relationship between the desired numerical response
(i.e., strains, accelerations, displacements, velocities, stresses) in the entire domain
of the finite element model with the reference quantities p1(t), p2(t), . . . , pm(t)
computed using the finite element model, Figure 2.

5. Measure the response at the reference locations p1(t), p2(t), . . . , pm(t) and input
them to the trained ML model.

6. Evaluate the desired numerical response in the entire spatial domain of the system
based on the measured p1(t), p2(t), . . . , pm(t).
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3.2. Data Generation

The feasibility of a surrogate finite element model is analyzed in a numerical environ-
ment, in which both the training and prediction data is created by a finite element solver
(corresponding to Steps 3 and 5 of the procedure in Section 3.1). This numerical setting
allows for more flexibility in data generation, and less variability, since no experimental
errors and noise will be affecting the predictions. The acceleration at five locations along
the beam is set as reference variable p1(t), p2(t), . . . , p5(t) and the entire acceleration fields
is reconstructed along the span of the system

..
u(t).

The analysis focuses on one-dimensional, linear, flexible dynamic systems, for which
the mechanical properties of the system (material properties and geometry) are known.
Specifically, the analysis is based on a rectangular, aluminum beam. The beam is 0.24 m
long, 0.032 m wide, and 3 mm thick. It is made of aluminum alloy, with Young modulus
E = 70,000 MPa, Poisson ratio ν = 0.33 and mass density ρ = 2700 kg/m3.

A finite element model of the beam is developed using the material and geometrical
properties described in the previous section. A mesh of 40 Timoshenko beam elements is
considered, clamped at the base. Light dissipation is introduced in the form of proportional
damping, C = αM + βK, with α = 10−1 1/s and β = 2 × 10−6 s. The time integration is
performed using the Newmark scheme (2nd order accuracy), and the finite element code is
implemented in Matlab [25–27].

The first bending natural frequency is 28 Hz, and the second 220 Hz. A distributed
load is applied along the beam, with a sinusoidal spatial distribution and a sine chirp time
variation in frequency range [0–400] Hz. This applied load ensures that the entire frequency
range is excited, and that the contribution of a load acting on each node is considered as
well. The time response is numerically integrated using ∆t = 2.5 × 10−4s time step to
prevent aliasing, and the simulation has a duration of 10 s, for a total of 4 × 104 time steps.
The numerical model of the beam and spatial load distribution and the frequency analysis
for load distribution are shown in Figures 3 and 4, respectively. Given the variations in
the applied loads both in time and space, this loading condition is considered as the entire
loading vector f based on which the response of the model is computed.
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The results of the finite element model are then organized in a tabular form, and each
row contains the information for each nodal location in the beam at each time step. The in-
put variables p1, p2, p3, p4, p5 are specified at the following locations along the beam,
respectively: xpi = [0.006, 0.073, 0.121, 0.199, 0.242] m, such as in Table 1.

Table 1. Tabular setup of the variables for training of the machine learning algorithm.

T [s] Nodal
location [m]

Acceleration at
node—Acc [m/s2]

p1
[m/s2]

p2
[m/s2]

p3
[m/s2]

p4
[m/s2]

p5
[m/s2]

For a total of 1.64 × 106 rows = (4 × 104 time steps) × (41 nodal locations x). The ref-
erence locations xpi have been chosen to have a uniformly spaced distribution of points
over the beam domain.

3.3. Data Pre-Processing

The data generated in the previous section is used to develop the ML models. The dataset
consists of over 1.6 million data points. The dataset has eight attributes: Time instant at
which acceleration is measured (time), location at which acceleration is measured (x),
acceleration (acc), and p1, p2, p3, p4, p5, each representing acceleration values obtained at
different places on the beam when load is applied at variable x. All the five accelerations
p1, p2, p3, p4, p5 are obtained at the same time instance. The purpose is to use acceleration
values at a specific x location over a setting of time instances to predict acceleration in
other points.

The datatype of all attributes is numerical. None of the attributes has any missing data.
Since the experimental data is generated using the FE model, no values are considered
as outliers. The time ‘t’ attribute is not used for the analysis. The variables used as
independent/input attributes are: x, p1, p2, p3, p4, and p5; and the output variable to be
predicted is acc.

Since the range of attribute values are extremely different, due to the nature of the
variation over time for this specific model, the data is normalized. We used the normaliza-
tion method as the traditional way of scaling data in the ML modeling. That way, the data
is secure for modeling as it can now be transformed from its original distribution to the
“Normal Z-Distribution”. The formula used by the algorithm is that for each variable (vi),
its value is deduced from the overall average of the value (µ), and is divided by the overall
standard deviation of that variable (σ), using the following equation:

Zi =
vi − µ

σ
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Any calculated statistical feature, such as minimum, maximum, standard deviation,
and quantiles, naturally inherits the same units of the original variable. Therefore, the unit
for the statistical features, presented in Table 2, have all the same units after being normal-
ized. The descriptive statistics of the generated data is shown in Table 2.

Table 2. Descriptive statistics of the generated data used in the study.

Descriptive
Statistics

Variables in the Data Set

Time
[s]

x
[m]

Acc
[m/s2]

p1
[m/s2]

p2
[m/s2]

p3
[m/s2]

p4
[m/s2]

p5
[m/s2]

count 1,640,041 1,640,041 1,640,041 1,640,041 1,640,041 1,640,041 1,640,041 1,640,041
Mean 5 0.121 0.000134 0.003443 −0.00443 −0.01435 0.014168 −0.03374

Standard Deviation 2.886824 0.071585 460.3932 13.78769 433.0268 597.488 334.7891 915.9048
Minimum 0 0 −10800.2 −253.55 −5490.93 −7413.91 −2465.33 −10800.2

25% Quantile 2.5 0.0605 −34.3779 −0.24257 −30.1772 −63.572 −70.5374 −95.8869

50% Quantile 5 0.121 −1.61 ×
10−167 −0.00023 −0.00323 −0.02278 0.114156 0.111756

75% Quantile 7.5 0.1815 34.10027 0.243119 30.05224 63.17301 70.17889 95.27278
maximum 10 0.242 10,590.98 285.8167 5576.689 7521.675 2464.305 10,590.98

From the whole dataset, 80% of data is used in the training process for developing
each ML model separately. Then, the trained model is saved and applied to the new
dataset, which includes 20% of the cases in the original data. The purpose is to assure
the practicality and efficiency of the model when applied to new cases. As long as the
developed ML algorithms could generalize and show a comparable accuracy rate with the
training results, the model is useful for prediction purposes.

3.4. Machine Learning Model Development

In this study, three ML algorithms for regression, including decision trees and artificial
neural networks, are used to predict the acceleration based on previously given accelera-
tions in specific time instances and locations over the beam. Decision trees are among the
most popular predictive analytics techniques among practitioners, due to being relatively
straightforward to build and understand, as well as handling both nominal and continuous
inputs [28]. Some important examples of decision trees include extreme gradient boosted
trees and random forest as they are considered as best for classification and regression
purposes [29].

The models used in this study are extreme gradient boosting decision trees, random
forest decision trees, and artificial neural networks (ReLu networks), each is explained
briefly in the following with details about the model structure. The implementation details
used for this study are also provided. All models have been developed using SKlearn,
Keras, and XGBoost (extreme gradient boosting) python libraries through GoogleColab
platform [30].

3.4.1. Extreme Gradient Boosting Trees

Extreme gradient boosting decision trees (XGBoost) is a popular data mining algo-
rithm, which is developed based on a combination of classification and regression trees
(CART) based on a continuous training process [31], and can be used for classification
purposes with a categorical output variable, or for regression purposes for estimation
of a numerical target. The main idea of the XGBoost algorithm is to build a classifica-
tion regression tree by using all the features in the data set. During the training process,
each classification and regression tree is more fitted to the errors, which represent the
difference between the observed value and the predicted value of the output variables
from the ML model. The tree is then compared to the previously built tree for further
adjustment and error minimization. Moreover, the XGBoost algorithm is computationally
affordable, has high performance in identifying the relationship between the input and



Sensors 2021, 21, 1654 9 of 18

output variables, avoids overfitting, and has a minimum requirement for feature engi-
neering compared to many other ML algorithms [32]. Furthermore, one challenge with
modeling dynamic systems, such as the one in this study, is a lack of model generaliza-
tion. In other words, the ML model could show a high accuracy rate on the training data,
and its performance deteriorates when applied to the test data. XGBoost models have
shown superiority in generalization, which means improving the model accuracy on the
test data [33]. Therefore, the XGBoost algorithm, as a more appropriate decision tree for
regression modeling, is used in this study. In this paper, the gradient boosting decision
trees were built using 500 trees.

The model structure is constructed using the default values for each ML algorithms,
as well as consideration for the type of problem, regression in the case of this study.
Since XGBoost has application in both regression and classification cases, the parameters for
the tress and its boosting (gaining the minimum prediction error) should be considered [34],
as shown in Table 3. The details of each parameter description are given in Reference [35].
As this study is addressing a regression problem, the grid search selected values for the
XGBoost with the highest predictive power are 500 trees with gblinear (for regression),
with a learning rate of 0.1, maximum depth of 3 (which is the optimal number of splits
in each tress nods) with sub and col samples of 1. The L1 regularization is 0 as it is only
used in Ridge regression, and the L2 regularization value is 1. The loss function is linear
regression which calculates the sum of squared of the model error in predicting future
output values in relation to the observed values in the dataset.

Table 3. Details for XGBoost (extreme gradient boosting) structure by grid search.

Parameter Description Range in Grid Search

Booster Boosting algorithm used in building trees {‘gblinear, ‘gbtree’}
N_estimator Number of boosted tress {100, 200, 300, 400, 500}
Max_depth Maximum tree depth for base learner {3, 4, 5, 6, 7, 8}
Subsample Subsample ration of the training instances {0.5, 1}
Colsample Subsample ratio of columns when building each tree {0.5, 1}
Reg_alpha L1 regularization term on weights (used for Ridge regression) {0.01, 0.5, 1}

Reg_lambda L2 regularization term on weights (used to reduce high dimension) {0.01, 0.5, 1}
Learning_rate Boosting learning rate {0.01, 0.05, 0.1, 0.2}

3.4.2. Random Forests

Random forest (RF) is another ensemble of CART algorithm, which uses the bagging
method for predicting a numerical output in regression problems. During the training
process, first, separate CART trees are constructed, with a predicted estimation of the output
variables. In the second step, all those trees are aggregated to create an average value for the
output variable. Using the bagging method for developing an RF model highly reduces the
variance and the prediction bias, either underestimation or overestimation, of the output
target. Furthermore, RF works perfectly with non-linear data [36]. In this paper, the random
forest decision trees were built using 100 trees in each forest, with 13 as the depth of each
tree. These numbers were gained using the GridSearch option for choosing the optimal
number and depth for the decision trees considering the data. The base algorithm for
splitting tree nodes was a decision tree regressor, with a mean square error calculated for
the loss function.

3.4.3. Artificial Neural Networks

Artificial neural networks (ANNs) is a data mining algorithm that can identify the non-
linear and complex patterns in the data, and figure out the relationship between the input
and output variables based on constructing a mathematical function (activation function)
of inputs to minimize the error of the model in estimating an output [37]. The overall
structure of ANNs consist of three layers as input, hidden, and output layers [38], as shown
in Figure 5. Among various types of ANNs, such as MLP, RBF, and ReLu networks—the
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last one is used for this study. The reason is the compatibility of the ReLu networks with
any sampling algorithms, since the training process of ReLu is not dependent on the
distribution of the data [39]. The number of hidden layers, the type of activation function,
the number of nodes, and the learning rate of the algorithm should be considered while
developing ANNs [40].

Sensors 2021, 21, x FOR PEER REVIEW 10 of 19 
 

 

3.4.2. Random Forests 
Random forest (RF) is another ensemble of CART algorithm, which uses the bagging 

method for predicting a numerical output in regression problems. During the training 
process, first, separate CART trees are constructed, with a predicted estimation of the out-
put variables. In the second step, all those trees are aggregated to create an average value 
for the output variable. Using the bagging method for developing an RF model highly 
reduces the variance and the prediction bias, either underestimation or overestimation, of 
the output target. Furthermore, RF works perfectly with non-linear data [36]. In this paper, 
the random forest decision trees were built using 100 trees in each forest, with 13 as the 
depth of each tree. These numbers were gained using the GridSearch option for choosing 
the optimal number and depth for the decision trees considering the data. The base algo-
rithm for splitting tree nodes was a decision tree regressor, with a mean square error cal-
culated for the loss function. 

3.4.3. Artificial Neural Networks 
Artificial neural networks (ANNs) is a data mining algorithm that can identify the 

non-linear and complex patterns in the data, and figure out the relationship between the 
input and output variables based on constructing a mathematical function (activation 
function) of inputs to minimize the error of the model in estimating an output [37]. The 
overall structure of ANNs consist of three layers as input, hidden, and output layers [38], 
as shown in Figure 5. Among various types of ANNs, such as MLP, RBF, and ReLu net-
works—the last one is used for this study. The reason is the compatibility of the ReLu 
networks with any sampling algorithms, since the training process of ReLu is not depend-
ent on the distribution of the data [39]. The number of hidden layers, the type of activation 
function, the number of nodes, and the learning rate of the algorithm should be consid-
ered while developing ANNs [40]. 

 
Figure 5. The structure of artificial neural networks (ANNs) [38]. 

In this paper, the structure included for the artificial neural networks one input layer, 
nine hidden layers, and one output layer. The model was trained for 50 epochs, with ReLu 
activation function, and learning rate of 0.001, using the RMSProp optimizer in Python. 
The details of the constructed ANN are given in Table 4. 

Table 4. Details for ANN structure in this study. 

Layer Structure Criteria ReLu Structure 

Input Layer 
Factors position x; pi(t) 

Number of Units 6  

Hidden Layer Number of Hidden Layers 9 
Number of Units 1952 

Figure 5. The structure of artificial neural networks (ANNs) [38].

In this paper, the structure included for the artificial neural networks one input layer,
nine hidden layers, and one output layer. The model was trained for 50 epochs, with ReLu
activation function, and learning rate of 0.001, using the RMSProp optimizer in Python.
The details of the constructed ANN are given in Table 4.

Table 4. Details for ANN structure in this study.

Layer Structure Criteria ReLu Structure

Input Layer Factors position x; pi(t)
Number of Units 6

Hidden Layer
Number of Hidden Layers 9

Number of Units 1952
Activation Function Rectified Linear Unit (ReLU)

Output Layer
Dependent Variables acceleration

Number of Units 1
Error Function Mean Squared Error

3.5. Model Quantitative Performance Metrics

Model selection is a process of seeking the model in a set of candidate models that
gives the best balance between model fit and complexity [41]. The comparison criterion
should be based on knowledge and history of the data, as well as personal preference.

For regression modeling, the quantitative performance metrics are mean absolute
error (MAE), root mean squared error (RMSE), and R-squared (R2). The MAE shows the
average difference between the actual values of the output variable in the original data vs.
the predicted output values via the ML models. The lower the MAE, the more precise the
performance of the model is in predicting future occurrences of the output. The RMSE is
defined as the standard deviation of the response variable. Values of R2 range from 0 to 1,
where 1 is a perfect fit, and 0 means there is no gain by using the model over using fixed
background response rates. It estimates the proportion of the variation in the response
around the mean that can be attributed to terms in the model rather than to random error.
When it comes to comparing models, the one with the highest R2 and the lowest RMSE
and MAE is preferred. The details of how MAE, RMSE, and R2 are calculated are shown
in Table 5.
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Table 5. Model comparison criteria.

Criterion Formula

MAE * 1
n

n
∑

i=1
|yi− ŷi|

RMSE *
√

n
∑

i=1

(yi−ŷi)2

n

R2 1− ∑n
i=1(yi−ŷi)2

∑n
i=1(yi−yi)2

* MAE, mean absolute error; RMSE, root mean square error; n, number of data points used in the model;
n, number of observations in the data set; yi, the real value for the output variable; ŷi, predicted value for the
output variable; yi, average value for all output variables in the data set.

4. Results

This section describes the results from XGBoost, RF, and ANNs and evaluates their
performance as a surrogate for an FEA in the one-dimensional mechanical systems used in
this study.

All three ML models were trained using the training data with 1.3 million data points,
consisting of 80% of the total available data.

Comparing the R2 values, all models have high values of over 0.98. It means that the
ML algorithms are able to describe over 98% of variations in the data, and are highly pre-
dictive of the y output based on the independent variables used in the study. Regarding the
MAE and RMSE, ANNs have the lowest values of 2.11 and 8.67, respectively, followed
by RF with 5.74 and 16.12 and XGBoost with 15.27 and 34.28 for MAE and RMSE values.
The results suggest that ML models developed for predicting the acceleration in the beam
are promising, with ANNs as the most predictive model among the three.

The ANN model performance, described by the mean absolute error and the mean
square error, converge to an acceptable minimum after 50 epochs (Figure 6), which has
therefore been chosen as providing a sufficient minimum error in predictions for this study.
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The K-fold validation error for K = {1, . . . , 10} for both RF and XGBoost algorithm
are presented in the following: Figures 7 and 8 show the RMSE behavior for each K cross-
validation of RF and XGBoost. The MSE behavior is shown in Figures 9 and 10 for RF and
XGBoost, respectively. These plots show that the models developed using the training set
can be generalized as their performance is validated by 10-fold cross-validation, both for
RF and XGBoost models.
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To further investigate the performance of the ML models on new data, the trained
models are applied to the test data with 328,000 data points. Since these data were not
used in the training part, and are new to the models, the performance of the ML mod-
els on this data is the judgement criteria for the models’ practicality when applied to a
one-dimensional mechanical system. The results of the ML models’ performance on the
test data are presented in Table 6. Each value in Table 6 shows the difference between the
actual acceleration (output variable) in the study, and the predicted value of acceleration
based on each ML model. The MAE values show that the average absolute value of the
difference between the accelerations in the data, and the predicted accelerations using
ANN, RF, and XGBoost are 2.87, 6.55, and 15.46 units, respectively. Therefore, ANN yielded
the most precise and accurate estimation of acceleration based on the ML surrogate models.
The R-squared value explains the variation in the data that can be explained and captured
through the presented model. In this case, all ML algorithms are successful in explaining
the variability in the data. In other words, using the input variables of this study, all three
models will predict the output acceleration with over 99% fit. Looking at all three perfor-
mance criteria, even though the R-squared of XGBoost is as high as RF and ANNs, it still
cannot provide an accurate and precise estimation of the acceleration (MAE = 15.47 on
average, and RMSE = 35.42 on average).

Table 6. Model performance on test data.

Model Performance Metric ANNs RF XGBoost

Mean Absolute Error 2.87 6.55 15.47
Root Mean Squared Error 10.58 19.62 35.42

R-squared 0.9994 0.9981 0.9940

To illustrate the usefulness of the models in practice, the predicted values for a random
set of new input variables are obtained and compared to the original values (Table 7).
It shows that the predicted vs. real output values are very close, and thus, the ML models
provide a close and accurate prediction of the stress in this study. With input variables in
each row, the predicted values from the models are compared to the actual output values,
and that is how MAE, RMSE, and R2 values are calculated using equations in Table 5.

As shown in Table 7, a weak pointwise accuracy is achieved by all the proposed
algorithms. The ANN method is superior in achieving a strong pointwise accuracy with
respect to the Random Forest and the XGBoost method. In the case of the ANN approach,
a strong pointwise accuracy is achieved at all locations in Table 7, except at location x
= 0.1028 m, at which the actual acceleration is small. It can be concluded that a strong
pointwise accuracy is lacking only when the absolute value of the predicted variable is in
the vicinity of zero, with respect to the other quantities, which is a common behavior in
dynamics given the comparable signal to error values.

It is valuable to observe how the predicted acceleration varies along the beam and
with respect to time, to gauge a physical understanding of the ML performance. Specifi-
cally, Figure 11 shows the deformed shape along the beam at time instant t = 3.7498 s in,
and Figures 12 and 13 depict two snapshots of the acceleration varying with time at node 35
(x = 0.2057 m), respectively. The behavior of the algorithms is similar at any other location
or time instant. Overall, all three algorithms behave well in their predictions. The RF and
ANN algorithms are able to predict a smooth and accurate deformed shape over the entire
beam, with great accuracy at every location. They also have no difficulties in predicting the
time history of the system both in terms of magnitude and phase. The XGBoost algorithm
seems to have more difficulties in predicting a smooth deformed shape (Figure 11), as well
as the peaks in the time-varying response (Figure 12), but its overall behavior is accept-
able as a mid-fidelity FEA surrogate, confirming the statistical indicators. The boundary
conditions of a clamp at the root are well respected by all algorithms.



Sensors 2021, 21, 1654 14 of 18

Table 7. Predicted values for acceleration “Acc” for a set of input variables from the test data. The data in the table was randomly
selected to show models’ performance.

Input Variables Output Predicted Output Per Model

X
[m]

p1
[m/s2]

p2
[m/s2]

p3
[m/s2]

p4
[m/s2]

p5
[m/s2]

Actual
Acc

[m/s2]

Acc
ANNs
[m/s2]

Acc
RF

[m/s2]

Acc
XGBoost

[m/s2]

0.0847 −0.273 −39.709 −84.76 −132.28 −160.617 −51.63 −51.59
0.08%

−52.36
1.42%

63.00
16.9%

0.0847 −0.50 −70.812 −129.20 −110.034 −96.189 −89.79 −90.67
0.99%

−91.84
2.29%

69.18
32.7%

0.0121 −3.162 −397.07 −985.0 −2192.01 −2883.29 −12.48 −13.95
11.74%

−12.858
3.02%

11.047
16.40%

0.1331 0.086 10.4072 26.542 62.195 82.48 31.49 33.09
5.06%

35.19
11.7%

45.39
22.5%

0.0363 −5.106 15.067 11.276 −56.605 −111.163 6.109 7.146
16.9%

11.34
85.6%

4.243
167%

0.1391 0.164 21.744 51.713 105.605 136.828 63.76 64.86
1.74%

65.09
2.09%

68.59
5.11%

0.1996 0.030 3.594 9.2598 22.098 29.38 22.10 22.38
1.29%

22.348
1.13%

29.01
22.9%

0.1512 0.028 3.306 8.5029 20.230 26.889 12.73 14.0
9.96%

14.94
17.3%

11.658
28.1%

0.1028 0.0029 0.3776 0.9086 1.90 2.4729 0.697 1.715
145%

1.98
184%

3.12
350%

0.0544 0.081 9.763 25.016 59.115 78.494 5.721 5.449
4.75%

6.64
16.1%

4.97
33.8%

0.0242 −1.283 −141.21 −221.38 −50.023 82.482 −19.73 −19.19
2.74%

−19.33
2.04%

20.17
4.14%
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5. Discussion

The results, shown in Tables 6 and 7, confirm that the ML models, when developed
properly, could be used as a surrogate for an FEA considering their high accuracy and
precision in predicting an acceleration in a given location based on previous acceleration at
a time instant. However, this conclusion does not hold for the XGBoost model. XGBoost
is a new and highly popular method that works for many regression cases successfully.
One outcome of this study is that when dealing with dynamic beam data, due to its nature
and the up/down variability in the values over time, XGBoost fails to estimate the acceler-
ation values with the same high accuracy and low error of the ANNs, and RF models.

The ML algorithms, in particular RF and ANN models, can accurately predict the
values of the accelerations at any time instant and spatial location. The surrogate FEA
algorithms have some difficulties in predicting the initial response of the system as the
numerical FEA Newmark time integrator is still converging to a numerical solution.

The main challenge in the use of ML algorithm as a surrogate finite elements lays in
the necessity of large training sets, consisting of millions of data entry and must encompass
the expected loading conditions that the dynamic system will encounter. In addition,
additional analysis is required to establish the optimal locations for the reference locations.
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The results presented in Section 4 demonstrate that the approach is feasible for one-
dimensional applications. This consideration is promising for more complex applications,
such as the analysis of two-dimensional and three-dimensional cases. The authors expect
that the approach will be scalable to more complex systems; however, higher dimensions
cases will require a larger training dataset, due to additional complexity in the model.
The next steps of the research will involve the analysis of higher dimensions cases and
their validation.

The results of the surrogate model confirm that it will be possible to use this method
as a mid-fidelity FEA. We envision that during the design phase of a fleet of vehicles,
the surrogate model will be trained to encompass the expected design loads during the
lifetime of the vehicles in the fleet. During operations, each vehicle will record the response
at the reference points, which will act as the input for the surrogate model. Using the
trained model, it will be computationally inexpensive to obtain the response at every
location in the system at every instant of time for every vehicle. The system behavior can
be tracked at any time with a sufficiently accurate estimate.

6. Conclusions

This paper presents a novel approach to use ML algorithms as a surrogate in finite
element models, in order to predict the behavior of a time-varying mechanical system.
After an extensive literature review, reviewing the current state-of-the-art research on
the topic, a novel algorithm combining finite element approaches and ML algorithms
for transient systems is described. The approach is numerically validated for a one-
dimensional system. The overall response is predicted by the ML algorithms based on
the real-time response at a few reference locations. The ML models are trained based
on the FEA, and then they predict the overall mechanical state of the beam at any time
instant based on the response of a few points, eliminating the need to re-run an additional
FEA. The performance of three ML algorithms has been evaluated in a one-dimensional
framework: Gradient boosting regression trees, random forest, and artificial neural network.
All three algorithms have proven as valid candidates as mid-fidelity surrogate models for
an FEA, with artificial neural networks providing more accurate results. The performance
of the artificial neural network is also tested to predict variables different than reference
variables, and the surrogate model is shown to be flexible and accurate. The results of the
surrogate model, therefore, confirm that it will be possible to use this method as a mid-
fidelity FEA. We envision that during the design phase of a fleet of vehicles, the surrogate
model will be trained to encompass the expected design loads during the lifetime of
the vehicles in the fleet. During operations, each vehicle will record the response at the
reference points, which will act as the input for the surrogate model. Using the trained
model, it will be computationally inexpensive to obtain the response at every location in
the system at every instant of time for every vehicle. The system behavior can be tracked at
any time with a sufficiently accurate estimate.
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