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Abstract

An edge labeling of a connected graph G = (V,E) is said to be local
antimagic if it is a bijection f : E → {1, . . . , |E|} such that for any pair
of adjacent vertices x and y, f+(x) 6= f+(y), where the induced vertex
label f+(x) =

∑

f(e), with e ranging over all the edges incident to x. The
local antimagic chromatic number of G, denoted by χla(G), is the minimum
number of distinct induced vertex labels over all local antimagic labelings
of G. In this paper, several sufficient conditions for χla(H) ≤ χla(G) are
obtained, where H is obtained from G with a certain edge deleted or added.
We then determined the exact value of the local antimagic chromatic number
of many cycle-related join graphs.
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1. Introduction

A connected graph G = (V,E) is said to be local antimagic if it admits a local

antimagic edge labeling, i.e., a bijection f : E → {1, . . . , |E|} such that the
induced vertex labeling f+ : V → Z given by f+(u) =

∑

f(e) (with e ranging
over all the edges incident to u) has the property that any two adjacent vertices
have distinct induced vertex labels (see [1, 2]). Thus, f+ is a coloring of G.
Clearly, the order of G must be at least 3. The vertex label f+(u) is called the
induced color of u under f (the color of u, for short, if no ambiguity occurs).
The number of distinct induced colors under f is denoted by c(f), and is called
the color number of f . The local antimagic chromatic number of G, denoted by
χla(G), is min{c(f) : f is a local antimagic labeling of G}.

Let On = Kn be the empty graph of order n ≥ 1. For any graph G, the
join graph H = G ∨ On is defined by V (H) = V (G) ∪ {vj : 1 ≤ j ≤ n} and
E(H) = E(G) ∪ {uvj : u ∈ V (G), 1 ≤ j ≤ n}. In [1, Theorem 2.16], it was
claimed that for any G with order n ≥ 4,

χla(G) + 1 ≤ χla(G ∨O2) ≤

{

χla(G) + 1 if n is even,

χla(G) + 2 if n is odd.

In [4], Lau et al. showed that there exists a graph G order n ≥ 3 such that
χla(G ∨ O2) − χla(G) = 3 − n ≤ 0. This implies that the above lower bound is
invalid. They then showed that χla(G+On) ≥ χ(G) + 1 and the bound is sharp.
Several sufficient conditions for the following conjecture to hold were also given.

Conjecture 1.1. For n ≥ 1, χla(G ∨ On) ≥ χla(G) + 1 if and only if χ(G) =
χla(G).

Let G− e (or G+ e) be the graph G with an edge e deleted (or added). As
a natural extension, we have obtained in this paper several sufficient conditions
for χla(G − e) ≤ χla(G) (or χla(G + e) ≤ χla(G)). We then determine the
exact value of the local antimagic chromatic number of many cycle related join
graphs. We shall use the notation [a, b] = {c ∈ Z : a ≤ c ≤ b}, for integers
a ≤ b. Unless stated otherwise, all graphs considered in this paper are simple,
undirected, connected and of order at least 3. Thus χla(G) ≥ 2 for any graph
G. Interested readers may refer to Yu et al. [7] for local antimagic labeling of
subcubic graphs without isolated edges.

For m,n ≥ 2, it is well known that a magic (m,n)-rectangle exists if and
only if m ≡ n (mod 2) and (m,n) 6= (2, 2) (see [3, 6]). Let ai,j be the (i, j)-entry
of a magic (m,n)-rectangle with row constant n(mn+1)/2 and column constant
m(mn+ 1)/2.
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2. Bounds on Graphs with an Edge Deleted or Added

Observe that Kt, t ≥ 3, is a complete t-partite graph with χla(Kt) = t. The
contrapositive of the following lemma gives a sufficient condition for a bipartite
graph G to have χla(G) ≥ 3.

Lemma 2.1. Let G be a graph of size q. Suppose there is a local antimagic

labeling of G inducing a 2-coloring of G with colors x and y, where x < y. Let

X and Y be the numbers of vertices of colors x and y, respectively. Then G is a

bipartite graph whose sizes of parts are X and Y with X > Y , and

(1) xX = yY =
q(q + 1)

2
.

Proof. Clearly G is bipartite. Each edge is incident with one vertex of color x
and one vertex of color y. Hence we have the equation (1). Since x < y, X > Y .
This completes the proof.

Lemma 2.2. Suppose G is a d-regular graph of size q. If f is a local antimagic

labeling of G, then g = q + 1 − f is also a local antimagic labeling of G with

c(f) = c(g). Moreover, suppose c(f) = χla(G) and if f(uv) = 1 or f(uv) = q,
then χla(G− uv) ≤ χla(G).

Proof. Let x, y ∈ V (G). Here, g+(x) = d(q+1)− f+(x) and g+(y) = d(q+1)−
f+(y). Therefore, f+(x) = f+(y) if and only if g+(x) = g+(y). Thus, g is also a
local antimagic labeling of G with c(g) = c(f).

If f(uv) = q, then we may consider g = q+1−f . So without loss of generality,
we may assume that f(uv) = 1. Define h : E(G−uv) → [1, |E(G)|− 1] such that
h(e) = f(e) − 1 for e 6= uv. So, h+(x) = f+(x) − d for each vertex x of G− uv.
Therefore, f+(x) = f+(y) if and only if h+(x) = h+(y). Thus, h is also a local
antimagic labeling of G with c(h) = c(f). Consequently, χla(G−uv) ≤ χla(G).

Note that if G is a regular edge-transitive graph, then χla(G− e) ≤ χla(G).

Lemma 2.3. Suppose G is a graph of size q and f is a local antimagic labeling

of G. For any x, y ∈ V (G), if

(i) f+(x) = f+(y) implies that deg(x) = deg(y), and

(ii) f+(x) 6= f+(y) implies that (q + 1)(deg(x)− deg(y)) 6= f+(x)− f+(y),
then g = q + 1− f is also a local antimagic labeling of G with c(f) = c(g).

Proof. For any x, y ∈ V (G), we have g+(x) = deg(x)(q+1)−f+(x) and g+(y) =
deg(y)(q+1)− f+(y). Here g+(x)− g+(y) = (q+1)(deg(x)−deg(y))− (f+(x)−
f+(y)). If f+(x) = f+(y), then condition (i) implies that g+(x) = g+(y). If
f+(x) 6= f+(y), then condition (ii) implies that g+(x) 6= g+(y). Thus, g is also a
local antimagic labeling of G with c(g) = c(f).
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For t ≥ 2, consider the following conditions for a graph G.

(i) χla(G) = t and f is a local antimagic labeling of G that induces a t-
independent partition

⋃t
i=1 Vi of V (G).

(ii) For each x ∈ Vk, 1 ≤ k ≤ t, deg(x) = dk satisfying f+(x)− da 6= f+(y)− db,
where x ∈ Va and y ∈ Vb for 1 ≤ a 6= b ≤ t.

(iii) There exist two non-adjacent vertices u, v with u ∈ Vi, v ∈ Vj for some
1 ≤ i 6= j ≤ t such that

(a) |Vi| = |Vj | = 1 and deg(x) = dk for x ∈ Vk, 1 ≤ k ≤ t; or

(b) |Vi| = 1, |Vj | ≥ 2 and deg(x) = dk for x ∈ Vk, 1 ≤ k ≤ t except that
deg(v) = dj − 1; or

(c) |Vi| ≥ 2, |Vj | ≥ 2 and deg(x) = dk for x ∈ Vk, 1 ≤ k ≤ t except that
deg(u) = di − 1, deg(v) = dj − 1,

each satisfying f+(x) + da 6= f+(y) + db, where x ∈ Va and y ∈ Vb for
1 ≤ a 6= b ≤ t.

Lemma 2.4. Let H be obtained from G with an edge e deleted. If G satisfies

conditions (i) and (ii) and f(e) = 1, then χ(H) ≤ χla(H) ≤ t.

Proof. By definition, we have the lower bound. Define g : E(H) → [1, |E(H)|]
such that g(e′) = f(e′)− 1 for each e′ ∈ E(H). Observe that g is a bijection with
g+(x) = f+(x) − dk for each x ∈ Vk, 1 ≤ k ≤ t. Thus, g+(x) = g+(y) if and
only if x, y ∈ Vk, 1 ≤ k ≤ t. Therefore, g is a local antimagic labeling of H with
c(g) = c(f). Thus, χla(H) ≤ t.

Lemma 2.5. Suppose uv 6∈ E(G). Let H be obtained from G with an edge uv
added. If G satisfies conditions (i) and (iii), then χ(H) ≤ χla(H) ≤ t.

Proof. By definition, we have the lower bound. Define g : E(H) → [1, |E(H)|]
such that g(uv) = 1 and g(e) = f(e)+1 for e ∈ E(G). Observe that g is a bijection
with g+(x) = f+(x) + dk for each x ∈ Vk, 1 ≤ k ≤ t. Thus, g+(x) = g+(y) if and
only if x, y ∈ Vk, 1 ≤ k ≤ t. Therefore, g is a local antimagic labeling of H with
c(g) = c(f). Thus, χla(H) ≤ t.

In [1, Theorem 2.11], the authors showed that for any two distinct integers
m,n ≥ 2, χla(Km,n) = 2 if and only if m ≡ n (mod 2). Let K−

m,n be the
graph Km,n with an edge deleted. From the proof of [1, Theorem 2.11] and by
Lemma 2.4, the following result is obvious.

Corollary 2.6. For any two distinct integers m,n ≥ 2 and m ≡ n (mod 2),
χla(K

−

m,n) = 2.
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3. Cycle-Related Join Graphs

Consider the join graph Cm ∨On with V (Cm) = {ui : 1 ≤ i ≤ m}, V (On) = {vj :
1 ≤ j ≤ n} and E(Cm ∨On) = {uiui+1 : 1 ≤ i ≤ m} ∪ {uivj : 1 ≤ i ≤ m, 1 ≤ j ≤
n}, where um+1 = u1. Let ei = uiui+1 for 1 ≤ i ≤ m. So em = umu1. We shall
keep these notations in this section unless stated otherwise.

Theorem 3.1. For odd m,n ≥ 3, χla(Cm ∨On) = 4.

Proof. Define an edge labeling f : E(Cm ∨ On) → [1,mn + m] such that
f(e2i−1) = i (1 ≤ i ≤ (m + 1)/2) and f(e2i) = m + 1 − i (1 ≤ i ≤ (m − 1)/2)
and that f(uivj) is the (i, j)-entry of a magic (m,n)-rectangle containing integers
in [m+ 1,mn+m] with row sum constant n(mn+ 1)/2 +mn and column sum
constant m(mn+ 1)/2 +m2. One can check that

(i) f+(vj) = m(mn+ 1)/2 +m2,

(ii) f+(u1) = n(mn+ 1)/2 +mn+ (m+ 3)/2,

(iii) f+(ui) = n(mn+ 1)/2 +mn+m+ 1 for even i, and

(iv) f+(ui) = n(mn+ 1)/2 +mn+m+ 2 for odd i ≥ 3.

Supposem ≤ n. We havem(mn+1)/2+m2 < n(mn+1)/2+mn+(m+3)/2 <
n(mn+ 1)/2 +mn+m+ 1 < n(mn+ 1)/2 +mn+m+ 2. So, χla(G) ≤ 4.

Suppose m > n. We have m(mn+ 1)/2 +m2 = n(mn+ 1)/2 +mn+ (m−
n)m+ (m− n)(mn+ 1)/2 > n(mn+ 1)/2 +mn+m+ 2. So, χla(G) ≤ 4.

Since χla(G) ≥ χ(G) = 4, we have χla(G) = 4.

Corollary 3.2. For odd m,n ≥ 3, if H = (Cm ∨On)− e where e 6∈ E(Cm), then
χla(H) = 4.

Proof. Note that G = Cm ∨On has size mn+m and every vertex belonging to
Cm (or On) has degree n + 2 (or m). Let f be the local antimagic labeling as
defined in the proof of Theorem 3.1. We can check that f satisfies the conditions
of Lemma 2.3. Therefore, g = mn+m+1−f is also a local antimagic labeling of
G with c(g) = 4 such that g(e) = 1 for an edge e 6∈ E(Cm). It is straightforward
to check the conditions of Lemma 2.4. By Lemma 2.4, we have 4 = χ(H) ≤
χla(H) ≤ 4. Thus, the result holds.

Theorem 3.3. For m ≥ 2 and n ≥ 1, χla(C2m ∨O2n) = 3.

Proof. Let G = C2m ∨ O2n. Define an edge labeling f : E(G) → [1, 4mn+ 2m]
such that f(eh) = h for 1 ≤ h ≤ 2m and f(uhvk) is given below, for 1 ≤ h ≤ 2m
and 1 ≤ k ≤ 2n.

We define f(u1v1) = 2m + 1 and f(u2i−1v1) = 4m − 2i + 3 for 2 ≤ i ≤ m.
For 1 ≤ i ≤ m, define
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(i) f(u2i−1v2) = 6m− 2i+ 1,

(ii) f(u2i−1v2j−1) = 2m(j − 1) + 2i and f(u2i−1v2j) = 2m(2n+ 1− j)− 2i+ 2,
for 2 ≤ j ≤ n,

(iii) f(u2iv1) = 2m(2n+ 1)− 2i+ 2 and f(u2iv2) = 4mn− 2i+ 2,

(iv) f(u2iv2j−1) = 2m(2n − j + 3) − 2i + 1 and f(u2iv2j) = 2m(j + 1) + 2i − 1,
for 2 ≤ j ≤ n.

One may check that f is a bijection. Observe that

(i) f(u2i−1v1) + f(u2i−1v2) = 10m − 4i + 4 and f(u2iv1) + f(u2iv2) = 8mn +
2m− 4i+ 4 for 1 ≤ i ≤ m,

(ii) f(u2iv2j−1) + f(u2iv2j) = 4m(n+ 2) for 1 ≤ i ≤ m and 2 ≤ j ≤ n,

(iii) f(u2i−1v2j−1) + f(u2i−1v2j) = 4mn+ 2 for 1 ≤ i ≤ m and 2 ≤ j ≤ n.

Thus

f+(u1) = f(e1) + f(e2m) + f(u1v1) + f(u1v2) +

n
∑

j=2

(4mn+ 2)

= 4mn2 − 4mn+ 2n+ 10m− 1;

f+(u2i−1) = f(e2i−2) + f(e2i−1) + (10m− 4i+ 4) +
n
∑

j=2

(4mn+ 2)

= (4i− 3) + (10m− 4i+ 4) + (4mn+ 2)(n− 1)

= 4mn2 − 4mn+ 2n+ 10m− 1 if 2 ≤ i ≤ m;

f+(u2i) = f(e2i−1) + f(e2i) + (8mn+ 2m− 4i+ 4) +
n
∑

j=2

4m(n+ 2)

= (8mn+ 2m+ 3) + 4m(n+ 2)(n− 1)

= 4mn2 + 12mn− 6m+ 3 if 1 ≤ i ≤ m;

f+(v1) = (2m+ 1) +
m
∑

i=2

(4m− 2i+ 3) +
m
∑

i=1

(4mn+ 2m− 2i+ 2)

= 4m2n+ 4m2 +m;

f+(v2) =
m
∑

i=1

(4mn+ 6m− 4i+ 3) = 4m2n+ 4m2 +m;

f+(vk) =
m
∑

i=1

(4mn+ 4m+ 1) = 4m2n+ 4m2 +m if 3 ≤ k ≤ 2n.

Now, let g1 = f+(u2i−1) = 4mn2 − 4mn + 2n + 10m − 1, g2 = f+(u2i) =
4mn2 + 12mn− 6m+ 3, and g3 = f+(vj) = 4m2n+ 4m2 +m. Clearly, g1 < g2.
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Suppose n ≥ m. We have g2 − g3 = 4mn(n−m)+m(12n− 4m− 7)+ 6 > 0.
Suppose m > n. g3−g2 = 4mn(m−n−2)+m(4m−4n+7)−3. When m−n ≥ 2,
clearly g3 > g2. For m− n = 1, g3 − g2 = −4m2 + 15m− 3 6= 0.

We now consider g3 − g1 = 2n[2m(m − n) − 1] + m(4n + 4m − 9) + 1. If
m ≥ n, then g3 − g1 ≥ 2n(m − 1) +m(2n + 4m − 9) + 1 > 0. Suppose n > m.
Now g1− g3 = 4mn(n−m− 2)+ 4m(n−m)+ 2n+9m− 1 > 0 when n−m ≥ 2.
When n−m = 1, g1 − g3 = −4m2 + 11m+ 1 6= 0.

Thus, χla(G) ≤ 3. Since χla(G) ≥ χ(G) = 3, we have χla(G) = 3.

Corollary 3.4. For m ≥ 2, n ≥ 1, if H = (C2m ∨ O2n) − e, then χla(H) = 3,
where e is an edge of C2m ∨O2n.

Proof. Note that G = C2m∨O2n has size 4mn+2m where every vertex belonging
to C2m (or O2n) has degree 2n+2 (or 2m). Let f be the local antimagic labeling
as defined in the proof of Theorem 3.3. Suppose e ∈ E(C2m). It is straightforward
to check that f satisfies the conditions of Lemma 2.4. Thus, we have 3 = χ(H) ≤
χla(H) ≤ 3. Suppose e 6∈ E(C2m). We can check that f satisfies the conditions of
Lemma 2.3. Therefore, g = 4mn+2m+1−f is also a local antimagic labeling of
G with c(g) = 3 such that g(e) = 1. It is straightforward to check the conditions
of Lemma 2.4. By Lemma 2.4, we have 3 = χ(H) ≤ χla(H) ≤ 3. Thus, the result
holds.

Since for odd m,n ≥ 3, χla(Cm ∨ On) = χla(Cm) + 1 = χ(Cm) + 1, and for
even n ≥ 2, χla(Cm∨On) = χla(Cm) = χ(Cm)+1, Theorems 3.1 and 3.3 provide
further evidence that Conjecture 1.1 holds.

Note that Cm ∨ O1 = Wm, the wheel graph of order m + 1 ≥ 4. In [4,
Theorem 3.1], the authors proved that χla(Wm) = 3 if m ≡ 0 (mod 4). In [1,
Theorem 2.14], the authors proved that χla(Wm) = 3 if m ≡ 2 (mod 4), and
χla(Wm) = 4 if m is odd. We note that for m ≡ 1 (mod 4), the defined local
antimagic labeling f (or f3 in the proof) has three errors that should be corrected
as f(viv) = (8m+ 5− i)/4 for i ≡ 1 (mod 4), i 6= 1; f(viv) = (7m+ 4− i)/4 for
i ≡ 3 (mod 4); and f+(vi) = (11m + 13)/4 for odd i 6= 1. Moreover, for m ≡ 3
(mod 4), the induced vertex label for vi, i 6= 1 is odd, should be 9(m+ 1)/4.

Theorem 3.5.

χla(W4 − e) =

{

3 if e 6∈ E(C4),

4 otherwise.

Proof. The graph in Figure 1 shows thatW4−e admits a local antimagic labeling
f with c(f) = 3 so that χla(W4 − e) = 3 if e 6∈ E(C4).

Suppose e ∈ E(C4). Without loss of generality we may assume that e = u4u1.
Suppose there were a local antimagic labeling f of W4 − e with c(f) = 3. Then
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f+(v1) = c, f+(u1) = f+(u3) = a and f+(u2) = f+(u4) = b, where a, b, c are
distinct.

3

2

5

6 7

1 4

12

12

8

16

8

Figure 1. W4 − e.

Clearly

(2) 28 =
7

∑

i=1

i = 2a+ f(v1u2) + f(v1u4) = 2b+ f(v1u1) + f(v1u3).

Thus, f(v1u2) ≡ f(v1u4) (mod 2) and f(v1u1) ≡ f(v1u3) (mod 2).

It is easy to check that {f(u1u2), f(u2u3), f(u3u4)} 6= {2, 4, 6}. So we may
assume that f(v1u1) and f(v1u3) are odd, and f(v1u2) and f(v1u4) are even.
Under these conditions and from (2) we have 9 ≤ a ≤ 11 and 8 ≤ b ≤ 12.

1. Suppose a = 9. Then f(v1u2) + f(v1u4) = 10 and hence {f(v1u2), f(v1u4)} =
{4, 6}. This implies that f(u1u2) = 2 and f(v1u1) = 7. If f(v1u2) = 4 and
f(v1u4) = 6, then f(u2u3) = f(u3u4) which is impossible. Thus f(v1u2) = 6
and f(v1u4) = 4. This implies that 9 ≤ 2+6+f(u2u3) = b = 4+f(u3u4) ≤ 9.
Hence b = 9 = a which is a contradiction.

2. Suppose a = 10. We have {f(v1u1), f(u1u2)} = {3, 7} and {f(v1u3), f(u2u3),
f(u3u4)} = {1, 4, 5}. Since f(v1u2)+f(v1u4) = 8, {f(v1u2), f(v1u4)} = {2, 6}.
Since b ≥ 8, f(v1u4) = 6. Hence f(v1u2) = 2. Since a 6= b, f(u3u4) = 5 and
hence f(u2u3) = 4. Now f+(u2) 6= b = 11, which is a contradiction.

3. Suppose a = 11. We have f(v1u2) + f(v1u4) = 6. This implies that {f(v1u2),
f(v1u4)} = {2, 4}. Since 4 is occupied and f(v1u1)+f(u1u2) = 11, f(v1u1) = 5
and f(u1u2) = 6. Also we have {f(v1u3), f(u2u3), f(u3u4)} = {1, 3, 7}. Since
b ≥ 8, f(u3u4) = 7. Since b 6= a, f(v1u4) = 2. Now b = 9 and f+(u2) ≥ 10
which yields a contradiction.

As a conclusion, χla(W4 − e) ≥ 4. Note that from the discussion above, we have
obtained a local antimagic labeling g for W4 − e with c(g) = 4.

Theorem 3.6. Let e be an edge of Wm. For even m ≥ 6, χla(Wm − e) = 3.
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Proof. Consider m = 6. In Figure 2, we have the local antimagic labelings f
with c(f) = 3 for the two cases of W6 − e.
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Figure 2. W6 − e with c(f) = 3.

Thus, χla(W6 − e) = 3.
Consider m ≥ 8. We have two cases.

Case (a) e ∈ E(Cm). By [4, Theorem 3.1] and [1, Theorem 2.14] and the
proofs, we have χla(Wm) = 3 such that the corresponding local antimagic labeling
f has f(u1u2) = 1. By symmetry we may let e = u1u2. By Lemma 2.4, we get
χla(Wm − e) ≤ 3. Since χla(Wm − e) ≥ χ(Wm − e) = 3, χla(Wm − e) = 3.

Case (b) e 6∈ E(Cm). For m = 8, the graph in Figure 3(a) shows that W8− e
admits a local antimagic labeling g with c(g) = 3. Thus, χla(W8 − e) = 3.

Consider m ≥ 10. By [4, Theorem 3.1] and [1, Theorem 2.14] and the proofs,
we know that Wm admits a local antimagic labeling f with f(v1u2) = 2m if
m ≡ 0 (mod 4), and f(v1u4) = 2m if m ≡ 2 (mod 4). By symmetry we may let
e = v1u2 if m ≡ 0 (mod 4), and e = v1u4 if m ≡ 2 (mod 4). It is straightforward
to check the conditions of Lemma 2.4. By Lemma 2.4, we get χla(Wm − e) ≤ 3.
Since χla(Wm − e) ≥ χ(Wm − e) = 3, χla(Wm − e) = 3.
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Figure 3. Some wheels with a spoke deleted.

Theorem 3.7. Suppose m ≥ 3 is odd. If e 6∈ E(Cm), then

χla(Wm − e) =

{

3 for m = 3, 5, 7;

4 otherwise.
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If e ∈ E(Cm), then 3 ≤ χla(Wm − e) ≤ 4.

Proof. Suppose e 6∈ E(Cm). Note that χla(Wm − e) ≥ χ(Wm − e) = 3. Suppose
the equality holds. Let m = 2k+1 and f is a local antimagic labeling of W2k+1−e
with c(f) = 3. Without loss of generality, assume e = v1u2k+1. Thus, we must
have f+(v1) = f+(u2k+1) 6= f+(u1) = f+(u3) = · · · = f+(u2k−1) 6= f+(u2) =
f+(u4) = f+(u2k). Thus, k(2k + 1) ≤ f+(v1) = f+(u2k+1) ≤ 8k + 1 giving
us 1 ≤ k ≤ 3. Thus, χla(Wm − e) ≥ 4 for m ≥ 9. For m = 3, W3 − e ∼=
K1,1,2. The labeling is obvious. For m = 5, the labeling in Figure 3(b) shows
that χla(W5 − v1u5) = 3. For m = 7, the labeling in Figure 3(c) shows that
χla(W7 − v1u7) = 3.

Consider m ≥ 9. By [1, Theorem 2.14] and the proof, we know that Wm

admits a local antimagic labeling f with c(f) = 4. Moreover, f(v1u5) = 2m if
m ≡ 1 (mod 4), and f(v1u2) = 2m if m ≡ 3 (mod 4). It is straightforward to
check the conditions of Lemmas 2.3 and 2.4. By Lemma 2.3, we know Wm admits
a local antimagic labeling g with g(v1u5) = 1 if m ≡ 1 (mod 4), and g(v1u2) = 1
if m ≡ 3 (mod 4). By Lemma 2.4, we get χla(Wm − e) = 4.

Suppose e ∈ E(Cm). By [1, Theorem 2.14] and the proof, together with
Lemma 2.4, we know that χla(Wm − e) ≤ 4.

Theorem 3.8. For odd m,n ≥ 3, χla(Cm ∨ Cn) = 6.

Proof. Since Cm∨Cn and Cn∨Cm are isomorphic, we may assume that n ≤ m.
Suppose V (Cm ∨ Cn) = V (Cm ∨ On) and E(Cm ∨ Cn) = E(Cm ∨ On) ∪ {e′j =
vjvj+1 : 1 ≤ j ≤ n} as in Theorem 3.1, where vn+1 = v1. Let f be the local
antimagic labeling of Cm ∨ On defined in the proof of Theorem 3.1. Define an
edge labeling g : E(Cm ∨ Cn) → [1,m + mn + n] such that g(e) = f(e) for
e ∈ E(Cm ∨ On) and g(e′j) = m + mn + f(ej). One may check that g is a
bijection. Moreover,

(i) g+(u1) = g1 = n(mn+ 1)/2 +mn+ (m+ 3)/2,

(ii) g+(ui) = g2 = n(mn+ 1)/2 +mn+m+ 1 for even i,

(iii) g+(ui) = g3 = n(mn+ 1)/2 +mn+m+ 2 for odd i ≥ 3,

(iv) g+(v1) = g4 = m(mn+ 1)/2 +m2 + 2(m+mn) + (n+ 3)/2,

(v) g+(vj) = g5 = m(mn+ 1)/2 +m2 + 2(m+mn) + n+ 1 for even j, and

(vi) g+(vj) = g6 = m(mn+ 1)/2 +m2 + 2(m+mn) + n+ 2 for odd j ≥ 3.

Clearly gk < gk+1 for 1 ≤ k ≤ 5. Thus, χla(Cm ∨ Cn) ≤ 6. Since χla(Cm ∨
Cn) ≥ χ(Cm ∨ Cn) = χ(Cm) + χ(Cn) = 6, we have χla(Cm ∨ Cn) = 6.

In [5], Haslegrave proved that every connected graph G 6= K2 admits a
local antimagic labeling which implies that χla(Kn) = n for all n ≥ 3. We
now consider the join graph Cm ∨ Kn with V (Cm ∨ Kn) = V (Cm ∨ On) and
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E(Cm ∨Kn) = E(Cm ∨On) ∪ {vivj : 1 ≤ i < j ≤ n}. In [1], the authors showed
that χla(Cm ∨K1) = 4 for odd m ≥ 3.

Theorem 3.9. For odd m,n ≥ 3, χla(Cm ∨Kn) = n+ 3.

Proof. Let f be the local antimagic labeling of Cm ∨ On defined in the proof
of Theorem 3.1. Let h : E(Kn) → [1, n(n − 1)/2] be a local antimagic labeling
of Kn. Note that h+(vj) are distinct for 1 ≤ j ≤ n. Define an edge labeling
g : E(Cm ∨ Kn) → [1,mn + m + n(n − 1)/2] such that g(e) = f(e) for e ∈
E(Cm ∨ On) and g(e) = h(e) + mn + m for e ∈ E(Kn). Note that g+(vj) =
f+(vj) + h+(vj) + (n − 1)(mn + n). Since f+(vj) are the same and h+(vj) are
distinct, g+(vj) are distinct for 1 ≤ j ≤ n.

Moreover,

(i) g+(u1) = n(mn+ 1)/2 +mn+ (m+ 3)/2,

(ii) g+(ui) = n(mn+ 1)/2 +mn+m+ 1 for even i,

(iii) g+(ui) = n(mn+ 1)/2 +mn+m+ 2 for odd i ≥ 3, and

(iv) g+(vj) = f+(vj)+h+(vj)+ (n− 1)(mn+n) ≥ m(mn+1)/2+m2+(n− 1)
(nm+m) + n(n− 1)/2.

It is easy to show that g+(vj) > g+(ui) for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. Thus,
χla(Cm ∨Kn) ≤ n+ 3. Since χla(Cm ∨Kn) ≥ χ(Cm ∨Kn) = n+ 3, the theorem
holds.

Theorem 3.10. For m ≥ 2, n ≥ 1, χla(C2m ∨K2n) = 2n+ 2.

Proof. Let f be the local antimagic labeling of C2m ∨ O2n defined in the proof
of Theorem 3.3.

Suppose n = 1. Define an edge labeling g : E(C2m ∨K2) → [1, 6m+ 1] such
that g(e) = f(e) for e ∈ E(C2m ∨ O2) and g(v1v2) = 6m + 1. We now swap the
labels of g(u1v1) = 2m + 1 and g(u1v2) = 6m − 1 to get g+(u2i−1) = 10m + 1
and g+(u2i) = 10m + 3 for 1 ≤ i ≤ m and g+(v1) = 8m2 + 11m − 1 and
g+(v2) = 8m2 + 3m+ 3. Thus, χla(C2m ∨K2) ≤ 4.

Now, consider n ≥ 2. Let h : E(K2n) → [1, n(2n − 1)] be a local antimagic
labeling of K2n. Note that h+(vj) are distinct for 1 ≤ j ≤ 2n. Define an edge
labeling g : E(C2m ∨K2n) → [1, 4mn+2m+n(2n− 1)] such that g(e) = f(e) for
e ∈ E(C2m ∨O2n) and g(e) = h(e) + 4mn+ 2m for e ∈ E(K2n).

By the same argument as in the proof of Theorem 3.9, we obtain that g+(vj)
are distinct for 1 ≤ j ≤ 2n.

From Theorem 3.3 we have g+(u2i) = 4mn2 − 4mn + 2n + 10m − 1 <
g+(u2i−1) = 4mn2+12mn−6m+3 for 1 ≤ i ≤ m. Moveover, g+(vj) = f+(vj)+
h+(vj)+(2n−1)(4mn+2m) ≥ 4m2n+4m2+m+(2n−1)(4mn+2m)+n(2n−1)
for each j. Clearly g+(vj) > g+(u2i−1) for 1 ≤ i ≤ m and 1 ≤ j ≤ 2n.
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Thus, χla(C2m ∨ K2n) ≤ 2n + 2. Since χla(C2m ∨ K2n) ≥ χ(C2m ∨ K2n) =
2n+ 2, the theorem holds.

Conjecture 3.11. For n ≥ 2, χla(G∨Kn) ≥ χla(G) +n if and only if χla(G) =
χ(G).

For n ≥ 2, let M2n be the Möbius ladder obtained from C2n = u1u2 · · ·unv1
v2 · · · vnu1 by adding the edges uivi, 1 ≤ i ≤ n.

Theorem 3.12. For odd n ≥ 3, χla(M2n) = 3.

Proof. Note that M2n has size 3n, and is bipartite with parts of the same size.
Thus, by Lemma 2.1, χla(M2n) ≥ 3.

Suppose n = 3, we get a local antimagic labeling by assigning the edges u1u2,
u2u3, u3v1, v1v2, v2v3, v3u1, u1v1, u2v2, u3v3 by 1, 5, 4, 8, 6, 7, 3, 9, 2, respectively.
Clearly, the induced vertex coloring has three distinct colors, namely 11, 15, 23.

Suppose n ≥ 5. Define a bijection f : E(M2n) → [1, 3n] such that f(u1vn) =
3(n+1)

2 , f(unv1) = n, f(v1v2) = n+ 1 and that

(i) f(uiui+1) = i for odd i ∈ [1, n− 2],

(ii) f(uiui+1) =
3n+3−i

2 for even i ∈ [2, n− 1],

(iii) f(vivi+1) = i for even i ∈ [2, n− 1],

(iv) f(vivi+1) = 2n− i−3
2 for odd i ∈ [3, n− 2],

(v) f(uivi) =
5n+2−i

2 for odd i ∈ [1, n],

(vi) f(uivi) = 3n+ 1− i
2 for even i ∈ [2, n− 1].

One can verify that f+(ui) = f+(vj) =
9n+3

2 for even i ∈ [2, n − 1] and odd
j ∈ [1, n]; f+(ui) = f+(v2) = 4n + 3 for odd i ∈ [1, n] and f+(vj) = 5n + 3 for
even j ∈ [4, n− 1]. Therefore, χla(M2n) ≤ 3. Hence, the theorem holds.

Corollary 3.13. For odd n ≥ 3, χla(M2n − e) = 3.

Proof. By Lemma 2.1, we know that χla(M2n − e) ≥ 3. Note that there are
two possible graphs obtained by deleting an edge from M2n (if n > 3), but
using Lemma 2.2 with reference to the smallest label deals with one, and the
largest label deals with the other. Therefore, we have χla(M2n − e) ≤ 3. Thus,
χla(M2n − e) = 3.

Note that M4 = K4 with χla(M4) = 4.

Conjecture 3.14. For even n ≥ 4, χla(M2n) = 4.

Theorem 3.15. For n ≥ 1, χla(M6 ∨O2n) = 3.
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Proof. Let V (M6 ∨ O2n) = {ui : 1 ≤ i ≤ 6} ∪ {vj : 1 ≤ j ≤ 2n} and E(M6 ∨
O2n) = {uiui+1 : 1 ≤ i ≤ 5} ∪ {u1u6, u1u4, u2u5, u3u6} ∪ {uivj : 1 ≤ i ≤ 6, 1 ≤
j ≤ 2n}. Define a bijection g : E(M6∨O2n) → [1, 12n+9] such that g(u1u2) = 1,
g(u2u3) = 3, g(u3u4) = 4, g(u4u5) = 2, g(u5u6) = 8, g(u1u6) = 5, g(u1u4) = 9,
g(u2u5) = 7, g(u3u6) = 6 and g(uivj) = f(uivj) + 3 for 1 ≤ i ≤ 6, 1 ≤ j ≤ 2n,
where f is the function as defined in the proof of Theorem 3.3 by taking m = 3.

One can easily check that g+(u1) = 15 +
∑2n

j=1 f(u1vj) + 3(2n) = 12n2 −

4n + 37. Similarly, we get g+(u3) = g+(u5) = g+(u1). Furthermore, for i =
2, 4, 6, we also have g+(ui) = 12n2 + 42n − 7, whereas g+(vj) = 36n + 57 for
1 ≤ j ≤ 2n. Clearly, g is a local antimagic labeling with c(g) = 3. Therefore,
χla(M6∨O2n) ≤ 3. SinceM6 is bipartite, we have χla(M6∨O2n) ≥ χ(M6∨O2n) =
χ(M6) + χ(O2n) = 3. Thus, χla(M6 ∨O2n) = 3.

Corollary 3.16. For n ≥ 1, χla((M6 ∨O2n)− e) = 3.

Proof. Let G = (M6 ∨O2n)− e. We note that χla(G) ≥ χ(G) = 3. Since M6 is
edge-transitive, we only need to consider (i) e 6∈ E(M6), and (ii) e ∈ E(M6).

In (i), it is straightforward to check the conditions of Lemma 2.3. By
Lemma 2.3, we know M6∨O2n admits a local antimagic labeling h = 12n+10−g
with c(h) = c(g) = 3, where g is as defined in the proof of Theorem 3.15. Now,

h+(ui) =

{

12n2 + 60n− 7 if i = 1, 3, 5,

12n2 + 14n+ 37 if i = 2, 4, 6,

h+(vj) = 36n + 3 for 1 ≤ j ≤ 2n, and h(uv) = 1 for an edge uv 6∈ E(M6). It is
straightforward to check the condition of Lemma 2.4. By Lemma 2.4, we have
χla(G) = 3.

In (ii), it is straightforward to check the condition of Lemma 2.4. By Lemma
2.4, we have χla(G) = 3.

For m ≥ 3, n ≥ 1, let G(m,n) be the graph obtained from Cm ∨ On by
deleting the edges umvj , 1 ≤ j ≤ n. We can also view G(m,n) as the graph
obtained from Cm−1 ∨ On by subdividing one of the cycle edges. Note that
G(m, 1) is the graph Wm with a spoke deleted. By Theorems 3.5 and 3.6,
we have χla(G(2m, 1)) = 3 for m ≥ 2. Moreover, by Theorem 3.7, we have
determined the value of χla(G(2m+ 1, 1)) for m ≥ 1.

Theorem 3.17. For n ≥ 1, χla(G(4, n)) = 3.

Proof. When n = 1, we have proved the result in Theorem 3.5. So we may
assume that n ≥ 2. Since χ(G(4, n)) ≥ 3, it suffices to provide a local antimagic
labeling f for G(4, n) with c(f) = 3.
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For n = 4k− 1, k ≥ 1, the labeling matrix of G(4, 3) under f is given below.

u1 u2 u3 u4 v1 v2 v3 f+(ui)

u1 ∗ 8 ∗ 9 5 1 13 36
u2 8 ∗ 7 ∗ 3 12 4 34
u3 ∗ 7 ∗ 10 11 6 2 36
u4 9 ∗ 10 ∗ ∗ ∗ ∗ 19

f+(vj) ∗ ∗ ∗ ∗ 19 19 19

The following tables are the first 4 rows of the labeling matrix of G(4, 4k−1)
under f , where k ≥ 3.

u1 u2 u3 u4 v1 v2 · · · vk vk+1 vk+2 · · · v2k

u1 ∗ 10k + 1 ∗ 6k 8k 8k − 1 · · · 7k + 1 9k 9k − 1 · · · 8k + 1

u2 10k + 1 ∗ 4k ∗ 1 3 · · · 2k − 1 2k + 1 2k + 3 · · · 4k − 1

u3 ∗ 4k ∗ 12k + 1 10k 10k − 1 · · · 9k + 1 7k 7k − 1 · · · 6k + 1

u4 6k ∗ 12k + 1 ∗ ∗ ∗ · · · ∗ ∗ ∗ · · · ∗

v2k+1 v2k+2 · · · v3k−2 v3k−1 v3k · · · v4k−4

u1 12k 12k − 1 · · · 11k + 3 5k + 1 5k · · · 4k + 4

u2 2 4 · · · 2k − 4 2k − 2 2k · · · 4k − 8

u3 6k − 1 6k − 2 · · · 5k + 2 11k + 2 11k + 1 · · · 10k + 5

u4 ∗ ∗ · · · ∗ ∗ ∗ · · · ∗

v4k−3 v4k−2 v4k−1 f+(ui)

u1 4k − 6 4k + 2 4k + 1 32k2 + k − 10

u2 10k + 4 10k + 3 10k + 2 8k2 + 16k + 21

u3 4k + 3 4k − 4 4k − 2 32k2 + k − 10

u4 ∗ ∗ ∗ 18k + 1

It is easy to check that f+(u4) = f+(vj) = 18k + 1, i.e., the vj-column sum,
for 1 ≤ j ≤ 4k − 1. This labeling can be applied to k = 2 (the block-columns for
v2k+1 to v4k−4 do not appear). The following shows the assignment for G(4, 7).

u1 u2 u3 u4 v1 v2 v3 v4 v5 v6 v7 f+(ui)

u1 ∗ 21 ∗ 12 16 15 18 17 2 10 9 120

u2 21 ∗ 8 ∗ 1 3 5 7 24 23 22 114

u3 ∗ 8 ∗ 25 20 19 14 13 11 4 6 120

u4 12 ∗ 25 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 37

f+(vj) ∗ ∗ ∗ ∗ 37 37 37 37 37 37 37

For n = 4k + 1, k ≥ 1, the labeling matrix for G(4, 5) is given next.
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u1 u2 u3 u4 v1 v2 v3 v4 v5 f+(ui)

u1 ∗ 4 ∗ 16 10 9 8 11 13 71
u2 4 ∗ 6 ∗ 1 3 17 12 15 58
u3 ∗ 6 ∗ 14 19 18 5 7 2 71
u4 16 ∗ 14 ∗ ∗ ∗ ∗ ∗ ∗ 30

f+(vj) ∗ ∗ ∗ ∗ 30 30 30 30 30

Similarly, we show the first 4 rows of the labeling matrix of G(4, 4k+1) under
f , where k ≥ 3.

u1 u2 u3 u4 v1 v2 · · · vk−2

u1 ∗ 10k + 6 ∗ 12k + 7 8k + 4 8k + 3 · · · 7k + 7

u2 10k + 6 ∗ 4k + 2 ∗ 1 3 · · · 2k − 5

u3 ∗ 4k + 2 ∗ 6k + 3 10k + 5 10k + 4 · · · 9k + 8

u4 12k + 7 ∗ 6k + 3 ∗ ∗ ∗ · · · ∗

vk−1 vk · · · v2k−4 v2k−3 v2k−2 v2k−1 v2k v2k+1

u1 9k + 7 9k + 6 · · · 8k + 10 6k + 8 6k + 7 6k + 6 6k + 5 4k + 1

u2 2k − 3 2k − 1 · · · 4k − 9 4k − 7 4k − 5 4k − 3 4k − 1 6k + 4

u3 7k + 6 7k + 5 · · · 6k + 9 8k + 9 8k + 8 8k + 7 8k + 6 8k + 5

u4 ∗ ∗ · · · ∗ ∗ ∗ ∗ ∗ ∗

v2k+2 v2k+3 · · · v3k+1 v3k+2 v3k+3 · · · v4k+1 f+(ui)

u1 12k + 6 12k + 5 · · · 11k + 7 5k + 2 5k + 1 · · · 4k + 3 32k2 + 41k + 12

u2 2 4 · · · 2k 2k + 2 2k + 4 · · · 4k 8k2 + 22k + 12

u3 6k + 2 6k + 1 · · · 5k + 3 11k + 6 11k + 5 · · · 10k + 7 32k2 + 41k + 12

u4 ∗ ∗ · · · ∗ ∗ ∗ · · · ∗ 18k + 10

It is easy to check that f+(u4) = f+(vj) = 18k + 10, for 1 ≤ j ≤ 4k + 1.
This labeling can be applied to k = 2 (the block-columns for v1 to v2k−4 do not
appear). The following shows the assignment for G(4, 9).

u1 u2 u3 u4 v1 v2 v3 v4 v5 v6 v7 v8 v9 f+(ui)

u1 ∗ 26 ∗ 31 20 19 18 17 9 30 29 12 11 222

u2 26 ∗ 10 ∗ 1 3 5 7 16 2 4 6 8 88

u3 ∗ 10 ∗ 15 25 24 23 22 21 14 13 28 27 222

u4 31 ∗ 15 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 46

f+(vj) ∗ ∗ ∗ ∗ 46 46 46 46 46 46 46 46 46

For n = 4k+2, the following tables are the first 4 rows of the labeling matrix
of G(4, 4k + 2) under f , where k ≥ 1.

u1 u2 u3 u4 v1 v2 · · · vk
u1 ∗ 8k + 6 ∗ 12k + 9 10k + 7 10k + 6 · · · 9k + 8
u2 8k + 6 ∗ 12k + 10 ∗ 1 3 · · · 2k − 1
u3 ∗ 12k + 10 ∗ 6k + 4 8k + 5 8k + 4 · · · 7k + 6
u4 12k + 9 ∗ 6k + 4 ∗ ∗ ∗ · · · ∗
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vk+1 vk+2 · · · v2k v2k+1 v2k+2 v2k+3 · · · v3k+1

u1 7k + 5 7k + 4 · · · 6k + 6 6k + 5 12k + 8 12k + 7 · · · 11k + 9
u2 2k + 1 2k + 3 · · · 4k − 1 4k + 1 2 4 · · · 2k
u3 9k + 7 9k + 6 · · · 8k + 8 8k + 7 6k + 3 6k + 2 · · · 5k + 4
u4 ∗ ∗ · · · ∗ ∗ ∗ ∗ · · · ∗

v3k+2 v3k+3 · · · v4k+1 v4k+2 f+(ui)
u1 5k + 3 5k + 2 · · · 4k + 4 4k + 3 32k2 + 55k + 23
u2 2k + 2 2k + 4 · · · 4k 10k + 8 8k2 + 36k + 25
u3 11k + 8 11k + 7 · · · 10k + 9 4k + 2 32k2 + 55k + 23
u4 ∗ ∗ · · · ∗ ∗ 18k + 13

It is easy to check that f+(u4) = f+(vj) = 18k + 13, for 1 ≤ j ≤ 4k + 2.
This labeling can be applied to k = 0. The following shows the assignment for
G(4, 2).

u1 u2 u3 u4 v1 v2 f+(ui)

u1 ∗ 6 ∗ 9 5 3 23

u2 6 ∗ 10 ∗ 1 8 25

u3 ∗ 10 ∗ 4 7 2 23

u4 9 ∗ 4 ∗ ∗ ∗ 13

f+(vj) ∗ ∗ ∗ ∗ 13 13

For n = 4k, the following tables are the first 4 rows of the labeling matrix of
G(4, 4k) under f , where k ≥ 2.

u1 u2 u3 u4 v1 v2 · · · vk−1

u1 ∗ 10k + 3 ∗ 12k + 4 10k + 2 10k + 1 · · · 9k + 4

u2 10k + 3 ∗ 6k + 2 ∗ 1 3 · · · 2k − 3

u3 ∗ 6k + 2 ∗ 6k + 1 8k + 2 8k + 1 · · · 7k + 4

u4 12k + 4 ∗ 6k + 1 ∗ ∗ ∗ · · · ∗

vk vk+1 · · · v2k−2 v2k−1 v2k v2k+1 v2k+2 · · · v3k−1

u1 7k + 3 7k + 2 · · · 6k + 5 6k + 4 6k + 3 12k + 3 12k + 2 · · · 11k + 5

u2 2k − 1 2k + 1 · · · 4k − 5 4k − 3 4k − 1 2 4 · · · 2k − 2

u3 9k + 3 9k + 2 · · · 8k + 5 8k + 4 8k + 3 6k 6k − 1 · · · 5k + 2

u4 ∗ ∗ · · · ∗ ∗ ∗ ∗ ∗ · · · ∗

v3k v3k+1 · · · v4k−2 v4k−1 v4k f+(ui)

u1 5k + 1 5k · · · 4k + 3 4k + 2 4k 32k2 + 23k + 3

u2 2k 2k + 2 · · · 4k − 4 4k − 2 10k + 4 8k2 + 24k + 9

u3 11k + 4 11k + 3 · · · 10k + 6 10k + 5 4k + 1 32k2 + 23k + 3

u4 ∗ ∗ · · · ∗ ∗ ∗ 18k + 5

It is easy to check that f+(u4) = f+(vj) = 18k + 5, for 1 ≤ j ≤ 4k. Again,
this labeling can be applied to k = 1. The following shows the assignment for
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G(4, 4).

u1 u2 u3 u4 v1 v2 v3 v4 f+(ui)

u1 ∗ 13 ∗ 16 10 9 6 4 58

u2 13 ∗ 8 ∗ 1 3 2 14 41

u3 ∗ 8 ∗ 7 12 11 15 5 58

u4 16 ∗ 7 ∗ ∗ ∗ ∗ ∗ 23

f+(vj) ∗ ∗ ∗ ∗ 23 23 23 23

Since f+(u1) = f+(u3) 6= f+(u2) 6= f+(u4) = f+(vj), 1 ≤ j ≤ n, we have
c(f) = 3. The proof is complete.

Note that P3 ∨On+1 can be obtained from G(4, n) by adding the edge u2u4.
By Lemma 2.5, the following is obtained.

Corollary 3.18. If G ≡ P3 ∨On+1, then χla(G) = 3.

Problem 3.19. Determine χla(Pm ∨On) for m ≥ 4, n ≥ 2.

Theorem 3.20. For (i) m ≥ 3, n ≥ 4, (ii) m ≥ 21, n = 3, and (iii) m ≥ 4,
n = 2, χla(G(2m, 2n− 1)) = 4.

Proof. Note that χla(G(2m, 2n − 1)) ≥ χ(G(2m, 2n − 1)) = 3. Suppose f is
a local antimagic labeling of G(2m, 2n − 1) with c(f) = 3. We may have (I)
a = f+(u2i−1), 1 ≤ i ≤ m; b = f+(vj) = f+(u2m), 1 ≤ j ≤ 2n − 1; c =
f+(u2i), 1 ≤ i < m ; or (II) a = f+(u2i−1), 1 ≤ i ≤ m; b = f+(vj), 1 ≤ j ≤ 2n−1;
c = f+(u2i), 1 ≤ i ≤ m. Here a, b, c are distinct. Now, every vj is adjacent to
2m− 1 vertices of C2m.

For (I),
∑2n−1

j=1 f+(vj) ≥ 1 + 2 + · · · + (2n − 1)(2m − 1) = (2n − 1)(2m −
1)(2mn−m− n+ 1). So,

(3) (2m− 1)(2mn−m− n+ 1) ≤ b = f+(u2m) ≤ 8mn− 4n+ 1

giving n ≤ (2m−1)(m−1)+1
(2m−1)(2m−5) . By simple calculus, we have n ≤ 11

5 . When n = 2, we
get m = 3. This is not a case.

For (II), there are exactly (2n − 1)(m − 1) + 2m − 2 = 2mn + m − 2n − 1
edges incident to the vertices u2i for 1 ≤ i ≤ m − 1. Each label of these edges
contributes to the sum

∑m−1
i=1 f+(u2i) exactly once. Thus, (m− 1)c ≥ 1

2(2mn+
m− 2n− 1)(2mn+m− 2n). Therefore, we will get

(4) (2n+ 1)(2mn+m− 2n) ≤ 2c = 2f+(u2m) ≤ 16mn− 8n+ 2.

However, if n ≥ 5 and m ≥ 3, (2n + 1)(2mn +m − 2n) ≥ 11(2mn +m − 2n) ≥
16mn+18n+11m−22n = 16mn−4n+11m, contradicting (4). When n = 4, we
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get m = 2, contradicting m ≥ 3. When n = 3, we get 2 ≤ m ≤ 20, contradicting
m ≥ 21. So, χla(G(2m, 2n− 1)) ≥ 4 under each of the given condition.

Define f : E(G(2m, 2n − 1)) → [1, 4mn − 2n + 1] such that f(u2mu1) =
(2m− 1)(2n− 1) + 1, f(u2iu2i+1) = (2m− 1)(2n− 1) + i+ 1 for 1 ≤ i ≤ m− 1,
f(u2i−1u2i) = (2m − 1)(2n − 1) + 2m + 1 − i for 1 ≤ i ≤ m and f(uivj) = ai,j ,
1 ≤ i ≤ 2m− 1, 1 ≤ j ≤ 2n− 1, where ai,j is the (i, j)-entry of a (2m− 1, 2n− 1)-
magic rectangle with constant row sum (2n− 1)(2mn−m− n+1) and constant
column sum (2m−1)(2mn−m−n+1). One may check that f is a bijection with
g1 = f+(vj) = (2m−1)(2mn−m−n+1) for 1 ≤ j ≤ 2n−1, g2 = f+(u2i) = (2n−
1)(2mn−m−n+1)+2(2m−1)(2n−1)+2m+2 = (2n+3)(2mn−m−n+1)+2m
for 1 ≤ i ≤ m−1, g3 = f+(u2i−1) = (2n−1)(2mn−m−n+1)+2(2m−1)(2n−1)+
2m+1 = (2n+3)(2mn−m−n+1)+2m−1 for 1 ≤ i ≤ m and g4 = f+(u2m) =
2(2m − 1)(2n − 1) +m + 2 = 4(2mn −m − n + 1) +m. Clearly, g2 > g3 > g4.
It is routine to verify that g1 6= g2, g3, g4. Thus, χla(G(2m, 2n − 1)) ≤ 4. The
theorem holds.

Example 3.21. The following are labelings that give χla(G(5, 2)) = χla(G(6, 2))
= χla(G(6, 3)) = 3.

13 8

12

10

2
7

9

3
4

11
5

6

1

25

25

22

22

22

33

33

16

1

2

3

4

56 8

7

9
10

12

13
14

15

11

37

38 28

3738

28

38

28

1

11

5

4 9

13

3

20

15

7

17

12

8

18

19

21
2 10

16

6

40 40 40 40

73

73

14

52

52

52

Note that G(5, 2) and G(6, 2) are two graphs we have not considered before.

Problem 3.22. For m ≥ 5, find χla(G(m,n)) for G(m,n) not being a graph in
Theorem 3.20 and Example 3.21.

Little is known about bipartite graphs G with χla(G) = 2 (see [1, Theorems
2.11 and 2.12]). For m ≥ 2, i ≥ 1, let B(n1, n2, . . . , nm) be the union of K2,ni

with bipartition (Xi, Yi), where Xi = {xi−1, xi}, Yi = {yi,1, yi,2, . . . , yi,ni
} and

xm = x0.

It is known from [1, Theorem 2.8 and Theorem 2.12] that χla

(

B
(

1[m]
))

=

χla(C2m) = 3 and χla

(

B
(

n[2]
))

= χla(K2,2n) = 2 for n ≥ 2. The following
theorem gives another family of bipartite graphs with χla equal to 2.

Theorem 3.23. Suppose m ≥ 3 and n ≥ 2. We have χla

(

B
(

n[m]
))

= 2 if n is

even or both m and n are odd; 2 ≤ χla

(

B
(

n[m]
))

≤ 3 for odd n and even m.
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Proof. First note that the edges in each K2,n are xi−1yi,j and xiyi,j for 1 ≤ i ≤
m, 1 ≤ j ≤ n.

Suppose n ≥ 2 is even. Define a bijection f : E(G) → [1, 2mn] such that

f(xi−1yi,j) =

{

(i− 1)n+ j for odd j ∈ [1, n− 1],

(2m− i+ 1)n− j + 1 for even j ∈ [2, n],

f(xiyi,j) =

{

(2m− i+ 1)n− (j − 1) for odd j ∈ [1, n− 1],

(i− 1)n+ j for even j ∈ [2, n],

where 1 ≤ i ≤ m.

Recall that xm = x0. It is easy to verify that f+(yi,j) = 2mn + 1 and
f+(xi) = 2mn2 + n for 1 ≤ i ≤ m, 1 ≤ j ≤ n. Hence, χla(G) ≤ 2. Since
χla(G) ≥ χ(G) = 2, we have χla(G) = 2 for even n ≥ 2.

Suppose n is odd and m is odd. Let A be a magic (m,n)-rectangle. For
1 ≤ i ≤ m, let (f(xiyi,1), . . . , f(xi, yi,n)) be the i-th row of A and let f(xi−1yi,j) =
2mn + 1 − f(xiyi,j) for 1 ≤ j ≤ n. Clearly f+(yi,j) = 2mn + 1 for 1 ≤ i ≤ m
and 1 ≤ j ≤ n. Since the row sum of A is n(mn+1)/2, f+(xi) = n(2mn+1) for
1 ≤ i ≤ m. Here, χla(G) ≤ 2 and hence χla(G) = 2.

Suppose n is odd and m is even. Define a bijection f : E(G) → [1, 2mn]

f(xi−1yi,j) = (i− 1)n+ j,

f(xiyi,j) = (2m− i+ 1)n− j + 1,

where 1 ≤ i ≤ m.

It is easy to verify that f+(yi,j) = 2mn + 1, f+(x0) = n(mn + n + 1) and
f+(xi) = n(2mn+ n+ 1) for 1 ≤ i ≤ m− 1. Thus, χla(G) ≤ 3.

Example 3.24. The following is a local antimagic labeling according to the
construction described in the proof above, which induces a 2-coloring for B

(

3[3]
)

.

A =





2 7 6
9 5 1
4 3 8



 .

y1,1 y1,2 y1,3 y2,1 y2,2 y2,3 y3,1 y3,2 y3,3
x1 2 7 6 10 14 18 ∗ ∗ ∗
x2 ∗ ∗ ∗ 9 5 1 15 16 11
x3 17 12 13 ∗ ∗ ∗ 4 3 8

It is clear that each row sum is 57 and each column sum is 19.
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Example 3.25. The following is a local antimagic labeling inducing a 2-coloring
for B

(

3[4]
)

.

y1,1 y1,2 y1,3 y2,1 y2,2 y2,3 y3,1 y3,2 y3,3 y4,1 y4,2 y4,3
x1 1 5 17 23 19 10 ∗ ∗ ∗ ∗ ∗ ∗
x2 ∗ ∗ ∗ 2 6 15 22 16 14 ∗ ∗ ∗
x3 ∗ ∗ ∗ ∗ ∗ ∗ 3 9 11 21 18 13
x4 24 20 8 ∗ ∗ ∗ ∗ ∗ ∗ 4 7 12

It is easy to see that the row sum is always 75 and the column sum is always
25.

Problem 3.26. Determine χla(B(n1, n2, . . . , nm)) for B(n1, n2, . . . , nm) 6=
B
(

n[m]
)

.
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