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Convolutional neural networks (CNNs) require significant computing power during inference. Smart phones, for example, may
not run a facial recognition system or search algorithm smoothly due to the lack of resources and supporting hardware. Methods
for reducing memory size and increasing execution speed have been explored, but choosing effective techniques for an application
requires extensive knowledge of the network architecture.*is paper proposes a general approach to preparing a compressed deep
neural network processor for inference with minimal additions to existing microprocessor hardware. To show the benefits to the
proposed approach, an example CNN for synthetic aperture radar target classification is modified and complimentary custom
processor instructions are designed. *e modified CNN is examined to show the effects of the modifications and the custom
processor instructions are profiled to illustrate the potential performance increase from the new extended instructions.

1. Introduction

Convolutional neural networks (CNNs) have become in-
creasingly popular for image classification and a variety of
other machine learning tasks. Existing methods either re-
quired massive computational power or frequently per-
formed poorly when new cases were presented for
classification. CNNs have become popular because they are
increasingly accurate classifiers as the networks are trained
on more data without incurring the increase in model size
for new learning. AlexNet, trained with convolutional neural
network, won the ILSVRC in 2012, and its victory marked
the beginning of CNNs as the premier method for image
classification.

Fixed classifier model size makes the CNN an attractive
platform for mobile and embedded applications with
memory and speed constraints. A CNN can be trained in an
environment with massive computational capability and
large datasets and then deployed on platforms with limited
computational power. Although they are more efficient than
other classifier types that can be trained with large datasets,

CNNs are still computationally intensive applications. Large
CNNs require billions of operations to classify a single image
[1]. In CNNs, most of the execution time is consumed by
convolution operations.

In addition to computation requirements, memory
access penalties significantly impact overall execution time
and power consumption. *e weights and biases used for
inference can approach a gigabyte for large CNN models
when stored in single-precision floating point format [1].
In addition, data inputs and outputs for each layer also
consume significant amounts of memory. Running a CNN
purely from fast, on-chip memory is not feasible for large
CNNs. Once CNNs need to access external memory such
as DRAM, hundreds of cycles per access are typically added
to the overall execution due to DRAM latency. Also, ex-
ternal memory accesses incur energy consumption pen-
alties up to 128 times greater than on-chip memory [2].
Minimizing access to external DRAM can drastically im-
prove efficiency.

*e weights, biases, and activations of the hidden layers
of CNNs can be converted to fixed-point formats with low
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bit-width representations without hurting overall classifi-
cation accuracy [3]. *e quantization noise has a regular-
izing effect on the CNN and reduces negative effects of lower
precision on classification performance. In the extreme case,
binary CNN models can be used if the loss in classification
accuracy is tolerated [4]. Converting to smaller bit-width
representations of weights and data in the middle layers of a
CNN drastically reduces the number of memory accesses
and increases execution speedup in real systems. Multiple
data items can be packed into a single register enabling
SIMD operations running on all lanes in the register in
parallel. In addition, fixed-point multipliers have simpler
hardware implementations compared to floating point. For
the same chip area, multiple small fixed-point multipliers
increase the computational throughput for convolution and
fully connected layers.

GPUs are the preferred method of training and running
CNNs in research because they hide memory access pen-
alties by compensating for image throughput. Gigabytes of
training images are loaded onto the local RAM of the GPU,
and the operations are distributed among hundreds of small
cores optimized for general matrix multiplication. *e
training and inference operations of a CNN are batched over
tens to hundreds of images at a time to minimize the data
transfer overhead between the RAM and GPU core on the
GPU card. However, GPUs can draw hundreds of watts of
power and are inefficient for applications which require low
latency.

CPUs, on the other hand, lack application specific in-
structions. Chip area is saved only for the most useful in-
structions. Single Instruction Multiple Data (SIMD) units
and Multiply and Accumulate (MAC) instructions are
common among processors for media processing, but the
concepts can be taken further for CNNs as the CNNs are
deployed in various applications. Low-power CPUs paired
with custom CNN accelerating instructions can fill the void
between power hungry GPUs and basic microprocessors at
the expense of some chip area.

Impact on chip area can then be minimized by selecting
the most useful operations corresponding to useful CNN
layer types. State-of-the-art image classifying CNNs favor
stacks of small 3× 3 convolutions with Rectified Linear Unit
(ReLU) activations and 2× 2 max pooling operations [5].
New processor instructions to calculate these layers effi-
ciently alongside a SIMD MAC instruction for fully con-
nected layers and 1× 1 convolution can cover all basic layers
of a modern CNN and enable fast, low-power inference.

Significant contributions to CNN research and com-
mercial support have been made in recent years as discussed
in our Section 4 Related Work. However, there are gaps
between the realms of software and hardware. Powerful
image classifier architectures are beginning to be reduced in
size while maintaining classifying accuracy. Moreover,
compressedmodels are not yet well suited to widely available
hardware or do not have well developed software. Until
CNN research and infrastructure stabilizes, application-
specific integrated circuits (ASICs) designed for CNN in-
ference may require too much design effort and capital
investment to become viable for widespread adoption.

Extended instruction-based approaches in this paper have
the potential to fill the gap between GPUs and fully custom
ASICs with a mature hardware software codesign tools.

*is paper focuses on developing a method to convert
CNN architectures to be ready for custom processor in-
structions. *e proposed framework achieves this goal by
reducing the set of layer types that can be used with a CNN
and then creating custom instructions to most efficiently
process the reduced set of layer types. In order to prove the
method of converting the CNN architecture is sound, a CNN
used for SAR target classification is compared to an
equivalent CNN with a reduced set of layers. *e secondary
objective of this work is to measure the factor of acceleration
associated with the new custom instructions alongside the
gate count. Computational speed increase and gate counts of
the custom instructions provide a basis for the viability of the
proposed study in a real application-specific instruction set
processor (ASIP) application.

2. Convolutional Neural Network Architecture

2.1. Design Flow. A general flow for using the proposed
framework can be formed from the concepts of reduction in
layer types and custom instructions as seen in Figure 1. *e
flowchart for applying the acceleration framework is
straightforward but requires manual adjustment at two
stages. First, the reference CNN architecture is converted to
use 3× 3 convolutions, Rectified Linear Unit (ReLU) acti-
vations, 2× 2max pooling, and fully connected hidden layers
whenever possible. Deviations from the allowed layer types
are acceptable, but the deviations will incur some execution
speed penalty. *en, the CNN is trained with full precision
floating point numbers and CNN hyperparameters are
adjusted to maximize performance. Minimal classification
error, fastest execution speed, minimal memory use, or a
combination of performance metrics is considered
depending on the application. Ideally, this step of the
framework would be performed using a high-level CNN
software library with the final model description, weights,
and biases as the output. Next, the CNN weights and biases
are converted to fixed point for all layers. If the performance
drop from fixed-point conversion is too great, the number
precision can be adjusted and the CNN can be reevaluated.
Finally, the fixed-point CNN can be profiled with the new
custom instructions and put in use after validation.

Two stages of the proposed compression and accelera-
tion framework are examined in this paper. In the first stage,
layers of a sample CNN are converted to fit the rules of the
proposed framework. *e tradeoff between classifier accu-
racy and trainable parameters is examined after layer con-
version. *e layer conversion stage focuses on 3× 3
convolution and 2× 2 max pooling layers to demonstrate
how layer conversion fits in the overall acceleration
framework. In the second stage, custom CNN instructions
are explained and profiled in an application-specific in-
struction set processor (ASIP) environment. Single-cycle
and multicycle approaches to 3× 3 convolution are explored
with additional instructions for maximizing convolution
speedup and supporting the other middle layers. Additional
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instructions are also explored for the other layers of the
CNN.*e additional instructions include 2× 2 max pooling,
ReLU activation, data reordering, and SIMD MAC
instructions.

2.2. CNN Layer Conversion. Ideally, the candidate CNN
already meets the format of the proposed acceleration
framework. For CNN architectures that have convolution
kernels larger than 3× 3 or max pool layer kernels larger
than 2× 2, the layers can be converted for hardware ac-
celeration. However, the conversion of convolution and max
pool layers affects the overall size and performance of the
CNN. For demonstration of the effects of layer conversion,
SAR automatic target recognition data set is used for this
study from authors’ previous work and CNN model pa-
rameters are presented in Table 1 [6].

Two-dimensional convolution layers make up most
layers of modern CNN architectures. *e convolution
kernels have odd number width and height dimensions, with
3× 3 being the most common. 3× 3 is the smallest kernel size
that can express adjacent pixel relationships while main-
taining a center pixel for output. 1× 1 convolution, although
technically smaller, has a different meaning in CNN
frameworks and literature. With single channel data, e.g.,
gray-scale image data, 1× 1 convolution refers to flattening a
convolutional layer output to a vector for use with a fully
connected layer for classification at the end layer of a net-
work. In multichannel classifiers, e.g., RGB image data, 1× 1

convolution refers to 1× 1 x 3 convolution. 1× 1 convolution
collapses the three channels of the input data into a single
channel or expands a single channel back into 3 channels.
Collapsing the channels has the benefit of reducing the
number of parameters in the neural network. State-of-the-
art CNN architectures such as Inceptionv3 in [5] collapse the
data channels with 1× 1 convolution while performing 3× 3
convolution, 5× 5 convolution, and max pooling in parallel
and then expand the outputs back out with 1× 1 convolution
again.

Odd dimension convolution kernels also ensure that the
output of the layer output maintains even dimensions at the
output. *e output dimensions of a convolution layer are
reduced by the width of the kernel minus one. When cas-
cading convolution layers, the input data width and height
dimensions are reduced by 2 for each 3× 3 convolution layer
until the desired output data dimensions are achieved. For
example, 7× 7 convolution layers become three 3× 3 con-
volution layers in series.

Cascading convolutional kernels allows a larger receptive
field to be covered by smaller 3× 3 convolutional kernels.
However, the conversion impacts the size of the neural
network in terms of memory and learnable parameters.
Increased memory requirements for a CNN increase the
time and power penalties due to memory access. Although
estimating the changes in performance of a CNN is difficult,
the general effects of changing layers can be quantified for
comparing CNN models. Let n be the kernel width, f the
number of input feature maps, and w the number of output

Reference CNN

Convert layers 

Train CNN for 
min test error

Adjust layer 
parameters

Convert to 
fixed point 

Retrain CNN for 
min test error

Adjust fixed-point 
format/precision

Meets training/size/speed 
requirements?

Meets training/size/speed 
requirements?

Yes

Yes

No

No

Validate with 
custom 

instructions

Deploy

Figure 1: CNN acceleration framework.
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feature maps. Assuming a square convolution kernel, the
convolution layer requires three words of memory to store
the weights and bias term:

(n × n × f + f) × w. (1)

In addition to the weights, the convolutional layer re-
quires intermediate memory for the calculation. *e in-
termediate memory size is equal to the input data width
times the height times the number of output feature maps.
As the kernel size increases, the memory for weights in-
creases roughly as the square of the width of the convolution
kernel.*e intermediate memory is the same size for a single
layer but is repeated for the cascaded layers which increases
the number of memory accesses. When the input data size is
larger than that of the weights, cascading convolution layers
will increase memory usage over the CNN.

*e number of parameters in a CNN is associated with
the complexity of the classifier. A CNN with more pa-
rameters can better fit complex classification problems.
However, a complex classifier will not always generalize
better than a simpler model. Increased parameter counts also
require more time to train the CNN.*e effects of parameter
count are difficult to directly correlate to classifier perfor-
mance, but significant changes to parameter in a CNN can
indicate where changes to the CNN architecture may be
necessary. Let i be the number of input feature maps. *e
number of learnable parameters for a single layer is 4. Like
memory for weights, cascaded 3× 3 layers will grow linearly
instead of growing with the square of the kernel size as
follows:

i × n
2

× f + f . (2)

Max pool layers can also be cascaded with some limi-
tations. 2× 2 max pool operations with stride 2 exactly cover
2n x 2n max pool kernel. However, kernels outside this range
cannot be converted directly. Rounding to the next valid
kernel size changes the dimensions of the output layer after
the max pool layer and can have significant effects on the
overall performance of the neural network. Rounding down
will increase the number of parameters in the subsequent
layers possibly degrading both speed and classifier accuracy.
Rounding to larger size kernels may force a subsequent layer
to vanish and force the rest of the CNN to be redesigned.

To understand the effects of converting convolutional
and max pool layers of a CNN, the classifier accuracy and

parameter numbers of three CNN configurations are
compared. Configuration 1 is the SAR ATR CNN in its
original form. It serves as a base line, and the other con-
figurations will show how the number of parameters changes
with the layer parameters. Table 1 illustrates the size and
shape of Configuration 1.

Configuration 2 presented in Table 2 converts the
convolutional layers to 3× 3 layers but does not convert the
6× 6max pooling layer.*e 6× 6max pool layer is preserved
to maintain the input and output shape of each layer and
roughly maintain parameter count from Configuration 1.
*e last convolutional layer from Configuration 1 is con-
verted from 4× 4 to 3× 3. Although the 3× 3 convolution
does not cover the 4× 4 receptive field, the next layer flattens
the output and is densely connected. *e result of this
conversion reduces the parameter count for the 4× 4 con-
volution layer but increases the number of parameters in the
dense layer by a factor of 4. Table 2 describes the shape of
Configuration 2.

Configuration 3 converts all convolutional layers to 3× 3
and all max pool layers to 2× 2. Configuration 3 exclusively
uses layers allowed by the framework at the expense of
having nearly three times more parameters than Configu-
ration 1. Increase in the number of parameters may degrade
the test classification accuracy much. Table 3 summarizes the
shape of Configuration 3.

*e first two configurations have a similar number of
parameters. Configuration 1 uses less parameters for the first
convolution layer than the first 4 convolution layers.
However, Configuration 2 has less parameters in the last
convolution layers than the last convolution layer in Con-
figuration 1. Memory and classification accuracy should be
similar, but Configuration 2 can now use custom 3× 3
convolution instructions as part of the framework. Con-
figuration 3 can use custom instructions for all layers but the
overall test accuracy is likely to change. *e acceleration
factor from custom convolution instructions will be reduced
by the increased number of parameters in all layers after the
first max pooling layer.

3. Custom Instruction Implementation Details

Custom instructions for CNNs allow the processor to di-
rectly use the compressed fixed-point neural networks and
realize inference acceleration. *e downsides of power
consumption and latency associated with general purpose

Table 1: Configuration 1: CNN model summary.

Layer (type) Original MSTAR model Output shape ParametersKernel size
conv2d_1 9× 9 (120, 120, 18) 1476
max_pooling2d_1 6× 6 (20, 20, 18) 0
conv2d_2 5× 5 (16, 16, 36) 16236
max_pooling2d_2 4× 4 (4, 4, 36) 0
conv2d_3 4× 4 (1, 1, 120) 69240
flatten_1 (flatten) (1, 120) 0
dense_1 (dense) (1, 120) 14520
dense_2 (dense) (1, 10) 1210

Total parameters: 102682
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CPUs and GPUs can be efficiently mitigated with minimal
impact on overall processor design. Custom SIMD in-
structions in an ASIP have the potential to parallelize the
most utilized functions in CNN applications. In addition,
hardware software codesign is easily done due to the ma-
turity of the tools.

3.1. Configurable Processor Limit Study. Many researchers
have investigated using configurable architectures and
extending the basic instruction set to speed up the execution
of specific applications. In these designs, we typically start
out with a parameterized processor and its basic instruction
set. We then use an architectural description language to
generate the datapaths or the functional units needed for the
extension instructions. To complement the new hardware,
we need to create the necessary software tools to complete
the design cycle. Even though these tools can significantly
shorten one iteration of the design cycle, many iterations are
needed to find the extension candidates that result in suf-
ficient acceleration of application. In this section, we present

a limit study on the performance potential of a typical
configurable processor in a battery powered environment.

We configured our reference code to process MSTAR
data. We then profiled the application with the GNU gprof
tool. Next, we analyzed the longest executing functions in
the profile to determine which instructions to accelerate.
Based on the profiling results, new instructions are created
for reducing the execution time spent. In general, the new
instructions can be proposed to (1) perform the same op-
eration on multiple data items in parallel; these operations
are prevalent in CNN applications and thus can provide
significant performance improvements with specialized
SIMD instructions, and (2) to combine instructions: when
multiple operations are applied to single data item se-
quentially, the new instruction can combine these into one
instruction.

Additionally, based on analytical performance models
derived from these papers [7, 8], we decided 3× 3 kernel size
is the representative kernel for convolution kernels for
AlexNet and VGG16 [9–11]. Custom instructions for 3× 3
convolution, MAC, and 2× 2 max pooling are examined,

Table 2: Configuration 2: CNN model summary.

Keep 6× 6 max pooling layer
Layer (type) Kernel size Output shape Parameters
conv2d_1 3× 3 (126, 126, 18) 180
conv2d_2 3× 3 (124, 124, 18) 2934
conv2d_3 3× 3 (122, 122, 18) 2934
conv2d_4 3× 3 (120, 120, 18) 2934
max_pooling2d_1 6× 6 (20, 20, 18) 0
conv2d_5 3× 3 (18, 18, 36) 5868
conv2d_6 3× 3 (16, 16, 36) 11700
max_pooling2d_2 2× 2 (8, 8, 36) 0
max_pooling2d_2 2× 2 (4, 4, 36) 0
conv2d_7 3× 3 (2, 2, 120) 39000
flatten_1 (flatten) (1, 480) 0
dense_1 (dense) (1, 120) 57720
dense_2 (dense) (1, 10) 1210

Total parameters: 124480

Table 3: Configuration 3: CNN model summary.

Convert all layers
Layer (type) Kernel size Output shape Parameters
conv2d_1 3× 3 (126, 126, 18) 180
conv2d_2 3× 3 (124, 124, 18) 2934
conv2d_3 3× 3 (122, 122, 18) 2934
conv2d_4 3× 3 (120, 120, 18) 2934
max_pooling2d_1 2× 2 (60, 60, 18) 0
max_pooling2d_2 2× 2 (30, 30, 18) 0
conv2d_5 3× 3 (28, 28, 36) 5868
conv2d_6 3× 3 (26, 26, 36) 11700
max_pooling2d_3 2× 2 (13, 13, 36) 0
max_pooling2d_4 2× 2 (6, 6, 36) 0
conv2d_7 3× 3 (4, 4, 120) 39000
flatten_1 (flatten) (1, 1920) 0
dense_1 (dense) (1, 120) 230520
dense_2 (dense) (1, 10) 1210

Total parameters: 297280
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and high-level descriptions for the proposed experiments are
described in the following sections. Small helper instructions
for byte swapping are not included in this section but are
evaluated in the results section as a potential performance
enhancement.

3.2. 3× 3 Convolution. *e majority of neural network in-
ference acceleration will come mostly from a custom SIMD
instruction for 3× 3 convolution with small bit-width
weights. Convolutional layers consume the most compu-
tation time of common CNN layers, so performance gains in
the convolution layers will provide the most overall benefit.
*e algorithm for a single 3× 3 convolution requires 9
multiplications and 9 additions for each pixel of the input
data. *en, an activation function is applied to the output of
the convolution. ReLU activation is the most common in
middle layers of a CNN because of the simplicity of
implementation and overall classification accuracy perfor-
mance. A custom instruction could perform all the multi-
plications, additions, and activation in a single cycle, but for
flexibility, the ReLU activation will be a separate instruction.
To further increase the performance of the custom in-
struction, we can perform this operation on multiple input
fields which is executed in parallel. A 36-fold performance
increase for convolutional layers is possible assuming the
base processor has single data MAC operations and the
effects of memory access are ignored.

4-bit weights and activation outputs in will be used in the
experiments. 4-bit numbers allow a 64-bit word to hold an
entire 4× 4 input data field. Weights and biases can fill 40
bits of the same size register. A single cycle 3× 3 convolution
instruction is to be examined for 4× 4 input data tiles where
the input and output perfectly fit the instruction. *e four
data outputs correspond to all valid convolutions on a single
4× 4 tile. To cover larger convolutions, the instruction on
four adjacent 4× 4 tiles will be examined. *e large 8× 8
input to 3× 3 convolution represents how the 3× 3 con-
volution instruction would be used in the more general case.
*e 8× 8 input still reuses the 3× 3 convolution at its core to
achieve a speedup, but the effects of reusing output data and
selecting submatrices from the original four input tiles will
reduce the overall speedup. Nine 3× 3 convolutions are
required to achieve the 6× 6 output product from an 8× 8
input tile.

3.3. Multiply and Accumulate (MAC). *e second most
computationally expensive layer is the fully connected layer.
*e fully connected layer is essentially a vector matrix
product. MAC instructions typically compute these layers
for single data operations and are common in DSP pro-
cessors. A 16-lane SIMDMAC instruction is to be examined
to match the output of the proposed convolution and max
pooling output data types. *is operation has the potential
for 16x cycle acceleration over single data MAC assuming
one cycle for each MAC and disregarding the effects of
memory access.

3.4. 2× 2 Max Pooling. *e max pooling layer is the least
performance restrictive layer of CNNs, but max pooling
could become a performance bottleneck once the other
layers are tuned for acceleration. A 2× 2 max pooling op-
eration requires four memory reads, three compare oper-
ations, and one memory write for single input data.
However, the data format change to 4× 4 tiles to accom-
modate 3× 3 convolution impacts the standard max pooling
operation. Bit shifting and masking to extract each 4-bit
input data word is inefficient. A custom SIMD max pooling
instruction can perform four 2× 2 max pooling comparisons
in a single operation. A 12x performance increase is possible
if only compare operations are accounted for. However,
memory read and write operations account for most of
operations in a max pooling routine. *e number of cycles
for memory operations varies dramatically between different
hardware architectures, and the effects of compiler opti-
mizations are difficult to predict.

4. Experimental Results

4.1. CNN Layer Conversion. *e model training follows the
same guidelines from the authors’ paper with some devia-
tions to improve performance [6]. *e training data samples
are minimally preprocessed. Only the names of each class
label are converted from strings to one-hot encoded vectors.
*e weights and biases of the CNN are initialized according
to what is called a Glorot or Xavier distribution in machine
learning frameworks [12]. *e Glorot uniform distribution
is a uniform random distribution and centered around zero.
*e limits of the distribution are determined by the number
of connections into and out of the connection as seen in

limit �

��������������
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. (3)

*e training phase uses a categorical cross-entropy loss
function to determine howwell the weights used during for a
specific batch fit the input training data. *e Adam opti-
mizer [13] is used over standard stochastic gradient descent
because Adam does not require manual tuning of the decay
and momentum parameters after initial values are chosen.
Training is performed for 30 epochs on 3621 images in
batches of 32. *e test data set of 3203 samples is used for
validation directly instead of setting aside a part of the
training set for validation.*e CNN is trained in 10 separate
sessions to vary the weight initializations and display the
range of classification performance for a given model. *e
model with the best overall validation accuracy after the 10
training sessions is used for final accuracy evaluation. Table 4
shows the training results of the three CNN configurations.

*e converted CNN configurations perform as well or
better than the original CNN in this case. However, the
configuration with the most parameters does not increase
classifier performance likely due to overfitting and would not
be ideal from the perspective of memory and execution
speed. Configuration 3 demonstrates the ill effects of trying
to force layers to use the custom instructions for max
pooling when they do not fit the rules. Nearly 3 times as
many parameters are required for the same overall
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performance. Configuration 2 also has more parameters
than the original but has the key benefits of the highest
accuracy and ability to use the custom instructions in the
following sections. *e benefits of conversion to small bit-
width numbers and fast SIMD instructions make up for the
minor growth of the CNN model.

4.2. Custom Instructions. All custom processor instructions
are designed and profiled in Cadence Xtensa Xplorer SDK.
New instructions are defined using the TIE language. TIE is a
Verilog-like language used to define hardware with special
bindings for the Xtensa environment. TIE files are compiled
and C language bindings are automatically created from the
description. *e SDK also provides area and gate estimates
for the compiled TIE files. *e processor is a Cadence LX.7
in the base configuration with a 128-bit wide data bus to
accommodate wide vectorized data. Four additional 128-bit
registers and ten additional 64-bit registers are included for
fast register-to-register operations used with the new CNN
instructions.

4.2.1. 3× 3 Convolution. Two implementations of convo-
lution are tested and profiled in this work, parallel and
shared. In the fully parallel instruction, four 3× 3 convo-
lutions are performed in a single instruction. Twenty-eight
separate 4-bit multipliers and 4 separate 10 input adders are
required for this implementation. Figure 2 demonstrates the
arrangement of the data and output products for a tiled 3× 3
convolution instruction.

*e fully parallel implementation requires only one cycle
to obtain the four output products. *e shared imple-
mentation splits the single instruction into 5 cycles to match
the pipeline depth of the processor. *e shared imple-
mentation uses 9 multipliers and a single 10 input adder and
then multiplexes the hardware resources automatically
across 5 cycles. One cycle is used for each output product,
and the last cycle is used to evaluate the result. Sharing the
hardware multipliers reduces the overall area for the mul-
tiplier at the expense of more time for execution. *e extra
circuitry required for sharing the multipliers and adders
adds some extra gates so the overall reduction in gates and
area is less than four times.

A general 8-bit convolution function is used for baseline
comparison. 8-bit is used in the baseline function instead of
4-bit like in the custom instructions because standard
C-types like int8_t or char can be used. *is allows the C
compiler to effectively fill the processor pipeline and provide
a fair comparison. However, the 8-bit integers will be limited
to 4-bits so the outputs of the custom convolution can be
verified against the C model.

*e perfect alignment situation for this instruction is a
4× 4 input tile. Memory access and data reordering is not
necessary. *e parallel implementation obtained a 14.1x
speedup while the shared implementation obtained an 18.5x
speedup. Although the 3× 3 convolution is performed in one
or five cycles, memory accesses to load and store the registers
for the data and kernel hide the performance decrease from
sharing the multipliers.

*e more complex 8× 8 input tile situation is more
representative of how 3× 3 convolution instructions would
be used in a DNN framework. *e 3× 3 convolution op-
erations are performed 9 times and additional operations are
required to extract data from adjacent 4× 4 tiles. *e
convolution is accelerated 26.2 times for both the parallel
and the shared instruction. *e compiler optimization hides
the extra cycles from the shared instruction and achieves the
same speedup as the parallel instruction.

*e bit shifting and masking instructions used to obtain
the intermediate 4× 4 tiles compose about 40% of the total
cycles in the 8× 8 convolution test. Adding custom reor-
dering instructions requires minimal gates and removes the
cycle penalty associated with obtaining 4× 4 data tiles in-
between the 4 original tiles. Additional left right tile split and
top bottom tile split instructions remove the need for bit
shifting and masking. Figure 3 demonstrates how the 8× 8
tile is separated to achieve all the required output tiles.

Split instructions boost the speed up to 37.4 times for
shared convolution and 38.3 times for parallel convolution
over the pure C implementation. Interestingly, the speedup
is greater than the estimated 36x speedup. *is is likely
because the data are reused between all operations and no
intermediate memory reads or writes are performed.

4.2.2. Max Pooling. *e SIMD max pooling instruction
performs four separate 2× 2 max pooling operations on a
4× 4 input data tile stored as a 64-bit vector. *e new in-
struction is compared to a baseline C-function that loads a
data item and compares the next three data items. *is
sequence is performed four times in a loop to replicate the
max pooling layer on a 4× 4 tile. *e custom instruction
version reads in a 4× 4 input tile and performs all 4 2× 2max
pooling operations in a single cycle. It resulted in the speed
increase by more than 3 times.

4.2.3. SIMD MAC. Fully connected layer evaluation can be
performed with a SIMD MAC instruction. *ese instruc-
tions exist in various commercial processors, but the
smallest data size for each SIMD lane is 8-bits. A 4-bit MAC
instruction was profiled to match the bit-width of the other
new instructions. Building a MAC instruction in the same
processor also serves as a comparison between standard

Table 4: CNN configuration accuracy summary.

Model Min val accuracy Avg val accuracy Min val accuracy Parameters
Original 0.951 0.960 0.974 102682
Keep 6× 6 max pooling 0.923 0.965 0.982 124480
Convert all layers 0.932 0.955 0.973 297280
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instructions and the proposed instructions specialized for
CNN in terms of area and power.

Evaluation of the new 4-bit MAC instruction was per-
formed using a 16×16 matrix and 16 element vectors to
simulate a fully connected layer with 16 inputs and 16
outputs.*e baseline C-function loads the accumulator with
the bias then performs multiplication of each element of the
vector with each element of a row of the input data matrix.
Loading the bias and element-by-element multiplication is
repeated for each row of the matrix. *is baseline requires
4096 MAC instructions in total. *e overall speedup, 27.5x
for shared and 29.8 for full parallel, is significantly larger
than the expected 16x because of the reduced cycle penalty
on the memory accesses.*e speedup in this situation can be
extrapolated to larger matrix vector multiplications for cycle
time estimates. *is instruction is least efficient for vector
and matrix sizes with dimensions of 16n+ 1 so using
multiples of 16 for hidden layers is recommended in
practice.

4.2.4. Custom Instruction Summary and Discussion.
Table 5 summarizes the speedup and gate count impact of
the custom CNN instructions. In general, the shared in-
structions use roughly half the gates compared to the fully
parallel implementation with little impact on the overall

speedup. *e exception is the shared version of the 16 lane
MAC instruction because all the instructions were imple-
mented on the same design. *e automatic placement and
routing tools use more gates to meet timing requirements of
the overall design. Creating separate designs for each in-
struction would reduce the number of gates for each
operation.

*e overall overhead increase to the chip size or gate
count when all layers are considered is relatively small.
Whether we use shared or full connected 4 by 4, or 8 by 8
depending on the custom instructions for convolution and
dense layer, less than 4% more gates would be added to the
Tensilica core. Tensilica core is 156k gate count small RISC
core which can be fabricated in 0.13 micron standard cell
technology process. *e silicon density of 100k logic gates
per mm2 is achieved. A low-cost chip can carry 5 million
logic gates in a single chip using the same process tech-
nology. In our analysis, we assume that the processing of 15
to 30 frames per second achieves real-time CNN inference
realization because IoTedge device is used in the low bit rate
mobile environment. *erefore, our approach using a
processor-based CNN realization will help gain the amount
of speedup crucial determining feasibility of this type of
CNN system.

We assumed that the power consumption of the CNN
custom block roughly depends on the area or chip size which

a b c d

e f g h

i j k l

m n o p

f g h

j k l

n o p

Input data

Bias

Convolution + bias Output

Figure 2: 3× 3 convolution on 4× 4 data tile.

Figure 3: Demonstration of the split instruction. (Left) blue squares are outputs from adjacent input tiles with thick black borders. (Right)
green outputs after obtaining intermediate tiles from 4 original tiles.
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is connected, based on the high-level power estimation
literature [14]. We assume that the speedup out of our
custom instructions offer more design choices for HW
designers. HW designers and architects can explore and
decide on their options with confidence based on their
insight, with the help of our methodology’s specific CNN
implementation choices.

It would be preferable to execute the proposed custom
instructions on different processors other than Tensilica
SDKwith those custom instructions implemented. Due to its
limited availability on processor core internals, we did not
perform fixed-point analysis on finite word effects for our 4-
bit SIMD instructions. However, we think that this has
minimal impact on our classification performance, based on
the literature [15, 16].

Tensilica is based on a 32-bit RISC processor architec-
ture, so we believe those candidate instructions are appli-
cable to other architecture as well. We plan to prototype on a
hardware emulation board with multiple workloads so that
we can validate our proposed instructions.

We concluded that our methodology requires less de-
velopment time and less design effort than conventional
methodologies. We assessed our design time including
model building, simulation, and verification time. In most
cases, verification takes a significant portion of development
time if it is a conventional simulation-based verification.*e
ASIP-based CNN method is easily adapted to the existing
processor-based design flow, leading to a shorter develop-
ment time for generating performance parameters.

5. Related Work

Four general classes of hardware are used for accelerating
neural network inference: high-power CPUs, low-power
embedded microprocessors, FPGAs, and GPUs. CPUs are
the most general processors and can run all neural network
models. However, general purpose comes at the cost of being
fast or efficient for a single kind of computation. Most of the

computation time required to run a neural network is spent
executing multiplication and addition operations. Fortu-
nately, these simple operations are useful enough in general
programs that most modern CPUs have special hardware to
execute multiple multiply and add instructions simulta-
neously. Intel’s latest CPUs utilize a wide 512-bit register that
equates 16 single-precision floating point numbers to exe-
cute in a single instruction in parallel [17]. Embedded
processors are usually SoCs. In the industry, ARM pro-
cessors are the core of choice for many embedded SoCs
because the ARM architecture is designed for low-power
applications. ARM-based embedded SoCs are becoming
increasingly powerful with multiple cores and small SIMD
units designed to accelerate the most common tasks. Al-
though embedded SoCs are not as powerful as large CPUs or
GPUs, they are much more efficient and can operate with
low latency at a fraction of the cost of other platforms. *e
benefits of small efficient embedded processors drive the
need for neural network compression and acceleration.

GPUs operate using a completely different paradigm
compared to CPUs favoring parallelism over general com-
pute ability. It contains hundreds of cores running in parallel
with a grid such as interconnect architecture. *is special-
ized, massively parallel architecture perfectly suits neural
network computation with some caveats. State-of-the-art
consumer graphics cards such as the Nvidia V100 are ca-
pable of 14 teraflops (trillions of floating point operations
per second) with single-precision floating point [18].
However, the GPU platform has some major downsides.*e
large, fast GPUs used for neural network research require
hundreds of watts of electrical power to fully utilize the
hardware. For example, the V100 draws up to 250 watts at
peak consumption [18]. In addition, powerful GPUs run as
coprocessors and need to be fed data from a general
computing system. PCIe is the most popular interface for
GPUs and although PCIe is high bandwidth, it is also high
latency and difficult to integrate into embedded systems.
Latency is unacceptable in many embedded applications

Table 5: Speedup and gate summary for custom SIMD instructions.

4 x 4 tile, 3 x 3 conv Cycles Speedup Gates
Baseline 408 — 156466
Shared 29 14.1 2389
Full 22 18.5 4456
8 x 8 tile, 3 x 3 conv Cycles Speedup Gates
Baseline 3404 — 156466
Shared 130 26.2 2389
Full 130 26.2 4456
Shared + splits 91 37.4 2405
Full + splits 88 38.7 4472
Max pooling Cycles Speedup Gates
Baseline 44 — 156466
Tie 13 3.4 262
FC16 Cycles Speedup Gates
Baseline 2114 — 156466
Shared 77 27.5 4124
Full 71 29.8 2970
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ruling GPUs out as a processing platform. In cases where the
CPU load is high and the GPU needs to be sent data for
processing, data transfer time can approach hundreds of
milliseconds depending on the system [19].

Image classification networks such as AlexNet are
proven to classify the 1000 class dataset called ImageNet with
high accuracy. *e disadvantage of the AlexNet and other
popular architectures are that they require hundreds of
megabytes to gigabytes of RAM to store the parameters [20].
In many cases, the best option is to start with a small neural
network to minimize the memory footprint in the system.
However, large complex models are unavoidable for more
complicated tasks. As a result, the large footprint of complex
neural networks will not fit into memory in small embedded
systems without dynamic memory. If dynamic memory is
available, memory accesses are orders of magnitude slower
and higher power consumption than access to on-chip ram.

Architectures such as SqueezeNet are a response to large
CNNs such as AlexNet. SqueezeNet reduces the memory
with three strategies, reducing convolutional filter size,
decreasing the number of input channels into filters, and
downsampling later in the network [20]. SqueezeNet is an
interesting design space exploration of architectures for
image classification but is specialized for three channel data
such as RGB images. An alternative to SqueezeNet is
MobileNets. MobileNets reduces the number of computa-
tions for a neural network by using separable convolutions
[21].

Converting the matrices of neural network layers into
the frequency domain with FFTand multiplying reduces the
number of mathematical operations for the same convo-
lution operation [22]. Reducing the number of mathematical
operations for convolution will improve performance across
all convolutional layers of a neural network and improve
overall network performance. *e performance increase
does come at the cost of memory footprint. Convolution
kernel storage is dictated by the largest kernel in the network
since the filters can be shared across all layers, but these
kernels still use more memory than traditional weights. Due
to the lack of memory in many embedded systems, this
method will likely not be feasible and will not be focused on
in the framework for DNN compression.

Neural networks are typically trained using a 32-bit
floating point model to effectively backpropagate errors to
the next layer. Since the total network size can be estimated
by the number of parameters times the number of bits per
parameter, reducing the model to an 8-bit floating point
model immediately reduces the memory used for storing the
parameters to one-quarter of the original size [23]. CNN
classifier performance is slightly reduced by reductions in
bit-width representation during inference and in some cases
smaller parameter representation can even act as regulari-
zation technique to increase test accuracy performance.

In addition to reducing bit-widths of numbers, the
number format can also be dynamically adjusted to further
mitigate loss from quantization. *e Ristretto method ex-
plores a simple method to optimally adjust to the dynamic
range of each layer in a network using a simple rule [24].*e
length of the integer part of a fixed-point number is made

large enough to avoid being saturated, and the remaining
bits are devoted to the fractional part of the number. *is
allows for further bit-width reduction to as low as 4-bits per
parameter with 1% loss in classification accuracy.

In the most extreme case of quantization, weights can be
represented as 1-bit numbers. 1-bit weights in neural net-
works maximize the benefits from simpler hardware and
small memory footprint. In addition, multiplication or bit
shifting can be replaced by binary operations. Remarkably,
the classification error rates do not drop significantly for
some applications. In [4], the authors experiment with the
binary weight and conclude binary CNNs perform nearly as
well as full precision CNNs but accelerate convolution by a
factor of 58. Binary neural network benefits are a promising
for applications where some classification accuracy loss is
acceptable for fast and low-power inference.

Compression algorithms exist across a wide variety of file
types and utilize the unique characteristics of the target data
to achieve the smallest file size. *e deep compression
method follows suit by exploiting the shape and distribution
of the stored parameters. Deep compression achieves be-
tween 35x and 49x reduction in memory footprint for
popular image classification architectures [25]. Converting
to sparse matrix formats provides most of the compression
benefit and can be further tuned depending on the specific
sparse matrix format [26]. Sparse matrix formats are only
effective in the case of neural networks because the sparsity
of the matrices representing the weights in each layer is
greater than the additional storage space from tuple
representation.

*ere are several custom frameworks for special type of
CNNs in the literature. *e authors in [10] present an ef-
ficient HW/SW implementation of sparse convolutional
neural networks. Using their approach, the authors designed
an accelerator attached to AXI processor bus. Processing
units (PUs) are designed by inspecting CNN kernels. *e
paper shows 2.93x better performance over previous FPGA-
based accelerators.

In addition to those approaches, there are several CNNs
implemented using FPGAs or ASICs available presently
[9, 15, 27]. OpenCL-based design methodology is presented
in the paper. In this work, the authors wanted to exploit the
parallelism capabilities of the OpenCL. *ey have used a
standalone method to implement a hardware accelerator.
*e host and kernel programs are compiled to link together
as a single binary file in the standalone method. *us,
standalone application specific processor includes host,
compute device, and compute unit. In the host/device
method, the host code controls the ASP’s execution
implemented as a kernel program. In addition, the authors
have used Transport Triggered Architecture (TTA) as an
ASP. TTA consists of Function Units (FUs) and Register
Files (RFs). *e FUs communicate with the RF via datapath.
*e RF stores the operands, whereas FUs contain the custom
operations, i.e., load, store, the arithmetic unit, and logic
unit. *e TTA’s instructions are implemented as separate
work-items grouped in the work-groups. *e instructions
from the couple of work-items can be executed in parallel.
*e authors have used barriers to chain the work-items
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together in a work-group. When one work-item reaches the
barrier, it has to wait for other work-items in the work-group
before continuing the execution. *e authors did not
compare their results with existing results. *ey have not
reported the actual hardware and software execution times.
*e power consumption and resource utilization is also not
been reported. One of reasons we implement our SIMDy
CNN on Tensilica core is to provide a realistic measure for
hardware-based implementation overhead. Tensorflow cores
as well as specialized FPGA-based CNNs are reported in the
literature [28].

*ere are efficient SIMD library implementations de-
veloped for CNN such as [11, 29]. *ese are SIMD intrinsic
instructions offered by traditional processors including
Intel® AVX512 [30]. However, the baseline processor should
be somewhat powerful enough to have dedicated floating
point units such as Neon or Helium blocks [29]. In our work,
we are interested in extending embedded processor using
common instruction set so that we can significantly accel-
erate the overall performance, especially for convolutional
neural network inference for low-power embedded IoT
nodes. *erefore, we focused on custom instructions for
CNN. Often, the dedicated CNN accelerators were imple-
mented on PCI-type FPGAs with several hundreds of watts
power consumption.

In this section, we looked into the relevant prior state-of-
the-art tools for CNN implementations on GPU, embedded
processors, and SIMD extensions.

6. Conclusions

*is work describes the compression and acceleration
framework for the convolutional neural network (CNN) and
its processor-based implementation with instruction ex-
tensions for embedded processing, by offering design
options:

(i) Overall CNN design flow for processor-based
implementations

(ii) Fixed-point custom CNN instructions
(iii) CNN layer compression and conversion case studies

Specifically, features such as 3× 3 convolution and 2× 2
max pooling layers are used to convert CNNs to accom-
modate new candidate instructions. After the CNN is
converted, custom CNN instructions were proposed to
accelerate CNN training and inference. Introducing 3× 3
convolution, ReLU, max pooling, and MAC instructions
result in significant speedups with minimal impact on chip
area. Tensilica is based on a 32-bit RISC processor archi-
tecture, and thus, those candidate instructions can be ap-
plied to other architectures. Additionally, 32-bit floating
point CNNs were converted to fixed point for inference. *e
results show the advantage of our custom instruction-based
CNN implementation, leading to less design time with a
significant speedup for the low-power embedded system.

Abbreviation

GPU: Graphic processor unit

ASIP: Application specific instruction set processor
FCCM: Field-programmable custom computing machine
FPGA: Field-programmable gate array
HPC: High-performance computing
FCCM: Field-programmable custom computing machine
ALU: Arithmetic logic unit
DDR: Double data rate
SRAM: Static random access memory
BRAM: Block random access memory.

Data Availability

*e datasets generated during the current research are not
publicly available due to funding requirements but are
available from the corresponding author on reasonable
request.

Conflicts of Interest

*e authors declare no conflicts of interest.

Authors’ Contributions

*is work was done by Joshua Misko and Young Soo Kim.
Young Soo Kim developed the idea throughout this research
project and wrote a convolutional neural network reference
implementation. Joshua Misko implemented and tested the
proposed system based on their idea while writing his paper.
Shrikant Jadhav helped to write this paper and designed the
paper structure during writing, simulation, and its experi-
mental result analysis. As a corresponding author, Young
Soo Kim managed this project during the project year and
advised the direction of this work while reviewing the paper.

Acknowledgments

*e authors would like to thank Dr. In Soo Ahn for con-
structive criticism of the earlier version of the manuscript.
*is work was supported in part by the Bradley University
Provost Office through 2019-2021 Caterpillar Award and
Teaching Excellence Award.

References

[1] A. Canziani, A. Paszke, and E. Culurciello, “An analysis of
deep neural network models for practical applications,” 2016,
http://arxiv.org/abs/1605.07678.

[2] S. Han, X. Liu, H. Mao et al., “EIE: efficient inference engine
on compressed deep neural network,” 2016, https://arxiv.org/
abs/1602.01528.

[3] D. D. Lin, S. S. Talathi, and V. S. Annapureddy, “Fixed point
quantization of deep convolutional networks,” in Proceedings
of the 33rd International Conference on Machine Learning,
New York, NY, USA, June 2016.

[4] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi,
“XNOR-net: imagenet classification using binary convolu-
tional neural networks,” 2016, https://arxiv.org/abs/1603.
05279.

[5] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,”
2015, https://arxiv.org/abs/1512.00567.

Scientific Programming 11

http://arxiv.org/abs/1605.07678
https://arxiv.org/abs/1602.01528
https://arxiv.org/abs/1602.01528
https://arxiv.org/abs/1603.05279
https://arxiv.org/abs/1603.05279
https://arxiv.org/abs/1512.00567


[6] J. Misko, Y. Kim, C. Qi, and B. Sirkeci, “Mobile high-per-
formance computing (HPC) for synthetic aperture radar
signal processing,” Proceedings of SPIE, vol. 10647, 2018.
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