
San Jose State University San Jose State University 

SJSU ScholarWorks SJSU ScholarWorks 

Faculty Research, Scholarly, and Creative Activity 

7-14-2021 

Early detection of wildlife morbidity and mortality through an Early detection of wildlife morbidity and mortality through an 

event-based surveillance system event-based surveillance system 

Terra R. Kelly 
School of Veterinary Medicine 

Pranav S. Pandit 
University of California, Davis 

Nicole Carion 
California Department of Fish and Game 

Devin F. Dombrowski 
The Wild Neighbors Database Project 

Krysta H. Rogers 
California Department of Fish and Game 

See next page for additional authors 

Follow this and additional works at: https://scholarworks.sjsu.edu/faculty_rsca 

Recommended Citation Recommended Citation 
Terra R. Kelly, Pranav S. Pandit, Nicole Carion, Devin F. Dombrowski, Krysta H. Rogers, Stella C. McMillin, 
Deana L. Clifford, Anthony Riberi, Michael H. Ziccardi, Erica L. Donnelly-Greenan, and Christine K. 
Johnson. "Early detection of wildlife morbidity and mortality through an event-based surveillance system" 
Proceedings of the Royal Society B: Biological Sciences (2021). https://doi.org/10.1098/rspb.2021.0974 

This Article is brought to you for free and open access by SJSU ScholarWorks. It has been accepted for inclusion in 
Faculty Research, Scholarly, and Creative Activity by an authorized administrator of SJSU ScholarWorks. For more 
information, please contact scholarworks@sjsu.edu. 

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/faculty_rsca
https://scholarworks.sjsu.edu/faculty_rsca?utm_source=scholarworks.sjsu.edu%2Ffaculty_rsca%2F2488&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1098/rspb.2021.0974
mailto:scholarworks@sjsu.edu


Authors Authors 
Terra R. Kelly, Pranav S. Pandit, Nicole Carion, Devin F. Dombrowski, Krysta H. Rogers, Stella C. McMillin, 
Deana L. Clifford, Anthony Riberi, Michael H. Ziccardi, Erica L. Donnelly-Greenan, and Christine K. Johnson 

This article is available at SJSU ScholarWorks: https://scholarworks.sjsu.edu/faculty_rsca/2488 

https://scholarworks.sjsu.edu/faculty_rsca/2488


royalsocietypublishing.org/journal/rspb

Research
Cite this article: Kelly TR et al. 2021 Early
detection of wildlife morbidity and mortality

through an event-based surveillance system.

Proc. R. Soc. B 288: 20210974.
https://doi.org/10.1098/rspb.2021.0974

Received: 3 May 2021

Accepted: 16 June 2021

Subject Category:
Ecology

Subject Areas:
health and disease and epidemiology, ecology

Keywords:
early detection system, wildlife disease

surveillance, wildlife morbidity, wildlife

mortality, general disease surveillance,

wildlife rehabilitation

Author for correspondence:
Terra R. Kelly

e-mail: trkelly@ucdavis.edu

†These authors contributed equally.

Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.5489366.

Early detection of wildlife morbidity
and mortality through an event-based
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The ability to rapidly detect and respond to wildlife morbidity and mortality
events is critical for reducing threats to wildlife populations. Surveillance
systems that use pre-diagnostic clinical data can contribute to the early
detection of wildlife morbidities caused by a multitude of threats, including
disease and anthropogenic disturbances. Here, we demonstrate proof of con-
cept for use of a wildlife disease surveillance system, the ‘Wildlife Morbidity
and Mortality Event Alert System’, that integrates pre-diagnostic clinical
data in near real-time from a network of wildlife rehabilitation organiz-
ations, for early and enhanced detection of unusual wildlife morbidity and
mortality events. The system classifies clinical pre-diagnostic data into
relevant clinical classifications based on a natural language processing algor-
ithm, generating alerts when more than the expected number of cases is
recorded across the rehabilitation network. We demonstrated the effective-
ness and efficiency of the system in alerting to events associated with both
common and emerging diseases. Tapping into this readily available uncon-
ventional general surveillance data stream offers added value to existing
wildlife disease surveillance programmes through a relatively efficient,
low-cost strategy for the early detection of threats.

1. Introduction
Anthropogenic disturbances are increasingly threatening the health of wildlife
populations, especially in areas undergoing rapid urbanization and population
growth [1–3]. These disturbances are contributing to a wide range of threats,
including habitat fragmentation, invasive species introductions, pollution and
disease emergence [4–6]. Infectious diseases contribute to biodiversity loss
[7], and there is mounting evidence that pollution and emerging pathogens
have devastating impacts on wildlife populations around the world (e.g.
amphibian chytridiomycosis, white-nose syndrome in bats and domoic acid
intoxication in marine animals) [5,8,9].

These same disturbances drive emerging disease risk in people [6,10–12].
The increasing incidence of emerging infectious diseases, the majority of
which originate in wildlife [6], has become one of the most prescient challenges
facing human and animal health [10,13,14]. Notable examples include the
emergence and spread of Ebola virus [15], Nipah virus [16] and most recently
SARS-CoV-2 [17].

© 2021 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
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With increasing awareness of the impacts of emerging dis-
eases on both humans and animals and the importance of wild
animals as hosts and/or reservoirs of zoonotic pathogens, there
is a greater recognition of the need for disease surveillance in
free-ranging wildlife. Reports of unusual illnesses or deaths
in wildlife populations may serve as the first alert of an emer-
ging health threat [18]. For example, mortality in crows
(Corvus species) and exotic birds at a zoologic park in
New York provided early warning of the emergence of West
Nile Virus (WNV) in the United States (US) in 1999. Avian
deaths were a critical precursor to identifying WNV as the
cause of the associated human encephalitis outbreak [19]. As
crow mortalities were occurring prior to the onset of human
WNV cases, dead bird surveillance served as a sensitive indi-
cator forWNVactivity and the riskof infection for humans [20].

Surveillance strategies focusing on early detection are
important for quickly identifying and mitigating threats as
they emerge [18]. Targeted surveillance, which focuses on a
particular pathogen or contaminant, is valuable for surveil-
ling specific disease agents in wildlife [21–23]. However, the
implementation of targeted surveillance is costly and
time-consuming for surveilling a wide range of threats
across multiple species [20,21,23]. Targeted surveillance strat-
egies can also miss trends signifying an emerging threat that
is outside the systems’ targets. Therefore, wildlife disease sur-
veillance programmes typically also incorporate general
disease surveillance, a strategy for detecting sick and dead
animals in the wild and identifying causes of morbidity
and mortality [23]. General disease surveillance is not limited
to a few species or pathogens, rather it covers a broad range
of wildlife and causes of illness and death [23].

General surveillance systems, especially systems that use
existing pre-diagnostic health information or syndromic data
can facilitate early detection of health threats through the
identification of unusual disease clusters early before diag-
noses are confirmed and officially reported [18,24]. While
syndromic systems do not track verified events, they can pro-
vide a valuable complement to targeted surveillance through
alerting to anomalous wildlife morbidity events, thereby
enhancing situational awareness and increasing opportunities
for early detection and response. Syndromic classification of
wildlife mortalities based on pre-diagnostic post-mortem
examination findings has been highlighted as a rapid, reliable
and relatively inexpensive strategy for disease surveillance
[25]. Using pre-diagnostic clinical wildlife health data genera-
ted through physical examination findings is a novel strategy
that offers an even more efficient approach to syndromic
surveillance as the data is entered in near real-time upon
admission of animals to the centres. It is also practical in set-
tings where it is not feasible to classify high numbers of cases
based on their pathologic profiles through post-mortem exam-
inations. By using existing clinical wildlife health data, this
approach can also provide a relatively inexpensive means to
bolster disease surveillance programmes [26].

In North America, wildlife agencies conduct targeted dis-
ease surveillance for several endemic and recently emerging
wildlife diseases of importance (e.g. avian influenza, rabies,
white-nose syndrome, snake fungal disease and bovine
tuberculosis) [27–30]. These agencies also investigate reports
of unusual morbidity and mortality events in order to
detect anomalies outside of surveillance targets, including
new species or geographical areas affected by known diseases
or new diseases as they emerge.

With increasing focus on the importance of early detection
and the need for innovative, cost-effective strategies, several
new approaches and tools have been developed as a comp-
lement to conventional surveillance systems. For example,
citizen science has increasingly been used in North America
for surveilling diseases causing characteristic clinical signs,
such as avian pox or finch conjunctivitis [20,31]. Agencies
have also implemented harvest-based disease surveillance as
a practical, cost-effective strategy (e.g. chronic wasting disease
in cervids and Brucella spp. in coyotes) [32,33].

Wildlife rehabilitation organizations are also increasingly
recognized for their potential to contribute to disease surveil-
lance, including diseases of importance to domestic animal
and human health [34–36] as well as emerging threats
[31,34,37]. Until recently, platforms for sharing information
among organizations have been lacking, resulting in missed
opportunities to detect unusual events when sick animals
are brought to multiple, uncoordinated centres across a
region. In addition, efforts to use rehabilitation data to con-
tribute to disease surveillance have previously focused on
verified diagnostic data rather than clinical pre-diagnostic
data, limiting the information’s use to contribute to early
detection. When linked through a formal network, these
organizations have the potential to assimilate and share
large amounts of clinical data in near real-time, collectively
representing a highly valuable and under-used resource
that can be used to complement existing surveillance efforts
for early and enhanced detection [21,31,34,35,38–42]. In this
study, we aimed to develop and pilot an online surveillance
system that integrates pre-diagnostic clinical health data
entered in near real-time by a network of wildlife rehabilita-
tion organizations to facilitate early and enhanced detection
of wildlife morbidity and mortality events.

2. Methods
In 2012, The Wildlife Neighbors Database Project developed the
Wildlife Rehabilitation Medical Database (WRMD; https://
www.wrmd.org/), a free online database designed for wildlife
rehabilitation organizations to compile, analyse and archive stan-
dardized patient data. WRMD currently contains over 2 million
wildlife patient records, and data are entered by 950+ organiz-
ations across 48 US states and 19 countries. To build on the
capabilities of this database, we developed a web-based surveil-
lance platform, the ‘Wildlife Morbidity and Mortality Event
Alert System’ (WMME Alert System), that runs in parallel with
WRMD to rapidly detect wildlife morbidity and mortality
events. The platform integrates data entered in WRMD in near
real-time by a network of 30 wildlife rehabilitation organizations
across California (figure 1). Data for each case includes a unique
identifying number, species, sex, age class, location found, circum-
stances of admission, initial examination findings and ultimately
the diagnosis if determined. Personal identifiable information of
rescuers is excluded. Aggregated data displayed through interac-
tive tabular, graphical, and spatial dashboards in the WMME
Alert System are accessible to the network of partner wildlife reha-
bilitation organizations and theWildlifeHealth Laboratory (WHL)
of the California Department of Fish andWildlife, which leads the
state’s wildlife disease surveillance efforts.

Wildlife data (219 767 case records) collected between
1 January, 2013 and 31 December, 2018 were extracted from
WRMD to establish thresholds for triggering alerts in the WMME
Alert System (electronic supplementary material, Data File S1).
Alerts to anomalous events are generated when the number of
cases exceeds pre-defined thresholds for the number of admissions
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for a given species and for the number of admissions for a
given species presenting with a specific clinical classification (e.g.
neurologic disease) based on physical examination findings.

(a) Clinical classification of cases and development of
alert thresholds

To establish the alert thresholds specific to clinical classifications,
a supervised machine learning algorithm was used to assign one
of 12 pre-diagnostic clinical classifications to each case in the
dataset (table 1). A total of 3081 cases were randomly chosen
from the data as a training dataset (electronic supplementary
material, Data File S2). Each of these records was assigned one
of 12 clinical classifications based on data recorded for ‘reasons
for admission’, ‘initial physical examination’, and ‘preliminary
diagnosis’ by a wildlife veterinarian (T.R.K). Twenty per cent
of the training case records (n = 600 entries) were randomly
chosen as a test dataset for model validation. The remaining
dataset was used for cross-validation. Specifically, a ‘bag of
words’ approach [43] was used to extract predictive feature
data and generate a list of vocabulary words from text entered
in the ‘reasons for admission’, ‘initial physical examination’,
and ‘preliminary diagnosis’ fields in WRMD. After grouping
together, the inflected forms of words in these data fields were
tokenized to produce a sparse matrix of feature data. Using toke-
nized vector data, a support vector classification (SVC) algorithm
was trained to predict the clinical classification for each case. The
model was parameterized on the training data using 10-fold
cross-validation. To identify the best hyperparameters of the
SVC classification algorithm, a grid search was implemented
with the cross-validation process covering a wide range of
model parameters (electronic supplementary material, table S1).
Best performing model parameters were chosen based on accu-
racy, precision and recall. Eventually, the best performing
model was tested for accuracy, precision and recall on the inde-
pendent test dataset. Modelling was implemented in Python
using the Scikit-learn Machine Learning Package [44].

Anomalies in admissions for each species and for each
species/clinical classification combination were identified in the
dataset using estimates of the rolling mean and rolling standard

deviation derived through time-series analyses. Anomalies were
identified as admissions exceeding the thresholds. Thresholds
were defined as two times the standard deviation above the roll-
ing mean (rolling mean + [2 × rolling standard deviation]).
Thresholds account for seasonality and trends in weekly times
series for a given taxonomic group and clinical classification
(equation (2.1)). Alerts are generated when there are higher
than expected numbers of admissions of a particular species
and taxa group with a specific clinical classification.

p(n)t ¼ f1 if Casest,sp,c

. MAt,sp,c þ 2SD(MAt,sp,c), 0 otherwise , ð2:1Þ
whereMAt,sp,c is the moving average of taxonomic group sp cases
presenting with c pre-diagnostic clinical classification at time t
and SD(MAt,sp,c) is the moving standard deviation.

(b) Use for detection of a wide range of wildlife
morbidity and mortality events

We evaluated the system’s geographical coverage as well as the
diversity of wildlife species represented. To evaluate the spatial
coverage, we assessed the distribution of cases in the dataset by
estimating spatial kernel density. Reported geolocations of cases
were used to fit a ‘biweight’ kernel distribution with a grid size
of 100 using the ‘geoplot’ package in Python (https://github.
com/ResidentMario/geoplot). The densities were visualized and
mapped along with the geolocations of cases (geocoded according
to the addresses where animals were found) and organizations.

Over one year, we conducted in-depth investigations of mor-
bidity and mortality events involving a range of wild avian and
mammalian species that were triggered by alerts in the system.
Investigations were performed by the WHL in collaboration
with the network of organizations. The investigations included
full post-mortem examinations and ancillary diagnostic testing
to determine the causes of morbidity/mortality for each event.
Examinations and diagnostic assays were performed at the
WHL (Rancho Cordova), California Animal Health and Food
Safety Laboratory (Davis, CA), US Geological Survey National
Wildlife Health Center (Madison, WI) and other specialized
laboratories. Once verified with a laboratory diagnosis, infor-
mation on morbidity and mortality events fed into a national
wildlife disease surveillance system—the USGS NWHC Wildlife
Health Information Sharing Partnership—event reporting system
(WHISPers). WHISPers is a publicly available web-based data
repository for sharing information on wildlife health events
with the goal of providing managers and the public with
timely, accurate information on wildlife health threats [45].

(c) External validation
For validation of the WMME Alert System, we performed time-
series analyses to compare trends in data generated through the
system to an independent data source. Specifically, we compared
data on marine bird admissions to data on stranded marine birds
collected by a group of volunteers called BeachCOMBERS (BC).
The BC data was systematically collected through standardized
beach surveys conducted monthly in southern California to record
data on stranded marine birds and mammals (electronic sup-
plementary material, Data File S3). We used a subset of the BC
data recorded from January 2013 to December 2018 for comparison
to marine bird data arising from cases presenting towildlife organ-
izations in southern California through the WMME Alert System.
Autocorrelations of the time series and the augmented Dickey-
Fuller test were used to evaluate the stationarity of the time series.
The Granger test of causality was used to investigate whether
there was an association between marine bird admissions in the
system and reports of stranded birds in the BC data. In addition,

Figure 1. Locations of cases (smaller blue dots) presenting to a network of
wildlife rehabilitation organizations (bigger blue dots) participating in the
Wildlife Morbidity and Mortality Event Alert System in California, from
2013 to 2018. Red region shows areas with high kernel density of cases.
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the cross-correlation function was used to explore the relationship
between the two time series and to identify lags in one series relative
to the other. Finally, an autoregressive integrated moving average
model (ARIMAX) with the WMME Alert System marine bird data
asanexternalvariablewas fitted toevaluate theassociationbetween
theWMMEAlert SystemdataandBCstrandedbirddata.Data from
2013 to 2017 was used for training the ARIMAX model, and 2018
data was used for validation. To identify the parameters of the
ARIMAXmodel, thebest-fittingmodelwasselectedusing theauto.-
arima function in the forecast library of R. The p,d,q parameters of
the model were selected based on the best model from the auto.ar-
ima function. Following identification of the p,d,q parameters,
seasonality variables (P,D,Q) were included and various values
were tested (electronic supplementary material, table S3). From
these, three models with the least Akaike information criterion cor-
rected for small sample size (AICc) were selected and used for
forecasting. The accuracyof the forecast forall threemodelswasesti-
mated using root mean squared error (RMSE) and mean absolute
percentage error (MAPE). The model forecasting data most similar
(based on RMSE and MPAE) to that of the observed data was
selected as the final model.

3. Results
TheWRMD dataset included records from 453 different species
among 27 taxonomic orders, illustrating the high diversity of
species represented in the system. However, 43 species com-
prised 80% of the total data and species commonly found in
human-dominated landscapes (e.g. northern raccoon (Procyon
lotor) and American crow (Corvus brachyrhynchos)) were preva-
lent. Cases originated from all counties in California with
the highest densities of admissions in urban/semi-urban
areas along the coast and in the Central Valley (figure 1) with
clustering around the wildlife rehabilitation organizations.

(a) Clinical classification of cases
The best-fitting SVC model predicted the pre-diagnostic clini-
cal classifications in the holdout dataset (test dataset) with an
overall accuracy of 83% and precision of 0.84 (recall = 0.83,
F1-score = 0.83, n = 617). The SVC model was very accurate
(92% accuracy) in classifying cases with physical injury (pre-
cision = 0.78, recall = 0.91, F1-score = 0.84, n = 191). However,
the lower precision for this category illustrates that some
cases from other clinical classifications were misclassified as
physical injury (figure 2; electronic supplementary material,
table S2). Specifically, 15% of nutritional and respiratory dis-
ease cases, 14% of skin, ocular and gastrointestinal disease
cases and 13% of neurological disease cases were falsely
identified as physical injury. Misclassification also occurred
for some cases of neurological disease, with 15% and 14%
of animals presenting with respiratory and gastrointestinal
disease, respectively, categorized as cases of neurological dis-
ease (accuracy = 83%, precision = 0.78, recall = 0.83, F1-
score = 0.80, n = 123). On the other hand, the model demon-
strated perfect precision for classifying petrochemical
exposure cases with no false-negative predictions (precision =
1.0, accuracy = 91%, recall = 0.91, F1-score = 0.95, n = 22).
Receiver operating curves for clinical classifications are
shown in the electronic supplementary material, figure S1.

(b) Use for detection of a wide range of wildlife
morbidity and mortality events

Over the one-year pilot period, the WMME Alert System
detected several anomalies that, upon investigation, were
found to be caused by common causes of wildlife morbidity
and mortality in California as well as emerging health threats

Table 1. Definitions of pre-diagnostic clinical classifications for categorizing cases.

clinical classification definition

neurological disease conditions affecting the central and peripheral nervous systems

respiratory disease conditions affecting the organs and tissues that make gas exchange possible and includes conditions of the upper respiratory

tract, trachea, bronchi, bronchioles, alveoli, pleura and pleural cavity

gastrointestinal disease conditions affecting the gastrointestinal tract, namely the oesophagus, stomach, small intestine, large intestine and rectum, and

the accessory organs of digestion, the liver, gallbladder and pancreas

haematological disease conditions affecting the red blood cells, white blood cells, platelets, blood vessels, bone marrow, lymph nodes, spleen and the

proteins involved in bleeding and clotting

dermatological disease conditions affecting the skin, fur and feathers

ocular disease conditions affecting any of the eye components such as cornea, iris, pupil, optic nerve, lens, retina, macula, choroid, conjunctiva

or the vitreous

nutritional disease pertaining to any disease resulting from an alteration in the processes involved in taking nutrients into the body and

assimilating and using them or from deficiencies or excesses of specific feed nutrients

petrochemical

exposure

exposure to petrochemical (oil, grease, paint, etc.) causing external contamination of the animal and/or leading to ingestion of

the chemical

physical injury injury caused by trauma from an external force (mechanical, thermal, electrical, chemical)

stranded referring to events leading to single or multiple animals that are cut off from their natural habitat and cannot be returned

unassisted. Often caused by altered behaviour such as marine bird stranding

orphaned displaced healthy or injured young animal, still dependant on parental care for survival

nonspecific not assignable to a particular category or classification

royalsocietypublishing.org/journal/rspb
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(table 2).Here,wedescribe four key investigations of events after
consistent weekly, bi-weekly, and monthly alerts in the system.

In the late spring of 2016, a large influx of marine birds
along the central and southern California coast was detected
through weekly alerts (figure 3a). Several western grebes
(Aechmophorus occidentalis) and to a lesser extent Clarke’s
grebes (Aechmorphorus clarkia) and eared grebes (Podiceps
nigricollis) were involved in the event. The birds were found
to be emaciated upon post-mortem examination. Similarly,
the system detected an unusual event in marine birds in
southern California in April 2017 (figure 3a) with weekly,
bi-weekly and monthly alerts generated during the event.
Upon investigation, several marine bird species were found
to be affected, including California brown pelicans (Pelecanus
occidentalis), Pacific loons (Gavia pacifica), red-throated loons
(Gavia stellate), common murres (Uria aalge), western grebes,
Clark’s grebes and Brandt’s cormorants (Phalacrocorax
penicillatus). The birds presented with neurological disease,
including head twitching and whole-body tremors. Post-
mortem examinations and diagnostic testing revealed
domoic acid intoxication as the cause of death.

TheWMMEAlert System also alerted to cases of neurologi-
cal disease in doves that were associated with the northward
spread of pigeon paramyxovirus type 1 (PPMV-1), an emerging
virus in California. Starting in the late summer of 2016, there
were increased admissions of invasive Eurasian collared doves
(Streptopelia decaocto) (figure 3b) in central and northern Califor-
nia. Affected doves displayed neurological signs including
abnormal twisting/tilting of the neck and paralysis. Encephali-
tis and kidney disease were identified on post-mortem
examination. Polymerase chain reaction (PCR) and sequencing
confirmed the presence of pigeon paramyxovirus-1, the first
detection of the virus emerging in Eurasian collared doves in
this region of California [46]. Cases continued with another
event occurring in the late summer/early autumn of 2017.

The WMME Alert System also detected increased
admissions associated with an outbreak of neurological disease
in rock pigeons (Columba livia) in the San Francisco Bay area

in late winter/early spring of 2017 (figure 3c) [35].
Meningoencephalitis and protozoal organisms were observed
on post-mortem examination. Pan-Sarcocystis PCR identified
Sarcocystis calchasi group infections in several of the pigeons
and sequences detected in eight cases had 100% homology
with S. calchasi [35]. This event demonstrated the emergence
of this parasite in free-ranging birds in California and high-
lighted the importance of increased surveillance in susceptible
native columbids.

Seasonal conjunctivitis events in finches were also detected
by this system, including events in the spring of 2016 and early
months of 2017 (figure 3d). Several finch species were affected
with conjunctivitis, with some cases also exhibiting upper res-
piratory disease. Mycoplasma gallisepticum was confirmed by
real-time PCR (RT-PCR) as the cause of conjunctivitis among
tested finches. Infection in American goldfinches expanded
the known host range of Mycoplasma spp. conjunctivitis in
California [47].

Along with these aforementioned investigations, alerts
generated through the WMME Alert System demonstrated
the wide use of the system in detecting anomalies in single
species as well as in groups of related species (e.g. nutritio-
nal disease in loons and grebes (electronic supplementary
material, figure S2) and double-crested cormorants (electronic
supplementary material, figure S2)). Similarly, the system’s
ability to detect events associated with endemic and emerging
pathogens causing neurological diseases in birds, such as
WNV, pigeon paramyxovirus-1, and S. calchasi was illustrated
through investigations of anomalies in neurological cases
detected in Cooper’s hawks (figure 4a) and species from the
Columbidae family (figure 4b). Anomalies associated with
toxicities were also captured and tracked using the system as
evidenced by the detection of petrochemical exposure in
marine birds (electronic supplementary material, figure S2).
Various investigations in mammals were also triggered
owing to system alerts. For example, canine distemper virus
(CDV) infection and bromethelin intoxication were associated
with anomalies in raccoon and skunk admissions (figure 4c).
Not surprisingly, the system was also able to track trends in
admissions of animals associated with physical injury (e.g.
vehicular trauma in deer; figure 4d ), a common circumstance
of admission to rehabilitation organizations. Events in rare
species, such as increased cases of neurological disease in
golden eagles (Aquila chrysaetos) (electronic supplementary
material, figure S2), can also be monitored in the system. How-
ever, the specificity for alerts in these species tends to be lower
given the relatively fewer numbers presenting to organizations.
Exploring trends at the taxonomic family level (i.e. Accipitridae
family), in addition to the species level, could provide
additional insights into the health of threatened and rare
species (electronic supplementary material, figure S2).

(c) External validation
The time series (BC and WMME Alert System datasets)
showed similar trends over the 5 years (figure 5) and were
found to be stationary (augmented Dickey-Fuller test; BC p =
0.001, WMME Alert System p = 0.002). The cross-correlation
function showed that the number of cases in the WMME
Alert System during the previous month was the most influen-
tial on the number of stranded birds recorded by BC in a given
month (electronic supplementary material figure S3). In
addition, the Granger test of causality at a lag of one month
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was significant ( p = 0.01) indicating that the WMME Alert
System data had incremental power to forecast the number of
stranded birds in the BC data.

The auto.arima function identified the ARIMAX model
with parameters p = 2 (number of autoregressive terms), d = 0
(number of non-seasonal differences needed for stationarity)
and q = 0 (number of lagged forecast errors in the predictions
equation) as the best-fitting model (ARIMAX (2, 0, 0) errors,
AICc of 715.56, electronic supplementary material table S3).
Following testing of seasonality parameters (P, D, Q), three
models with combinations of (0,1,0), (2,2,1) and (2,2,0) were
selected based on AICc (electronic supplementary material,
table S4), where P is the number of seasonal autoregressive
terms, D is the number of seasonal differences and Q is the
number of seasonal moving average terms. Among the three
best-fitting models, ARIMAX (2,0,0) (0,1,0) [12] errors,
showed the least RMSE (98.49) and MAPE (37.23) and pre-
dicted the BC data similar to the observed data (figure 5;
electronic supplementary material, table S5). This model also
revealed that WMME Alert System data with a lag of first
orderwas significantly associatedwith the number of stranded
marine birds in the BC dataset (p > 0.001; electronic

supplementary material, table S6). Taken together, the time
series analyses suggest that marine bird admissions in the
WMME Alert System precede documentation of strandings
using existing survey methods by approximately one month
and therefore contribute to early detection of these events.

4. Discussion
We demonstrate the use of an online surveillance system inte-
grating clinical pre-diagnostic data from a network of wildlife
rehabilitation organizations to facilitate early and enhanced
detection of wildlife morbidity and mortality events in
California. The WMME Alert System represented a wide
range of wildlife species and covered a broad area across
the state given the extensive reach of the network of partici-
pating organizations. However, the majority of animals
admitted were common species frequently found in human-
dominated landscapes. In addition, although cases originated
from all counties, most admissions originated from urban
and semi-urban areas along the coast and as expected, the
highest densities of cases clustered around the rehabilitation

Table 2. Examples of wildlife morbidity and mortality events caused by endemic and emerging threats appearing as alerts in the WMME Alert System.

common/endemic threats emerging threats

species/taxa aetiology species/taxa aetiology

finches Mycoplasma spp. conjunctivitis Eurasian collared doves pigeon paramyxovirus-1

Cooper’s hawks WNV rock pigeons Sarcocystis calchasi

mourning doves trichomoniasis

raccoons bromethelin intoxication, CDV

turkey vultures lead intoxication

marine birds domoic acid intoxication, starvation, petroleum contamination
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organizations. This finding reflects the inherent reporting
bias of wildlife disease surveillance systems that rely on
the public for the initial detection of cases. However, this
system, together with other general disease surveillance
efforts (i.e. citizen wildlife mortality event reporting), are
important complements to targeted surveillance efforts
in California (e.g. chronic wasting disease in cervids and
white-nose syndrome in bats) through efficient monitoring
for emerging threats across a broad range of species and geo-
graphies [40], especially species in disturbed environments
[35]. The information generated through this system adds
value to other general surveillance strategies through its abil-
ity to rapidly and efficiently detect threats that lead to illness

and death in wild animals but do not necessarily result in
conspicuous mortality events that would be detected through
citizen reporting streams.

As front-line responders for injured and sick wild ani-
mals, wildlife rehabilitation organizations are well poised
to detect index cases of emerging wildlife health threats
[34,36]. Enhanced capacity to quickly identify unusual cases
or patterns is becoming more important with increasing
anthropogenic pressures causing unforeseen threats (emer-
ging infectious diseases and environmental pollutants) that
can result in population declines [48] and endangerment of
common species [49]. As emerging threats become more
commonplace, there is a greater need for wildlife disease
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surveillance programmes that extend beyond tracking only
known hazards [50] and have the capacity to rapidly detect
small isolated events.

This surveillance application was effective in detecting
anomalous patterns of admissions across the network of
organizations that upon investigation were determined to be
the result of both common and emerging health threats.
Common health threats such asMycoplasma spp. conjunctivitis
in songbirds, trichomoniasis in doves, CDV in raccoons and
petroleum contamination of marine birds were detected with
support from this system’s alerts, illustrating its use for moni-
toring trends in these diseases over time. The system also
detected events that upon investigation were identified to be
the result of emerging diseases in peridomestic and/
or invasive species that present a threat to native wildlife
[35,46]. Detecting anomalies in admissions associated with
emerging diseases in wildlife illustrates this system’s capacity
to detect anomalous events associated with a novel threat.

Passive data streams have value in that they offer a broad
sweep for identifying threats, including emerging diseases,
that would be missed by targeted efforts. The broad clinical
classifications and flexibility to assess trends in single species
or taxa in this system offer a sensitive and rapid method
for detecting anomalies. Overall, the model used to predict
the clinical classifications demonstrated high accuracy.
Misclassification of cases occurred primarily owing to simi-
larities in vocabulary in the reasons for admission and initial
physical examination fields across multiple classifications.
For example, birds presenting with physical injury (i.e. head
trauma) were sometimes misclassified as neurological disease
cases owing to similar verbiage across those two classifications.
This type of misclassification can be reduced through the
inclusion of multiple clinical classifications. A multi-output
classification system, in which a single case can be assigned
two or more clinical classifications, is currently under develop-
ment in the system. In addition, even though the system’s
specificity was lower for detecting events in rare species,
alerts involving a small number of individuals of a threatened
or endangered species signifying a potential anomalous event
may be worthy of investigation. Monitoring for alerts in sym-
patric species and/or in related but more common species at
a taxa level might also cue investigators into a common
threat that could impact the health of threatened and endan-
gered species. The precision of the model will also improve
over time as the system becomes more populated with data.

Our external evaluation of the system illustrated its
capacity to support the early detection of anomalous events.
Specifically, the time series analyses revealed the system’s
ability to detect anomalies in strandedmarine birds presenting
to rehabilitation organizations earlier than standard active
systems using data generated through existing surveys.
Early detection of cases in this context could be owing in part
to the near real-time integration of data in the surveillance
system as compared to the monthly survey data collection on
stranded birds.

The effectiveness of this type of system is linked to timely
and accurate data entry by rehabilitation organizations. We
found that most organizations entered data daily as part of
their standard patient care. To improve on this system, an
increased focus on standardization of data entry by organiz-
ations is ongoing. Greater standardization through
autocomplete text features with standardized terminology
and training of staff on key terminology will reduce errors

and inconsistencies across users. This will further promote
the use of this data for general surveillance, situational aware-
ness, prioritization of targeted surveillance efforts and
research on health threats.

5. Conclusion
We provide proof of concept for using pre-diagnostic clinical
data assimilated from a network of wildlife rehabilitation
organizations to contribute to early and enhanced detection
of wildlife morbidity and mortality events. The WMME
Alert System serves as a model for a relatively efficient, inex-
pensive system that capitalizes on existing data sources to
augment surveillance and monitoring efforts and promote
situational awareness. In addition, the platform or its frame-
work provides an effective strategy for early detection of
anomalous events across broad species, geographies and
threats and has the capacity to be scaled up, adapted and
applied in other regions or contexts, including where diagnos-
tic capacity is limited. It serves as a valuable tool for assisting
with early detection of and alerting to emerging diseases of
wildlife as well as threats to domestic animal and human
health (e.g. harmful algal blooms). The potential exists to
expand the network to additional organizations involved in
wildlife care and research and to create separate networks
in other regions around the world given the current reach
of WRMD.
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