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ABSTRACT

TIMING OF THE LAST HIGHSTAND OF PLUVIAL LAKE WELLINGTON,
SMITH VALLEY, NEVADA

By Heidi L. Stauffer

Smith Valley, in west-central Nevada, was occupied by
pluvial Lake Wellington, which reached its final highstand
of approximately 1,477-m elevation during late Pleistocene
time. Evidence for Lake Wellington includes lacustrine
deposits and shorelines, whose surface geomorphology,
;edimentology, and stratigraphy were used to interpret lake
history. Based on modern valley topography and Geographic
Information Systems (GIS) modeling, Lake Wellington had a
surface area of approximately 217 km® at its last highstand.

On the basis of soil development on lacustrine
sediment, and a tephra layer within the sequence, the 1477-
m highstand of Lake Wellington occurred between 80 and 60
ka. Timing of this highstand approximately corresponds to
Marine Isotope Stage (MIS) 4. Smith Valley provides the
most complete evidence of a pluvial lake highstand in

Nevada during MIS 4.
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INTRODUCTION

Smith Valley is located in west-central Nevada, about
35 km southeast of the Carson Valley aﬁd the towns of
Minden and Gardnerville (Fig. 1). During the Pleistocene,
Smith Valley was occupied by pluvial Lake Wellington; its
shorelines and deposits are preserved within the valley.
Until this project, although these features had been
studied, no chronology had been developed for Lake
Wellington, and no correlations with neighboring Lake

Lahontan had been made.

Purpose

The purpose of this study was to determine the timing
and assess the extent of the last highstand of Lake
Wellington, and to compare that timing with other lake and
proxy climate records. To that end, a study of shorelines,
lacustrine deposits, and soils was conducted in Smith
Valley to characterize the final highstand of Lake
Wellington. Shorelines were mapped from aerial
photographs, and additional topographic and geomorphic data
were collected in the field using Global Positioning System

(GPS) technology. Terrain analysis was conducted using
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ArcView 3.2 Geographic Information Systems (GIS) software
to model the lake at its last highstand.

Pluvial lakes form in internally drained desert basins
during times when precipitation exceeds evapotranspiration,
and their formation has been approximately correlated with
the end of glacial periods (Morrison, 1991). The
internally draining basins within western North America,
including those in western Nevada, such as Smith Valley,
were filled with approximately 120 moderately deep to deep
lakes during Pleistocene time (Morrison, 1991).

Since the early 20th century, pluvial lakes have been
regarded as important evidence of terrestrial responses to
global climate shifts (Mifflin and Wheat, 1979). Important
issues concerning pluvial lakes include: 1) age and
location of lakes, 2) lake volumes, and 3) factors
controlling development and extent. Studies of pluvial
lakes can increase the understanding of how local geologic
records document past climate change and provide insight
into future climate change. At present, the relationships
between pluvial lake evidence of climate change and other
climate indicators, such as marine isotope records and
glacial histories, are not well established (Reheis, 2003,

written communication) .



Most research on pluvial lakes in western North
America to date has focused on lakes Bonneville and
Lahontan. Establishment of chronologies for smaller,
contemporaneous lakes, such as Lake Wellington, will add
detail to the Quaternary history of the region. Such
chronologies could clarify the relationship between the
cycles of smaller lakes and those of the larger lakes
Bonneville and Lahontan. Furthermore, because some of
these smaller lakes were apparently never connected to the
two larger paleolake systems, their histories allow for
independent comparisons to other climate-related records,
and can further the understanding of the controls on

isolated lake basins.

Study Area Setting

Smith Valley is a 40-km-long north-trending valley in
western Nevada. The bottom of the valley floor lies at an
elevation of approximately 1,385 m. The west side of the
valley is flanked by the Pine Nut Mountains, a north-south
trending range that rises to about 2,740 m, and by the
lower Wellington Hills, south of the West Walker River
(Fig. 1). On the east side of Smith Valley, the Singatse

Range rises to an altitude of almost 2,150 m to the north



of the West Walker River; south of the river, the Pine
Grove Hills are higher than 2,460 m. In the southern part
of Smith Valley, Desert Creek Peak (Fig. 1) is the
northernmost part of the Sweetwater Range, rising to an
elevation of over 2,730 m (Moore, 1969).

The West Walker River flows approximately east-
northeast across Smith Valley, entering the valley at Hoye
Canyon, at the town of Wellington (Sec. 2, T1llN, R23E), and
exiting through Wilson Canyon in the east (Sec. 17, T11lN,
R24E), where it flows into Mason Valley and joins the East
Walker River. Wilson Canyon is thought to be the outflow
channel for the final overflow of Lake Wellington into
Mason Valley (Mifflin and Wheat, 1979). The Walker River
continues north, makes a large meander, and finally flows
south into Walker Lake (Fig. 1).

Desert Creek (Fig. 1) flows north from the Sweetwater
Mountains into the West Walker River in Smith Valley.
Desert Creek has deposited a large fan that has elevated
the southern part of Smith Valley above the level of Lake
Wellington shorelines. Thought to be a remnant of Lake
Wellington, modern Artesia Lake (Fig. 1), located in the

northwestern part of the valley, has been pumped for



agricultural and residential purposes and is at low levels
most of the year.

The major population centers in Smith Valley are the
towns of Wellington and Smith, both located in the southern
part of the valley along the West Walker River, as is a
majority of the agriculture. Currently, the total
population of the valley is approximately 3,300. Several
paved roads provide access in the valley, the largest and
most traveled being Nevada State Highway 208. Because of
the mining and agricultural activities of the 19th and 20th
centuries, numerous unpaved roads also cross the valley;
many of these lie at a distance from the current population

centers, north of the West Walker River (Fig. 1).



GEOLOGY

Bedrock Geology

The bedrock in Smith Valley comprises mostly Mesozoic
metamorphic and igneous rocks, which are exposed in many of
the mountain ranges and elsewhere along the valley margins.
In addition, Tertiary sedimentary and volcanic rocks are
exposed in the southern part of the valley, in deep
gullies, and in the area west of Wilson Canyon (Fig. 1;
Stewart and Dohrenwend, 1984).

The Pine Nut Mountains are composed primarily of
Mesozoic granitic rocks, which are likely related to the
Sierran Batholith about 35 km to the west, and Triassic and
Jurassic metavolcanic and metasedimentary rocks. The
Wellington Hills, located south of the Pine Nut Mountains,
are underlain by Tertiary volcanic rocks, as well as
undifferentiated Tertiary sedimentary rocks (Moore, 1969).
Desert Creek Peak is located south of the valley and is a
part of the Sweetwater Range. The Sweetwater Range
consists of west-tilted fault blocks, extending north to
the Wellington Hills. The range is composed mostly of

Cretaceous granitic rocks (Moore, 1969).



The northern end of the valley is dominated by the
Buckskin Range. The Buckskin Range is composed of Tertiary
volcanic rocks, Triassic and Jurassic metavolcanic and
metasedimentary rocks, Cretaceous granitic rocks, and some
areas of Tertiary and older Quaternary alluvium,
predominantly fanglomerate and pediment gravel (Hudson and
Oriel, 1979). The Singatse Range is primarily Cretaceous
granitic rocks, Tertiary volcanic rocks, local outcrops of
Tertiary sedimentary rocks, and Triassic and Jurassic
metasedimentary and metavolcanic rocks. The Pine Grove
Hills to the south are mostly Tertiary volcanic and
sedimentary rocks (Moore, 1969).

A sequence of Upper Tertiary deposits known as the
Wilson Canyon Formation is exposed west of the range front
at Wilson Canyon, to the north and south of the canyon, and
along the West Walker River north of the town of Smith.

The Wilson Canyon Formation is mostly gravel, fine to
medium sand, and laminated silt and clay (Stewart and

Dohrenwend, 1984).

Quaternary Geology

The Quaternary deposits in Smith Valley consist mostly

of lacustrine and deltaic gravel, sand, silt, and clay,



alluvial deposits from the West Walker River and smaller
fan systems, and colluvium (Stewart and Dohrenwend, 1984).
These deposits are generally exposed on the valley floor
and along the margins of the valley, and are described in
detail by Stewart and Dohrenwend (1984) on pages 2 and 3 of

the text accompanying their map.

Faults

Smith Valley is located within the Walker Lane Seismic
Belt, a broad zone of predominantly normal faults in
western Nevada (Fig. 2; Stewart, 1988). Many of the faults
mapped in Smith Valley and the surrounding mountain ranges
offset primarily pre-Quaternary formations, making it
difficult to determine whether any Quaternary motion has
occurred on these faults. Those faults with evidence of
Quaternary slip show primarily normal offset,
characteristic of faults in the Basin and Range (Stewart,
1988).

At least three faults mapped in Smith Valley appear to
offset Quaternary lacustrine units as mapped by Stewart and
Dohrenwend (1984). The Smith Valley fault zone (Fig. 2) is
located at the base of the Pine Nut Mountains, a west-

tilted fault block (Moore, 1969; dePolo et al. 1997). The
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Smith Valley fault zone is the longest of the faults in
Smith Valley and offsets alluvium and bedrock within the
study area along the base of the Pine Nut Mountains and
into the Wellington Hills in the southwest part of the
valley. The Smith Valley fault zone exhibits primarily
normal motion and has an estimated slip rate of 0.21 to
0.81 mm/yr (Figs. 2, 3, 4, 5; dePolo et al., 1997; see Fig.
3 for location of photos).

Along the eastern edge of the Buckskin Range (Fig. 1),
a much smaller normal fault appears to offset primarily
bedrock and, at a few localities, Quaternary alluvium
(Hudson and Oriel, 1978). On the eastern margin of Smith
Valley, the Singatse Range is also considered a west-tilted
fault block, with the bounding fault located on the eastern
flank of the range, in neighboring Mason Valley (Moore,

1969) .
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Figure 3. Digital Elevation Model (DEM) shaded
relief map showing locations of photos used for
illustration in this thesis. The photos are identified by
their figure numbers.

12



13

Figure 4. View looking west to the rangefront
fault (arrows), part of the Smith Valley fault zone,
at the base of the Pine Nut Mountains (see Fig. 3 for
location of photo).

Figure 5. View looking southwest at fault scarps
(arrows) in alluvium at the base of the Pine Nut
Mountains (see Fig. 3 for location).



PREVIOUS STUDIES

Lake History of the Lahontan Basin

Lake Lahontan was one of two large pluvial lakes that
occupied what is now Nevada and western Utah during
Pleistocene time (Fig. 6; Morrison 1991). Shoreline
features and lacustrine deposits are found throughout the
Lahontan Basin, and most of them are related to two periods
of highstands. Numerous smaller lakes occupied smaller
valleys in western Nevada, one of which was Smith Valley’s

Lake Wellington.

BEarly Studies in the Lahontan Basin

Most pluvial lake research in western North America
has focused on lakes Bonneville and Lahontan. Early
research concentrated on the physical expression of these
paleo-lakes and was conducted independently of climate
studies. The earliest significant study of the Lahontan
Basin was carried out by geologists of the 40th Parallel
Survey and later published by Clarence King (1878). King
(1878) was the first to formally name Lake Lahontan. 1In
addition to describing the tufa in the basin, he also

developed a history for the lake, including inferring an
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Figure 6. Map showing extent of pluvial lakes in
Nevada, including the period from the Pliocene through the
late Pleistocene. Base map and ArcView shapefiles of
lake extent from Reheis (1999%a).
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overflow event, based on his geomorphic observations
(Jones, 1925).

Several years later, Russell (1885) performed a
comprehensive study of the Lahontan Basin. Russell (1885)
was the first to recognize more than one period of high
water for Lake Lahontan. His careful observations also
yielded the recognition of three different types of tufa,
based on morphology and a hypothesis requiring that Lake
Lahontan had desiccated at least twice to account for the
observed varieties of tufa. 1In addition, Russell (1885)
estimated the age of Lake Lahontan using the salinities of
remnant water bodies and the assumed salinity of the larger
Lake Lahontan. He found no evidence for the overflow of
Lake Lahontan postulated by King in 1878 (Jones, 1925).

In a study of Lake Lahontan, Jones (1925) detailed
past and present tufa formation and noted the presence of
oolitic sand. Jones (1925) estimated the age of Lake
Lahontan by calculating the length of time necessary for
the remnant lake salinities.and chlorine concentrations to
reach their recorded levels, based on known stream
chemistry and flow rates and incorporating approximate
evaporation rates of bodies of water in the Nevada. On the

basis of the results of these evaluations, Jones concluded
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that Lake Lahontan was between 4,300 and 2,400 years old

(Jones, 1925).

Research in the Lahontan Basin through the 1990s

By the mid-20th century, workers researching the
Lahontan Basin had begun to examine connections between the
lake levels and other records of climate, such as glacial
deposits and global indicators of ocean temperature. The
work of King (1878), Russell (1885), and Jones (1925)
formed the basis for detailed research of Lahontan
stratigraphy, sedimentology, soils, geomorphology, and age
studies using tufa and tephrochronology, including the work
of Morrison (1959, 1964), Morrison and Frye (1965),
Broecker and Kaufman (1965), and Davis (1978). Morrison
(1964) and Morrison and Frye (1965) conducted systematic
examinations of Lahontan stratigraphy, sedimentology, and
soils, and from those studies compiled the first complete
chronology for Lake Lahontan. Morrison and Frye (1965)
described two periods of lake highstands separated by an
extended interval when the basin was either dry or occupied
by shallow lakes (Fig. 7). Later studies have primarily

refined and adjusted that chronology.



Marine
Isotope
Stages1

Approximate
Age °

Sierra Nevada
Glaciations %"

Possible Lake Lahontan
stratigraphy >

present time
to ~10,000
years ago

between
~10,000 and
~25,000 years
ago

between
~25,000 and ~
56,000 years
ago

between
~56,000 and
~75,000 years
ago

between
~75,000 and
~128,000 years
ago

between
~128,000 and
~190,000 years
ago

between
~190,000 and
~240,000 years
ago

Interglacial with minor
(regional?) glacial
advances

Recess Peak between
~13,000 and ~14,000
Tioga Dbetween
~14,000and ~25,000 years
ago

Interstadial with minor
(regional?) glacial
advances (Tenaya:

~30,000 years ago; Tahoe

II between ~42,000 and
~50,000 years ago )

Mono Basin between
~60,000 and ~80,000
years ago

Interglacial

Tahoe I between ~140,000
and ~200,000 years ago

Interglacial

Fallon Alloformation
Toyeh Soil
Turupah Allcformation

to ~8,000 years ago3

Sehoo Alloformation
between ~12,000 and

~35,000 years ago4

Churchill Soil Wyemaha
Alloformation between
~35,000 and ~130,000 years
ago3 (alternating wet and
dry periods, evidence of
moderately deep lakes)®

Eetza Alloformation
(multiple lake cycles)
between ~140,000 and

~280,000 years ago6

19989

ecent and ongoing studies

'
> Sierra Nevada glaclaticns and the ages of Lahontan units may be

Figure 7. Diagram showing Marine Isotope Stages,
correlations with Sierra Nevada glacial advances, and pos:
correlations with Lahontan Basin pluvial lake cycles.
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Lacustrine deposits of Eetza age (Morrison, 1964) date
to between approximately 280,000 and 140,000 years B.P.
(Fig. 7; Morrison, 1991; Adams and Wesnousky, 1299) and
correspond approximately to marine isotope stages (MIS) 6
and 7. They include both progradational and recessional
deposits that record lake-level fluctuations and the
highest stand reached by Lake Lahontan, at approximately
1,348 m (Morrison and Frye, 1965).

Deposits of the Eetza Alloformation are widespread in
the greater Lahontan Basin and contain the coarsest gravels
of all deposits related to Lake Lahontan (Morrison, 1964).
Morrison (1991) assigned the term alloformation to the
Lahontan units he had previously mapped, and subsequent
workers have continued to use this terminology. An
alloformation is defined as “a mappable stratiform body of
sedimentary rock that is defined and identified on the
basis of its bounding discontinuities” (North American
Stratigraphic Code, North American Commission on
Stratigraphic Nomenclature (NACSN), 1983). The term
alloformation in this study is used to refer to the Lake
Lahontan pluvial stratigraphic units originally described

by Morrison (1959), and to Lake Bonneville pluvial
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stratigraphic units, for which the term is also used
(Oviatt et al., 1987; McCoy, 1987; Kaufman et al., 2001).

Approximately 125 km north of Smith Valley near the
Lahontan Mountains (Fig. 8), Morrison and Frye (1965) noted
that the Eetza Alloformation is exposed only in the
highlands. At this location, the Eetza Alloformation
consists primarily of boulder to pebble gravel, with rare
sand, silt, clay, and tufa. In contrast, exposures of the
Eetza Alloformation in the badlands of the Truckee River
near Wadsworth (Fig. 8), are mostly clay, silt, and sand,
with small amounts of gravel (Morrison and Frye, 1965).
Subaerial deposits associated with the lacustrine deposits
of the Eetza Alloformation are rare, and tufa deposits
occur less commonly and with smaller areal extent than in
deposits from the later Sehoo highstand (Morrison, 1964).
During early stages of Lake Lahontan, lake levels
fluctuated, sometimes to near-desiccation (Morrison, 1964,
1991).

The Wyemaha Alloformation, as described by Morrison
and Frye (1965) near the Lahontan Mountains (Fig. 8),
consists of eolian sand, alluvium, and local colluvium.
Below about 1,225 m, these deposits interfinger with

lacustrine deposits of sand, silt, and clay (Morrison and
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Frye, 1965). In areas such as the Truckee River badlands
near Wadsworth, the Wyemaha Alloformation appears to be
primarily subaerial alluvium, consisting of sand and
alluvial gravel (Morrison and Frye, 1965). During the
deposition of the Wyemaha Alloformation, between 130,000
and 35,000 years B.P., the Lahontan basin experienced
extended periods of drying out, corresponding roughly to
interglacial and interstadial periods during MIS 5 and 3
(Fig. 7; Morrison, 1964, 1991).

The age of the Sehoo Alloformation (Morrison, 1964)
corresponds approximately ﬁo MIS 2 (between approximately
25,000 and 10,000 years B.P.; Fig. 7; Benson et al., 1990;

Morrison, 1891). At least six deep-lake cycles are

22

recorded in the Lahontan Basin by Sehoo deposits resembling

those of the Eetza Alloformation (Morrison and Frye, 1965)
As described near the Lahontan Mountains, the Sehoo
Alloformation is composed of gravel, sand, silt, and clay
of lacustrine origin (Morrison, 1964; Morrison and Frye,
1965). In addition, abundant tufa formations of different
ages are distinguishable by their occurrence at specific
stratigraphic horizons and by their morphologic

characteristics.
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Palechydrologic studies also have been conducted in
Nevada, including those correlating the varying geometries
of pluvial lakes with changes in local and regional
hydrologic and climatic conditions (Benson and Paillet,
1989). Historically, variations of lake level and lake
volume have also been used to determine basin response to
climate changes (e.g. Russell, 1885). The most reliable
indicator of changes in climatic and hydrologic regimes is
the total surface area of all l;kes in a basin, because

lake levels, in particular, can vary for reasons other than

climate changes (Benson and Paillet, 1989).

Recent Studies in the Lahontan Basin

Recent stratigraphic and sedimentologic studies of
Lahontan deposits (Adams and Wesnousky, 1998, 1999; Blair,
1999; Reheis et al., 2003) have further refined and revised
the stratigraphy of Lake Lahontan. Blair (1999) studied
the sedimentology and facies relationships of a Sehoo-aged
Lake Lahontan gravel shore deposit at Churchill Butte (Fig.
8) . The history of the Lahontan Basin before the existence
of Lake Lahontan is less well defined, but recent studies
of high shorelines and discontinuous older deposits

indicate that pluvial lakes existed in western Nevada at
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least as far back as Pliocene time (Reheis et al., 1993;
Reheis, 1999b; Reheis et al., 2002, 2003).

Current reexamination of pluvial evidence in the
Lahontan Basin also indicates that moderately deep lakes
existed between 75,000 and 56,000 years ago (Fig. 7;
Reheis, 2003, written communication; Reheis et al., 2003),
corresponding approximately to MIS 4, which had been
previously thought to be a period of drying out in the

basin.

Sierra Nevada Glaciations

Studies of glaciation of the eastern Sierra Nevada
have been conducted by various researchers over the last
150 years. Blackwelder (1931) published the first
comprehensive examination of alpine glaciation in the
American West and laid the foundation for subsequent
western glacial research. His work has been largely
supported by later research (Gillespie et al., 1999; Clark
et al., 2003). Blackwelder (1931) focused his study of
glaciation in the Sierra Nevada’s eastern slope, where he
developed methods for distinguishing between deposits of
different glacial stages. Among Blackwelder’s important

contributions to modern understanding of Sierra Nevada
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glacial history was his determination of a fourth glacial
stage in addition to the three previously known.
Blackwelder (1931) classified all four as stages and used
local geographic names to differentiate them, rather than
attempting to establish correlations with the stages
recognized in the central United States. In addition,
Blackwelder anticipated that evidence for a fifth stage
would be discovered preserved near Mono Lake. That
evidence was subsequently located and described by Sharp
and Birman (1963).

Many researchers have refined the glacial history of
the Sierra Nevada, but many aspects, especially the precise
timing of glacial advances, remain unresolved. Recent
results from new dating methods, including cosmogenic and
surface-exposure dating, have led to revisions of the
chronology (Fig. 7; Phillips et al., 1996; Clark et al.,
2003). A persistent controversy involves the age of
glacial deposits historically classified as Tahoe. The
Tahoe glaciation, one of the four major glaciations in the
Sierra Nevada, has generally been designated as occurring
during MIS 6. In light of more precise dating methods and
reassessment of stratigraphic correlations, some glacial

deposits previously classified as relating to the Tahoe
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glaciation are now considered to be from a younger glacial
advance, during MIS 3. Thus, the Tahoe glaciation during
MIS 6 is referred to as the Tahoe I, and the later
glaciation, occurring between approximately 50,000 and
42,000 years B.P., during MIS 3, is referred to as the

Tahoe II (Fig. 7; Clark et al., 2003).

Dating Studies

Tephra Analyses

In the Lahontan Basin, tephra layers have proven to be
valuable stratigraphic markers for mapping and correlating
Quaternary lacustrine deposits. Analyses and correlations
of these layers in recent decades have also been essential
in terms of refining the chronologies of pluvial lake
deposits (Morrison, 1991).

Davis (1978) devised a tephrochronology for the Lake
Lahentan Basin and consequently revised the chronology and
stratigraphy of Morrison (1964) and Morrison and Frye
(1965) . All but six of the tephra layers identified by
Davis (1978) were erupted after 35,000 years ago, during
the Late Pleistocene Sehoc highstand of Lake Lahontan and
continuing into Holocene time. Of the tephra layers

studied by Davis, seven were from Mt. Mazama, three from
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the Mono Basin, one from Mt. St. Helens, and two from
different local vents northwest of Fallon, Nevada (Davis,
1978) .

One tephra layer older than 35,000 years, the
Wadsworth bed, was erupted during the Eetza highstand of
Lake Lahontan (Davis, 1978). Recent studies on the
Wadsworth tephra have determined the age td be between
200,000 and 150,000 years old (Berger, 1991). The type
section of the Wadsworth bed in the Eetza Alloformation is
at Wadsworth (Fig. 8), along the Truckee River just south
of Pyramid Lake. According to Davis (1978), no source has
been suggested for this layer and the only known
occurrences of this tephra are at the type locality in
Wadsworth (Fig. 8) and in Nixon, along the Truckee River
approximately 20 km north of Wadsworth.

Davis’ research changed the date of the oldest part of
the Sehoo Alloformation to 35,000 years ago, almost 10,000
years earlier than the dates on samples of tufa obtained by
Broecker and Kaufman (1965) and used by Morrison and Frye
(1965). The revision moved the end of the Wyemaha to
before 35,000 (Fig. 7; Davis, 1978). More recent revisions

to the Lake Lahontan chronology indicate that evidence of
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Sehoo lake cycles may be as old as 39,000 years (Reheis,
2003, written communication, Reheis et al., 2003).

The Rockland Ash, used by Morrison (1959) to define
the base of the Eetza Alloformation, was not analyzed by
Davis (1978). Distal deposits of this tephra, whose source
is near the present Lassen Peak in northeastern California,
have been found in much of California as far south as
Bridgeport and Ventura and as far east as western Nevada
and southern Idaho (Lanphere et al., 1999). New Ar-Ar
dates and stratigraphic evidence from ocean cores indicate
that the Rockland Ash is'between 620,000 and 570,000 years

old (Lanphere et al., 1999; Sarna-Wojcicki, 2000).

Soil Develcpment

Researchers in the Lahontan Basin also have conducted
several studies of the soils developed on Lake Lahontan
sediments and older deposits. The Churchill Soil
(Morrison, 1964) is developed on eolian sediment of the
Wyemaha Alloformation, which overlies the Eetza
Alloformation. The type locality for the Churchill Soil is
in Churchill Valley, about 55 km northeast of Smith Valley.
At that locality (Sec. 15, T18N, R30E), the soil and the

underlying sand of the Wyemaha Alloformation occur below
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lacustrine sediments of the Sehoo Alloformation (Morrison,

1964). The soil also occurs at elevations between 1,194 m
and 1,539 m in areas near the Lahontan Mountains (Morrison,
1964) .

The type Churchill Soil has an oxidized B horizon up
to approximately 46 cm thick, and an underlying calcic (By)
horizon, typically between approximately 61 cm and 125 cm
thick (Morrison, 1964). Morrison (1964) did not measure
the pedogenic calcium carbonate content of the soil, but he
noted the presence of calcium carbonate as mottles,
streaks, and weak cement throughout the calcareous horizon
(Morrison, 1964). Where preserved, the oxidized B horizon
contains between 7 and 16 percent pedogenic clay; in
general, less clay is present in the Churchill Soil than in
an older underlying soil (Morrison, 1964).

The older, more strongly developed Cocoon Soil formed
on the youngest gravels of the Paiute Alloformation and on
older deposits, directly underlying the Eetza Alloformation
(Morrison, 1964). First described near the Cocoon
Mountains, approximately 20 km south of the Lahontan
Mountains, the Cocoon Soil is also exposed along the
Truckee and Humboldt rivers, and at Rye Patch Dam (Fig. 8).

Morrison (1964) described the Cocoon Soil as having a
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prominent calcium carbonate or K horizon, up to almost 4 m
thick, with alternating layers of higher and lower
carbonate concentrations.

More recently, Adams and Wesnousky (1999) studied 36
soils formed on lacustrine beach barriers in the Lahontan
Basin and seven soils older than latest Pleistocene age.
The purpose of their study was to differentiate soils
formed following the last Sehoo highstand, approximately
13,000 years ago, from those formed following the Eetza
highstand, between 280,000 and 140,000 years ago (Adams and
Wesnousky, 1999). These studies did not include any soils
in Smith Valley.

Adams and Wesnousky compared soils formed on the Sehoo
beach barriers at Jessup (Fig. 8) with soils at other
locations (Adams and Wesnousky, 1999). Fifteen soil
profiles were described in the Jessup area, thirteen at the
Lahontan Mountains site, eight at the Hooten Wells site,
and seven at pre-late Pleistocene deposits located at
various sites within the Lahontan Basin (Fig. 8). 1In all
basins except the Walker Lake subbasin, Adams and Wesnousky
(1999) determined that both the prominent shoreline at
1,348 m and the soils formed in deposits associated with

those shore features correspond to the most recent Sehoo
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highstand, approximately 12,000 years B.P., near the end of
MIS 2).

In the Walker Lake subbasin, which does not include
Smith Valley, the best preserved lacustrine landform is the
Thorne Bar complex, located on the southeastern shore of
Walker Lake (Fig. 8). This landform consists of preserved
morphological features below 1,360 m, but above the
shorelines at other sites, and interpreted as beach
barriers by Reheis (1996). Soils formed on the deposits
associated with the beach barriers display pedogenic
carbonate accumulation characterized as Stage II, and are
interpreted as being older than the Sehoo Alloformation
(Adams and Wesnousky, 1999). 1In addition to the Walker
Lake subbasin, the Hooten Wells site (Fig. 8) is the only
other site studied by Adams and Wesnousky (1999) that is
close to Smith Valley. At that location, Adams and
Wesnousky (1999) interpreted the deposits to be latest
Pleistocene, based on soil development correlative with

that of the Sehoo Zlloformation.

Previous Studies of Smith Valley

In the 1960s, John Hawley and others of the U.S. Soil

Conservation Service made several field excursions to



32

western Nevada, including to Smith Valley, on a
reconnaissance investigation of argillic soil development
(Hawley, 1969; Hawley, 2001, written communication). They
conducted field reconnaissance of soil sites in Smith
Valley and described soil profiles mainly of Holocene and
Late Pleistocene age. Hawley and others described the soil
formed on a gravel bar later identified by Mifflin and
Wheat (1979) at Sec. 17, T13N, R24E (Fig. 8), which they
estimated to be Pleistocene in age (Hawley, 1969). Hawley
(1969) also noted well-rounded pebbles, horizontal
stratification of clasts, and the presence of well
stratified fine- to medium-grained sediment at the gravel
bar.

Studies of the shorelines, deposits, and soils in
Smith Valley by Mifflin and Wheat (1979) and Stewart and
Dohrenwend (1984) indicated that a lake unconnected to
contemporaneous Lake Lahontan occupied the valley during
Pleistocene time. They suggested that shorelines and
deposits of two highstands were preserved in Smith Valley.
Mifflin and Wheat (1979) also suggested that this lake
overflowed into neighboring Mason Valley before 35,000
years ago. The approximate timing of overflow was based on

the estimated age of the soil profile formed on beach
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deposits (Mifflin and Wheat, 1979) and on post-lake
stabilized dunes east of Artesia Lake (Hawley, 1969).

Stewart and Dohrenwend (1984) produced a geologic map
of the Wellington 15-minute quadrangle, including
Quaternary deposits and geomorphic features. Their
accompanying descriptions of Quaternary deposits are
general, concluding that the deposits consist of
lacustrine-related gravel, silt, clay, and sand.

The Quaternary history of the Walker River, especially
the West Walker River, is not well deocumented, and it is
unclear exactly where the river was while Smith Valley was
occupied by Lake Wellington. Although small terraces occur
at elevations above the river’s present entrance into Smith
Valley, at Hoye Canyon, and at the base of the Wellington
Hills, no fan exists at this locality or in neighboring
Mason Valley. Mifflin and Wheat (1979) speculated that an
earlier, higher stand of Lake Wellington, at approximately
1,539 m, resulted from an inferred stream capture of the
East Walker River by the West Walker River due to the
presence of an ice dam in the Eastern Sierra Nevada
(Mifflin and Wheat, 1979). However, no conclusive evidence

was documented for this earlier highstand.
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Field Methods

The field work for this study consisted of 1)
description of sediment and measurement of stratigraphic
sections, 2) collection of GPS data for shorelines, faults,
and section localities, and 3) assessment of soil
development at two localities and of pedogenic carbonate
morphology at one additional location. In addition, a map
of shorelines and faults was made using 1938 U.S.
Department of Agriculture, Soil Conservation Service aerial
photographs at a scale of 1:20,000 at the Aerial Photograph
Library at the Nevada Bureau of Mines and Geology in Reno,
Nevada, and was compiled onto a 1:62,500 topographic base
map .

Stratigraphic sections were measured at the three
localities selected based on elevation and geographic
location, proximity to the 1,477-m strandlines and degree
of exposure of the stratigraphy. Two sections were
described using a 30-m measuring tape, and the third was
measured using a Jacob’s Staff. Sediment colors were
determined using a Munsell Soil Color Chart (Munsell Color,

1992). Sections were excavated in some places until near-
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vertical faces were exposed, and where not excavated, the
angle of the slope was measured to correctly derive the
thickness of the units. All dips of units were determined
with a Silva Ranger compass or a Brunton compass.

The third section was measured using a Jacob’s Staff,
primarily because the exposure is an almost vertical road
cut. Because of colluvial deposition and erosion, the road
cut does not expose sufficient portions of stratigraphy to
describe the complete section. Where possible, a single
unit was traced out along the road cut until a more

complete exposure of that unit was located.

GPS and GIS Methecds

The computer work for this project was done with
ArcView GIS v.3.1 and v.3.2 and Spatial Analyst v.1.1l to
model terrain in Smith Valley using 30-m Digital Elevation
Models (DEMs), obtained from the GIS DataDepot (ThinkBurst
Media, Inc., 2003). In addition, Global Positioning System
(GPS) data were collected for this study using a Trimble
Pro-XRS Differential GPS (DGPS) receiver and were converted
to ArcView “shapefile” format using Trimble Pathfinder
Office software. GPS data were collected from shorelines

as well as coarse- and fine-grained lacustrine deposits
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identified from aerial photographs and field work as
correlating to the 1,477-m highstand. These data were
post-processed using the two closest base stations for
which data were available: Mammoth Lakes, California, about
160 km south of Smith Valley, and Tonopah, Nevada, about
200 km southeast of Smith Valley.

Within ArcView, these data were projected to match the
projection of the DEMs, as were shorelines mapped from
aerial photographs, which were correlated across the
valley. Where no GPS data were collected and where no
shorelines were observed on air photos, shorelines were
inferred from modern valley topography and elevations using
the Artesia Lake, Smith, and Pine Nut Valley 7.5-minute
quadrangle topographic maps. Although field examination of
shorelines showed no obvious warping by Quaternary
faulting, the possibility of deformation cannot be
disregarded. The DEM data are defined by 30-m grid cells,
each cell containing a single elevation representing the
mean elevation within that 900 m? area. Slight warping
would not be detectable due to the coarse nature of the
data.

DEMs and ArcView shapefiles, including regional road

and political boundary data, were also obtained from the
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GIS DataDepot and from the University of Nevada, Reno,
geospatial data web site (University of Nevada, Reno,
2003). Along with the GPS data obtained in the field for
this project, these data were analyzed using ArcView GIS
software to study the terrain as well as to reconstruct the
lake at its last highstand.

The GPS data were collected from several locations
where prominent shorelines of the 1,477-m highstand exist:
the northwest corner of the valley, the gravel bar in the
northeast corner of the valley, and the Nordyke Pass area.
Additional GPS data were obtained for other features,
including unconformities, locations of stratigraphic
sections, and various geographic features, such as road
intersections, which would assist in locating mapped
features during analysis in ArcView GIS.

A Triangulated Irregular Network (TIN) was generated
in ArcView from DEM data and used in conjuction with the
Wellington 15-minute topograhic map as a base map for
digitizing of shorelines from air photos because the
topography appeared more realistic on the TIN than on the
DEM. A TIN is an image representing surface features
generated from irregularly spaced points (each with x and y

coordinates and a z value) and breakline features (GIS
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Lounge, 2003). A hillshade was then constructed using
original DEM data and was used as the base map to better
display the final geometric data for the lake. On the
hillshade, the digitized shoreline data were combined with
the shoreline polyline shapefiles. Using an ArcView
script, these shorelines were interpolated between actual
mapped segments to create one continuous polyline
approximation of the highest water level at 1,477 m. Using
another ArcView script, this approximated polyline,
designated “Higherstand,” was converted to a polygon
representing surface area of the lake. The “Lowerstand”
for the lake was constructed by reducing the maximum depth
by 12 m and creating a highstand at 1,465 m. This change
drops the lake level below the elevation of a broad
topographic high and significantly reduces the surface
area. This “Lowerstand” was not used as the model for the
lake at the final highstand, but calculations for volume
Were made using the smaller surface area. |

Using an ArcView script, the polygon was “clipped”
onto the underlying DEM grid file, creating a new grid
file. The surface elevation of Artesia Lake was used as
the bottom elevation of Lake Wellington as no depth

information is available for Artesia Lake. The surface
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elevation of Artesia Lake from the DEM data was adjusted to
match the topographic map elevation of 1,385 m. The 1,477-
m Lake Wellington shoreline elevation was not adjusted
because those data were mapped using 7.5-minute topographic
maps as base maps. The resulting grid file represents the
difference in elevation between the surfacé of the modeled
lake and the elevations of the surface of Artesia Lake and
modern valley floor, creating an approximate bathymetry of
the lake. The resolution of the grid file showing lake
bathymetry is the same as the original DEM file: 30 m by 30
m. Values for maximum elevation, area, and perimeter of
this lake level were obtained directly from ArcView tables
of the new bathymetric grid file. These ArcView tables of
the bathymetry data were exported to Excel, where
calculations for average depth and approximate volumes were
made. The average elevation of the lake bottom was
determined and this value was subtracted from the maximum
elevation of the lake surface to approximate an average
depth for the lake. Surface area was calculated using both
an ArcView script and a planimeter. The average overall
depth of the highstand was multiplied by the surface area
to approximate a minimum value for the maximum volume of

the lake. The accuracy of the estimates for volume and
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accuracy of the estimates for volume and surface area is

influenced by inherent errors in the DEM data sets.

Laboratory and Analytical Methods

Tephra samples were prepared for Electron Microprobe
analysis and described petrographically in the
Tephrochronology Laboratory at the U.S. Geological Survey
in Menlo Park. The samples were wet sieved in plastic
sieves with nylon screens of 100, 200, and 325 mesh,
corresponding to approximately 140, 80, and 30 um, and then
treated with HCL and HF to remove authigenic carbonates and
surficial coatings. The samples were placed in an
ultrasonic vibrator and then sieved again in water. After
the samples were dried under a heat lamp, glass and
phenocrysts were separated using a methylene iodide-acetone
solution and a magnetic separator (Sarna-Wojcicki et al.,
1987).

Each glass sample was analyzed by James Walker at the
USGS using a JEOL 8900 Electron Microprobe. The microprobe
analyzes each glass sample for the following nine elements:
silicon, aluminum, iron, magnesium, manganese, calcium,

titanium, sodium, and potassium, determined from previous
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studies to be useful in characterization and correlation of
tephra layers (Sarna-Wojcicki et al., 1987). Elements used
to correlate tephra are those for which: 1) the
concentration can be measured accurately; 2) concentrations
differ in tephra of demonstratively different ages; and 3)
distribution is fairly even within the glass from a single
tephra layer (Sarna-Wojcicki et al., 1984). In addition,
Sarna-Wojcicki et al. (1984) used those elements for which
analytical error is very low. From the electron microprobe
analysis results, concentrations of calcium and sodium are
most useful because, unlike other elements, they are less
affected by diagenetic processes, their concentrations tend
to be more sensitive to differing volcanic chemistry, and
concentrations can vary in different tephra layers erupted
from the same volcanic source more than those of the other
elements (Sarna-Wojcicki et al., 1984).

From the electron microprobe results, Andrei Sarna-
Wojcicki used SIMANAL (Sarna-Wojcicki et al., 1987) and
RATIONAL (standard deviation of ratios of element
concentrations; Sarna-Wojcicki et al., 1987) to determine
chemical composition matches. SIMANAL is given by the

following equation:



d(A,B) =X R; /n

where d(A,B) = similarity coefficient for comparison
between sample A and sample B

i = element number

n = number of elements

Ry = X;A/X;B if X;B > X;A; otherwise X;B/X;A
X;A = concentration of element i in sample A
X;B = concentration of element i in sample B

RATIONAL is given by the following equation:

Z(a,B) = standard deviation of r(a,B)

where

r(a,B) = ZRi/n

and

r(a,B) = average ratio for comparison between

sample A and sample B

i = element number

n = number of elements

R; = X;A/X;B, regardless of which X; is greater
X;A = concentration of element i in sample A

X:B = concentration of element i in sample B



EVIDENCE FOR LAKE WELLINGTON

Study of aerial photographs and field mapping of
geomorphic features in Smith Valley for this project
revealed prominent shorelines, cut into alluvium and
bedrock, approximately correlated to a high lake-stand at
1,477 m. The map of features constructed on the USGS
Wellington 15-minute quadrangle (Plate 1) was used for
field work, both to locate exposures of lacustrine deposits
that could be correlated to the shorelines and as a

reference for GPS mapping of the shoreline features.

Shorelines

Four areas at or below 1,477 m with particularly
prominent erosional shore features are Localities A and C,
in the northern part of Smith Valley, along the eastern
margin of the valley (Locality F) and in the area around
Nordyke Pass (Locality B), about 10 km north-northeast of
the town of Smith (Fig. 9; Plate 1). Shorelines were not
observed south of the West Walker River, because deposits
from Desert Creek bury evidence of Lake Wellington. On the
western margin of the wvalley, scarps related to the Smith

Valley fault zone are abundant, and shorelines there were
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Figure 9. DEM shaded relief map showing localities
studied in the course of this project.
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difficult to confirm in the field. Along most of the
length of the West Walker River in Smith Valley, shorelines
and lake sediment are generally absent. The origins of
small terraces present at Hoye Canyon and at the base of
the Wellington Hills are ambiguous, and they were not
included in this study.

The northern valley margin, along the south end of the
Buckskin Range, features a conspicuous wave-cut cliff in
bedrock, as well as an adjacent bedrock knob showing at
least one obvious strandline, previously noted by Mifflin
and Wheat (1979) and Stewart and Dohrenwend (1984) and
shown here in Fig. 10 and Plate 1. To the east of the
wave-cut cliff, at 1,477 m, lies a gravel bar, inferred by
Mifflin and Wheat (1979) to be the best preserved
constructional lacustrine feature in the wvalley (Fig. 11;
Plate 1). Another constructional feature related to the
lake is an alluvium-capped gravel deposit at Locality D
(Figs. 9, 12, 13; Plate 1). The deposit is interpreted as
a beach and located at approximately 1,477 m along Hudson
Way, less than 1 km northeast of the town of Smith. There
is no clear deposit produced by a Lake Wellington outflow

event in Mason Valley. However, elevated gravel deposits
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Figure 10. Two views of wave~-cut cliff (arrows)
at the southern end of the Buckskin Range in the
northern part of Smith Valley (Locality C, Fig 9; see
Fig. 3 for location of photos). A, View looking
northwest; and B, View looking northeast. Cliff is
about 85 m high.



47

Figure 11. View southwest of gravel layers exposed at
Locality A (Fig. 9; see Fig. 3 for location of photo), the
gravel bar in the northeast part of Smith Valley. Exposure is
about 10 m high.
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Figure 12. View east toward Locality D (Fig. 9; Plate
1; see Fig. 3 for location of photo), along Hudson Way,
just north of the West Walker River. Fine-grained Tertiary
deposits are capped by Quaternary sediment (arrows),
related to Lake Wellington and located at about 1477 m.
Location of Figure 13 is behind the hill at the right edge

of the photo.
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Figure 13. Quaternary gravel deposit capped by finer
grained alluvium at Locality D (Fig.9; Plate 1l; see Fig. 3
for location of photo) along Hudson Way at about 1,477 m.
Strongly developed carbonate horizon is visible in the
center of the photograph. Hammer head is 18 cm long.
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less than 6 m above the level of the modern West Walker
River are present north and south of the river where it
enters Mason Valley from Wilson Canyon.

The area around Nordyke Pass (Figs. 14, 15) includes a
group of bedrock hills that project westward into the
center of Smith Valley. These hills probably formed a
peninsula, creating a partially sheltered bay or lagoon to
the north when the lake was at its highstand. In addition,
a prominent fault scarp in bedrock above 1,477 m at
Locality Bl (Fig. 16) west of Nordyke Pass appears to have
been modified by wave action (Fig. 16).

In the northeast corner of the valley, at Locality E
(Fig. 9; Plate 1), prominent benches are cut into the
bedrock above 1,477 m, at approximately 1,539 m, the level
of Mifflin and Wheat’s (1979) postulated higher stand of
Lake Wellington. Field reconnaissance of the area for this
project corroborated the existence of these benches, but
they can not be confirmed to be shorelines, because no
lacustrine deposits are present beneath the benches. No
other evidence of the postulated 1,538-m highstand (Mifflin
and Wheat, 1979) was observed during the course of this

study.
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B

Figure 15. Views of shorelines at Locality B (Fig. 9;
see Fig. 3 for location of photos), the area at Nordyke
Pass. A, view to southwest toward shorelines (arrows):; and
B, view to south.
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Figure 16. View looking south to wave-cut bench (left
arrow) inset into existing fault scarp (right arrow) at
Locality Bl (Figs. 9, 14). The wave-cut bench lies above
1477 m. The fault scarp is about 73 m high.
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Lake Sediment

North of about 38° 50’ N and south of about 39° 00’ N
(Plate 1), areas of Smith Valley below 1,477 m are covered
primarily with deposits of massive and laminated silt and
clay, and by minor fine to medium sand (Stewart and
Dohrenwend, 1984). Some exposures of fine to medium sand
were also observed at or less than a few meters below 1,477
m, and a majority of these deposits show either
crossbedding or indistinct horizontal lamination.

In general, exposures associated with the 1,477-m-
highstand are located along the valley margins. The
deposits range in thickness from less than 1 m to more than
6 m. The three measured sections (Fig. 9; Plate 1) are
well exposed, fairly thick, contain discernible
stratigraphy, and are associated with the 1,477 m-highstand
by their elevations and proximity to mapped shorelines.
Sections #1, #2, and #3 are fine-grained exposures and
appear to be typical of the deposits of Lake Wellington in
grain size and the presence of interbeds of fine to medium
sand. Layers with indistinct lamination about 1 mm thick
in the clay, and cross-lamination at a scale of a few
millimeters in the silt and sand are the only

stratification in these exposures. Exposure #4 is located
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near the topmost unit of Section #3, and is probably
stratigraphically out of place because of faulting along
the adjacent Smith Valley fault zone. Therefore, it was
considered separately from Section #3.

Section #1 (Figs. 14, 17, 18, 19, 20), measured east
of Nordvke Pass, is mostly clay and silt with interbeds of
fine to medium sand. The section appears to coarsen
upward. Section #1l contains a l1.5-cm-thick tephra layer
(Unit 1G; Fig. 18) located between layers of clay and silt.
The tephra layer is about 220 cm below cross-bedded sand of
Unit 1M and approximately 250 cm below the poorly sorted
pebbly sand of units that overlie Unit 1N (Fig. 18). This
section also contains at least one distinct layer of
fossilized plants within a sequence of silt and clay (Unit
1I; Fig. 18). No similar layer was noted in any of the
other three sections.

Section #1 is much thicker than the other sections and
likely contains a more complete record of deposition (Fig.
18). The section is capped by about 0.25 m of poorly
sorted gravel containing boulders up to almost 1 m along
their long axes. This deposit is part of the alluvial
deposit at the top of the section and is interpreted as a

debris flow. 1Its relative resistance to erosion accounts
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Figure 17. View looking east to Section #1 (Fig. 9;
See Fig. 3 for location of photo), northeast of Nordyke
Pass (Fig. 14).
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Debris flow %ellowish brown to brownish yellow (10YR,5/8 near top; 10YR, 6/8,
6/6 rest of unit), poorly-sorted, ~25% gravel, boulders up to 1 m, base of unitis
‘I:mknsh white/pinkish gray (7.5YR,8/2, 7/2), silica cement, less than

% gravel
luv?um coarse sand and silt, brownish yellow/yellow (10YR,6/6, 7/6),
rly-sorted, < 10% gravel, decreasmg v on, indurated,

nit 1R silt and clay, pale yellow (2.5Y,7/3), <<5 % gravel, pedogenic
carbonate nodules and veins
Unit 1Q sand, pale yellow/light yeliowish brown, (2.5Y,7/4, 6/4), moderately
sorted, pebble layer, less carbonate than Unit 1R
Unit 1P silt and sand, olive yellow, 2.5Y.GIg¢ ;oody sorted
Unit 1N silt and fine sand, pale yellow, (2.5Y,7/4) moderately sorted,
unlaminated, carbonized plants at base of unit, pedogenic carbonate
!élnlt 1M fine sand, pale yellow (2.5Y,8/3, 7/3) well-sorted, weakly cemented,

to 4 cm cross-lamination dipping towards lake center, lithics, quartz, mica,
carbonized plants, top 10 cm coarser

Unit 1L silt with more fine sand than unit 1K, pale yellow (2.5Y,8/3, 7/3),
possible burrows, carbonized and modem plant roots

Unit 1K silt with some fine sand, pale yellow (2.5Y,8/3,7/3)
Unit 1J fine sand, well-sorted, light gray (2.5Y 7/2), more fines
upsection, modem and possubfe oider plant roots and debris
Unit 11_silt and fine sand, light gqaggaale yellow (2.5Y772, 7/3),
subhorizontal lamination, carbonized plants

Unit 1H silt with possible reworked ash, pale yellow (2.5Y,7/3), fairly well
consolidated, coarsens above 7.5 cm paleye ¢ ). fairty

Unit 1G tephra, wispy, thin, but continuous, white to gray, 1.5 cm thick

Unit 1F clay, tightly packed, horizontal lamination

-
3
-
-

Unit 1E sand, light yellowish brown (2.5Y,6/3, 6/4 (dry)), ible very faint
cmss-lamination.‘oosey tomoderately(oompacted (dry)). possi Y

Unit 1D clayey silt, pale yellow, (2.5Y, 7/3 (dry)) no visible lamination,
ﬁghuywmpgg{ed pale yeliow, ( (dry))

Unit 1C silt, pale yellow (2.5Y,7/3 (dry)), faint thin, horizontal lamination,
moderately sorted, loosely to moderately compacted

Unit 181 and Unit 1B2 two distinct layers of sand; fini ’tépsewonﬁunlowerlﬁg
1B1(1.75 cm thick) medium to fine sand Rm gray (25Y, (d?; )to uppm
(2.75 cm thick) fine sand, pale yellow (2.5Y, 7/4 (dry)), moderately to wel ,
subrounded to rounded grains

Unit 1A siltand da¥ light yellowish brown (2.5Y,6/4),faint lamination,
well-sorted, moderately to gghﬁy com| , iron stained, mica, quartz,

Figure 18. Stratigraphy at Section #1 (Fig. 9). All
colors from Munsell Color (1992) for moist sediment,
unless otherwise specified.
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Figure 19. Contact between fine sand of Unit 1J
(above) and silt and fine sand of Unit 1I (below) in
Section #1, east of Locality B (Fig. 9). See Fig. 18 for
location of photograph within section. Metal part of
rock hammer shaft is 10.5 cm long.

Figure 20. Faint cross-bedding in fine sand of
Unit 1M in Section #1 (Figs. 3, 9). See Fig. 18 for
location of photograph within section. Length of mirror
part of Silva compass is 7.5 cm.
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for the preservation of the sedimentary deposits beneath
it. The debris flow also appears to have eroded the
topmost portion of the post-lacustrine subaerial deposit
above Unit 1R (Fig. 18) as well as upper soil horizons.

Section #2 (Figs.9, 21, 22) is generally fine-grained
sediment, ranging from silt at the base to fine sand and
silt, silty clay, and silt at the top. The silt and clay
layers are generally massive, with faint lamination at a
scale of about 1 mm. The silt and fine sand also lack
bedding, except for faint cross-lamination at the scale of
a few millimeters. The exposure is capped by very well
sorted fine-grained sand, mapped as eolian sand by Stewart
and Dohrenwend (1984), modern alluvium derived from the
bedrock highs to the south, and a thin veneer of subrounded
fine gravel and coarse sand. Like Section #1, Section #2
contains layers of fine sand, some showing cross-lamination
at a scale of a few millimeters, near or at the top of the
lacustrine sequence (Fig. 22).

Section #3 and Exposure #4 (Figs. 9, 23, 24, 25, 26)
were originally observed by Marith Reheis of the U.S.
Geological Survey (USGS), who noted that lacustrine

sediment appeared to be offset by a fault (Fig. 23) and
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Figure 21. View looking southwest to Section #2
(arrow; Figs. 9, 14; see Fig. 3 for location of photo),
northeast of Nordyke Pass (Locality B; Figs. 9, 14; Plate
1). Shoreline at 1477 m located almost at center of photo
(horizontal arrow) and the Pine Nut Mountains (Fig. 1;
Plate 1) are in the distance.
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Eollan sand Eolian sand and Alluvium eolian sand and subrounded
coarse sand and fine gravel ( with rare pebbles up to 53 mm),
Alluvium wood and other debris, not measured

Unit 2D silt, light olive brown (2.5Y, 5/4), well-sorted,
moderate packing, very vague thin lamination, modem
plant roots

Unit 2C silty clay, light olive brown (2.5Y,5/3) horizontal
lamination <1mm thick, tight packing, carbonate

veins throughout

Unit 2B fine sand and silt, iron-stained, olive brown

(2.5Y,4/3) cross-lamination ~1mm thick, gradational
boundary with Unit 2A, moderate packing

Unit 2A silt, light olive brown (2.5Y,5/4), well-

sorted, moderate packing near top, tight packing at base,
cemented (non-carbonate), iron-stained, thin horizontal
lamination near top, dips <100 towards lake center

base concealed

Figure 22. Stratigraphy at Section #2 (see Fig. 9 for
location). 2All colors for moist sediment, unless otherwise
specified.
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covered
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im

Artesia Road

8jeos sjewixoiddy

Schematic diagram of east-facing roadcut

Figure 23.
exposure at Section #3 (Fig. 9) along Artesia Road.

Roadcut is a little more than 6 m high.
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%] Colluvium fine sand and sitt matrix,

base concealed

Figure 24.
location).
specified.

clasts up to 30 cm, poorly sorted, primarily granitic,
meta-granitic, gneissic clasts

Unit 3F fine to very fine sand, lamination,

2.4 iron stained along lamination, dark layer
g.24 with roots and limonite at base and 23 cm from
“* top of unit
“] Unit 3E silt and very fine sand, pale yellow, 2.5Y 7/3,

lamination from <imm to 3mm, gradational

-] over 4 to 5 cm with Unit 3D, possible
§ organic matter (black layer) 37 mm from base

22} Unit 3D very fine sand,olive yellow, 5Y 6/6, no
‘1 apparent sedimentary structures, mica, bitotie,

quartz, maybe some reworked ash?
Unit 3C volcanic ash, reworked, light gray
fine sand, exposed a little above the covered area

Unit 3B interbedded silt and sand, with some
clay, lamination at <3 mm, sand shows cross-

" -] lamination,plant roots, iron-stained

Unit 3A silt and fine sand, pale yellow, 2.5Y 7/4, at
bottom:laminated with heavy iron staining
approximateiy parallel to lamination, lamination
becomes less distinct upsection, moderately
indurated

Stratigraphy at Section #3 (see Fig. 9 for
All colors for moist sediment, unless otherwise
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Figure 25. Section #3 (Fig. 9) showing iron-stained
laminated silt and fine sand of Unit 3A (Fig. 24). Hammer
head is 18 cm long.

Figure 26. Section #3 (Fig. 9) showing coarse-
grained, poorly sorted colluvium unconformably overlying
the fine-grained, well-sorted lacustrine sediment of Unit
3F (Fig.24).
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that a tephra layer is located below the faulted section
(Reheis, M., USGS, 1998, oral communication).

The trace of the Smith Valley fault zone as mapped by
dePolo et al. (1997), is located between the road cut and
the range front of the Pine Nut Mountains, and fault scarps
can be seen adjacent to Section #3. Although no offset was
evident within Section #3, a deposit of clayey silt is
exposed less than two meters upslope from Unit 3F (Fig.
23), and colluvium is present between Unit 3F and the
clayey silt upslope (Fig. 23); Because of the uncertainty
of the relationship between the clayey silt and Unit 3F,
the colluvium and clayey silt were not included in Section
#3. Also in Section #3, a 13-cm-thick tephra layer (Unit
3C, Fig. 24) lies 150 cm below the top of Unit 3F (Fig.
24) .

Two additional exposures (Localities A and D, Figs. 9,
27, 28; Plate 1) were not measured but were described.

Both contain moderately well to well sorted gravel and
sand, showing both imbrication (Figs. 27, 28) and cross
bedding, and are interpreted as beach deposits. The clasts
in both deposits are metamorphic, granitic, and volcanic

rocks locally derived from the surrounding mountain ranges.
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Figure 27. Imbricated gravel layers at Locality 2
(Fig. 9; see Fig. 3 for location of photo). Hammer head is
18 cm long.

Figure 28. Exposure of horizontally layered medium
pebble gravel at Locality D (Fig. 9; see Fig. 3 for
location of photo). Hammer head is 18 cm long.



67

Though most clasts are around 5 cm in size (Figs. 27, 28),
some at Locality D are as large as 20 cm, and individual
layers are well sorted in both deposits, with little fine
matrix.

The clasts in all layers at Localities A and D show
imbrication, and cross-bedding of a few millimeters is
common in layers primarily of coarse sand. Possible trough
cross-bedding of a few centimeters can be seen in layers of
coarse to medium sand in the deposits at Locality A.
Although the localities do not contain any interbedded
fine-grained lacustrine sediment and cannot be correlated
to the measured sections, they do provide evidence of
deposition at or near the lake shore. Deposits at Locality
D are located less than 1 km north of the West Walker River
and about 26 m above the West Walker River. Because
horizontal layering suggests imbrication, the gravel at
Locality D is interpreted as lacustrine, related to Lake

Wellington, rather than to the West Walker River.

Lacustrine Fossils

Snails
In the Nordyke Pass area, at the center of sec. 17,

T12N, R23E (Figs. 9, 14; Locality B2), one complete snail
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shell and three shell fragments were discovered in float.
These shells were located on fine-grained lacustrine units
located topographically below Sections #1 and #2 at
approximately 1,445 m, 60 m above Artesia Lake.

The shells were tentatively identified as freshwater
snails belonging to the Family Planorbidae and Genus
Helisoma using Boardman et al. (1987). This particular
lacustrine snail family is widespread in lakes and large
streams throughout the North American continent, and the
Genus Helisoma is currently extant in Nevada, with fossils
dating back to the Pliocene (Call, 1884; Taylor, 1966).
Because no shells were found in situ and no dating
techniques were applied to the shells to determine an age,
the presence of such shells serves only to support the
former existence of a lake at the level where they were

found.

Diatoms

Three sediment samples originally collected in the
process of looking for tephra were determined to contain
rare diatoms (Fig. 29) along with mineral grains. The
first sediment sample, ALS9811-43, was collected at Locality

B3 (Fig. 14), in a gully west of Nordyke Pass (Figs. 9,
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Sample . . .

Number Location Unit Number Diatoms
Locality
B3, gully Not in

ALL9811-43 west of measured
Nordyke section
Pass
99PNV728-162 | Section #3 Unit 3B é§?

89A1.615-134 Section #2 Unit 2B § %

Figure 29. Sketches of diatoms in three lacustrine
sediment samples. Magnification is 10X.
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14), from a layer of grayish sediment. This sample
contained at least three different types of diatoms (Fig.
29), differentiated by morphology, in addition to mineral
grains of mostly quartz. This layer was not correlated to
any layers either in Section #2 farther to the west or in
Section #1, to the east of Locality B3 (Fig. 14).

The second sample, 99PNV728-162, was collected from
Section #3, in Unit 3B, a layer with interbeds of silt and
fine sand. Like sample ALS811-43, this sample also
contained at least three different types of diatoms (Fig.
29) as well as mineral grains of quartz, biotite, and
feldspar. The third sample, 99AL615-134, was collected
from Section #2, in Unit 2B (Fig. 22). This sample
contained fewer diatoms and less diversity than the other
two samples (Fig. 29). Although these samples were
examined and described using a binocular microscope,
identification of the types of diatoms was beyond the scope

of this project.



AGE OF DEPOSITS

Tephra Analyses

Two tephra layers located in lake sediment associated
with the final highstand of Lake Wellington were chemically
analyzed and correlated to tephra of known age. The tephra
ages better refine the timing of the final highstand, which
was estimated by Mifflin and Wheat (1979) from soil
development to be before 35,000 years ago. Microscope
study and chemical analyses were conducted on samples from
the tephra layers found in Section #1 and in Section #3
(Fig. 9). Microprobe analyses were done at the U.S.
Geological Survey by James Walker, and the results were
compared to chemical analyses of other tephra of known ages
and origins by Andrei Sarna-Wojcicki.

Sample 99AL617-154 was collected from the tephra layer
located in Section #1 about 430 cm from the top of the
section (Figs. 18, 30). The petrographic study for this
sample revealed a majority of glass shards, 5 to 10% non-
glass particles, including some twinned feldspars, biotite,
quartz, and various volcanic and metamorphic minerals.

Sample AL98-51A (PN9811-51A) was collected from a tephra
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Figure 30. Tephra layer, Unit 1G (arrows) in Section
#1 (Figs. 9, 18; see Fig. 3 for location of photo). Pen
is 13.5 cm long.
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layer located in Section #3 (Figs. 24, 31), 150 cm
stratigraphically below the top of Unit 3F (Fig. 24). The
petrographic analysis for this sample yielded a majority of
glass shards, and 10-20% non-glass constituents, including
biotite, quartz, volcanic minerals, feldspars, and various
metamorphic minerals.

Sarna-Wojcicki (2003, written communication) examined
the chemical results from the microprobe analyses and
concluded that sample 99AL617-154 matches well with several
samples from cores in Walker Lake (Appendix A, p. 109),
with a similarity coefficient (SC) between 0.95 and 0.97.
It is likely derived from a proto-Mono Craters source. In
the Walker Lake cores, this tephra layer occurs in the
interval between 60 and 80 m below the top of the cores,
and corresponds to age estimates between approximately
80,000 and 60,000 years, based on the dating of these cores
and sedimentation-rate estimates for Walker Lake (Sarna-
Wojcicki, 2003, written communication). In the Mono Basin
area,.this proto-Mono Craters tephra layer is exposed on
the north shore of Mono Lake and on Negit Island, where the
layer is interbedded with tephra from a Mammoth Mountain
source dated between 100,000 and 50,000 years (Sarna-

Wojcicki, 2003, written communication).



Figure 31. Tephra layer, Unit 3C (arrows) in fine-
grained lacustrine sediment in Section #3 (Figs. 9, 24;
see Fig. 3 for location of photo). Tephra layer is
approximately 13 cm thick.
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Sample ALS8-51A (PNS811-51A) does not appear to match
well with other known tephra, and comparisons indicate that
the closest match with a borderline SC of 0.95 is to a
tephra unit with no independent age control in southern
Nevada. Of the tephra units with independent age control,
the closest match, with a SC of about 0.92, is with a
sample from an Owens Lake core (Appendix A, p. 114) where
the layer is estimated to be approximately 75,000 years old

(Sarna-Wojcicki, 2003, written communication).

Soil Development

Examination of soil profile development was made at
Sectin #1 and at two exposures of gravelly shore deposits
(Locality A, also examined by Mifflin and Wheat, 1979, and
Locality D) correlated with the 1,477-m shoreline. All
soils were described according to the techniques and
terminology outlined in Birkeland et al. (1991) and
Birkeland (1999). Both the soil profile at Locality A and
the soil at Section #1 have well-developed argillic
horizons and significant pedogenic carbonate development

(Appendix B) .
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Examination of the soil development on the sediment in
Section #1 (Appendix B, p. 120) revealed the presence of
two soils, indicated by two calcic horizons. At the top of
the section, a debris flow truncates an alluvial deposit
above Unit 1R (Figs. 18, 32) with a zone of pedogenic
silica (Bqm horizon). The silica horizon ditrectly overlies
the upper By carbonate horizon between 7 and about 20 cm
below the top of the soil (Fig. 32). The older, buried
carbonate horizon (2By) is developed within the lake
sediment of Unit 1R beneath the alluvium (Fig. 32).

As is true in many desert soil profiles, the
morphology of pedogenic carbonate is an indicator of
profile development (Birkeland, 1999). Sediment in Section
#1 was observed to have significant carbonate development
on alluvial deposits and on the underlying lacustrine
deposits (Figs. 32, 33). The 2By was determined to be 36
cm thick and the carbonate morphology was inferred be at
least Stage II, using the criteria in Birkeland et al.
(1991).

Soil development was also examined at Locality A (Fig.
34; Appendix B, p. 121). The exposed portion of the
section was studied for soil characteristics, including

pedogenic carbonate development. The K or carbonate
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Figure 32. Photograph and soil profile of soil in
Section #1 (Figs. 9, 14). Hammer head is 18 cm long. Soil
horizon terminology from Birkeland et al., 1991.



Figure 33. Stage II pedogenic carbonate on fine
sediment of Unit 1R in Section #1 (Fig. 9), in Soil

exposure #1 (Fig. 9). Hammer head is 18 cm long.
32 for location within section).

(See

78

Fig.
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Weak Stage III pedogenic carbonate on

Figure 34.

gravels at Locali

long.

Hammer head is 18 cm
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horizon appears to be at least 40 cm thick, but an exact
measurement was not obtained because debris from quarrying
activities conceals the lower portion of the section. At
this locality, the pedogenic carbonate is developed
primarily on gravel and coarse sand, and the morphology
represents a weak Stage III, based on the field criteria in
Birkeland et al. (1991).

No profile was described for the soil at Locality D,
but the carbonate morphology at that location is
interpreted to be a Stage II (Fig. 13). This similar to

the carbonate morphology at Section #1 (Fig. 33).



RECONSTRUCTION OF LAKE WELLINGTON

GIS Reconstruction

Using the modeled lake and DEMs of the valley, a model
of estimated lake bathymetry was constructed in ArcView.
From these data the perimeter, area, average depth, and
volume of water of the lake were calculated for the 1,477-m
highstand, referred to as “Higherstand”, and also for the
highstand at 1,465 m, referred to as “Lowerstand” (Table
1) . The average and maximum depths as well as a minimum
estimate for the maximum lake volume were based on modern
valley geometry, the only data available in digital format.
Based on the restored extent of the lake, a digital
planimeter was then used to make a preliminary estimate of
lake perimeter and area at that highstand.

Using GPS shoreline data imported as shapefiles and
hand-digitized shorelines from the map constructed from air
photo study, the lake level was modeled for the 1,477-m
highstand (Fig. 35). At 1,477 m, Lake Wellington evidently
had a perimeter of 80 km and a corresponding surface area
of 217 km®* or 84 mi?. The maximum depth was estimated to be
92 m, using an estimate of the present elevation of Artesia

Lake at 1,385 m, and bathymetry of the lake was modeled
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Figure 35. DEM shaded relief map showing
reconstructed areal extent of Lake Wellington at its
final highstand, 1,477 m.
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(Fig. 36). Using the surface area and an average depth of
46 m, the volume of water contained in the lake basin was
estimated to be 9.98 x 10° m® (8.09 x 10° acre-feet; Table
1).

Less than 2 km north of the West Walker River, a
broad, elevated, relatively flat-topped area spans a
distance of about 8 km, trending roughly northeast-
southwest at an elevation of approximately 1,477 m. This
nearly flat surface could have caused significant changes
in surface area with slight changes in lake elevation,
which either submerge the bench or drop the lake below it.
This area was referred to as the “Beaman-Nordyke Bench” by
Hawley (1969). A reduction in the maximum depth by 12 m to
80 m reduces the average depth to 40 m and the lake surface
area to 115 km® (44 mi?), 53% of the larger surface area.
During a particular highstand, lake levels can fluctuate at
or near the highstand elevation before dropping and
remaining at a lower level. These fluctuations can give
rise.to several strandlines at slightly different
elevations. To assess the effect of the Beaman-Nordyke
Bench on the lake parameters while taking into account

these fluctuations, an additional lake was modeled using a
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Figure 36. DEM shaded relief map showing bathymetry
of Lake Wellington, using geometry of modern Smith
Valley. Contour interval is 25 m.



lower set of shorelines found in the basin at an
approximate elevation of 1,465 m.

This lower level of Lake Wellington, termed the
“Lowerstand” on Table 1, evidently had a perimeter of 47
km, 59% of the perimeter of the highest lake stand. The
estimated volume corresponding to the “Lowerstand” is 4.60
x 10° m® (3.73 x 10° acre-feet), 46% of the volume of the

higher stand.

Hydrologic Indices

Estimations of paleogeometry for Lake Wellington, as
well as calculations of the Hydrological Index (HI), allow
for comparisons with other pluvial lakes in the region.
Calculations of the Pluvial Hydrologic Index (HI) for Lake
Wellington were made using the following equation from
Reheis (1999Db):

HI=AL/AT,
where AL is the maximum lake area as indicated by the
highest shore and AT is the total tributary basin area or
the total basin area minus the maximum lake area

The equation for HI, originally used by Mifflin and
Wheat (1979), involves the terms for only basin and lake

areas, both parameters that can be directly measured. For

86
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the purposes of this investigation, the pluvial hydrologic
index (HI) for Smith Valley was calculated using the basin
area value for Smith Valley from Mifflin and Wheat (1979)
and the lake area values obtained for this study (Table 2).
Reheis (1999) used Mifflin and Wheat’s (1979) pluvial
hydrological index (HI) to estimate the moisture conditions
necessary to produce lakés that would have created
shorelines in Nevada higher than the highest level of Lake
Lahontan (Reheis, 1999b). 0Of the paleogeometric elements
for Lake Wellington, the most useful parameter is the total
lake-surface area, which Benson and Paillet (1989) have
shown can accurately measure changes in hydrologic regime.
Although total lake surface area values for HI for Lake
Wellington are useful for comparative purposes, HI does not
use any of measures of regional climatic conditions and
extrapolation of regional climatic parameters from the HI

values of Lake Wellington would not be appropriate.
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INTERPRETATIONS

Timing of Lake Highstand

The carbonate morphology in the paleosols, Stage II
and Stage II+ in Section #1 and at Locality D, and weak
Stage III at Locality A, indicates that the soils present
at both of these locations are too well developed to have
formed after MIS 2, a time when neighboring Lake Lahontan
experienced its final highstand (Birkeland, 1999; Birkeland
et al., 1991). 1In conjuction with other dating techniques,
stages of carbonate development in soil profiles in the
western United States, including Nevada, can help to
estimate the age of the soil and the deposit upon which it
formed (Birkeland et al., 1991; Birkeland, 1999). For
soils in arid regions of the western United States,
carbonate morphology of Stage III indicates that the soil
formed between approximately 100,000 and 20,000 years ago
(Birkeland, 1999). A carbonate morphology of Stage II
indicates a younger age range for the soil, between
approximately 20,000 years and 10,000 years (Birkeland,
1999).

Therefore, these soils must have formed on lacustrine

sediment deposited before MIS 2. 1In addition, as noted
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by Mifflin and Wheat (1979), the morphology of the gravel
bar (Locality A) appears too well preserved to be from the
older period of major glacial advances, MIS 6. These
constraints effectively bracket the age of the 1,477-m
highstand as younger than MIS 6, but older than MIS 2.

The identification of the tephra layer in Section #1
indicates that the age of the 1,477-m highstand is likely
between 80,000 and 60,000 years, approximately
corresponding to a period during MIS 4 (Fig. 7). Because
the tephra layer is interbedded with lacustrine sediment
near 1,477 m, it is unlikely that the tephra was deposited
on a dry lake bed at an earlier time and then submerged
during the last Lake Wellington highstand.

The tephra layer in Section #3, Sample ALS8-S51A
(PN9811-51A), does not have a close match to other tephra
layers of known age, but it does chemically resemble a
tephra layer estimated at 75,000 years of age from Owens
lake (Sarna-Wojcicki, 2003, written communication).
Although the chemistry is not similar enough for a direct
correlation, analytical results of the tephra sample from
Section #3 do not contradict the results from the tephra

sampled in Section #1.
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Both the assessment of pedogenic carbonate development
and the analysis of the tephra in Lake Wellington deposits
confirm that the exposed lacustrine deposits and the
prominent shorelines in the valley most likely formed
between 80,000 and 60,000 years ago, during MIS 4. Because
pluvial lakes formed because of regional climate changes,
it would be reasonable to hypothesize that Nevada did
indeed have areas of moderately deep lakes correlating to
MIS 4. However, the magnitude of the MIS 4 glaciation and
filling of pluvial lakes was significantly smaller than the
later MIS 2 glaciation in most places (Clark et al., 2003).
Thus, much of the lacustrine evidence from MIS 4 probably
was obliterated by later erosion and deposition in other
lake basins. Consequently, moderate to deep lakes in
Nevada during MIS 4 (between 80,000 and 60,000 years ago),
appear to have left only a few records. Many stratigraphic
records from both Lake Lahontan and Lake Bonneville have
been interpreted to show periods of drying out and soil
development during MIS 4 (Morrison, 1991).

The only confirmed evidence for a moderately deep lake
during MIS 4 in the Lahontan Basin exists in the Walker
Lake Basin in the form of high shorelines and isolated high

deposits (Reheis et al., 2003). Adams and Wesnousky’s
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(1999) studies of soils formed on shorelines also imply
that evidence for the presence of a moderately deep lake
prior to the MIS 2 glaciation exists in the Walker Lake
Basin. Surface exposure dating using cosmogenic 3°Cl on
four levels of shorelines in the Walker Lake Basin, and
results from samples taken from the lowest shoreline,
previously correlated with the Sehoo highstand at
approximately 15,000 years B.P., indicate that the age of
the shoreline is between 95,000 and 62,000 years B.P.
(Kurth, G., New Mexico Tech, 2001, written communication;
Kurth et al., 2002; Reheis et al., 2003). Two areas in the
Lake Bonneville Basin also show evidence of moderately deep
to deep lakes during MIS 4, based on amino acid studies of
freshwater gastropod shells, radiocarbon dating of organic
material, and optically stimulated luminescence dating of
lacustrine sediment (Oviatt et al., 1987; Oviatt and McCoy,
1992; Kaufman et al., 2001).

To date, the evidence for a lake highstand during MIS
4 in Smith Valley, along with the cosmogenic evidence from
the Walker Lake Basin, appears the most definitive among
basins in the region. Preservation of the evidence was
apparently the result of the subsequent draining of Lake

Wellington (Mifflin and Wheat, 1979). After through-
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flowing drainage was established, the lake never reached
levels close to that of 1,477-m highstand. As a result,
lake features from MIS 4 are preserved in Smith Valley, in
contrast to much of the rest of the region.

The 1,477-m highstand in Smith Valley also occurred at
a time when many other pluvial lakes in the region were at
lower levels or absent entirely (Morrison, 1991),
suggesting that controls on Lake Wellington could have
differed from the controls on neighboring basins. Unlike
the greater Lahontan Basin, the hydrologic regime of Smith
Valley may have been dominated, as it is today, by the West
Walker River. During MIS 4, the West Walker River’s
headwaters in the Eastern Sierra Nevada probably were
partially glaciated (Clark et al., 2003). Therefore,
unlike larger Lake Lahontan, at least at the time of its
final highstand, Lake Wellington was probably strongly
influenced by the West Walker River’s responses to Sierran

glaciations.

Depositional Environments

Changing depositional environments in pluvial Lake
Wellington can be interpreted from sedimentary sequences,

especially those in Sections #1 and #2. The character of
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the deposits in Sections #1 and #2, including grain size,
sorting, and rare sedimentary structures, indicates that
the depositional environment changed from the deeper,
quieter water represented by the clayey silt and silt, to
the shallower water, relatively higher energy environments
of the sand and laminated silt. The deposits of clay and
silt are interpreted as having formed in a low-energy
lacustrine environment, either a sheltered cove or deeper
water farther away from shore. The deposits of sand,
especially the layers with cross-lamination, indicate a
higher-energy environment, closer to shore. Section #1
generally coarsens upsection, and above about 1.5 m from
the top of the section, the deposits appear to be subaerial
above Unit 1R (Fig. 18). This stratigraphy reflects a
prograding shoreline or a gradually receding lake.

In Section #1, a layer of fossilized plants, including
well-preserved leaves within silt and fine sand (Unit 1N;
Fig. 18), also supports the interpretation of a lower-
energy depositional environment. The fact that the plant
material is preserved indicates that the energy at the site
of Section #1 was low and, because of the proximity to a
shoreline and elevation of the deposit, about 1472 m, the

water could not have been deeper than 5 m. The silt and
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fine-grained sand showing cross-bedding and ripple-scale
cross-lamination (Unit 1M; Unit 2B) probably represent
deposition during periods of higher wave energy, such as
during storms. Another possibility is that the sand and
silt layers were deposited during lake-level fluctuations
at times when the lake receded somewhat and wave action
became more effective. No bioturbation was observed in the
sections.

Section #3 coarsens upward from silt to fine-grained
sand, implying a changing depositional environment from one
of relatively low energy, represented by the silt, to one
of relatively higher energy, represented by the sand. The
clayey silt of Exposure #4 may be separated from Section #3
by a near-vertical fault, dipping approximately parallel to
the face of the road cut. If this is the case, the fault
would be located between the lower colluvium unit and the
clayey silt unit, as shown in the diagram in Fig. 23. The
units in the measured Section #3 have been faulted downward
relative to the deposits appearing above them in the
exposure. Because there is no evidence a recent lake in
Smith Valley near the level of the prominent shorelines at
1,477 m, it is unlikely that the clayey silt was deposited

by a younger lake at the level where the deposit is
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located. However, the clayey silt deposit may be older
than or approximately the same age as the similar sediment
described in Unit 3A (Fig. 24). If the clayey silt is
older than Unit 3A, the whole sequence would indicate
upward shallowing similar to the sequence represented in
Section #1.

The gravel deposits at Locations A and D (Figs. 9, 27,
28) are interpreted to have been deposited in a high-
energy, shallow-water environment, based on the coarse
average grain size, the roundness of the clasts, and
imbrication of the larger clasts. The gravel deposits
imply that the shore of Lake Wellington, at least at
Locations A and D, experienced high-energy wave action,
probably brought about by winds blowing across the surface
of the lake. This is interpreted as a transition from
lacustrine to lake-margin environments as the lake level
dropped or as sediment filled part of the lake. Deposits
with similar characteristics are found along the margins of
basins occupied by Lake Lahontan, including the Carson Sink
(Adams and Wesnousky, 1998; Blair, 1999). Winds blowing
across a lake surface create waves that vary in size
depending on the duration and velocity of the wind and the

fetch (Adams, 2003). These winds can generate waves



sufficient to entrain pebbles, cobbles, and even boulders
as they travel shoreward. Although the surface area of
Lake Wellington was a fraction of that of Lake Lahontan,
the large average grain size and imbrication of the clasts
at Localities A and D imply that the fetch must have been

sufficient to move coarse material.
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UNANSWERED QUESTIONS AND FUTURE RESEARCH

Many questions about the pluvial history of Smith
Valley remain unanswered. Among these are: 1) Where is the
evidence for a lake of MIS 6 age, if any, in Smith Valley?;
2) Why did the final overflow occur at 1,477 m during MIS 4
and not at the postulated higher stand of approximately
1559 m during MIS 67?; and 3) What was the duration of the
MIS 4 highstand? 1In addition, further exploration into the
Pleistocene history of the West Walker River may help to
clarify the relationships between the river and Lake
Wellington.

Supplementary Quaternary research in Smith Valley
could include more detailed study of the stratigraphy of
lacustrine and non-lacustrine deposits, specifically from a
core or cores from Artesia Lake and from additional surface
stratigraphic sections. Better age control on deposits and
shorelines would provide better understanding of the timing
of climate changes in the basin. Furthermore, extended
study of the Quaternary faulting in Smith Valley using the
lake stratigraphy and tephra would lead to better

understanding of recent tectonic history of the region.



CONCLUSIONS

On the basis of correlation of a single tephra layer
in Section #1 and on soil development studies, the Lake
Wellington highstand responsible for the prominent
shorelines at 1,477 m and associated lacustrine deposits in
Smith Valley occurred between 80,000 and 60,000 years ago,
during MIS 4. Using modern topographic information from
DEMs, Lake Wellington, at its highest level during the
1,477-m highstand, is inferred to have had a surface area
of approximately 217 km®, about 44% the surface area of
modern Lake Tahoe. Using the calculated Lake Wellington
surface area, the volume of water required to create the
highstand features of Lake Wellington is estimated to be
approximately 9.98 x 10° m’.

Based on the examination of Sections #1 and #2 and
Localities A and D, lacustrine deposits at these localities
exhibit coarsening upward sequences. This is interpreted
as a transition from lacustrine to lake-margin environments
as the shoreline prograded or the lake level dropped. 1In
addition, the lacustrine deposits appear to record a
combination of water level decline and lake stillstand.

Although it is apparent that Smith Valley was occupied by a
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moderately deep lake during MIS 4, evidence for a larger,
older lake during MIS 6 is much more ambiguous. It is
important to note that this investigation revealed no
evidence for a lake of significant size in Smith Valley

during MIS 2.
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APPENDIX A

RESULTS OF MICROPROBE ANALYSES (performed by Walker, J.,
2000) AND CLOSEST MATCHES (Sarna-Wojcicki, 2003, written
communication) FOR TEPHRA SAMPLES
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Summary of Results from tephra sample 99AL617-154

Tephra sample 99AL617-154 was collected for this
project from Unit 1G (Fig. 18) in Section #1 (Figs. 9, 14;
Plate 1). Tephra sample WLC-85-2 is the closest match and
is one of several samples taken from Walker Lake cores.
This tephra originated from a Proto-Mono Craters Source and

is estimated to be between 80,000 and 60,000 years old.
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Sample 99AL617-154, T440-2

Al, Si, K, Ca, Fe Date of Update: 08/02/00
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Summary of Results from tephra sample AL98-51A (PN9811-514)

Tephra sample AL98-51A (PN9811-51A) was collected for
this project from Unit 3C (Fig. 24) in Section #3 (Fig. 9;
Plate 1). Tephra sample OLS2-1 is the closest match with
independent age control, and was collected from layer in an
Owens Lake core estimated to be approximately 75,000 years

old.
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APPENDIX B

SOIL PROFILES WITH HORIZON DESCRIPTIONS



Soil at Section #1
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Horizon Descriptions

Bm 7.5 Y, 7/2, 8/2, platy, fine, <10%
gravel, no carbonate, very firm to
extremely firm, cementation indurated,
interpreted as silica (platy structure,
no effervescence, harder than gypsum),
abrupt smooth transition, buried desert
pavement? discontinuocus, indurated,
prominent vertical cracks with surface
material washed in, weakly coherent dry
consistence, nonplastic

Bk 10 YR 6/6 peds are moderate, medium,
angular, blocky, <10% gravel, no platy
structure, very indurated, possible upper
carbonate horizon, but very disseminated,
abrupt, smooth transition to C horizon,
same parent material as C horizon below,
but clast size larger, coarse sand with
pebbles, slightly sticky wet consistence,
nonplastic

C 10 YR, 6/6, at least 10% gravel,
texturally different from above horizon,
abrupt, smooth transition, very gritty
from 25 cm below horizon boundary, medium
to coarse grain size, slightly sticky wet
consistence, nonplastic

2Bky 2.5 Y, 7/3 peds are weak, medium and
angular blocky, <<5% gravel, close to 1%,
carbonate occurs as nodules, veins and
50-90% of soil matrix, carbonate
morphology at least stage II+, abrupt
smooth transition, carbonate decreases
downsection, more silty than layer above,
with exception of one pebble layer, very
friable, slightly sticky wet consistence,
slightly plastic

2Cly silt and fine sand, possible cross-
bedding lower in horizon, coarsens
upsection, carbonized plants, roots,
poorer sorting than horizons below,
abrupt, smooth transition,

indurated, but less so than sand below,
no carbonate, slightly sticky nonplastic

2C2y beach sand, <10% clay, essentially
unweathered

Note: Terms for texture, cementation, soil structure,
and carbonate stages are from Birkeland et al. (1991).
Alluvium and Unit 1R refer to the sedimentary units in

Section #1 (Fig. 18).
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Soil at Locality A Horizon Descriptions

Cover
0 om
A/B
1l em
B
24 o
K
40 om

Cover desert pavement with desert varnish

A/B 10YR, 6/4 dry; 10YR 5/4, mottled, <10%
gravel, firm consistence (moist), prismatic
to subangular blocky, many (>20%) weak peds,
gritty, carbonate mottles, carbonate stage I
to II, filaments, few nodules, 10-15%
carbonate, slightly hard, ss, plastic,
abrupt, smooth transition

B 2YR, 6/6 dry; 10YR 6/8 moist, mottled,
loose, subangular blocky to granular, weak,
weakly coherent (dry), noncoherent (moist),
no cement, roots common, fewer CaCO; mottles
than A/B horizon, carbonate stage I+, common
filaments, non sticky, nonplastic, loamy
sand abrupt smooth transition

K 10YR, 6/4, weak, platy, carbonate
coatings on clasts, weak stage III, 50-90%
of clasts coated, weak carbonate cement, non
sticky, non plastic, loamy sand, the base is
covered with debris from quarrying
activities

Note: Terms for texture, cementation, soil structure,
and carbonate stages are from Birkeland et al. (1991).
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Plate 1. Map showing shorel.
localities studied for this
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Stauffer, Heidi L., 2003, Timing of the last highstand
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