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ABSTRACT

A NUMERICAL METHOD FOR SOLVING
DOUBLE INTEGRAL EQUATIONS

by Afshin Tiraie

Integral equations are of special interest in physics and applied mathematics, and
since in general, they have no analytical solution, numerical approaches to solving them have
great importance. Multi-integral equations, specifically, are very difficult to solve, and
numerical methods for solving them are limited. In this thesis, we introduce a numerical
scheme which could be used in solving various types of double-integral equations. After
converting the equation to a discrete form, we use the centers of the cells to evaluate the
double integral and thus the solution. Examples are provided, and errors are computed by

comparing the numerical and exact solutions.
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INTRODUCTION

Integral equations are of great importance in mathematics, and arise in various
scientific researches. Differential equations — which appear almost in every discipline —
under suitable conditions may be transformed into integral equations. Although one-
dimensional integral equations have been studied in detail ([1], [2], and [4]), and for solving
them numerically, various efficient methods have been devised, multi-dimensional integral
equations have not been treated greatly, and there is not plenty of literature about them. In
one dimension, there are several efficient methods for approximating the integral of functions
[5]. Although, usually, these methods are employed to solve one-dimensional integral
equations, they are not easily generalized to higher dimensions. And, probably, this is the
reason for rendering multi-dimensional integral equations. (One exception is [6] where a
class of Volterra integral equations has been treated through specific methods.)

In this thesis, through solving a particular equation, we introduce a numerical method
which may be applied to solving double integral equations in general. The method constructs
systems of equations by assuming the equality of the value of the unknown function at some
point with the average of the values of the function at neighboring points. The systems of
linear equations, then, are solved to estimate the value of the function at the selected points.
This scheme is analogous to the Crank-Nicholson method for solving the heat equation which

has been presented in [7].



CHAPTER 1
A Double Integral Equation and Its Numerical Solution

In this chapter, we derive a numerical method to solve the equation
yb
%) =gxy)+ [ [£(s.)G(s,rdsdt (1.1)

for f over the rectangle R={(x,y)|a<x<b, c<y<d}, where g and G are known, G is
continuous, and f is assumed to be continuous over R. The reader notes that the double
integral may be expressed as a function of y alone. This, however, will not alter the essence
of the problem, and will not simplify it.

-a

,and k=g:£. Let
m

Let m and n be large positive integers, h = b

{x0o X5 «o0s X5 s X} and {¥g, ¥, -5 V)5 --es Y, } be partitions of [a,b] and [c,d]

where x; =a+ih and y, =c+ jk. Then

FG )= 8y + | [ £(0Gs,)dsds (1.2)

Yo %o
is a discrete form of (1.1) where f is required at each point (x;,y,) of the rectangle R.

When j =0, for any i

Yo Xn

[ v0) =83+ [ [ F(s.0G(s,1dsdr = g(x,, ) - (13)

Yo %o

When j = 1, we have



FGos3) = 8Gos3)+ | [ F 006yl (1.4)

Yo %o

f(xl,yo=g(xl,y,)+j;jf(s,r)cxs,r)dsdt, (1.5)

f(xz,yl)=g(xz,y1)+:I;jf(s,t>G<s,r>dsdt, (1.6)

£ a9 = 8803+ jng(s 0G(s, )dsdt (1.7)

S G 3 = 805 )+ :I:;[f(s,t)G(s,t)dsdt , (1.8)
and

f(x,,,yo=g(x,,,y,)+jjf<s,r)a<s,t>dsdt. 1.9)

Subtracting the corresponding sides of (1.5) — (1.9) from (1.4) — (1.8) accordingly, we obtain

S oo y) = f (3, 1) = 8(%0, 1) — (31, 1) (1.10)
FGuy) = f () =806, 1) - 8(x,, 1) (1.11)
S )= f (x5, 00) = 8(%0, 1) - 8(%35 1) » (1.12)
S F2s ) = f (%100 = 8(%, 25 31) — 8(%, 15 1) 5 (1.13)
and
S Gy )= [ (%, 31) = 8(%,1, ) — 8(%,, 1) - (1.14)



For the n+1 unknowns £(%o, ), (%, 3)s f (s ¥ )svees and f(x,,3), (1.10) - (1.14)

N Xy
provide » linear equations; seeking another equation, we approximate I J' f(s,0)G(s,t)dsdt .
Yo %o

Letting & = %o ;x‘ ,and y, = %}-"—

, and assuming that f(&£,y,) is the average of

the values of f at (x,,¥,), (x,¥,), (x,,3,), and(x,,,), that is the value of f at the center
of the rectangle with vertices (x,,¥,), (%,¥,), (%,),), and(x;,y,), namely at (&,y,),

equals the average of the values of f at the vertices, we have

f(§1>‘;”1 f(x09y0)+f(x09y1):f(x19y0)+f(x17y1) (1.15)

4 X
Letting & = —x—’=‘2—x‘— fori= 2,3, ..., n, similarly, we could write

f(gpwl): f(x19y0)+f(x]9y1)-|4'.f(x29y0)+f(xzayl) , (116)
fEw) = f(xzsyo)+f(x2’y1):f(xssYO)+f(xssJ’1) , (1.17)

f(g _2’l/,1 f(xn—3’y0)+f(xn—33y1)+f( 2’y0)+f( 2’y1 (1.18)

4
FE W)= _ S ¥0) + f(x, -2aJ’1):f( 1o Yo) H (% -1s.V1) (1.19)
and
6= L TGy 1) 503 (1.20)

As h and k are small — since » and m are large — we have



yj‘ xj‘ S(s,0)G(s,)dsdt ~

Yo %o

S GGG W )Rk + [(5,0)G (S, W )Rk + £(S5, )Gy YRk +...+
VACIPRZY € CAPHZY L 2 ACHRR ) (G AR T B A CA2Y € AT 1

and using (1.14) - (1.19),

yj‘ x]‘ S(s,0)G(s,t)dsdt ~

Yo %o

S Xos Yo) + S (xos ) + (3 0) + f (5, 00)
4

f(xpyo)+f(xl,yo:f(xpyoﬂf 02220 G,y ik +

f(xz,yo)+f(x2,y1);rf(xasyo)+f("3’y1)G(§3,y/1)hk+

G(S» Y )Rk +

f(xn—ssyo)+f(xn-ssyl)+f(xn-29)’o)+f(xn—2ay1)G(é;
4 n

FG, . y)+ (%, 0. 3) : S5 Vo) + S (X 1) G(&,.,w,)hk +

SO Yo) + f s )+ (x5 90 + f (%, 0)
4

_s W hk +

G(¢&,,y,)hk . (1.21)
Employing (1.21) in (1.9), we reach

hk
f(x,,,yl)zg(xn,y,)+—4—{

Lf Grgs Vo) + f(x0s )+ f (X, ¥0) + f (%, yIG(E L, w)) +
L G yo) + £ (s 3) + (%, ) + (30, YIIG(E, ) +
[f(xzsyo)+f(xzay1)+f(x39yo)+f(x3>y1)]G(§3a'//1)+

L (x,0Y0) + F (3,05 ) + (%, Y0) + (%, WG, w0 +



U (Faezs Yo+ (X0 Y1) + S (K Vo) + S (3,1, DDIG(S, 1,01 +
U Gt o) + S (s ) + (%05 0) + f (%, YIG(S,, 01D} -

Assuming =~ equality, and collecting the unknowns, this becomes

£y 7) = 85 1)+

Lf (o> o)+ (15 Yo)IG(&,, w1 ) + L (31, 30) + f (35 191G (S0 1) +
L e o) + f (%5, YOIG(So90) + -+ L (%55 0) + S (%, YOIG(G 0090 +
U 2o Yo) + F (3,15 YOIG(S, 1) + 1 (%0, o) + S (%, Y )IG (S, 9)

-+

S (s YIG(&w )+ f (x5, YIHG(E L w) + G(E, w1+ f (3, YIIGE, ) + G(&L w)]+
cort (X YNG(E, 0 90) + G(E, W)+ (%, YIIG(E, 9 + G(E, 9]+

S(x,. )G, v}

For reasons that will appear below, we add f(x,,y,)~—g(x,,¥,) — which equals 0 — to

g(x,,¥,) in the left hand side of (1.21); thus, we arrive at

S5y = 805 70+ G 30) = 8 Y)
Lf (x> Yo) + f (X, Y )IG(E ) + LS (3, Vo) + (X5, YOIG(E,, w0 +
L (e o) + S (335 ¥ )IG(Es, )+ o+ L (X35 Vo) + F (%5 YIIG(S,05 W) +
[f(xn..z’yo)+f(x,,..xayo)]G(‘:n—l"//l)+[f(xn..1:}’o)+f(xn’yo)]G(§n>W1)
+

S (0, yIG(E,91) + f (30, YILG(S,, ) + G (G2, W)+ f (%5 W)IG (S5, 01) + G(S5 )] +
oo ¥ [ (X0 VGG 29 + GG,y WDI+ S (%, YOGS, ¥1) + GG, 9]+

f(xn’yl)G(gn’Wl)' (1'22)



Multiplying both sides by -4, moving the unknowns to the left, and arranging them in the

ascending order of x’s indices, we find

hkG(&,,y) f (%55 1) + BRIG(,9,) + G (&, w ) (3, 0) +
hk[G(S,, ) + G(Es WIS (%, 0+ .+ BRGS0, w1 ) + G(E L W)L (X255 01)
+hE[G(S,, 1) + G, W)L (X, 1) + ARG (S, 9,) - 111 (x,, )

~{4g(x, 1)+ £ (%o, ¥o) = 8 (%, ¥o)]+ hk{
[f Gxos Yo+ £ (x5 ¥ )IG (G0 + L (351, 0) + f (35, ¥)IG(Eo9) +
LS Cegs o) + S (35 Y )IG (G, ¥ ) + L (%15 o) + f (325 ¥0)IG(S,, ) +
G35 0) + £ Goss YOIG(&3: 00 + o+ Lf By o) + f (%0, YOIG (G0 1) +

U Xz Vo) + s YOIGE, W) + L (%, 00 30) + F (%, YIGE, 0D} ) - (1.23)
We could now form a system of n»+1 linear equations using (1.9) — (1.13) and (1.23) as

shown on the next page.



S x> )= F(x,0) = 8(x, 1) — 8(x, 1))
FGa, )= (. 0) = 8(x, ) - 8(x,, )
S 3) = (x5, 0) = 8(%,, 3,) — 8(x3, 3,)

S s Y) = (%, 0) =8, ) — 8(%, 1. 1)
S 2) = (% 0) = 8(%,5 ) — g(%,. )

< REG (S, 9).f (o5 1) + R[G5, 91) + GG, W)L (3, 1) +
RR[G (S, w1) + G (&5, w))S (%0, 1) + oo+ BRIG(S, o ,) + GG, WL (%20 1) +
RR[G(S,5¥1) + G(S, DL (%5 30) + ALBRG (S, 91) ~ 11 (%, 1)

~{4Lg(x,, y) + (X0, ¥o) — 8(Xg» ¥ )1+ RES
[f(xoayo) + f(xpyo)]G(fpl//l) +[f(x1’yo) + f(x29yo)]G(§2sW1) +
Lf Gy ¥o) + £ Gy YOIG(E W) + o+ L (%5 0) + [ (%2 YOIG(E, 501 +
L LG ¥0) + By YOIGE, W)+ Rps ) + f (5 YOIGE W)} ) (1.24)

We now tackle the general case where j> 0, f(x,y,,) is known, and f(x,y)) is

required for every i. What follows is parallel to what we saw above. We have

Vi %y

f (%0 y,) =80 ¥+ [ [ £(8.0)G(s,0)disdt (1.25)

Yo %o

Vi xy

f@y) =86, y)+ [ [ f(s,0)G(s,n)dsdr, (1.26)

Yo %o

Yj %,

Fn3,) = Gy )+ [ [ F(s,0G s, 0)dsd, (1.27)

Yo %o

Y x,

f G2 ¥)) = 8y )+ [ [F(5,00G (s, 0)dsdt (1.28)

Yo %

Yy %,

f(xn-l’yj)=g(xn-19yj)+ Ij.f(s,t)G(S,t)det, (1.29)

Yo %o



and

S5 = 805 )+ jjf(s,t)G(s,t)dsdt . (1.30)

Next, (1.25) — (1.30) yield
Sy )= f(x,3,)=8(%,¥,)— 8%, ;) (1.31)
FGuy)=f(x,y,)=8(x,y,)—8(x,Y,), (1.32)
S y)=f(x,9,)=8(%,9,) - 8(%55 ;) (1.33)
f G2 )= X0 Y)) = 8 (%25 ¥,) — 8%, 15 7)) (1.34)

and

fGoy))=f(x,,,)=8(x,,Y,) - 8(x,,¥;) . (1.35)

For the n+1 unknowns f(x,,¥,), f(x,¥,), f(%5,%,),....and f(x,,¥,), (1.31) - (1.35)

Yk Xn
provide n linear equations; seeking another equation, we approximate j. j f(s,0)G(s,t)dsdt .
Yo %o

But yjj £(5,0)G(s, )dsdt = yT j £(s,)G(s,P)dsdt + yj’ j £(s,)G(s,f)dsdt , and

Yo X Yo %o Vi1 %o
Yi-1 X,
f J' S (s,0)G(s,t)dsdt = f(%5,y,.,)~ 8(%,,¥,,) ; therefore
Yo %o

j‘xjf(s’t)G(sat)det =f(x0’yj—l)—g(x0’yj—1)+ jx]f(s,f)G(S,t)det . (1.36)

Yo %o Vi1 %



4y,
2 12 £ , and assuming that f(&,y,) is the average of the values of f at

Letting ¥, =

(xo,yj_l), (xpyj-l)’ (xlsyj),and (xo,yj),we could write

f(xosyj—-l)-"f(x03y1)+f(xlﬂyj—l)+f(xl’yj

fGy))= 2 (1.37)
Similarly, we have
fE j f(xl’yj—l)+f(xl’yj)-;f(xz’yj—l)+f(x2’yj (1.38)
F&w,) _Jfx 2,y,_1)+f(xz,y,):f(x3,y, ,)+f(x3,y, (1.39)
f J) f(x n_3syj_1)+f( —3sy,):f(x -2ay_,-1)+f( —Z’y_] ’ (1.40)
Py = S Fn2s ¥, 1)+f(xn-z,y,):f(xn-qu,-1)+f( _1,y,)’ (1.41)
and
FEw)= S5y, + [, _1,y,l+f(xn,y,_1)+f( ) (142)
Then, we use the approximation
jx} f(s,0)G(s,t)dsdt ~
Yia %o
f(xoayj-])+f(x()’yj):f(xlayj-1)+f(x]3yj)G(fl,wj)hk_f_
f(xlsyj-l)'*'f(xlsyj)';f(xzyyj—l)"‘f(xzayj)G(gz’wj)hk_{_

10



f(xzayj-1)+f(x2’y/)+f(x39yj—1)+f(x39yj

; ) G, ik +

Sy, )+ x5 )+ F (X, Y,0)+ F(X,5,¥))
4

S, )+ Oy )+ (XY, )+ f(X,458))
4

f(xn-l’yj—l)+f(xn—1’yj)+f(xn’yj-l)+f(xn’yj)
4

GG 200k +

G(§n-—1’¥’j Yhk +

G(Z,,w,)hk

(1.30), and (1.36) to arrive at

Sy, = g(xnsyj)+f(xo,yj_,)—g(xo,yj_l)+-}}§{

Lf o5 y) + (s ¥ )+ F (3 v ,0) + f (0, )IG(E 0, +
Gy, )+ S y)+ f (g, y,) + f (%, Y IG5, 0, ) +
LG y,)+ f(x,0,)+ £, 3,0+ (%5, Y IG(S, ) +

[f(xn-zayj—x)"’f(xn—zsyj)+f(xj-1aJ’k)+f(xn—1ayj')]G(‘:n—2s'//j)+
[f ez ¥) + (X ¥ )+ f Ky ¥, )+ S (%, ¥ IG(S, 00 +

s ¥, )+ s ¥ )+ (60, + (5, Y )IG(S,, 0} -

Assuming =~ equality, and collecting the unknowns, this becomes

S y) = g(x"’yf)+f(x0’yj-l)—g(xoayj'—x)"'ﬁd,&{

Lf o5 y,) + F (s ¥, 1G (&0 ) + L (x5 3,00 + f (353, 7, 016G (6500, ) +
LGy y,)+ Gy, DIG(E W )+ + L (K ¥ i) + (%00 Y,01G(E 000 ) +
Lz )+ (X ¥, DIG(E o )+ L (R ) + (3,5 3, 0D1GE, ¥ )

-+

11



(X0, y)G(&, )+ f (0, Y YIG(G ) + GG 9 1+ f (5 Y GG, 9 ) + G (& 1 +
et [ YG(G, 0¥ ) + G (S, oW DI+ f (X, Y GG, 0¥ )+ GLE, 0 )1+

J(x,,y,)G(S,.¥,)} - (1.43)
But (1.43) is just (1.22) with j-1 added to the indices of y and y . It follows that merely

adding j-1 to the indices of y and i in (1.23), we could reach
hkG (&, ) f (%5, ¥,) + BR[G (@ ) + G (&, DL (x5 3, +
hE(G(S,, v )+ G(&5uw DI (%3, ¥+ + BELG(S, .0, ) + GG, W DI f (%,2, ) +
RRIG(S,-1>¥ )+ G (& DI (%15 Y )+ 4REG (S, ) - 11 (%,, ¥))

~{Alg(x,, ¥+ [(51,,1) = 831, ¥,)1+ Bk
[f(xmyj-l)+f(xvyj-l)]G('fp‘/’j)+[f(x1syj-1)+f(x2’yj_1)]G(§2a'//j)+
[f(xZ’yj—l)+f(x39yj-1)]G(§3’W2)+"’+[f(xn—39yj-1)+f(xn—29yj—1)]G(§n—29Wj)+

[f (s ¥, )+ f s ¥, DIGE W )+ (s v, )+ (3, DIGEw O} (1.44)

Employing (1.31) — (1.35) and (1.44), we could now form the system

12



f(x()’yj)_f(x]’yj)=g('x0’yj)_g(x19yj)
f(xhyj)—f(xZ’yj)=g(x1’yj)_g(x29yj)
f(xZ’yj)—f(xBSyj)=g(x2!yj)—g(x3$yj)

f(xn—Z’yj)—f(xn-l’yj) =g(xn—2’yj)—g(xn—l’yj)
f(xn—l’yj)_f(xn’yj)=g(xn—l’yj)—g(xn’yj)

) RRG(&,, 0 ) f (%0, ¥,) + RRIG(S,, ¥ ) + G (&0 L (315 ) +
RE(G(Sy,w )+ G W DI (%3, 3) + -+ BRIG(S, 5,0 ) + GG, W I (%55 ) +
hk[G(gn—p‘//j)'*'G(é:nawj')]f(xn-l’yj)+4[th(§naWj)—l]f(xn’yj)

~{4g(x,s ¥ )+ f (3, 9,) — 8(x1, ¥, + k{
Lf (oo )+ f Gy, )IG(EL W )+ L (s v o) + f (3, 3, )IG (S0 ) +
[f (x5 ¥, )+ F (x5 ¥, 1G5 00) +- o+ L (%55 9,2 + F (3,00, Y DIG(E s ) +
LB ) + L3 ¥, IGE W )+ L (%, ¥, + F (5, ¥, 0IGE 0 )3 ) (1.45)

To express (1.45) in matrix form, we let

] S (%5 ¥;) |
f(xlsyj)
f(x,9))

'
1l

~.

f(x,25)))
f(xn—l’yj)
| S (%)) |

Also, we let

13



1 -1 0 0 0 0]
0 _1 0 0 0
0 0 1 0 0 0
Aj'-—' : : : . : :
0 0 0 0 1 -1
_a} ajz- aj e a;_l a;" a;' " J(n+Dx(n+1)

where a’s superscript corresponds to its column, a} = hkG(&,¥ ;)
ajz' = hk[G(é:]’(/,j) + G(‘fza‘//j)]s ai = hk[G(§29Wj)+G(§3’Wj)] s ooy

a;” = hkG(&, ¥ ,) + G (&,o¥ D), a) = hK[G(S, . )+ G (&, )],
and
ay = 4[RkG(E, ) -1].
Finally, we set

[ g(x0$yj)—g(x19yj) |
g(xp}’,)"g(xz,y,-)
g(x23yj)—g(x35yj)

g(xn—2’yj)_g(xn—]>yj)
g(xn—l’yj)_g(xn’yj)
b,

L J .

where

by =~{4g(x,, y)+ [ (%, ;1) ~ 8%, ¥, )V HRLLS (%0, ¥,) + f (31, 3, DIG(G. W) +
[ Gy, )+ e ¥, G0 ) + L (5, 9,0 + f (%5, 0,16 (G509 ) + o+
U Gy Vi) + S Knas ¥ 5 DIG(Ep2¥W )+ L (Rs ) + S (6,00, 9, 016,009, +

[ (s ¥, )+ F (3 Y, DIGE W )} ) -

14



Then, (1.45) could be expressed by

AX. =b,. (1.46)
Note that since G is continuous over R, it is bounded [3], hence as m,n—> o, or A,k >0,
each A, will acquire the form of an upper-triangular matrix with all the diagonal‘entries

except the last equal to 1, and the last equal to -4. Thus, for large m and », and for any j = 1,
2, ..., m, (1.46) has unique solution.
The above discussion provides an algorithm for solving (1.2): “One, initially, needs

to find f (x4, ¥, ) f(X5 Y4 )s.-5 f(x,,,) via (1.3). Then, for j =1, 2, ..., m, one has to

SO]VC (1'45)a or (148)5 to ﬁndf(xmyj)’f('xlyyj)s""f(xnayj)‘”
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CHAPTER 2
Numerical Results and Errors
The algorithm presented in Chapter 1 has been implemented in a Matlab program
which appears in Appendix. To compare the output of the program with exact sofutions, we
need to distinguish between f(x,,y,) and the value which is computed through the

algorithm at (x,, y,) ; we denote the latter by u, ;. In particular, u,,, %), ..., u,, satisfy

(1.24), and in general

satisfies (1.46). Thus, defining &, =u, ; - f(x,,¥,), | £, | will be the error of the algorithm
at (x,,»,). Itisnotable that since

Uy 1, ~Un, =g(xn—l’yj)—g(xn9yj) =

Y x, y; x,
[y = [ [Fs.0G(s,tydsdt -1 £(x,,3) - | [ £(s,0G(s,r)dsdr]=

Yo %o Yo %o

JGy)=f(x,.5),
we find u,, -f(x,,,y)=u,,-f(x,,y,)=¢;. Employing the same reasoning
repeatedly, we could see
U, = f (%o, ¥)) =t ;= fXp ¥ ) =o=u, ;= f(x,,5,) =&, (2.1

This allows us to define the approximation error at a fixed j by e, = ¢, |.

16



Example 1: We first show the results produced by the program when R =[0,1]x[0,1],

2
G(x,y)=—xy, and g(x, y) = x* +2—(3* +9), in which case f(x,y)=x+y* analytically.
Y 8

When m = n =5, the program provides the following matrix

-

0 0.0372 0.1481 0.3312 0.5842 0.9047]
0.0400 0.0772 0.1881 0.3712 0.6242 0.9447
0.1600 0.1972 0.3081 0.4912 0.7442 1.0647
0.3600 03972 0.5081 0.6912 0.9442 1.2647|
0.6400 0.6772 0.7881 0.9712 1.2242 1.5447
1.0000 1.0372 1.1481 1.3312 1.5842 1.9047 |

- = s s . —

corresponding points, we obtain

0 0.0400 0.1600 0.3600 0.6400 1.0000]
0.0400 0.0800 0.2000 0.4000 0.6800 1.0400
0.1600 0.2000 0.3200 0.5200 0.8000 1.1600
0.3600 0.4000 0.5200 0.7200 1.0000 1.3600 |
0.6400 0.6800 0.8000 1.0000 1.2800 1.6400
1.0000 1.0400 1.1600 1.3600 1.6400 2.0000 ]

Subtracting this from the preceding matrix gives

-0.0028 -0.0119 -0.0288 -0.0558 -0.0953]
-0.0028 -0.0119 -0.0288 -0.0558 -0.0953
-0.0028 -0.0119 -0.0288 -0.0558 -0.0953
-0.0028 -0.0119 -0.0288 -0.0558 -0.0953
-0.0028 -0.0119 -0.0288 -0.0558 -0.0953
-0.0028 -0.0119 -0.0288 -0.0558 -0.0953

17



which was expected by (2.1).

computed by the program to the exact solution.

Table 1 demonstrates the convergence of the solutions

m=n= 5 10 20 50 100 200
é 0.0028 3.5924e-4 | 4.5801e-5 | 2.9710e-6 | 3.7316e-7 | 4.6759¢-8
Max. e 0.0953 0.0492 0.0249 0.0100 0.0050 0.0025

Table 1. Error Comparison for Different m and n when f(x, y) = x* + yz

Example 2: Table 2, as well, exhibits the convergence of the approximated solutions. It

shows the results produced by the program when R ={0,1]x[0,1], G(x,y)=xy, and

2
g(x,y)=y*(x- %}—2-) , in which case f(x,y)=xy* analytically .

m=n= 5 10 20 50 100 200
¢ 1.0749¢-4 | 3.5474e-6 | 1.1397e-7 | 1.1867e-9 | 3.7292¢-11 | 1.1686e-12
Max. e; 0.0476 0.0222 0.0106 0.0042 0.0021 0.0010

Table 2. Error Comparison for Different m and n when f(x, y) = xy’
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CHAPTER 3
Conclusion and Future Extensions
As mentioned earlier, the method we have introduced may be utilized to solve other

double integral equations such as
yb
f(%y)=8g@®y)+ [[f(.0G(x-s,y—n)dsdt,
and

yx
fxy) =g+ [ [£(s.0G(s.r)dsds 3.1

under the assumptions that hold on (1.1). (The reader notes that in the first equation the
variables of G are x—s and y~¢, and in the second equation the upper limit of the inner
integral is x.) We shall provide a sketch of the solution for (3.1). We assume the same
domain and conditions that hold on (1.1), and use the same partitions and indices as on (1.2).

Then,

F Gy =8Ce )+ | [£.0G(s,Odsdls (3.2)

Yo %o

is a discrete form of (3.1) where f is required at each point (x,, ).

Yy a cx
Initially, note that since [ [ f(s,0)G(s,t)dsdt = [ [f(s,))G(s,)dsdt =0, we have

a

f(a,y)=g(a,y), and f(x,c)=g(x,c); hence, f(x,,y,)=8(xy,y,) foreveryj (= 1,2,

....m),and f(x,y,)=g(x,,y,) foreveryi(=0,1,...,n). We have

19



£ G530 = 8Gia )+ | [ £(5,0G(s,0dsds (33)

Yo %o

Assuming that the value of f at the center of the rectangle with vertices (x,,¥,), (x;,¥,)»

(x;,3,),and(x,,y,) equals the average of the values of f at the vertices, we set

Nh*x
J'J'f(s,t)G(s,t)dsdt= f(xo’yo)"'f(xo’yl):f(xlsyo)"'f(xvyl)G(xo ;xl ,yogyl)hk.
Yo%

Plugging this into (3.3) we find

f(xoayo)+f(xosJ’|):f(x1!yo)+f(x1»y1)G(xo ;xl ,J’o ;‘Jﬁ Yk .

SxLy) =g, n)+

Noting that the only unknown in this equation is f(x,,y,), we write

Xo +x1 J’O

[4-G( ”" YHkLf (%, 3,) =

Xy + xl yo

480x 1) +L G Vo) + F (oo 31 + [ (%10 o) IG(R L *y‘ Yot My,

Finally, we obtain

X0 +x1 }’o

48(x 1) + LS (%05 Vo) + S (s ) + f (%, )IG(—— +y‘)hk

X +x1 yo

f(xlayl) -

4-GE A +y‘)hk

Proceeding to the next x, we have
Y%

fG ) =80 1)+ | [£(5.0)Gls,t)dsdr - G9

Yo %o

But

N X2 h X2

| [ £(s.)G (s, t)dsd = j’ _[ f(s.0G(s,t)dsdt + | [£(s,0G(s,)dsdt,  (3.5)

Yo %o Yo %o Yo &
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and

N x

| [fs.0G(s.ndsdt = f(x, ) - 2(x, 1) - (3.6)
Yo %o
Now setting
N x
| [£(s.0G(s,ydsdt =
f(pr’o)+f(~"19)’1)';f(x2,.)’o)+ S (x5, 01) G(xl "2'x2 , Yo ;'.VI Yhk (3.7)

and utilizing (3.5) — (3.7) in (3.4), we obtain the equation

S0 0) =g )+ (X, 1) - 8(x, 3+

f(xp.)"o)”'f(pr’l)‘;f(xzs}’o)"‘f(xzsyl)G(xl ‘;xz ’YO ;J’H Yk .

The only unknown here is f(x,, y,) , and the equation could be solved for it. This process

may be repeated until every f(x,,,) is found. We can then advance to the nextj. We have

Y1 %

fGa,3)) =g, 3) + yj' x;[ f(s,1)G(s,t)dsat . (3.8)
But,
Tl 76 ndsd= | [fs.0G0dsdes | [fsnGesndsat (39)
ok ok bE
and
:f jf (s.0)G(s,t)dsdt = f(x,,3,) - 8%, %) - (3.10)
Setting
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yj. J]- S(s,0)G(s,t)dsdt =

N %o

f(xo,yl)+f(x0,y2)+f(x1,y1)+f(xpyz)G(x1 +x2 y0+y1)hk (3 11)
4 2 7 2 7 .

and combining (3.8) — (3.11) we reach the equation.

S, 3,) =80, )+ f(x, ) - g(x, )+

f(xo,yl)+f(xo,yz):f(xpyl)+f(xl,}b)G(xl ";xz P ;yl Yak (3.12)

Again, there is only one unknown in this equation, namely f(x,,y,) , and the equation could
be solved for it. Obviously, this process may be repeated until every f(x,,y,) is found; then
we can advance to the next j, and so on.

We believe that this method could be employed in solving integral equations in
higher dimensions. In triple integral equations, for instance, approximating the value of the
required function at the center of each infinitesimal cuboid (or rectangular parallelepiped) by
the average of the values of the function at the vertices of the cuboid will provide first degree
equations that are indispensable for solving the integral equation numerically.

Finally, we suggest performing von Neumann’s method to verify the stability of
numerical schemes employed in solving (1.1) or (3.1) which may be accomplishable under

some conditions. (Von Neumann’s method for PDEs is discussed extensively in [4].)
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APPENDIX
The Program

% This program solves the discrete form of the equation

% f(x,y) = g(x,y) + Int Int f(s,t) G(s,t) ds dt

% where Int denotes integral, and f is required; the inner

% integral's limits being a and b, and the outer one's ¢ and y.
clear all;

% Functions to be used to test the program when f(x,y) = x*x + y*y.
f=inline('x*x + y*y', X, 'y");

G = inline('-x*y', X', 'y");

g = inline(x*x + (y*y/8)*(y*y+9)’, X, 'y");

% Functions to be used to test the program when f(x,y) = x*y*y.
%f = inline("x*y*y', X', 'y');

%G = inline('x*y', 'x', 'y");

%g = inline('y*y*(x - y*y/12), X', 'y");

a=0;
b=1;
c=0;
d=1;
n=35;
m=5;

N =n+1; % The number of points in the x-axis partition.
M = m+1; % The number of points in the y-axis partition.
% Create appropriate partitions on the axes.

x = linspace(a,b,N);

y = linspace(c,d,M);

h=x(2) - x(1);

k=y(2)-y(l);
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hk = h*k;
half h =h/2;
half k =k/2;
U = zeros(N,M); % The solution matrix.
fori =1:N
U@, 1) = g(x(@), y(1);
end
b_vector = zeros(N,1);
% Create A of the size N*N.
A =eye(N);
fori =1:n
A(,i+1)=-1;
end
error = 0;
forj=2:M
jMinusl =j - 1;
psi = y(j) - half_k;
ksi = x(1) + half h;
A(N,1) = hk * G(ksi, psi);
b_vector(1) = g(x(1), Y()) - g(x(2), yO));
b_vector(N) =4 * ( g(x(N), y(§)) + U(1, jMinusl) - g(x(1), y(jMinusl)) );
sum = 0;
fori =2:n
iMinusl =i- 1;
A(N,i) = hk * ( G(ksi, psi) + G(ksi + h, psi) );
b_vector(i) = g(x(i), y(i)) - g(x(i+1), y());
sum = sum + ( U(iMinus1, jMinus1) + U(i, jMinus1) ) * G(ksi, psi);
ksi = ksi + h;

end
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ANN) =4 * (hk * G(ksi, psi)- 1 );
sum = sum + ( U(n, jMinus1) + UN, jMinus1) ) * G(ksi, psi);
b_vector(N) = - ( b_vector(N) + hk*sum );
U(1:N, j) = A\b_vector;
tempError = abs ( U(1,j) - f(x(1),y()) );
if error < tempError
error = tempError;
end
end
% Print the first error of approximation.
abs( U(N,2) - f(x(N),y(2)) )
% Print the maximum error of approximation.

error
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