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Abstract

Frank Harary proposed the following game: Given a caterpillar C, two players take
turns removing edges of a path. The player who takes the last edge wins the game.
In this paper, we completely characterize the N - and P-positions for all caterpillars
with spine length zero, one, two and three. Furthermore, we analyze approximately
94% of the caterpillars with spine length greater than or equal to four. In those
cases, they all turn out to be N -positions.

1December 30, 2020. (Final Revision 2.0)
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1. Introduction and Preliminaries

Combinatorial game theory (CGT) developed in the context of recreational math-

ematics. In their seminal work and with a spirit of playfulness, Berlekamp, Con-

way and Guy [3, 7] established the mathematical framework from which games of

complete information could be studied. The power of this theory would soon be-

come apparent and was utilized by many researchers (see Fraenkel’s bibliography

[11]). Along with its natural appeal, combinatorial game theory has applications

to complexity theory, logic, and biology. Literature on the subject continues to

increase and the interested reader can find comprehensive introductions to CGT in

[2, 3, 7, 26]. Additional research articles with a theoretical flavor can be found in

[1, 19, 22, 23, 24].

Combinatorial games can be played on various mathematical structures such as

simplicial complexes, posets, vector spaces, groups and multisets. There are many

papers on combinatorial games (played on graphs) within the research literature.

They include analyses of games with rulesets based on the coloring of edges and/or

vertices, “Maker-Breaker”-type constraints, the removal of specific subgraphs, re-

strictions on a specified graph parameter, etc. In particular, many edge-deletion

games on graphs have been studied [4, 5, 10, 12, 13, 14, 18, 20, 21, 25]. Other

edge-deletion games such as Arc-Kayles [8, 17] are analogs of classical combinato-

rial games. Further yet, graph-specific properties and/or arithmetic conditions are

used to define the rulesets for other edge-deletion games [9, 16].

Before introducing Harary’s Caterpillar Game (an edge-deletion game), we first

recall some definitions and fundamental concepts from combinatorial game theory.

Terms which are not explicitly defined in this paper can be found in [26]. A combi-

natorial game is one of complete information and no element of chance is involved

in gameplay. Each player is aware of the game position at any point in the game.

Under normal play, two players (P1 and P2) alternate taking turns and a player

loses when he cannot make a move. An impartial combinatorial game is one where

both players have the same options from any position. A finite game eventually

terminates (with a winner and a loser, no draws allowed). It is understood that P1

makes the first move in any combinatorial game.

For any finite impartial combinatorial game Γ, there is an associated non-negative

integer value (Grundy-value) G(Γ). The Grundy-value G(Γ) immediately tells us

if Γ is a P-position (previous player win) or an N -position (next player win). In

particular, G(Γ) = 0 if and only if Γ is a P-position. To compute G(Γ), we need the

following definitions.

Definition 1. The minimum excluded value (or mex ) of a multiset of non-negative

integers is the smallest non-negative integer which does not appear in the multiset.

This is denoted by mex{t1, t2, t3, . . . , tk}.
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Example 1. mex{0, 2, 3, 3, 5} = 1. ♦

Definition 2. Let Γ be a finite impartial game. Then, the Grundy-value of Γ

(denoted by G(Γ)) is defined to be

G(Γ) = mex{G(∆) : ∆ is an option of Γ}.

The sum of finite impartial games is the game obtained by placing the individual

games, side by side. On a player’s turn, a move is made in a single summand.

Under normal play, the last person to make a move wins. For any finite impartial

game Γ = γ1 + γ2 + · · · + γk, the Grundy-value of Γ is computed in the following

way. First, convert G(γi) into binary. Then, compute
⊕
G(γi), where the sum is

BitXor (nim-addition). Finally, convert this value back into a nonnegative integer.

When there is no danger of confusion, the binary representation of Grundy-values

will also be used in this paper.

Example 2. Suppose that γ1, γ2 and γ3 are finite impartial games with G(γ1) = 1,

G(γ2) = 2 and G(γ3) = 3. Then the game Γ = γ1 + γ2 + γ3 has Grundy-value

G(Γ) = 01⊕ 10⊕ 11 = 00,

and thus has Grundy-value 0. ♦

In 2001, Frank Harary [15] introduced an edge-deletion game played on caterpillar

graphs. The Caterpillar Game is played in the following way:

• Let C be a caterpillar, namely a path along with pendant edges connected to

some (possibly all or none) of the vertices of the path. Two players take turns

removing edges of a non-trivial path. The player who takes the last edge wins

the game.

Example 3. Figure 1 illustrates the beginning of a sample game. After P1 makes

his first move, P2 must move from a losing (i.e., Grundy-value 0) P-position. From

this point on, whatever P2 chooses to do, P1 will mimic P2’s move on the other

corresponding component. Hence, the starting game position is an N -position. ♦

For whatever reason, the Caterpillar Game did not generate much interest within

the mathematical community and was forgotten over the passage of time. We are

aware of this game only because the fourth author heard Harary’s lecture, so many

years ago. A current literature search for the Caterpillar Game reveals nothing.

Nevertheless, the authors find this edge-deletion game interesting in its own right.

We now give a careful analysis of the N - and P-positions in the Caterpillar

Game. In Section 2, the N - and P-positions are characterized for all caterpillars
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Starting game position.

Position after P1 has moved.

Figure 1: A first move in the Caterpillar Game.

with spine length zero and one. Then, general results in Section 3 are used to

analyze approximately 94% of the caterpillars with spine length four or greater, all

of which turn out to be N -positions. Finally in Section 4, the N - and P-positions

are characterized for all caterpillars with spine length two and three.

2. Stars, Paths and Caterpillars With Spine Length One

In this paper, we use standard graph-theoretic terms and concepts as found in [6].

A star K1,n (n ≥ 1) is a tree with one internal vertex and n leaves. The degenerate

star K1,0 is the trivial graph, consisting of a single vertex. A path is a trail in which

all of the vertices are distinct. The path Pn (n ≥ 1) denotes the path containing n

vertices.

Notation. When convenient, we will use the following notation: Let n ≥ 0. Then,

n = {n+ 3k : k ≥ 0}.

Theorem 1. Let n ≥ 0. Then,

G(K1,n) =

 1, if n ∈ 1;
2, if n ∈ 2;
0, if n ∈ 0.
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Proof. We induct on n. For n = 0, 1 and 2, it is easy to check that G(K1,n) = 0, 1

and 2, respectively. Now, assume that the claim is true, for all n ≤ k. We examine

G(K1,k+1). If a player removes a path of length one, the resulting game position will

have Grundy-value G(P1)⊕G(K1,k). On the other hand, if a player removes a path

of length two, the resulting game position will have Grundy-value G(P1)⊕G(P1)⊕
G(K1,k−1). Thus, G(K1,k+1) = mex{G(P1)⊕G(K1,k),G(P1)⊕G(P1)⊕G(K1,k−1)}.

Case 1. k + 1 ∈ 4. Then, G(K1,k+1) = mex{0⊕ 0, 0⊕ 0⊕ 2} = 1.

Case 2. k + 1 ∈ 5. Then, G(K1,k+1) = mex{0⊕ 1, 0⊕ 0⊕ 0} = 2.

Case 3. k + 1 ∈ 3. Then, G(K1,k+1) = mex{0⊕ 2, 0⊕ 0⊕ 1} = 0.

By induction, the claim is established.

Theorem 2. G(Pn) = n− 1, for all n ≥ 1.

Proof. We induct on n. Clearly, G(P1) = 0 and G(P2) = 1. Now, assume that

the claim is true, for all n ≤ k. We examine G(Pk+1). On a player’s turn, a

path of length l is removed, where 1 ≤ l ≤ k. The resulting game position will

have Grundy-value G(P1)⊕G(Pk+1−l), G(P2)⊕G(Pk−l), G(P3)⊕G(Pk−l−1), . . . , or

G(Pk+1−l)⊕ G(P1).

Thus,

G(Pk+1) = mex{G(P1)⊕ G(Pk+1−l),G(P2)⊕ G(Pk−l),G(P3)⊕ G(Pk−l−1), . . . ,

G(Pk+1−l)⊕ G(P1) : 1 ≤ l ≤ k}.

As G(P1) = 0, we note that {G(P1),G(P2),G(P3), . . . ,G(Pk)} is a subset of

{G(P1)⊕ G(Pk+1−l),G(P2)⊕ G(Pk−l),G(P3)⊕ G(Pk−l−1), . . . ,

G(Pk+1−l)⊕ G(P1) : 1 ≤ l ≤ k}.

By the inductive hypothesis, we have that G(Pk+1) ≥ mex{0, 1, 2, . . . , k − 1} = k.

Now, we recall the following fact, which will help us finish the induction proof:

• Let n, r, s ≥ 1, where r + s = n. Then, r ⊕ s ≤ n.

This fact is informally given in [3], Volume 1, without a proof. However, this

is a true fact. To see this, write r and s in binary and observe that r u s =

(r ⊕ s) u (r AND s) u (r AND s). Here, u denotes binary addition, ⊕ denotes

BitXor addition and ‘AND’ denotes the bitwise AND operator.

Returning to the induction proof, we see (using this fact, along with the inductive

hypothesis,) that each element of

{G(P1)⊕ G(Pk+1−l),G(P2)⊕ G(Pk−l),G(P3)⊕ G(Pk−l−1), . . . ,
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G(Pk+1−l)⊕ G(P1) : 1 ≤ l ≤ k}

is less than or equal to k − l, for some l (1 ≤ l ≤ k). In particular, each element

is less than or equal to k − 1. Thus, G(Pk+1) = k. By induction, the claim is

established.

A caterpillar consists of a path, along with pendant edges connected to some

(possibly all or none) of the vertices of the path. The spinal vertices of a caterpillar

are the vertices of degree two or more. The spine of the caterpillar is the unique path

containing only the spinal vertices of the caterpillar. For example, K1,n (n ≥ 2)

can be viewed as a caterpillar with one spinal vertex (and spine length zero).

Notation. Let m,n ≥ 1. Then, C = 〈[m,n]〉 = 〈[n,m]〉 denotes the caterpillar

C with spine length 1 and m and n pendant edges (at the two spinal vertices, re-

spectively). For example, 〈[1, 1]〉 ∼= P4 (the path on four vertices). Figure 2 gives

another illustration of this notation.

Figure 2: The caterpillar C = 〈[2, 3]〉. Deleting the spine of C yields 〈[2], [3]〉.

Also note that throughout this paper, we use the notation G〈[1, n]〉 to mean G(〈[1, n]〉).
We do this for the sake of readability.

Lemma 1. Let n ≥ 1. Then,

G〈[1, n]〉 =

 3, if n ∈ 1;
4, if n ∈ 2;
5, if n ∈ 0.

Proof. We induct on n. For n = 1, 2 and 3, it is easy to check that G〈[1, n]〉 = 3, 4

and 5, respectively. Now, assume that the claim is true, for all n ≤ k. We

examine G〈[1, k + 1]〉. If a player removes a path of length one, the resulting

position will have Grundy-value G(K1,k+2), G(K1,1) ⊕ G(K1,k+1) or G〈[1, k]〉. If

a player removes a path of length two, the resulting position will have Grundy-

value G(K1,k+1), G(K1,1) ⊕ G(K1,k) or G〈[1, k − 1]〉. Lastly, if a player removes a

path of length three, the resulting position will have Grundy-value G(K1,k). Thus,

G〈[1, k+ 1]〉 = mex{k+ 2 (mod 3), 1⊕ (k+ 1 (mod 3)),G〈[1, k]〉, k+ 1 (mod 3), 1⊕
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(k (mod 3)),G〈[1, k − 1]〉, k (mod 3)}.

Case 1. If k + 1 ∈ 4, then G〈[1, k + 1]〉 = mex{2, 0, 5, 1, 1, 4, 0} = 3.

Case 2. If k + 1 ∈ 5, then G〈[1, k + 1]〉 = mex{0, 3, 3, 2, 0, 5, 1} = 4.

Case 3. If k + 1 ∈ 6, then G〈[1, k + 1]〉 = mex{1, 1, 4, 0, 3, 3, 2} = 5.

By induction, the claim is established.

Lemma 2. Let n ≥ 1. Then,

G〈[2, n]〉 =

 4, if n ∈ 1;
1, if n ∈ 2;
6, if n ∈ 0.

Proof. We induct on n. For n = 1, 2 and 3, it is easy to check that G〈[2, n]〉 = 4, 1

and 6, respectively. Now, assume that the claim is true, for all n ≤ k. We examine

G〈[2, k+1]〉. Here, G〈[2, k+1]〉 = mex{G〈[1, k+1]〉, 2⊕(k+1 (mod 3)),G〈[2, k]〉, k+

2 (mod 3), 1⊕ (k + 1 (mod 3)), 2⊕ (k (mod 3)),G〈[2, k − 1]〉, 1⊕ (k (mod 3))}.

Case 1. If k + 1 ∈ 4, then G〈[2, k + 1]〉 = mex{3, 3, 6, 2, 0, 2, 1, 1} = 4.

Case 2. If k + 1 ∈ 5, then G〈[2, k + 1]〉 = mex{4, 0, 4, 0, 3, 3, 6, 0} = 1.

Case 3. If k + 1 ∈ 6, then G〈[2, k + 1]〉 = mex{5, 2, 1, 1, 1, 0, 4, 3} = 6.

By induction, the claim is established.

Lemma 3. Let n ≥ 1. Then,

G〈[3, n]〉 =

 5, if n ∈ 1;
6, if n ∈ 2;
1, if n ∈ 0.

Proof. We induct on n. For n = 1, 2 and 3, it is easy to check that G〈[3, n]〉 = 5, 6

and 1, respectively. Now, assume that the claim is true, for all n ≤ k. We examine

G〈[3, k+1]〉. Here, G〈[3, k+1]〉 = mex{G〈[2, k+1]〉, k+1 (mod 3),G〈[3, k]〉,G〈[1, k+

1]〉, 2⊕ (k + 1 (mod 3)), k (mod 3),G〈[3, k − 1]〉, 2⊕ (k (mod 3))}.

Case 1. If k + 1 ∈ 4, then G〈[3, k + 1]〉 = mex{4, 1, 1, 3, 3, 0, 6, 2} = 5.

Case 2. If k + 1 ∈ 5, then G〈[3, k + 1]〉 = mex{1, 2, 5, 4, 0, 1, 1, 3} = 6.

Case 3. If k + 1 ∈ 6, then G〈[3, k + 1]〉 = mex{6, 0, 6, 5, 2, 2, 5, 0} = 1.

By induction, the claim is established.

Lemma 4. Let n ≥ 2. Then,

G〈[4, n]〉 =

 2, if n ∈ 1;
4, if n ∈ 2;
5, if n ∈ 0.
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Proof. First, note that G〈[4, 1]〉 = 3, and is not equal to two. We induct on n.

For n = 2, 3 and 4, it is easy to check that G〈[4, n]〉 = 4, 5 and 2, respectively.

Now, assume that the claim is true, for all n ≤ k. We examine G〈[4, k + 1]〉. Here,

G〈[4, k + 1]〉 = mex{G〈[3, k + 1]〉, 1 ⊕ (k + 1 (mod 3)),G〈[4, k]〉,G〈[2, k + 1]〉, k +

1 (mod 3), 1⊕ (k (mod 3)),G〈[4, k − 1]〉, k
(mod 3)}.

Case 1. If k + 1 ∈ 7, then G〈[4, k + 1]〉 = mex{5, 0, 5, 4, 1, 1, 4, 0} = 2.

Case 2. If k + 1 ∈ 5, then G〈[4, k + 1]〉 = mex{6, 3, 2, 1, 2, 0, 5, 1} = 4.

Case 3. If k + 1 ∈ 6, then G〈[4, k + 1]〉 = mex{1, 1, 4, 6, 0, 3, 2, 2} = 5.

By induction, the claim is established.

In the study of Harary’s Caterpillar Game, we wrote a computer program in

Python to calculate Grundy-values. We observed a repeating pattern of Grundy-

values from Lemmas 2, 3 and 4. To formally prove that this is the case, we need

Lemmas 5 and 6. They will be used in the base case of an induction proof of The-

orem 3.

Lemma 5. Let n ≥ 1. Then,

G〈[5, n]〉 =

 4, if n ∈ 1;
1, if n ∈ 2;
6, if n ∈ 0.

Proof. We induct on n. For n = 1, 2 and 3, it is easy to check that G〈[5, n]〉 = 4, 1

and 6, respectively. Now, assume that the claim is true, for all n ≤ k. We examine

G〈[5, k+1]〉. Here, G〈[5, k+1]〉 = mex{G〈[4, k+1]〉, 2⊕(k+1 (mod 3)),G〈[5, k]〉,G〈[3, k+

1]〉, 1⊕ (k + 1 (mod 3)), 2⊕ (k (mod 3)),G〈[5, k − 1]〉, 1⊕ k (mod 3)}.

Case 1. If k + 1 ∈ 4, then G〈[5, k + 1]〉 = mex{2, 3, 6, 5, 0, 2, 1, 1} = 4.

Case 2. If k + 1 ∈ 5, then G〈[5, k + 1]〉 = mex{4, 0, 4, 6, 3, 3, 6, 0} = 1.

Case 3. If k + 1 ∈ 6, then G〈[5, k + 1]〉 = mex{5, 2, 1, 1, 1, 0, 4, 3} = 6.

By induction, the claim is established.

Lemma 6. Let n ≥ 1. Then,

G〈[6, n]〉 =

 5, if n ∈ 1;
6, if n ∈ 2;
1, if n ∈ 0.

Proof. We induct on n. For n = 1, 2 and 3, it is easy to check that G〈[6, n]〉 = 5, 6

and 1, respectively. Now, assume that the claim is true, for all n ≤ k. We examine
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G〈[6, k+1]〉. Here, G〈[6, k+1]〉 = mex{G〈[5, k+1]〉, (k+1 (mod 3)),G〈[6, k]〉,G〈[4, k+

1]〉, 2⊕ (k + 1 (mod 3)), k (mod 3)),G〈[6, k − 1]〉, 2⊕ (k (mod 3))}.

Case 1. If k + 1 ∈ 4, then G〈[6, k + 1]〉 = mex{4, 1, 1, 2, 3, 0, 6, 2} = 5.

Case 2. If k + 1 ∈ 5, then G〈[6, k + 1]〉 = mex{1, 2, 5, 4, 0, 1, 1, 3} = 6.

Case 3. If k + 1 ∈ 6, then G〈[6, k + 1]〉 = mex{6, 0, 6, 5, 2, 2, 5, 0} = 1.

By induction, the claim is established.

Theorem 3. Let m,n ≥ 2. Then,

G〈[m,n]〉 =



2, if m ∈ 1, n ∈ 1;
4, if m ∈ 1, n ∈ 2;
5, if m ∈ 1, n ∈ 0;
4, if m ∈ 2, n ∈ 1;
1, if m ∈ 2, n ∈ 2;
6, if m ∈ 2, n ∈ 0;
5, if m ∈ 0, n ∈ 1;
6, if m ∈ 0, n ∈ 2;
1, if m ∈ 0, n ∈ 0.

Proof. First, note that our claim holds when at least one of the m and n is equal to

2, 3 or 4. This is because of Lemmas 2, 3 and 4. Now, let m,n ≥ 4. We use double

induction to prove the rest of the claim.

Let S(m,n) be the asserted claim. To establish the base case, we examine the

cases where a = 4, 5 and 6. When a = 4, b ≥ 4; S(a, b) is true by Lemma

4. When a = 5, b ≥ 4; S(a, b) is true by Lemma 5. When a = 6, b ≥ 4;

S(a, b) is true by Lemma 6. Now, we induct over m. Assume S(k, b) is true,

for some positive integer k ≥ a. For S(k + 1, b), we see that G〈[k + 1, b]〉 =

mex{G〈[k, b]〉,G〈[k+1], [b]〉,G〈[k+1, b−1]〉,G〈[k+1−2, b]〉,G〈[k+1−1], [b]〉,G〈[k+

1], [b− 1]〉,G〈[k + 1, b− 2]〉,G〈[k + 1− 1], [b− 1]〉}.

Case 1. If k + 1 ∈ 5 and b ∈ 7 : mex{2, 3, 6, 5, 0, 2, 1, 1} = 4.

b ∈ 5 : mex{4, 0, 4, 6, 3, 3, 6, 0} = 1.

b ∈ 6 : mex{5, 2, 1, 1, 1, 0, 4, 3} = 6.

Case 2. If k + 1 ∈ 6 and b ∈ 7 : mex{4, 1, 1, 2, 3, 0, 6, 2} = 5.

b ∈ 5 : mex{1, 2, 5, 4, 0, 1, 1, 3} = 6.

b ∈ 6 : mex{6, 0, 6, 5, 2, 2, 5, 0} = 1.

Case 3. If k + 1 ∈ 7 and b ∈ 7 : mex{5, 0, 5, 4, 1, 1, 4, 0} = 2.

b ∈ 5 : mex{6, 3, 2, 1, 2, 0, 5, 1} = 4.

b ∈ 6 : mex{1, 1, 4, 6, 0, 3, 2, 2} = 5.
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So, S(k + 1, b) is true. Now, we induct over n. Assume S(h, k) is true, for

some positive integers h, k, where h ≥ a and k ≥ b. For S(h, k + 1), we see that

G〈[h, k + 1]〉 = mex{G〈[h − 1, k + 1]〉,G〈[h], [k + 1]〉,G〈[h, k + 1 − 1]〉,G〈[h − 2, k +

1]〉,G〈[h− 1], [k + 1]〉,G〈[h], [k + 1− 1]〉,G〈[h, k + 1− 2]〉,G〈[h− 1], [k + 1− 1]〉}.

Case 1. If k + 1 ∈ 5 and h ∈ 7 : mex{6, 3, 2, 1, 2, 0, 5, 1} = 4.

h ∈ 5 : mex{4, 0, 4, 6, 3, 3, 6, 0} = 1.

h ∈ 6 : mex{1, 2, 5, 4, 0, 1, 1, 3} = 6.

Case 2. If k + 1 ∈ 6 and h ∈ 7 : mex{1, 1, 4, 6, 0, 3, 2, 2} = 5.

h ∈ 5 : mex{5, 2, 1, 1, 1, 0, 4, 3} = 6.

h ∈ 6 : mex{6, 0, 6, 5, 2, 2, 5, 0} = 1.

Case 3. If k + 1 ∈ 7 and h ∈ 7 : mex{5, 0, 5, 4, 1, 1, 4, 0} = 2.

h ∈ 5 : mex{2, 3, 6, 5, 0, 2, 1, 1} = 4.

h ∈ 6 : mex{4, 1, 1, 2, 3, 0, 6, 2} = 5.

So, S(h, k + 1) is true. Thus by double induction, the claim is established.

Corollary 1. Let m,n ≥ 2 and s ≥ 0. Then, G〈[m+ 3s, n]〉 = G〈[m,n]〉.

Proof. This follows immediately from Theorem 3.

Remark. If m,n ≥ 2 and s, t ≥ 0, then G〈[m+ 3s, n+ 3t]〉 = G〈[m,n]〉.

Corollary 2. Let m,n ≥ 1. Then, 〈[m,n]〉 is an N -position.

Proof. The claim follows immediately from Lemmas 1, 2, 3, 4, and Corollary 1.

3. Some General Results on Caterpillars

Notation. Let n ≥ 3 and x1, xn 6= 0. Then, C = 〈[x1, x2, . . . , xn]〉 denotes

the caterpillar C with n spinal vertices (i.e. spine length equal to n − 1), where

the kth spinal vertex has xk pendant edges. Note that C = 〈[x1, x2, . . . , xn]〉 =

〈[xn, . . . , x2, x1]〉. Also, while x1 and/or xn can be 0 (for example, 〈[0, 2, 1, 0]〉 =

〈[3, 2]〉), we will typically restrict our analysis to positions where x1, xn 6= 0. We

define the internal value of C to be IV (C) =
⊕n−1

i=2 [xi (mod 3)], written in binary.

The external value of C is defined to be EV (C) = [x1 (mod 3)] ⊕ [xn (mod 3)],

written in binary.
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Example 4. In Figure 1, the top caterpillar is C = 〈[3, 1, 2]〉, IV (C) = 01 and

EV (C) = [3 (mod 3)] ⊕ [2 (mod 3)] = 00 ⊕ 10 = 10. Note that the second graph

in Figure 1 can be described in several ways, namely, 〈[3], [0, 2]〉 = 〈[3], [0], [0, 2]〉 =

〈[3], [0], [3]〉. When convenient, isolated vertices can be omitted in the notation.

Thus, the second graph in Figure 1 can also be described by 〈[3], [3]〉. ♦

The following two game strategies will be used in the proofs of subsequent results.

• The universal strategy is defined to be the following: Remove the entire spine

of C, along with zero or one leg from each of the two “end-leg” groups. (Moves

(a)-(d) in the list below).

• The modified universal strategy is defined to be the following: Remove the

entire spine of C except for the segment connecting x1 and x2, along with

zero or one leg from both x2 and xn (moves (e)-(l) in the list below).

a) 〈[x1, x2, . . . , xn]〉 → 〈[x1], [x2], . . . , [xn]〉.

b) 〈[x1, x2, . . . , xn]〉 → 〈[x1 − 1], [x2], . . . , [xn]〉.

c) 〈[x1, x2, . . . , xn]〉 → 〈[x1], [x2], . . . , [xn − 1]〉.

d) 〈[x1, x2, . . . , xn]〉 → 〈[x1 − 1], [x2], . . . , [xn − 1]〉.

e) 〈[x1, x2, x3, . . . , xn]〉 → 〈[x1, x2], [x3], . . . , [xn]〉.

f) 〈[x1, x2, x3, . . . , xn]〉 → 〈[x1, x2 − 1], [x3], . . . , [xn]〉.

g) 〈[x1, x2, x3, . . . , xn]〉 → 〈[x1, x2], [x3], . . . , [xn − 1]〉.

h) 〈[x1, x2, x3, . . . , xn]〉 → 〈[x1, x2 − 1], [x3], . . . , [xn − 1]〉.

In the cases where x2 = 0:

i) 〈[x1, x2, x3, . . . , xn]〉 → 〈[x1 + 1], [x3], . . . , [xn]〉.

j) 〈[x1, x2, x3, . . . , xn]〉 → 〈[x1], [x3], . . . , [xn]〉.

k) 〈[x1, x2, x3, . . . , xn]〉 → 〈[x1 + 1], [x3], . . . , [xn − 1]〉.

l) 〈[x1, x2, x3, . . . , xn]〉 → 〈[x1], [x3], . . . , [xn − 1]〉.

Notation. Let C be a caterpillar. Relative to the above list of moves, let Cµ

denote the game position after move µ has been applied to C.
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Theorem 4. Suppose that C = 〈[x1, x2, . . . , xn]〉, where n ≥ 3 and x1 6= xn
(mod 3). Then, C is an N -position.

Proof. There are three cases to consider:

1. x1 ∈ 1, xn ∈ 2.

2. x1 ∈ 1, xn ∈ 3.

3. x1 ∈ 2, xn ∈ 3.

Note that the other three cases are covered by symmetry. For example, x1 ∈ 1, xn ∈
2 and x1 ∈ 2, xn ∈ 1 would have the same winning strategy for P1, just mirrored.

Case 1.

• If IV (C) = 00, P1 invokes strategy (c). This leaves a position Cc where

G(Cc) = x1 ⊕ IV(Cc)⊕ xn = 1⊕ 0⊕ 1 = 0.

• If IV (C) = 01, P1 invokes strategy (d).

• If IV (C) = 10, P1 invokes strategy (b).

• If IV (C) = 11, P1 invokes strategy (a).

Case 2.

• If IV (C) = 00, P1 invokes strategy (b).

• If IV (C) = 01, P1 invokes strategy (a).

• If IV (C) = 10, P1 invokes strategy (d).

• If IV (C) = 11, P1 invokes strategy (c).

Case 3.

• If IV (C) = 00, P1 invokes strategy (c).

• If IV (C) = 01, P1 invokes strategy (b).

• If IV (C) = 10, P1 invokes strategy (a).

• If IV (C) = 11, P1 invokes strategy (d).

Table 1 summarizes Theorem 4.
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x1

1 2 3

xn

1 N N

2 N N

3 N N

Table 1: The N -positions established by Theorem 4.

Remark. Theorems 7 and 11-14 (corresponding to Table 2) will fill in portions of

the first empty box on the diagonal of Table 1. Theorems 5, 6 and 10 (corresponding

to Table 3) will fill in portions of the second empty box on the diagonal of Table 1.

Lastly, Theorems 8 and 9 (corresponding to Table 4) will fill in portions of the last

empty box on the diagonal of Table 1.

Theorem 5. Suppose that C = 〈[x1, x2, . . . , xn]〉, where n ≥ 3 and x1, xn ∈ 2. If

IV (C) = 00 or 11, then C is an N -position.

Proof. There are two cases to consider.

Case 1. Let C be the position where x1, xn ∈ 2, and IV (C) = 00. Then, P1

uses strategy (a) which yields EV (Ca) = 10 ⊕ 10 = 00. Furthermore, IV (Ca) ⊕
EV (Ca) = 00. Since P1 can reduce the position to one with Grundy-value 0, P2

loses.

Case 2. Let C be the position where x1, xn ∈ 2, and IV (C) = 11. Then P1

can use either strategy (b) or (c) (due to symmetry). Suppose P1 uses (b), then

EV (Cb) = 01⊕10 = 11, and EV (Cb)⊕IV (Cb) = 11⊕11 = 00. So, (b) is a winning

move for P1. Similarly, (c) is also a winning move for P1.

Notation. The following notation is used in the proofs of Theorems 6, 9, 13 and

14.

• α(C) = G〈[x1, x2 ]〉 ⊕ xn(mod 3).

• IVα(C) =
⊕n−1

i=3 [xi(mod 3)].

Theorem 6. Suppose that C = 〈[x1, x2, . . . , xn]〉, where n ≥ 3, x1, xn ∈ 2 and

x1 = x2 (mod 3). If IV (C) = 01 or 10, then C is an N -position.

Proof. There are two cases to consider.
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Case 1. Let C be the position where x1, x2, xn ∈ 2 and IV (C) = 01. Since

IV (C) = 01 and x2 ∈ 2, then IVα(C) = 11 (since IV (C) = x2 (mod 3)⊕ IVα(C)).

Here P1 would use strategy (e) which would yield α(Ce) = G〈[ 2, 2 ]〉 ⊕ 2 and

IVα(Ce) = 11. Using Theorem 3, we have α(Ce) = 1 ⊕ 2 = 01 ⊕ 10 = 11. Since

α(Ce)⊕ IVα(Ce) = 11⊕11 = 00, P1 can reduce C to a position with Grundy-value

0.

Case 2. Let C be the position where x1, x2, xn ∈ 2 and IV (C) = 10. Since

IV (C) = 10 and x2 ∈ 2, then IVα(C) = 00. Here P1 would use strategy (g)

which yields α(Cg) = G〈[2, 2]〉 ⊕ 1 and IVα(Cg) = 00. Using Theorem 3, we have

α(Cg) = 1 ⊕ 1 = 01 ⊕ 01 = 00. Since α(Cg) ⊕ IVα(Cg) = 00 ⊕ 00 = 00, P1 can

reduce C to a position with Grundy-value 0.

Theorem 7. Suppose that C = 〈[x1, x2, . . . , xn]〉, where n ≥ 3 and x1, xn ∈ 1. If

IV (C) = 00 or 01, then C is an N -position.

Proof. There are two cases to consider.

Case 1. Let C be the position where x1, xn ∈ 1 and IV (C) = 00. Similar to

the proof of Theorem 5 (Case 1), P1 can win by using strategy (a), as EV (Ca) =

01 ⊕ 01 = 00 and IV (Ca) = 00. EV (Ca) ⊕ IV (Ca) = 00, and thereby C is an

N -position.

Case 2. Let C be the position where x1, xn ∈ 1 and IV (C) = 01. Similar to

Theorem 5 (Case 2), P1 can use stategy (b) or (c). If (b), then EV (Cb) = 00⊕01 =

01 and IV (Cb) = 01. EV (Cb) ⊕ IV (Cb) = 01 ⊕ 01 = 00. Using (c) would lead to

the same result; therefore C is an N -position.

Theorem 8. Suppose that C = 〈[x1, x2, . . . , xn]〉, where n ≥ 3 and x1, xn ∈ 3. If

IV (C) = 00 or 10, then C is an N -position.

Proof. There are two cases to consider.

Case 1. Let C be the position where x1, xn ∈ 3 and IV (C) = 00. Similar to

the proof of Theorem 5 (Case 1), P1 can win by using strategy (a), as EV (Ca) =

00 ⊕ 00 = 00 and IV (Ca) = 00. EV (Ca) ⊕ IV (Ca) = 00, and thereby C is an

N -position.

Case 2. Let C be the position where x1, xn ∈ 3 and IV (C) = 10. Similar to

Theorem 5 (Case 2), P1 can use strategy (b) or (c). If (b), then EV (Cb) = 10⊕00 =

10 and IV (Cb) = 10. EV (Cb) ⊕ IV (Cb) = 10 ⊕ 10 = 00. Using (c) would lead to

the same result, therefore C is an N -position.

Notation. The following notation is used in the proofs of Theorems 9-12.

• β(C) = G(K1, (x1+1) )⊕ xn(mod 3).
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• IVβ(C) =
⊕n−1

i=3 [xi(mod 3)].

Theorem 9. Suppose that C = 〈[x1, x2, . . . , xn]〉, where n ≥ 3, x1, xn ∈ 3 and

x2 ∈ 0. If IV (C) = 01 or 11, then C is an N -position.

Proof. There are four cases to consider.

Case 1. Let C be the position where x1, xn ∈ 3, x2 ∈ 3, and IV (C) = 01. P1

can use (e) to reduce the position to get α(Ce) = G〈[3, 3]〉⊕0 = 1⊕0 = 01⊕00 = 01,

and IVα(Ce) = 01. Thus, α(Ce)⊕IVα(Ce) = 01⊕01 = 00. So, C is an N -position.

Case 2. Let C be the position where x1, xn ∈ 3, x2 = 0, and IV (C) = 01.

Here, P1 can use (i) to reduce C to get β(Ci) = G(K1,3+1) ⊕ 0 = 1 ⊕ 0 = 01,

and IVβ(Ci) = 01, since IVβ(Ci)⊕ x2(mod 3) = IV (C). Thus, β(Ci)⊕ IVβ(Ci) =

01⊕ 01 = 00. So, (i) is a winning move for P1.

Case 3. Let C be the position where x1, xn ∈ 3, x2 ∈ 3, and IV (C) = 11. P1

can use (g) to get α(Cg) = G〈[3, 3]〉 ⊕ 2 = 1⊕ 2 = 01⊕ 10 = 11, and IVα(Cg) = 11.

So, α(Cg)⊕ IVα(Cg) = 11⊕ 11 = 00. Thus, (g) is a winning move for P1.

Case 4. Let C be the position where x1, xn ∈ 3, x2 = 0, and IV (C) = 11.

Here, P1 can use (k) to get β(Ck) = G(K1,3+1) ⊕ 2 = 1 ⊕ 2 = 01 ⊕ 10 = 11, and

IVβ(Ck) = 11. Thus, β(Ck)⊕IVβ(Ck) = 11⊕11 = 00. So, C is an N -position.

Theorem 10. Suppose that C = 〈[x1, x2, . . . , xn]〉, where n ≥ 3, x1, xn ∈ 2, x2 = 0.

If IV (C) = 01 or 10, then C is an N -position.

Proof. There are two cases to consider.

Case 1. Let C be the position where x1, xn ∈ 2, x2 = 0, and IV (C) = 01. P1

can use strategy (k) to get β(Ck) = G(K1,2+1) ⊕ 1 = 0 ⊕ 1 = 00 ⊕ 01 = 01, and

IVβ(Ck) = 01. So, β(Ck)⊕ IVβ(Ck) = 01⊕ 01 = 00. So, (k) is a winning move for

P1.

Case 2. Let C be the position where x1, xn ∈ 2, x2 = 0, and IV (C) = 10. If

P1 uses (i), then β(Ci) = G(K1,2+1) ⊕ 2 = 0 ⊕ 2 = 10, and IVβ(Ci) = 10. So,

β(Ci)⊕ IVβ(Ci) = 10⊕ 10 = 00. Hence, (i) is a winning move for P1.

Theorem 11. Suppose that C = 〈[x1, x2, . . . , xn]〉, where n ≥ 3, x1, xn ∈ 1, x2 = 1.

If IV (C) = 10 or 11, then C is an N -position.

Proof. There are two cases to consider.

Case 1. Let C be the position where x1, xn ∈ 1, x2 = 1, and IV (C) = 10.

P1 can use strategy (f) to get β(Cf ) = G(K1,1+1) ⊕ 1 = 2 ⊕ 1 = 10 ⊕ 01 = 11,

and IVβ(Cf ) = 11 (this is because IV (C) = 10 = IVβ(Cf ) ⊕ 01 = IVβ(Cf ) ⊕
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x2(mod 3) =⇒ IVβ(Cf ) = 11). Thus, β(Cf )⊕ IVβ(Cf ) = 11⊕ 11 = 00. So, C is

an N -position.

Case 2. Let C be the position where x1, xn ∈ 1, x2 = 1, and IV (C) = 11.

P1 can use (h) to get β(Ch) = G(K1,1+1) ⊕ 0 = 2 ⊕ 0 = 10 ⊕ 00 = 10, and

IVβ(Ch) = 10 (since IV (C) = 11 = IVβ(Ch) ⊕ x2(mod 3) =⇒ IVβ(Ch) = 10).

Thus, β(Ch)⊕ IVβ(Ch) = 10⊕ 10 = 00. So, C is an N -position.

Theorem 12. Suppose that C = 〈[x1, x2, . . . , xn]〉, where n ≥ 3, x1, xn ∈ 1, x2 = 0.

If IV (C) = 10 or 11, then C is an N -position.

Proof. There are two cases to consider.

Case 1. Let C be the position where x1, xn ∈ 1, x2 = 0, and IV (C) = 10. P1

can use (k) to get β(Ck) = G(K1,1+1)⊕0 = 2⊕0 = 10⊕00 = 10, and IVβ(Ck) = 10.

So, β(Ck)⊕ IVβ(Ck) = 10⊕ 10 = 00. Thus, C is an N -position.

Case 2. Let C be the position where x1, xn ∈ 1, x2 = 0, and IV (C) = 11.

Strategy (i) gives β(Ci) = G(K1,1+1)⊕1 = 2⊕1 = 10⊕01 = 11, and IVβ(Ci) = 11.

Also, β(Ci)⊕ IVβ(Ci) = 11⊕ 11 = 00. So, (i) is a winning move for P1.

Theorem 13. Suppose that C = 〈[x1, x2, . . . , xn]〉, where n ≥ 3, xn ∈ 1, x1 = 1,

x2 ∈ 4. If IV (C) = 10 or 11, then C is an N -position.

Proof. There are two cases to consider.

Case 1. Let C be the position where x1 = 1, x2 ∈ 4, xn ∈ 1, and IV (C) = 10.

From Lemma 1, G〈[1, 1]〉 = 3, so P1 can use (g) to get α(Cg) = G〈[1, 4]〉 ⊕ 0 =

3⊕ 0 = 11⊕ 00 = 11, and since 10 = IV (C) = IVα(Cg)⊕ 01 =⇒ IVα(Cg) = 11.

So, α(Cg)⊕ IVα(Cg) = 11⊕ 11 = 00, and thereby (g) is a winning move for P1.

Case 2. Let C be the position where x1 = 1, x2 ∈ 4, xn ∈ 1, and IV (C) = 11.

P1 can use (e) to get α(Ce) = G〈[1, 4]〉 ⊕ 1 = 3⊕ 1 = 11⊕ 01 = 10, and since 11 =

IV (C) = IVα(Ce)⊕ 01 =⇒ IVα(Ce) = 10. So, α(Ce)⊕ IVα(Ce) = 10⊕ 10 = 00.

Thus, (e) is a winning move for P1.

Theorem 14. Suppose that C = 〈[x1, x2, . . . , xn]〉, where n ≥ 3, x1, xn ∈ 1, x1 6= 1,

and x2 ∈ 4. If IV (C) = 10 or 11, then C is an N -position.

Proof. There are two cases to consider.

Case 1. Let C be the position where x1, x2 ∈ 4, xn ∈ 1, and IV (C) = 10. From

Theorem 3, G〈[4, 4]〉 = 2, so P1 can use (e) to get α(Ce) = G〈[4, 4]〉 ⊕ 1 = 2 ⊕ 1 =

10 ⊕ 01 = 11, and since 10 = IV (C) = IVα(Ce) ⊕ 01 =⇒ IVα(Ce) = 11. So,

α(Ce)⊕ IVα(Ce) = 11⊕ 11 = 00. Thus, (e) is a winning move for P1.
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Case 2. Let C be the position where x1, x2 ∈ 4, xn ∈ 1, and IV (C) = 11. P1

can use (g) to get α(Cg) = G〈[4, 4]〉 ⊕ 0 = 2 ⊕ 0 = 10 ⊕ 00 = 10, and since 11 =

IV (C) = IVα(Cg)⊕ 01 =⇒ IVα(Cg) = 10. So, α(Cg)⊕ IVα(Cg) = 10⊕ 10 = 00,

and thereby (g) is a winning move for P1.

Tables 2, 3 and 4 summarize the results of Theorems 5 – 14.

x1, xn ∈ 1

x2

0 1 2 3 4 5

IV (C)

00 N N N N N N
7 7 7 7 7 7

01 N N N N N N
7 7 7 7 7 7

10 N N N
12 11 13/14

11 N N N
12 11 13/14

Table 2: N -positions established by Theorems 7 and 11-14.

x1, xn ∈ 2

x2

0 1 2 3 4 5

IV (C)

00 N N N N N N
5 5 5 5 5 5

01 N N N
10 6 6

10 N N N
10 6 6

11 N N N N N N
5 5 5 5 5 5

Table 3: N -positions established by Theorems 5, 6 and 10.
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x1, xn ∈ 3

x2

0 1 2 3 4 5

IV (C)

00 N N N N N N
8 8 8 8 8 8

01 N N
9 9

10 N N N N N N
8 8 8 8 8 8

11 N N
9 9

Table 4: N -positions established by Theorems 8 and 9.

To further analyze N - and P-positions, we introduce a variation of the modified

universal strategy. Remove the entire spine of C except for the segments connecting

x1 and x2, and xn−1 and xn, along with zero or one leg from x2. The added

restriction is needed as it is possible that for fixed x1, x2, xn, and for some xn−1, the

position might be already established as an N -position by the preceding theorems

due to symmetry.

Using this variation of the modified universal strategy, we can make further

refinements to Tables 2, 3 and 4. In particular, Tables 5, 6 and 7 give additional

N -positions.

x1, xn ∈ 1

x2

2 3 4 5

N N

IV (C)

10
xn−1 ∈ 2

N N
xn−1 ∈ 3 13/14 xn−1 ∈ 3

N N

11
xn−1 ∈ 2

N N
xn−1 ∈ 3 13/14 xn−1 ∈ 3

Table 5: Refinement of Table 2.
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x1, xn ∈ 2

x2

1 2 3 4

IV (C)

01

N

N

xn−1 ∈ 3

N

6 xn−1 ∈ 4

10

N N

xn−1 = 1

N N

xn−1 ∈ 4 6 xn−1 ∈ 4

Table 6: Refinement of Table 3.

x1, xn ∈ 3

x2

1 2

. . .

4 5

IV (C) 11

N N

xn−1 ∈ 1 xn−1 ∈ 1

N N N N

xn−1 ∈ 2 xn−1 ∈ 2 xn−1 ∈ 2 xn−1 ∈ 2

Table 7: Refinement of Table 4.
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Remark. The remaining unresolved positions are summarized in Table 8. The

reader should note that the entries in Table 8, as well as the proofs of Theo-

rems 15 and 16, abuse the notation used earlier in this paper. More specifically,

〈[y1, y2, . . . , yn]〉 represents 〈[x1, x2, . . . , xn]〉, where xi ∈ yi, for 1 ≤ i ≤ n.

x1, xn ∈ 1 IV (C) x1, xn ∈ 2 IV (C) x1, xn ∈ 3 IV (C)

〈[1, 2, . . . , 2, 1]〉 10 〈[2, 1, . . . , 1, 2]〉 01 〈[3, 1, . . . , 1, 3]〉 01

〈[1, 3, . . . , 3, 1]〉 10 〈[2, 1, . . . , 3, 2]〉 01 〈[3, 1, . . . , 2, 3]〉 01

〈[1, 2, . . . , 2, 1]〉 11 〈[2, 3, . . . , 3, 2]〉 01 〈[3, 2, . . . , 2, 3]〉 01

〈[1, 3, . . . , 3, 1]〉 11 〈[2, 1, . . . , 1, 2]〉 10 〈[3, 1, . . . , 1, 3]〉 11

〈[2, 1, . . . , 3, 2]〉 10

〈[2, 3, . . . , 3, 2]〉 10

Table 8: The remaining unresolved positions.

4. Caterpillars With Spine Length Two and Three

In this section, we completely characterize the P-positions for caterpillars with spine

length two and three.

Theorem 15. The caterpillar C = 〈[x1, x2, x3]〉 is a P-position ⇔ one of the

following hold:

1. x1 ∈ 1, x2 ∈ 2, and x3 ∈ 1.

2. x1 ∈ 3, x2 ∈ 1, and x3 ∈ 3.

3. x1 ∈ 2, x2 ∈ 1, and x3 ∈ 2.

Proof. Let C = 〈[x1, x2, x3]〉. We use symmetry to reduce the number of positions

that need to be considered. From Theorems 4-14, all possible caterpillars of spine

length two are N -positions with the exception of three positions, namely 〈[1, 2, 1]〉,
〈[2, 1, 2]〉 and 〈[3, 1, 3]〉. We will show that these three positions are P-positions.

In the cases below, the first arrow indicates a move by P1, and the second arrow

indicates a move by P2. The value −n (above an arrow) indicates that n edges of

a path are removed.
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Case 1. Let C = 〈[1, 2, 1]〉.

• 〈[4, 2, 1]〉 −1−−→ 〈[3, 2, 1]〉 −4−−→ 〈[2], [2], [0]〉.

• 〈[1, 2, 1]〉 −1−−→ 〈[0, 2, 1]〉 −2−−→ 〈[0, 2], [0]〉.

• C
−1−−→ 〈[1, 1, 1]〉 −3−−→ 〈[0], [1], [1]〉.

• C
−1−−→ 〈[1], [2, 1]〉 −3−−→ 〈[1], [1], [0]〉.

• 〈[4, 2, 1]〉 −2−−→ 〈[2, 2, 1]〉 −3−−→ 〈[2], [2], [0]〉.

• C
−2−−→ 〈[1, 0, 1]〉 −2−−→ 〈[1], [0], [1]〉.

• C
−2−−→ 〈[0], [2, 1]〉 −2−−→ 〈[0], [1], [1]〉.

• C
−2−−→ 〈[1], [1, 1]〉 −2−−→ 〈[1], [1], [0]〉.

• C
−2−−→ 〈[1], [2], [1]〉 −2−−→ 〈[1], [0], [1]〉.

• C
−3−−→ 〈[0], [1, 1]〉 −1−−→ 〈[0], [1], [1]〉.

• C
−3−−→ 〈[0], [2], [1]〉 −1−−→ 〈[0], [1], [1]〉.

• C
−4−−→ 〈[0], [2], [0]〉 −2−−→ 〈[0], [0], [0]〉.

Case 2. Let C = 〈[2, 1, 2]〉.

• C
−1−−→ 〈[1, 1, 2]〉 −4−−→ 〈[0], [1], [1]〉.

• C
−1−−→ 〈[2, 0, 2]〉 −2−−→ 〈[2], [0], [2]〉.

• C
−1−−→ 〈[2], [1, 2]〉 −2−−→ 〈[2], [0], [2]〉.

• 〈[5, 1, 2]〉 −2−−→ 〈[3, 1, 2]〉 −3−−→ 〈[3], [1], [1]〉.

• 〈[2, 1, 2]〉 −2−−→ 〈[0, 1, 2]〉 −1−−→ 〈[0, 1], [2]〉.

• 〈[2, 4, 2]〉 −2−−→ 〈[2, 2, 2]〉 −2−−→ 〈[2, 2], [1]〉 (Lemma 2 and Theorem 3).

• C
−2−−→ 〈[1], [1, 2]〉 −3−−→ 〈[1], [0], [1]〉.

• C
−2−−→ 〈[2], [0, 2]〉 −1−−→ 〈[2], [0], [2]〉.

• C
−2−−→ 〈[2], [1], [2]〉 −1−−→ 〈[2], [0], [2]〉.



INTEGERS: 21 (2021) 22

• C
−3−−→ 〈[1], [0, 2]〉 −2−−→ 〈[1], [0], [1]〉.

• C
−3−−→ 〈[1], [1], [2]〉 −2−−→ 〈[1], [1], [0]〉.

• C
−4−−→ 〈[1], [1], [1]〉 −1−−→ 〈[1], [1], [0]〉.

Case 3. Let C = 〈[3, 1, 3]〉.

• C
−1−−→ 〈[2, 1, 3]〉 −3−−→ 〈[1], [1], [3]〉.

• C
−1−−→ 〈[3, 0, 3]〉 −2−−→ 〈[3], [0], [3]〉.

• C
−1−−→ 〈[3], [1, 3]〉 −2−−→ 〈[3], [0], [3]〉.

• C
−2−−→ 〈[1, 1, 3]〉 −2−−→ 〈[1], [1], [3]〉.

• 〈[3, 4, 3]〉 −2−−→ 〈[3, 2, 3]〉 −3−−→ 〈[2], [2], [3]〉.

• C
−2−−→ 〈[2], [1, 3]〉 −3−−→ 〈[2], [0], [2]〉.

• C
−2−−→ 〈[3], [1], [3]〉 −1−−→ 〈[3], [0], [3]〉.

• C
−2−−→ 〈[3], [0, 3]〉 −1−−→ 〈[3], [0], [3]〉.

• C
−3−−→ 〈[2], [0, 3]〉 −2−−→ 〈[2], [0], [2]〉.

• C
−3−−→ 〈[2], [1], [3]〉 −1−−→ 〈[1], [1], [3]〉.

• C
−4−−→ 〈[2], [1], [2]〉 −1−−→ 〈[2], [0], [2]〉.

In all of these cases, P2 wins since they are able to reduce to a position with

Grundy-value 0.

Theorem 16. The caterpillar C = 〈[x1, x2, x3, x4]〉 is a P-position ⇔ x1 ∈ 2,

x2 = 1, x3 ∈ 3, and x4 ∈ 2.

Proof. We use symmetry to reduce the number of positions that need to be consid-

ered. From Theorems 4-14, the only unresolved caterpillars of spine length 3 are

〈[1, 2, 3, 1]〉, 〈[2, 1, 3, 2]〉 and 〈[3, 1, 2, 3]〉. Of these positions, we want to show that

the only P-positions are of the form 〈[2, 1, 3, 2]〉, a subset of 〈[2, 1, 3, 2]〉.

For the N -positions, there are three cases to consider.

Case 1. Let C = 〈[1, 2, 3, 1]〉. P1 can reduce the position to 〈[1, 2], [2, 1]〉, which

has Grundy-value 0 by Lemmas 1, 2 and Theorem 3.
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Case 2. Let C = 〈[2, 4, 3, 2]〉. P1 can reduce the position to 〈[2, 3], [3, 2]〉, which

has Grundy-value 0 by Lemmas 2, 3 and Theorem 3.

Case 3. Let C = 〈[3, 1, 2, 3]〉. P1 can reduce the position to 〈[3, 1], [1, 3]〉, which

has Grundy-value 0 by Lemmas 1, 3, and Theorem 3.

For the P-positions, we need to show that for any move played by P1, P2 can

counter by reducing to a position with Grundy-value 0. We denote moves by arrows,

with the first arrow used for P1’s move and the second arrow for P2’s move. The

value −n (above an arrow) indicates that n edges of a path are removed.

So, let C = 〈[2, 1, 3, 2]〉.

• C
−1−−→ 〈[1, 1, 3, 2]〉 −5−−→ 〈[0], [1], [3], [1]〉.

• C
−1−−→ 〈[2], [1, 3, 2]〉 −3−−→ 〈[2], [0], [3], [2]〉.

• C
−1−−→ 〈[2, 0, 3, 2]〉 −3−−→ 〈[2], [0], [3], [2]〉.

• C
−1−−→ 〈[2, 1], [3, 2]〉 −2−−→ 〈[2, 1], [1, 2]〉 (Lemmas 1, 2 and Theorem 3).

• C
−1−−→ 〈[2, 1, 2, 2]〉 −4−−→ 〈[2], [1], [2], [1]〉.

• C
−1−−→ 〈[2, 1, 3], [2]〉 −4−−→ 〈[1], [1], [2], [2]〉.

• C
−1−−→ 〈[2, 1, 3, 1]〉 −5−−→ 〈[1], [1], [3], [0]〉.

• C
−2−−→ 〈[0, 1, 3, 2]〉 −4−−→ 〈[0], [1], [3], [1]〉.

• C
−2−−→ 〈[1], [1, 3, 2]〉 −4−−→ 〈[1], [0], [3], [1]〉.

• C
−2−−→ 〈[2], [0, 3, 2]〉 −2−−→ 〈[2], [0], [3], [2]〉.

• C
−2−−→ 〈[2, 0], [3, 2]〉 −2−−→ 〈[2, 0], [2], [2]〉.

• C
−2−−→ 〈[2], [1], [3, 2]〉 −3−−→ 〈[2], [1], [2], [1]〉.

• C
−2−−→ 〈[2, 1], [2, 2]〉 −1−−→ 〈[2, 1], [1, 2]〉 (Lemmas 1, 2 and Theorem 3).

• C
−2−−→ 〈[2, 1, 1, 2]〉 −3−−→ 〈[2], [1], [1], [2]〉.

• C
−2−−→ 〈[2, 1, 2], [2]〉 −2−−→ 〈[2, 1, 2], [0]〉 (Theorem 15).

• C
−2−−→ 〈[2, 1], [3], [2]〉 −2−−→ 〈[2], [0], [3], [2]〉.

• C
−2−−→ 〈[2, 1, 3], [1]〉 −3−−→ 〈[2], [1], [2], [1]〉.
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• C
−2−−→ 〈[2, 1, 3, 0]〉 −4−−→ 〈[1], [1], [3], [0]〉.

• C
−3−−→ 〈[1], [0, 3, 2]〉 −3−−→ 〈[1], [0], [3], [1]〉.

• C
−3−−→ 〈[1], [1], [3, 2]〉 −2−−→ 〈[1], [1], [2], [2]〉.

• C
−3−−→ 〈[2, 0], [2, 2]〉 −1−−→ 〈[2, 0], [2], [2]〉.

• C
−3−−→ 〈[2, 0], [3], [2]〉 −1−−→ 〈[2], [0], [3], [2]〉.

• C
−3−−→ 〈[2], [1], [2, 2]〉 −2−−→ 〈[2], [1], [1], [2]〉.

• C
−3−−→ 〈[2, 1, 2], [1]〉 −1−−→ 〈[2, 1, 2], [0]〉 (Theorem 15).

• C
−3−−→ 〈[2, 1], [3], [1]〉 −3−−→ 〈[1], [0], [3], [1]〉.

• C
−3−−→ 〈[2], [1], [3], [2]〉 −1−−→ 〈[2], [0], [3], [2]〉.

• C
−4−−→ 〈[1], [1], [3], [2]〉 −2−−→ 〈[1], [1], [3], [0]〉.

• C
−4−−→ 〈[1], [1], [2, 2]〉 −1−−→ 〈[1], [1], [2], [2]〉.

• C
−4−−→ 〈[2, 0], [3], [1]〉 −1−−→ 〈[2, 0], [3], [0]〉.

• C
−4−−→ 〈[2], [1], [3], [1]〉 −2−−→ 〈[0], [1], [3], [1]〉.

• C
−5−−→ 〈[1], [1], [3], [1]〉 −1−−→ 〈[1], [1], [3], [0]〉.

In all of these cases, P2 wins since they are able to reduce to a position with

Grundy-value 0.

5. Concluding Remarks

In summary, we have completely determined the N - and P-positions for caterpillars

with spine length zero, one, two and three. Furthermore, for caterpillars with spine

length four or greater, we analyzed 1
9 ( 36+6

48 + 54+5
72 + 32+6

48 ) + 6
9 = 94.3% of them.

Here, all of them turned out to be N -positions. To complete the analysis of the

Caterpillar Game (for caterpillars with spine length four or greater), the positions

in Table 8 need to be resolved.
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