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Abstract
DNA metabarcoding is an increasingly popular technique to investigate biodiversity; 
however, many methodological unknowns remain, especially concerning the biases 
resulting from marker choice. Regions of the cytochrome c oxidase subunit I (COI) 
and 18S rDNA (18S) genes are commonly employed “universal” markers for eukary-
otes, but the extent of taxonomic biases introduced by these markers and how such 
biases may impact metabarcoding performance is not well quantified. Here, focusing 
on macroeukaryotes, we use standardized sampling from autonomous reef monitor-
ing structures (ARMS) deployed in the world's most biodiverse marine ecosystem, the 
Coral Triangle, to compare the performance of COI and 18S markers. We then com-
pared metabarcoding data to image-based annotations of ARMS plates. Although both 
markers provided similar estimates of taxonomic richness and total sequence reads, 
marker choice skewed estimates of eukaryotic diversity. The COI marker recovered 
relative abundances of the dominant sessile phyla consistent with image annotations. 
Both COI and the image annotations provided higher relative abundance estimates of 

www.wileyonlinelibrary.com/journal/edn3
mailto:﻿
https://orcid.org/0000-0002-2434-7207
https://orcid.org/0000-0002-1486-8404
http://creativecommons.org/licenses/by/4.0/
mailto:jcasey508@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fedn3.245&domain=pdf&date_stamp=2021-08-10


1230  |    CASEY et al.

1  |  INTRODUC TION

Biodiversity loss is one of the greatest threats to ecosystems world-
wide (Butchart et al., 2010; McCauley et al., 2015), with species 
loss inextricably linked to a reduction of ecosystem services, such 
as storm protection and food provisioning for humankind (Díaz 
et al., 2006; Worm et al., 2006). To inform ecosystem management, 
the accurate quantification of biodiversity is of utmost importance 
in today's changing world. Traditional taxonomic methods can be 
tedious and require high levels of expertise, especially for small, 
cryptic organisms. A powerful alternative is DNA metabarcoding, 
which consists of the bulk extraction of DNA from environmental 
samples, followed by the mass amplification and identification of 
a multitude of taxa based on DNA sequences of universal markers 
(Baird & Hajibabaei, 2012; Hajibabaei et al., 2011; Taberlet et al., 
2012). This molecular technique has been widely and successfully 
employed to quantify biodiversity (Elbrecht et al., 2017; Ficetola 
et al., 2008; Gibson et al., 2014; Ji et al., 2013; Leray & Knowlton, 
2015). Applications are diverse and include microbiome studies 
(Pollock et al., 2018), food web reconstruction (Casey et al., 2019), 
and water-based environmental DNA (eDNA; DiBattista et al., 
2020).

However, there are many known biases associated with DNA 
metabarcoding. In an effort to minimize sampling biases when esti-
mating cryptic biodiversity with DNA metabarcoding on coral reefs, 
researchers have developed autonomous reef monitoring structures 
(ARMS; oceanarms.org), standardized collection devices that are de-
signed to mimic the structural complexity of coral reefs (Zimmerman 
& Martin, 2004). ARMS consist of nine stacked 225 × 225 mm PVC 
plates, which are separated by spacers and mounted on a base plate. 
Alternating layers between the plates contain crossed PVC bars, 
which create crevice-like formations that are ideal for the coloni-
zation of benthic organisms and motile meiofauna (Menge et al., 
1983). ARMS have been deployed across many marine environ-
ments, and they are especially useful in hyperdiverse systems, such 
as coral reefs, where estimating cryptic biodiversity is challenging 
without the use of standardized collection structures (Al-Rshaidat 

et al., 2016; Leray & Knowlton, 2015; Pearman et al., 2018, 2019; 
Plaisance et al., 2011).

However, even with such standardized sampling methods, DNA 
metabarcoding has methodological biases (Alberdi et al., 2018). 
Sources of biases include sampling methods (Elbrecht et al., 2017; 
Ransome et al., 2017), DNA extraction method (Deiner et al., 2015), 
PCR amplification protocol and primer choice (Clarke et al., 2014, 
2017; Cowart et al., 2015; Piñol et al., 2019; Tragin et al., 2018; Zhan 
et al., 2014), library preparation techniques (Braukmann et al., 2019; 
Zizka et al., 2019), sequencing error (Deagle et al., 2019; Elbrecht 
& Leese, 2015), bioinformatics biases (Brannock & Halanych, 2015; 
Brown et al., 2015; Flynn et al., 2015), and the unavailability of an ad-
equate reference database (Cristescu, 2014; DiBattista et al., 2020; 
Gold et al., 2020; Ransome et al., 2017). One the greatest sources 
of bias in metabarcoding studies is associated with marker choice. 
Notably, a marker may fail to identify an organism or group of or-
ganisms due to issues with primer universality or reference data-
base gaps. In studies focused on eukaryotic biodiversity (e.g., ARMS 
sampling), the mitochondrial cytochrome c oxidase subunit I (COI) 
and small subunit (SSU) 18S ribosomal RNA (rRNA) gene regions 
are two common targets that are considered “universal markers” 
that capture a broad range of eukaryotic taxa (Hebert et al., 2003; 
Leray & Knowlton, 2016; Tragin et al., 2018). Of these, 18S is the 
more commonly selected universal marker (59% and 28% of studies 
target the 18S and COI gene, respectively; van der Loos & Nijland, 
2020). While both are considered universal markers that perform 
well across many eukaryotic taxa, they have known limitations that 
impact their ability to faithfully detect taxonomic diversity.

The COI marker is often selected due to the purported availabil-
ity of well-curated reference databases (Hebert et al., 2003) and 
higher taxonomic precision; yet, it is ineffective across certain taxa. 
For example, while the high substitution rate in COI can provide 
excellent resolution in terms of taxonomic assignments (Andújar 
et al., 2018; Leray & Knowlton, 2016), species level discrimination 
is poor for some early diverging metazoan groups, such as Porifera 
and Anthozoa (Hebert et al., 2003; Huang et al., 2008; Shearer et al., 
2002). The comparatively fast mutation rate also makes it difficult 

Bryozoa and Porifera and lower estimates of Chordata as compared to 18S, but 18S 
recovered 25% more phyla than COI. Thus, while COI more reliably reflects the occur-
rence of dominant sessile phyla, 18S provides a more holistic representation of overall 
taxonomic diversity. Ideal marker choice is, therefore, contingent on study system and 
research question, especially in relation to desired taxonomic resolution, and a multi-
marker approach provides the greatest application across a broad range of research 
objectives. As metabarcoding becomes an essential tool to monitor biodiversity in our 
changing world, it is critical to evaluate biases associated with marker choice.

K E Y W O R D S
18S rDNA, coral reefs, cryptic diversity, cytochrome c oxidase subunit I, high-throughput 
sequencing, taxonomy
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    |  1231CASEY et al.

to design primers that are truly universal across eukaryotic taxo-
nomic groups (Deagle et al., 2014; Geller et al., 2013). For instance, 
many “universal” COI primers do not amplify well for Calcarea, 
Nematoda, or Platyhelminthes (Andújar et al., 2018; Bhadury et al., 
2006; Prosser et al., 2013; Voigt & Wörheide, 2016), although recent 
primer development has shown slightly more success with these 
groups (Wangensteen et al., 2018). Another issue is that elevated 
rates of mutation cause saturation at high taxonomic levels, inhibit-
ing accurate taxonomic assignments when closely related sequences 
at low taxonomic levels are unavailable (Deagle et al., 2014; Leray & 
Knowlton, 2016; Ransome et al., 2017).

Conversely, due to the relatively conserved nature of 18S, it 
provides noteworthy taxonomic coverage across a broad range of 
eukaryotes (Creer et al., 2010; Fonseca et al., 2010; Hadziavdic et al., 
2014; López-García et al., 2001; Moon-van der Staay et al., 2001; 
Zhan et al., 2013), but this comes at the cost of inferior taxonomic 
resolution compared to COI (Leray & Knowlton, 2016; Wangensteen 
et al., 2018). While broad-range biodiversity assessments (currently 
dominated by plankton studies) commonly target the highly diverse 
V4 and V9 regions of 18S to maximize coverage across a wide assort-
ment of eukaryotic groups (Casas et al., 2017; DiBattista et al., 2020; 
Pearman et al., 2014; Pearman & Irigoien, 2015; Tragin et al., 2018; 
de Vargas et al., 2015), the 18S gene region considerably underes-
timates eukaryotic species, especially cryptic microbial metazoans 
that are unaccounted for in DNA reference databases (Piganeau 
et al., 2011; Tang et al., 2012; Wangensteen et al., 2018; Wu et al., 
2015). Furthermore, the 18S rRNA gene does not amplify well for 
some clades of mollusks, such as Solenogastres, due to elevated sub-
stitution rates (Meyer et al., 2010).

Although the limitations and biases inherent in the COI and 
18S markers are foundational to the interpretation of metabar-
coding data, the only known performance comparisons of these 
markers were conducted in the temperate zone (Clarke et al., 2017; 
Wangensteen et al., 2018; Zhan et al., 2014). No study has system-
atically quantified the performance of these two markers across 
the wide array of eukaryotic taxa present in hyperdiverse marine 
ecosystems, such as the Coral Triangle. Furthermore, no current 
study has compared marker performance to the visual annotation of 
standardized coral reef images, which remains the leading method to 
quantify sessile marine organisms (Beijbom et al., 2015; David et al., 
2019; Williams et al., 2019).

In this study, we compare phylum-level biodiversity recovered 
through COI versus 18S metabarcoding (assessed via the perfor-
mance of one primer set for each marker) based on ARMS de-
ployed on a coral reef off the coast of Bali, Indonesia. Then, we 
compare marker performance to the visual annotation of sessile 
organisms from ARMS plates. In addition, we examine the rela-
tive impact of small-scale temporal and spatial variation on the 
recovery of marine eukaryotic diversity through metabarcoding. 
Combined, these comparisons provide a baseline of methodologi-
cal biases and how they may impact our perception of marine eu-
karyotic biodiversity.

2  |  MATERIAL S AND METHODS

2.1  |  ARMS deployment

We deployed all ARMS at a depth of approximately 10  m on the 
forereef of Close Encounters Reef near Pemuteran, Bali, Indonesia 
(8°07’40.5”S, 114°40’05.1”E; Figure 1a) in July of 2011. We de-
ployed a total of six ARMS in two groups of three. ARMS within each 
group were placed approximately 2  m apart from each other, and 
the groups of three (Site 1 and Site 2) were separated by approxi-
mately 100  m. In June of 2012, we retrieved those six ARMS. To 
test for temporal variation, we deployed three new ARMS in June of 
2012 at Site 1 and collected those ARMS in June of 2013 (Figure 1b). 
Thus, 1 year was allotted for the colonization of sessile and motile 
organisms on the artificial reef structures during both deployment 
periods.

2.2  |  ARMS collection and processing

To collect the ARMS, we secured a fitted 100 μm Nitex-lined crate 
over the ARMS with elastic cords to prevent the loss of any organ-
isms, except, potentially, some microscopic organisms. Upon re-
trieval, we immediately submerged the ARMS in a container of 40 μm 
filtered, aerated seawater and transported them to a laboratory in 
Pemuteran, where we maintained them in filtered, aerated seawa-
ter until disassembly. All bins, trays, and other tools were sterilized 
with bleach and rinsed or soaked in sterile water prior to processing. 
We processed the ARMS following a standardized disassembly and 
sampling protocol (Leray & Knowlton, 2015; Ransome et al., 2017).

After we disassembled the ARMS plate by plate, we vigorously 
shook the plates, one by one, to remove motile organisms, and then 
we moved each plate into a shallow tray of filtered seawater to pho-
tograph the top and bottom of each plate. Using a tripod and a strobe 
system, we took high resolution photographs of each plate (Figure 
S1). Next, the predominately motile organisms dislodged from the 
ARMS plates were separated into three fractions using a series of 
sieves (2 mm, 500 μm, and 106 μm). Stacking the 2 mm sieve on top 
of the 500 μm sieve, all water, debris, and organisms from the ARMS 
disassembly bin was passed through both sieves and into a new bin. 
The larger, motile organisms from the 2 mm sieve were put aside in 
a tray for voucher-based DNA barcoding. We repeatedly sieved the 
remaining sediment and associated organisms to create two frac-
tions: a 500 μm to 2 mm size fraction (hereafter referred to as the 
500 μm fraction) and 106 μm to 500 μm size fraction (hereafter re-
ferred to as the 100 μm fraction). Subsequent to this fractionation, 
we concentrated these fractions using a 40 μm Nitex mesh stretched 
between fitted PVC pipes and then rinsed them with 95% ethanol. 
Finally, we transferred the concentrated fraction samples to falcon 
tubes and preserved them with 95% ethanol.

To collect the sessile fraction, we scraped everything off the 
surface of the ARMS plates with paint scrapers, using filtered 
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1232  |    CASEY et al.

F I G U R E  1  (a) Map marking the study reef, Close Encounters Reef, near Bali, Indonesia, and (b) autonomous reef monitoring structure 
(ARMS) sampling schematic across year and site
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seawater to rinse the plates during the process. We then transferred 
all scraped contents to a blender for homogenization. The blended 
material was then poured into a 40 μm Nitex mesh net, washed with 
filtered seawater until it ran clear, and squeezed through the net to 
dry the fraction. This “sessile fraction” was then transferred into 
50 ml falcon tubes (10 g per falcon tube) and preserved with 95% 
ethanol. Ultimately, we had a total of 27 samples (3 fractions from 
each of the 9 ARMS).

2.3  |  DNA extractions

To prepare the fractions for DNA extraction, the 500 μm and 100 μm 
fractions were decanted to separate calcium carbonate and terrig-
enous sediment that could impact the pH and efficiency of the DNA 
extraction kits. Briefly, we used a 1 L Erlenmeyer flask and sterile 
water, suspended the entire fraction, allowed the sediment to set-
tle, and decanted the suspended content through a geological sieve 
to recover the organic contents. We used a 106 μm sieve to decant 
the 500 μm fraction and a 45 μm sieve to decant the 100 μm frac-
tion. Post-decantation, the sample was halved by volume; one half 
was transferred to a mortar and pestle for homogenization, and the 
second half was frozen as back-up material. For the sessile fraction, 
the homogenized material was vigorously mixed before subsampling 
to ensure that the subsample was representative.

DNA extraction and sequencing were performed at the National 
Museum of Natural History (NMNH) in Washington, DC, USA. We 
used up to 10 g of material from the sessile fraction and half of the 
material from the 500  μm and 100  μm fractions for the DNA ex-
traction. After the addition of 400  μg/ml of Proteinase K and an 
overnight incubation at 56°C at 200 rpm, we extracted DNA with 
a PowerMax Soil DNA Isolation Kit (MoBio, Carlsbad, CA, USA) fol-
lowing the manufacturer's protocols. To remove potential PCR inhib-
iters from these community DNA extractions, we cleaned the DNA 
extractions using a PowerClean DNA CleanUp Kit (MoBio) following 
the manufacturer's protocols.

2.4  |  Library preparation and sequencing

COI and 18S library preparation were conducted following pub-
lished library preparation protocols successfully executed at the 
NMNH (COI: Leray & Knowlton, 2015; 18S: 2015 Ocean Sampling 
Day Protocol, Kopf et al., 2015).

We amplified a 313 bp fragment from the COI gene using seven-
tailed primer pairs of mICOIintF and jgHCO2190 (Geller et al., 2013; 
Leray et al., 2013). These primers included six base pair tags on the 
5′ end of each primer (Table S1). Our selected COI primers are widely 
employed across metabarcoding studies and cover 262,144 varia-
tions (i.e., unique sequence combinations) of the two COI binding 
sites. Thus, these primer pairs provide a broad representation of the 
COI gene region. PCR amplification, sample pooling, and amplicon 
library preparation methods follow Casey et al. (2019). Briefly, PCR 

reactions had a total volume of 20  μl: 1  μl of 10  μM forward and 
reverse primer, 1.4 μl dNTP, 2 μl Advantage 2 DNA Buffer (Takara 
Bio USA, Mountain View, CA, USA), 0.4 μl Advantage 2 Polymerase 
(Takara Bio USA), 13.2 μl of distilled water, and 1 μl of 10 ng DNA 
template. We performed a two-step touchdown PCR. The initial de-
naturation was at 95°C for 10 min, proceeded by the first step for 
16 cycles: 95°C for 10 s, 62°C (−1°C per cycle) for 30 s, and 72°C 
for 60 s. The second step was run for 20 cycles: 95°C for 10 s, 46°C 
for 30s, and 72°C for 7 min, followed by a final extension at 72°C 
for 7 min. We included negative controls in our PCR reactions (no 
contamination was detected), ran PCR reactions in triplicate, and 
verified success on 1.2% agarose gels, then all successful reactions 
were pooled into a single product.

We quantified and pooled PCR products using a Qubit 
Fluorometer (Invitrogen, Carlsbad, CA, USA) with a Qubit dsDNA 
HS Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA). We 
pooled tailed primer pairs in equimolar concentrations, then used 
bead cleaning at a concentration of 0.8x vol/vol with Agencourt 
AMPure XP beads (Beckman Coulter, Brea, CA, USA). Library prepa-
ration was performed with a TruSeq DNA PCR-Free IT Library Prep 
Kit (Illumina, San Diego, CA, USA) following the manufacturer's pro-
tocols. Following ligation of the adapter sequences, we quantified 
the indexed samples using a Qubit Fluorometer, pooled 50  ng of 
each library, then normalized the single library-prepped sample to 
4nM prior to sequencing. Sequencing was conducted on an Illumina 
MiSeq with a MiSeq Reagent Kit v3, 600-cycle (Illumina), using a 1% 
PhiX spike.

For 18S, we amplified and sequenced a 536 bp fragment from 
the V4 region using the V4_18SNext.For and V4_18SNext.Rev 
primers (Piredda et al., 2017; Tragin et al., 2018) following the 2015 
Ocean Sampling Day Protocol (Kopf et al., 2015). Again, we selected 
18S primers that are widely employed across metabarcoding stud-
ies. Briefly, we ran each PCR reaction in a volume of 20 μl: 1.25 μl 
of 0.5 μM forward and reverse primer, 0.5 μl dNTP, 5 μl 5x High-
Fidelity DNA Buffer (Thermo Fisher Scientific, Waltham, MA, USA), 
0.5 μl of 1 U Phusion High-Fidelity DNA Polymerase (Thermo Fisher 
Scientific), 16.0 μl distilled water, and 0.5 μl of 20 ng DNA template. 
Thermocycling employed a two-step PCR protocol. The initial dena-
turation was at 98°C for 30 s, then the first step included ten cycles: 
98°C for 10 s, 44°C for 30 s, and 72°C for 15 s. The second step in-
cluded 15 cycles: 98°C for 10 s, 62°C for 30 s, and 72°C for 15 s, fol-
lowed by a final extension at 72°C for 7 min. We included negative 
controls in our PCR reactions (no contamination was detected) and 
verified amplification success on 1.2% agarose gels. Then, we bead 
cleaned PCR products with Agencourt AMPure XP Beads (Beckman 
Coulter) at a concentration of 1.2× vol/vol. We then quantified PCR 
concentrations using a Qubit Fluorometer (Invitrogen) to measure 
all PCR products with a Qubit dsDNA HS Assay Kit (Thermo Fisher 
Scientific) to calculate the appropriate DNA concentration for the 
second round of PCR.

For library preparation, we used a dual index approach with the 
Nextera DNA Library Prep Kit (Illumina) and the Nextera Index Kit 
(Illumina). We ran each indexing PCR reaction in a volume of 50 μl: 
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5 μl of Index 1 (i7), 5 μl of Index 2 (i5), 1 μl dNTP, 10 μl 5x High-
Fidelity DNA Buffer (Thermo Fisher Scientific), 0.5 μl of 1 U Phusion 
High-Fidelity DNA Polymerase (Thermo Fisher Scientific), a volume 
of DNA template required to yield 40 ng, and the remaining volume 
of distilled water. The PCR amplification included an initial denatur-
ation at 98°C for 30 s, followed by five cycles as follows: 98°C for 
10 s, 65°C for 30 s, and 72°C for 3 min. We used Agencourt AMPure 
XP Beads (Beckman Coulter) at a concentration of 0.6x vol/vol to 
clean the PCR products. Prior to sequencing, we quantified indexed 
samples using a Qubit Fluorometer, then we pooled samples in equi-
molar ratios prior to normalizing libraries to 2 nM and sequencing 
them on an Illumina MiSeq with a MiSeq Reagent Kit v2, 500-cycle 
(Illumina).

2.5  |  Sequence bioinformatics

Unlike COI bioinformatic pipelines, 18S pipelines are well-established 
in the metabarcoding literature. Given the intrinsically distinct na-
ture of these two primer sets, different bioinformatic pipelines were 
used to process the COI and 18S sequences.

To process the COI sequences, we first merged paired-end reads 
using PEAR (Zhang et al., 2013), demultiplexed sequences using 
the FASTX-Toolkit FASTQ Barcode splitter (http://hanno​nlab.cshl/
fastx_toolk​it/), and removed tags/indexes with FLEXBAR (Dodt 
et al., 2012). We then conducted quality filtering with Trimmomatic 
(removing sequences <200 bp; (Bolger et al., 2014), and additional 
sequence cleaning was performed via the Multiple Alignment of 
Coding Sequences (MACSE; Ranwez et al., 2011), which explicitly ac-
counts for the underlying codon structure to filter out inconsistent 
sequences. Specifically, we aligned sequences to a high-quality li-
brary of COI barcodes from the Mo'orea BIOCODE database (Meyer, 
2016) to remove sequences with stop codons, frameshifts, insertions, 
and more than three deletions (Leray et al., 2012). We then clustered 
dereplicated sequences into operational taxonomic units (OTUs) at 
97% similarity using the uclust command in USEARCH (Edgar, 2010), 
discarding all singleton OTUs (OTUs that occur only once across the 
dataset). We assigned OTUs to phylum using the basic local alignment 
search tool (BLASTn; Altschul et al., 1990), comparing OTUs against 
two databases: a local download (on April 14, 2020) of COI data from 
NCBI excluding environmental samples (but including prokaryotes) 
and a local BIOCODE database (Meyer, 2016) using the Smithsonian 
Institution High Performance Computing Cluster (https://doi.
org/10.25572/​SIHPC). We assigned phylum when sequence similar-
ity was ≥85% (following Ransome et al., 2017), and OTUs with a simi-
larity threshold below that threshold were designated as “unknown.” 
In cases where a different result was obtained from the NCBI and 
BIOCODE databases, we selected the result from the BIOCODE 
database because all BIOCODE samples have associated vouchers. 
Phylum names were based on a recently created hierarchical classifi-
cation of life (Ruggiero et al., 2015).

For 18S sequences, we used USEARCH for bioinformatic pro-
cessing. First, we merged pair-end reads and performed quality 

filtering. We then removed reads shorter than 380  bp and longer 
than 440  bp. After primer removal, sequences were clustered at 
99% similarity. We used VSEARCH for reference-based and de novo 
detection of chimeras, which were subsequently removed, with the 
Protist Ribosomal Reference (PR2) database (v4.5; Guillou et al., 
2013). After discarding all singleton OTUs, we assigned taxonomy 
at ≥90% sequence identity with BLASTn using the PR2 database and 
the SILVA database (release 128; Pruesse et al., 2007). Phylum-level 
taxonomy was accepted when sequence similarity was ≥90%, and 
OTUs below that threshold were designated as “unknown.” Again, 
we named phyla based on a recently created hierarchical classifica-
tion of life (Ruggiero et al., 2015).

2.6  |  Visual annotation of ARMS plates

To visually analyze the taxa on each ARMS plate, we used CoralNet, 
a semi-automated, online resource that annotates benthic images of 
coral reefs (Beijbom et al., 2012, 2015; Williams et al., 2019). We 
initially scored images manually to train the program, then we used 
semi-automation for the remaining assignments, but we visually 
verified automatically scored plates to ensure accuracy. Following 
standard ARMS protocols (oceanarms.org), we used the following 
categories for ARMS annotations: bryozoan, sponge, colonial tu-
nicate, red encrusting algae, green algae, foraminifera, calcareous 
worm tube, soft worm tube, bivalve, hard coral, solitary tunicate, soft 
coral, no recruitment, and unknown. For each plate, we employed a 
15 × 15 point matrix, for a total of 225 annotated points. To facili-
tate comparison with the COI and 18S metabarcoding datasets, we 
summarized all annotations at the phylum level (Annelida, Bryozoa, 
Chlorophyta, Chordata, Cnidaria, Mollusca, Porifera, Protista, and 
Rhodophyta), and we calculated averages for each phylum across all 
plates (including tops and bottoms) from a single ARMS.

2.7  |  Data analysis

We ran all analyses with the statistical software R (version 3.6.1; R 
Core Team, 2019). Data wrangling was performed with the tidyverse 
package (Wickham, 2017), and all visualizations were made with the 
packages ggmap (Kahle & Wickham, 2013) and ggplot2 (Wickham, 
2016).

From the raw OTU tables, we produced rarefaction curves for the 
COI and 18S datasets to visualize sampling effort and OTU richness 
across sequences, as well as to simulate extrapolated projections 
with additional sampling with the iNEXT package (Chao et al., 2014). 
For both markers, we generated rarefaction curves for each fraction 
(500 μm, 100 μm, and sessile fractions) of each ARMS, as well as for 
each ARMS as a singular unit after summing across fractions.

Next, we converted the raw sequence read data to relative read 
abundances (RRA; in accordance with Deagle et al., 2019), which we 
used for the majority of the analyses and is a fitting metric for the 
analysis of hyperdiverse metabarcoding data (Casey et al., 2019). 
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Using the RRA data, we generated non-metric multidimensional 
scaling (nMDS) ordinations based on Bray–Curtis dissimilarity ma-
trices with the vegan package (Oksanen et al., 2018) to examine the 
clustering relationships between ARMS and fractions for the COI 
and 18S markers. The nMDS ordinations were also used to visualize 
the potential impact of spatiotemporal variables (year and site) on 
these assemblages.

All taxonomy-based analyses were conducted at the level 
of phylum. We found a higher percent of unidentified sequences 
in the COI dataset as compared to the 18S dataset (COI = 41.1%; 
18S = 0.6%), which substantially impacted RRAs across identified 
phyla. Thus, for all phylum-based analyses, we removed all uniden-
tified OTUs from the raw dataset and recalculated RRAs using only 
OTUs with phylum-level taxonomic assignments. Furthermore, we 
maintained the separation between spatiotemporal variables across 
all analyses to avoid confounding factors. To visualize the per-
formance of each marker, we calculated and ranked the 10 phyla 
with the highest average relative abundances across the ARMS 
from each spatiotemporal treatment (2012_Site1, 2012_Site2, and 
2013_Site1), as well as creating an “Other” category to summarize 
all remaining phyla not included in the top 10 (see list of phyla in the 
“Other” category; Table S2).

To analyze the taxonomic differences between the COI versus 
18S taxonomic data from the ARMS summed across fractions, we 
ran a Bayesian mixed model with the packages brms (Bürkner, 2017), 
tidybayes (Kay, 2019), and rstan (Stan Development Team, 2019). We 
examined the 20 co-occurring phyla that occurred on each ARMS 
across both metabarcoding datasets. The model assessed the effect 
of marker choice (COI versus 18S) on the RRAs of each phylum. To 
tease apart the effects of the spatiotemporal variables, we incorpo-
rated treatment (year and site) as a random effect.

We then ran a Bayesian mixed model to compare the taxonomic 
differences of the COI and 18S data from the sessile fraction of each 
ARMS to the visually annotated ARMS plate data, again using the 
packages brms (Bürkner, 2017), tidybayes (Kay, 2019), and rstan (Stan 
Development Team, 2019). This analysis included the seven co-
occurring phyla on each ARMS across all datasets: Annelida, Bryozoa, 
Chlorophyta, Chordata, Mollusca, Porifera, and Rhodophyta. We 
recalculated RRAs after subsetting each dataset to include these 
seven phyla. The model examined the impact of quantification tech-
nique (COI, 18S, or visual annotation) on the RRAs of each phylum. 
We included treatment (year and site) as a random effect.

For both models, we applied a log-transformation (log(x)) on 
the OTU relative abundances and fitted the model to a student t 
distribution to avoid outliers that would heavily impact the model 
(Gelman et al., 2013). The models were run with four chains for 2000 
iterations, each containing 1000 warm-up samples. We specified 
weakly informative priors with a uniform distribution (b ~ uniform 
(−100,0)) given that each value, as a predicted relative abundance, 
should not exceed one, and our data were log-transformed. For each 
model, the posterior predictive distributions reflected the observed 
data, and all model parameters had stable trace plots.

3  |  RESULTS

Following quality filtering and the removal of singletons, the final 
COI OTU table included 3,964,674 sequences and 31,900 OTUs; for 
18S, the final OTU table included 3,696,915 sequences and 25,994 
OTUs. In the COI dataset, an average of 41.1% of the sequences 
across samples were unidentified to any taxonomic level, represent-
ing 49.44% (15,770) of all OTUs. In contrast, in the 18S dataset, only 
an average of 0.62% of the sequences across samples were uniden-
tified to any taxonomic level, representing 0.8% (209) of all OTUs. 
There was a higher phylum-level taxonomic diversity represented in 
the 18S dataset, which recovered 51 phyla as compared to 38 phyla 
in the COI dataset. Of these phyla, 20 phyla co-occurred across each 
ARMS in both datasets, and 65% of these co-occurring phyla were 
metazoans.

For COI, the number of OTUs per ARMS ranged from 6,580 to 
14,237 OTUs, and the sequencing depth ranged from 214,705 to 
735,839 sequences. For 18S, the number of OTUs per ARMS ranged 
from 7,113 to 11,237 OTUs, and the sequencing depth ranged 
from 286,645 to 527,256  sequences. Within each ARMS, rarefac-
tion curves did not reach saturation, but OTU accumulation slowed 
(Figure 2). However, within each fraction (i.e., 500  μm fraction, 
100  μm fraction, and sessile fraction) of each ARMS, rarefactions 
rarely approached saturation (Figure S2). Thus, summing the three 
fractions within an ARMS provides a more complete representation 
of sequence coverage and taxonomic diversity due to the substan-
tial taxonomic overlap among fractions. Consequently, most down-
stream analyses focused on pooled fractions to represent the entire 
ARMS rather than individual fractions.

For both the COI and 18S markers, the nMDS ordination analysis 
of the ARMS samples revealed high levels of clustering among indi-
vidual ARMS (shaded triangles) and fractions from different ARMS 
(dotted polygons) (Figure 3). There was a high level of overlap be-
tween the ARMS samples collected from Site 1 and Site 2 in 2012 
(i.e., spatial overlap). Furthermore, the ARMS samples from Site 1 
in 2012 had partial overlap with the ARMS samples collected from 
Site 1 in 2013 (i.e., temporal overlap). We also detected fine-scale 
clustering: the 100 μm and sessile fractions clustered more tightly 
among themselves than the 500  μm fraction. Overall, intrinsic 
ARMS-related drivers (ARMS and fraction) exhibit higher levels of 
clustering than spatial and temporal variables, and these patterns do 
not differ according to marker.

Of the 10 phyla with the highest average relative abundances 
across ARMS (across years and sites) in each dataset, 9 out of 10 of 
the phyla were co-occurring (Figure 4). Only the phyla with the 10th 
highest average relative abundance in the COI dataset (Ochrophyta) 
and 18S dataset (Platyhelminthes) did not occur in the top 10 phyla 
of the other dataset. Notably, the average relative abundance of 
Platyhelminthes was extremely low across the COI dataset as com-
pared to the 18S dataset (COI  =  <0.01%, 18S  =  1.47%). Overall, 
Porifera had the highest average relative abundance in the COI 
dataset, which was considerably higher than in the 18S dataset 
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1236  |    CASEY et al.

(COI = 17.22%, 18S = 8.98%), and Chordata had the highest average 
relative abundance in the 18S dataset, which was substantially higher 
than in the COI dataset (COI = 3.94%, 18S = 18.31%). Arthropoda 
had the second highest average relative abundance in both datasets 
and occurred at a similar frequency (COI = 16.33%, 18S = 18.19%); 
however, the rest of the phyla differed in rankings between the two 

markers. A higher proportion of the 18S data (6.71%) as compared 
to the COI data (1.61%) comprised of the “Other” category (i.e., sum 
of all remaining taxa that were identified to phylum but did not rank 
in the top 10 phyla).

Several strong differences emerged between the two mark-
ers upon modeling the relative abundances of the 20 co-occurring 

F I G U R E  2  Rarefaction curves for the (a) COI and (b) 18S markers showing operational taxonomic unit (OTU) richness according to total 
sequences for each autonomous reef monitoring structure (ARMS) in each year and site. Solid lines indicate interpolated values, and dotted 
lines indicate predicted extrapolated values
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phyla (Figure 5). The most notable differences occurred in the pre-
dicted relative abundances of Amoebozoa, Ascomycota, Bryozoa, 
Chlorophyta, Chordata, Entoprocta, and Nematoda. Of these seven 
phyla, five of them were rare across both datasets (see Table S3 for 
means ±95% credible intervals), so the discordant results between 
the markers for these phyla are less relevant for community wide 
patterns. However, the predicted relative abundances of Bryozoa 
and Chordata were comparatively high, with both ranking in the top 
10 most abundant phyla in the COI and 18S datasets. Consistently 
across all spatiotemporal variables, Bryozoa exhibited a markedly 
higher predicted relative abundance in the COI versus 18S dataset, 
whereas Chordata had a substantially lower predicted relative abun-
dance in the COI versus 18S dataset. The COI marker also predicted 
a slightly higher relative abundance for Porifera as compared to the 
18S marker.

The spatiotemporal variables had a minimal impact on the dis-
tribution of phyla for both the COI and 18S markers (Figure S3). 
Year had a larger effect size than site, as was also showcased in the 
nMDS ordination (Figure 3). The only notable trends were the slight 
increase of Mollusca and Entoprocta in 2013 as compared to 2012. 
Importantly, time and space resulted in comparatively minimal dif-
ferences in taxonomic composition between the two markers.

Finally, notable differences emerged in the comparison between 
the molecular markers and the image annotation from ARMS plates 
with CoralNet. When limiting the analysis to the sessile fraction 
in the molecular datasets, the 18S marker continued to represent 
the highest phylum-level diversity, with 44 phyla appearing in the 
18S dataset as compared to 32 phyla in the COI dataset. Of these 
phyla, 14 phyla co-occurred across each ARMS in both datasets. 
We only scored nine phyla across the annotated ARMS plates; this 
number was limited by the standardized, predefined categories used 
for ARMS annotations. Modeling the relative abundances of the 
seven co-occurring phyla among the COI dataset, 18S dataset, and 
the annotation of ARMS plates revealed marked differences across 
three phyla: Bryozoa, Chlorophyta, and Chordata (Figure 6). The 
COI marker predicted similar relative abundances as the annotated 
ARMS plates for Bryozoa and Chordata, whereas the 18S marker 
predicted substantially lower relative abundances for Bryozoa and 
higher relative abundances for Chordata (see Table S4 for means 
±95% credible intervals). For Chlorophyta, the COI and 18S markers 
predicted markedly lower relative abundances than the annotated 
ARMS plates, but this phylum was comparatively rare across all data-
sets. The COI marker and the annotated ARMS plates also predicted 
similar relative abundances for Porifera, but the predictions were 

F I G U R E  4  The 10 phyla with the highest average relative abundances (mean ±SE) for the (a) COI and (b) 18S markers. Relative 
abundances were averaged across autonomous reef monitoring structures (ARMS; n = 3) and separated by year and site. The “Other” 
category sums across all remaining phyla not included in the top 10
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slightly lower for the 18S marker. The molecular markers and anno-
tations provided remarkably similar predicted relative abundances 
for Mollusca and Rhodophyta.

4  |  DISCUSSION

The standardized sampling provided by ARMS creates a unique op-
portunity to rigorously assess potential sources of biases in DNA 
metabarcoding of marine eukaryotic biodiversity. Although marker 
choice did not impact estimates of OTU richness and overall diver-
sity patterns, the COI and 18S datasets provided distinct pictures of 
eukaryotic taxonomic diversity. 18S metabarcoding identified 25% 
more phyla and resulted in vastly higher identified OTUs than COI 
metabarcoding. However, COI more faithfully recovered diversity 
patterns of sessile organisms on ARMS plates, as supported by visual 
image analysis. In contrast to marker choice, year and location of 
ARMS deployment had a minimal impact on eukaryotic communities. 
Thus, consistently across small-scale spatial and temporal variations, 
the taxonomic representation of different “universal” metabarcod-
ing markers provided skewed estimates of biodiversity patterns.

4.1  |  Markers matter

One of the major dissimilarities between the two markers was 
the more than 50-fold difference in unidentified OTUs in the COI 
(15,770 OTUs; 49.44% of all OTUs) compared to the 18S (209 OTUs; 
0.8% of all OTUs) datasets. Importantly, COI failed to significantly 
represent (<0.01% across the dataset) several taxa that had con-
siderable occurrences across the 18S dataset, such as Entoprocta 
(1.17%), Platyhelminthes (1.47%), and Nematoda (0.82%). Previous 
studies highlight that COI does not perform well in Platyhelminthes 
or Nematoda (Andújar et al., 2018; Leray & Knowlton, 2017; Prosser 
et al., 2013). However, Platyhelminthes and Nematoda only repre-
sented ~2.5% of the total OTUs recovered by 18S, so the poor per-
formance of COI for these two phyla does not account for the nearly 
50% of unidentified OTUs in the COI dataset. Inadequate COI refer-
ence library coverage may also hinder our ability to assign taxonomy 
to OTUs (Cristescu, 2014; DiBattista et al., 2020; Gold et al., 2020; 
Ransome et al., 2017). In addition, although fast mutation rates in 
COI often permit species-level identification (Hebert et al., 2003), 
they may impede phylum-level assignment for certain taxa, even 
when employing a relatively conservative 85% similarity threshold.

When examining only the co-occurring phyla between the two 
markers, COI provided a markedly higher estimate of Bryozoa, while 
18S provided a higher estimate of Chordata. Furthermore, based on 
comparisons to visual annotations, the COI marker appears to more 
faithfully predict the relative abundances of several of the more 

dominant sessile taxa on ARMS plates (e.g., Bryozoa, Chordata, and 
Porifera). As such, 18S is not universally superior to COI. The dif-
ferential performance of these markers highlights the importance 
of assessing the intrinsic taxonomic biases associated with amplicon 
sequencing so that we may select appropriate universal markers and 
adopt a more nuanced interpretation of metabarcoding data. Such 
work is vital as we expand our reliance on high-throughput sequenc-
ing for biodiversity assessment and management (Zinger et al., 2019).

4.2  |  Metabarcoding versus visual assessment

While it is essential to understand how metabarcoding results vary 
based on marker choice, it is equally important to assess how these 
markers reflect actual patterns of diversity. We identified several 
strong differences between metabarcoding versus visual image anal-
ysis when estimating the dominant sessile phyla on ARMS plates. 
Both COI and image analysis recovered a higher average relative 
abundance of Bryozoa and Porifera than the 18S marker. In contrast, 
the 18S marker predicted a higher relative abundance of Chordata, 
most likely dominated by tunicates, than COI and image analysis.

Although the COI and 18S rDNA markers are both commonly 
utilized to examine phylogenetic relationships within Bryozoa, 
Porifera, and Chordata (Erpenbeck & Wörheide, 2007; Fuchs et al., 
2009; Holland, 2016), specific primer sets have highly variable am-
plification success rates across these taxa based on the original in-
tent of the primer design. For example, the selected COI primer set 
used in this study was designed to optimally amplify macroscopic 
metazoans across a broad taxonomic range from coral reef environ-
ments (Geller et al., 2013; Leray et al., 2013). In contrast, the 18S 
primer set was originally designed to amplify protist assemblages 
in the Mediterranean (Piredda et al., 2017; Tragin et al., 2018). As 
such, our marker comparison is limited to the performance of these 
particular primer sets, and variation in marker performance across 
taxa should be expected and carefully considered in metabarcoding 
study design.

Importantly, while the 18S rDNA gene region is broadly informa-
tive across metazoan phylogeny and was even used in the first mo-
lecular phylogenetic analysis of the metazoan tree of life (Field et al., 
1988), current phylogenies often use a broad range of longer nuclear 
and mitochondrial genes to account for the variability in gene re-
gions across metazoans (Bourlat et al., 2008). Such variation cannot 
be accounted for in a single marker with a short enough length to be 
compatible with current sequencing technologies. The higher rate of 
consensus between the COI marker and the annotated ARMS plates 
suggests that at least in hyperdiverse coral reef environments, tar-
geting the hypervariable COI region may provide a more reliable 
characterization of the relative abundances of dominant eukaryote 
phyla than the 18S region. Moreover, the COI profiles yield more 

F I G U R E  5  The impact of COI versus 18S marker choice on the relative abundances of the 20 co-occurring phyla, separated by year and 
site. The mean posterior distributions (±95% highest density intervals (HDIs) designated by vertical black bars within each curve) are from 
a Bayesian mixed model. When the HDIs between the two curves do not overlap, this indicates strong differences between quantification 
techniques
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taxonomic precision, especially as sampling expands across biogeo-
graphic regions and reference databases become more complete 
(DiBattista et al., 2020; Gold et al., 2020).

An important caveat, however, is that the apparent consistency 
in the proportions of dominant sessile phyla between the COI 
marker and the annotated ARMS plates required the removal of 
many rare phyla from the metabarcoding datasets to perform this 
cross-technique comparison. The removal of rare taxa dispropor-
tionately masked the performance of the 18S marker, which recov-
ered the highest phylum-level diversity with 45 phyla for 18S versus 
33 phyla for COI. Only nine phyla were recognized across the an-
notated ARMS plates, but this characterization was limited by the 
standardized categories employed in ARMS visual annotations. Even 
among these limited categories, visual estimates can be compro-
mised due to the competitive nature of dominant benthic organisms, 
such as algae, sponges, bryozoans, and tunicates, which may over-
grow other encrusting marine taxa (Chadwick & Morrow, 2011) and 
make them undetectable via visual analysis. As such, further studies 
are required to refine our understanding of these potential sources 
of bias in metabarcoding studies.

Although COI was superior to 18S in our visual comparisons, key 
components of marine communities, such as microbial eukaryotic 
organisms (i.e., protists), are not visible to the human eye and can-
not be detected using current methods of automated image analysis. 
Instead, amplicon sequencing, predominantly 18S rDNA sequenc-
ing, is frequently employed to delineate the molecular diversity of 
these important cryptic organisms (Epstein & López-García, 2008). 
For these taxa, the 18S gene region will likely continue to provide 
significantly better estimates of cryptic taxonomic diversity than 
the COI marker or annotated image analysis, highlighting the utility 
of DNA metabarcoding, especially with certain markers, to reveal 
cryptic marine taxa (DiBattista et al., 2020; Ji et al., 2013; Leray & 
Knowlton, 2015; Ransome et al., 2017).

4.3  |  Impact of space and time

While comparisons of COI and 18S data revealed significant marker-
based biases, spatiotemporal variables only had a minor impact on 
taxonomic distributions, with the impact of time having a slightly 

F I G U R E  6  The effect of COI marker 
choice, 18S marker choice, and visual 
image analysis of ARMS plates on the 
relative abundances of the seven co-
occurring phyla, separated by year and 
site. The mean posterior distributions 
(±95% highest density intervals (HDIs) 
designated by vertical black bars within 
each curve) are from a Bayesian mixed 
model. When the HDIs between the 
two curves do not overlap, this indicates 
strong differences among quantification 
techniques
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stronger effect than site. Understanding spatial and temporal varia-
tion in marine biodiversity is critical to monitoring marine ecosystems 
(Elahi et al., 2015). In terms of micro-eukaryotes (e.g., meiofauna or 
plankton), such comparisons are, in fact, one of the main applications 
of DNA metabarcoding. While spatial variation may impact marine 
eukaryotes in sediment (Leasi et al., 2016) or plankton (Pearman 
et al., 2014) samples, temporal factors and associated environmen-
tal variables (e.g., salinity, temperature) are the primary drivers that 
shape these eukaryotic assemblages (Brannock et al., 2016; Chain 
et al., 2016; DiBattista et al., 2020; Salonen et al., 2019).

In our study, the relatively minor temporal effects may be at-
tributed to our study system, tropical coral reefs, which do not have 
strong seasonal variation compared to temperate marine systems. 
The lack of temporal variation may also be attributed to sample col-
lection occurring in June in both 2012 and 2013. A seasonal effect 
may have been detected if samples were taken over the course of 
an entire year. Nonetheless, we detected a greater impact of tem-
poral variation as compared to spatial variation (across the limited 
spatial range of approximately 100 m), suggesting that ARMS may 
be sensitive to shifts in reef systems over longer time periods. As 
such, the ability to detect changes in cryptic eukaryotic communi-
ties associated with ARMS using DNA metabarcoding may provide a 
powerful approach to monitor environmental change on coral reefs 
across space and time (Ransome et al., 2017). While our data show 
that ARMS are sensitive to minor shifts in community structure from 
year to year, further studies across wider spatial and temporal gra-
dients will be required to comprehensively examine the impact of 
space and time on eukaryotic coral reef assemblages.

4.4  |  Moving forward with metabarcoding

One of the main limiting factors in our comparison of the COI and 
18S markers was the comparatively high number of unidentified 
OTUs in the COI dataset (49.44% of OTUs and 41.1% of sequences) 
as compared to the 18S (0.8% of OTUs and 0.62% of sequence). High 
rates of homoplasy in the hypervariable COI gene region make the 
assignment of OTUs difficult without the presence of reference se-
quences from closely related organisms (Deagle et al., 2014; Leray 
& Knowlton, 2015, 2016). Despite the increasing number of COI re-
cords available in public databases (Porter & Hajibabaei, 2018), the 
lack of comprehensive COI reference barcode libraries across the 
wide taxonomic scope of hyperdiverse assemblages (such as coral 
reefs) remains the greatest challenge to harnessing the full capacity 
of COI metabarcoding, and the contrasting ability of the more slowly 
evolving, yet better sampled, 18S marker to identify the same com-
munity is striking.

To surmount these limitations, we encourage employing a 
multimarker approach to metabarcoding across a variety of ma-
rine habitats and regions (see also van der Loos & Nijland, 2020). 
Such studies are essential to identify “dark” taxa that remain un-
described, even morphologically, and will help prioritize voucher-
based sampling to advance catalogues of marine biodiversity and 

hasten the completion of reference databases. Currently, the 
scientific community considers taxonomic descriptions as low-
impact science, impeding taxonomists’ access to research fund-
ing and stalling this fundamental characterization of biodiversity 
(Agnarsson & Kuntner, 2007). Although taxonomy-free metabar-
coding methods are an alternative, taxonomy often plays a critical 
role in metabarcoding marine communities, and increasing DNA 
barcoding library coverage is essential to accurately monitor biodi-
versity patterns with advanced molecular techniques. Highlighting 
the gaps that currently limit the power of metabarcoding should 
help re-prioritize taxonomic investigations, descriptions, and bio-
diversity inventories.

5  |  CONCLUSIONS

The two most commonly employed metabarcoding markers to esti-
mate eukaryotic biodiversity, COI and 18S rDNA, recovered distinct 
patterns of eukaryotes in a hyperdiverse coral reef environment. 
COI more accurately reflected the relative abundances of dominant 
taxa while 18S provided a deeper, and likely more complete, repre-
sentation of cryptic taxonomic diversity. Thus, ideal primer selection 
for metabarcoding is largely dependent on study system, research 
question, and desired taxonomic resolution. To bridge the limitations 
of these universal markers, we encourage a multimarker approach to 
DNA metabarcoding (e.g., Günther et al., 2018; Stefanni et al., 2018; 
West et al., 2020; G. K. Zhang et al., 2018).

As metabarcoding quickly becomes an indispensable tool for 
biodiversity monitoring, it is essential to expand efforts to ground 
truth methodological biases related to amplicon sequencing. While 
understanding methodological biases, such as marker selection, are 
important, only through a combination of focused biodiversity in-
ventories and a concerted effort to expand taxonomic coverage of 
reference libraries will DNA metabarcoding achieve its full potential 
for biodiversity monitoring. Given the environmental challenges and 
unprecedented rate of change facing biomes across the planet, such 
work is increasingly urgent.
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