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ABSTRACT Malicious applications are usually comprehended through two major techniques, namely
static and dynamic analyses. Through static analysis, a given malicious program is parsed, and some
representative artifacts (e.g., control-flow graphs) are produced without any execution; whereas, the given
malicious application needs to be executed when conducting dynamic analysis. These two mainstream
techniques for analyzing the given software are effective in detecting certain classes of malware. More
specifically, through static analysis, the patterns and signature of the malware are exposed, helping in
detecting any known malicious payload hidden in or injected into the code. On the other hand, behavioral
and run-time execution patterns of software are explored through dynamic analysis. To ease the analysis
process, a third analysis approach, known as the visual representation of the artifacts created by both static
and dynamic analysis tools, would also be a supplementary asset for malware experts. This paper introduces
MalView, an interactive visualization platform, for malware analysis by which pattern matching techniques
on both signature-based and behavioral analysis artifacts can be utilized to 1) classify malware, 2) identify
the intention and location of the malicious payload in the artifacts, 3) analyze unknown malware (i.e.,
zero-day malware) by recognizing any unusual signature or behavior, and 4) explore the time dependencies
and thus the system components affected or tampered by the underlying malware. The results of several case
studies conducted in this work show that MalView offers more features and information compared to some
other visualization tools, facilitating the malware analysis process.

INDEX TERMS Malware analysis, dynamic analysis, malware visualization system, visual analytics.

I. INTRODUCTION

Malicious software applications, or malware, are the pri-
mary source of many security problems. These intention-
ally manipulative malicious applications intend to perform
unauthorized activities on behalf of their originators on the
host machines for various reasons such as stealing advanced
technologies and intellectual properties, governmental acts
of revenge, and tampering sensitive information, to name a
few. Malware applications are complex software programs
that are often obfuscated to disguise their main intentions
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and thus deceive network administrators and the underlying
intrusion detection systems. Although such obfuscations can
be captured, reported, and maintained in a repository as a
reference for building better detection mechanisms, newer
malware programs are constantly developed by professional
hackers raising the challenging problem of zero-day malware
detection [1]. As a result, in order to build an effective mal-
ware detection and defense system, it is crucial to understand
each malware and comprehend its behavior through rigorous
analysis.

There are two conventional approaches that are widely
adopted for analyzing software programs: 1) static anal-
ysis by which the underlying software is parsed, and
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intermediate transformations of the underlying software are
generated without actually executing the software program.
For instance, a control-flow graph can be created to repre-
sent the execution control of the program under test; and
2) dynamic analysis by which the program under test is exe-
cuted in a controlled environment (e.g., a sandbox) and the
behavior of the program is observed under various environ-
mental conditions for further analysis. For instance, a sand-
box (e.g., Cuckoo [2]) can capture the processes that are
created along with the files that are tampered with or mod-
ified during the execution of the program under test. These
two conventional program analysis techniques (i.e., static and
dynamic) are often complementary to each other, each tar-
geting different types of faults or malicious activities in the
program that is being analyzed. There is also a third “hybrid”
approach that enables conducting both static and dynamic
analysis of the program under test.

Although these conventional program analysis techniques
are shown to be effective in comprehending static and
dynamic features of the software under test, it is often
time-consuming, labor-intensive, and technically challeng-
ing to build a customized analysis platform. Therefore,
to ease performing such a complex analysis, some other
analysis techniques with a smoother learning curve and
faster comprehension of functionalities of the underlying
software under test should be developed for analysis pur-
poses. The visual analytics approach is one of those possi-
ble solutions to facilitate the analysis process and efficiently
and effectively showcase the processes involved in malware
analysis.

This paper introduces an interactive visualization platform,
called MalView, for performing analytical reasoning of mal-
ware behaviors. MalView' is an analysis-oriented develop-
ment to our previously created malware visualization tool
[3]. MalView emphasizes comprehensive understanding from
visual analytics with in-depth, multi-faceted explorations of
malware behavior and scalability to multiple malware fam-
ilies. The result of malware triage and analysis is signifi-
cantly enhanced if a provenance of software artifacts can be
identified, especially when specific attributes of suspected
malware are used to identify similarities to a set of known
malware artifacts, as shown by Casey et al. [4]. In light of
improving malware analysis utilizing malware artifacts, the
current prototype provides a detailed graphical represen-
tation for malware analysis to identify: (1) indicators of
compromise and malicious activities, (2) tampering, modifi-
cation, and possible damages occurred on the system, (3) the
mechanic of how malware functions and infect, (4) the pri-
mary target of the malware, (5) the suspicious events occurred
on the network, (6) the impact on the host and its reg-
istry, and more notably (7) the time and process dependen-
cies occurred while executing the malware, the key feature
of MalView.

IThe application and demonstration video of MalView can be accessed at:
https://malview.netlify.app and https://malview.netlify.app/video.
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Malware visualization systems can be categorized into
three categories: Malware forensics, Malware Comparison,
and Malware Summarization [5]. The work in MalView is
under Malware Forensics and Malware Comparison cate-
gories: assisting the understanding of the behavior of an
individual malware sample for forensics. By exploring the
characteristics and relationships between the process and its
dependencies and mapping them to visual features, MalView
provides an interactive and intuitive platform to comprehend
malware behavior towards the ultimate goal of generating
rules and signatures for fully-automated malware detection
systems. To demonstrate the effectiveness of MalView in
identifying and interpreting malicious and suspicious activ-
ities of malware, the paper reports the analysis of differ-
ent families of malware namely: Remote Access Trojans
(RATSs), Backdoor, Ransomware, Behavioral, Email Flooder,
and Hacktool. The results show that using MalView it is pos-
sible to quickly understand the main functionalities of the
underlying malware without delving into a complex analysis
of the static and dynamic analysis reports.

While conducting the case studies and inspecting some
malware families, the authors noticed the different behavior
exhibited by the same malware on different operating system
(OS) platforms. As a result, each malware was executed and
inspected on three different Windows platforms: Windows
XP, Windows 7, and Windows 10. Even though the execution
of each malware was performed in a controlled environment,
it was noticed that the newer platforms of Windows operating
systems (e.g., Windows 10) were creating more system and
kernel-level processes making it harder to thoroughly inspect
and analyze the exact flow of each malware on these recent
versions of platforms. As a remedy for such problem, it is
suggested to apply additional filtering mechanisms in order
to analyze each malware and its processes thoroughly. This
paper makes the following key contributions:

1) It introduces MalView, a malware visualization tool to
enable analytical reasoning of malware behaviors.

2) The MalView visualization tool visualizes the output of
several dynamic and static analysis tools.

3) The tool also integrates the output of many anti-virus
tools using their Application Programming Interface
(API) to provide additional insights for each malware.

4) The paper demonstrates the efficiency and effective-
ness of MalView through several case studies conducted
on a set of the family of malware.

5) The paper also compares the behavior of each malware
when executed on three different Windows platforms
(i.e., XP, 7, and 10) in order to recognize the impact of
environmental settings on malware comprehension and
analysis.

A. ORGANIZATION OF THE PAPER

The rest of the paper is laid out as follows: Section II gives
an overview of the data collected and feed into the visual-
ization. Section III introduces the system and visualization
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tasks that guide the system design. Next, section IV elaborates
on the visual components with interactivity and highlights
the key features of MalView. Section V presents the analy-
sis performed using MalView on a set of family of malware
types. The influence of the running platforms on malware
behavior is articulated in Section VI. A feature-based com-
parison of MalView and some other malware visualization
tools is demonstrated in Section VII. The state-of-the-art of
malware visualisation is presented in Section VIII. Section IX
concludes the paper and highlights the future research work.

Il. CAPTURING DYNAMIC BEHAVIOR USING ProcMon
Dynamic analysis aims at studying the behavior and actions
of malware sample when it is executed. This technique ana-
lyzes malware and returns the collected information of such
behavior and actions for further processing or analysis [5].
Assuming that the malicious sample does not employ any
anti-forensics guards, in this paper, the Windows Sysinternals
Process Monitor [6], or Procmon, is employed to capture
the run time behavior of malware during execution. MalView
visualizes the outputs and traces produced by Procmon rather
than explicitly executing a given malware directly. During
the dynamic analysis of malware execution, Procmon can
capture five types of events that the Windows-based malware
interacts with the host system: 1) file system, 2) registry,
3) network, 4) process and 5) profiling.

While capturing dynamic behavior of malware, it is impor-
tant to use a proper Procmon filtering to avoid capturing
unnecessary information from the normal execution of the
system. Furthermore, even when the underlying system is
idle, it has numerous background processes running that can
be captured by the Procmon. As a result, the authors filtered
out the activities by capturing suspicious processes only rep-
resented by functions commonly encountered by malware
analysts [7], [8]. Furthermore, they excluded the default sys-
tem operations such as Procmon, Autoruns, Sysmon from
further visualization and analysis.

A. DATA ATTRIBUTES

Procmon provides records of Windows activities through the
low-level system events, where thousands of events are gener-
ated every minute. The standard output in Comma Separated
Value (CSV) format from Procmon is used as the primary
input for visualization components in MalView. One row in
the CSV log file demonstrates one specific event and com-
prises of these major attributes [9]:

o Time of Day: The timestamp of the day when the event
occurred.

o Process Name: The name of the process — active exe-
cutable, performing the operation.

o PID: Process identifier (ID).

o Operation: The name of the executing operation.

o Path: The path to the target object being operated
on. This field can be empty, depending on the opera-
tion/process.

VOLUME 10, 2022

o Result: The result of the operation. The values for this
field include success, denied, or access.
o Detail: The additional notes about the event.

B. EVENT CATEGORIES
The log file output from Procmon contains five major types of
process activities, which are color-coded in our framework.

« Registry: Events of registry operations, such as querying
and enumerating keys and values.

« File System: Events related to operations on local and
remote storage and file systems.

« Network: Network activities, including TCP and UDP.

o Process: Events of process/thread, such as process cre-
ation, start, and exit.

« Profiling: Events for every process in the system in terms
of memory used, kernel and user time charged, output as
a log for the profile.

Ill. MalView: SYSTEM OVERVIEW

MalView is aimed at accelerating malware analysis and inte-
grating visual analytics to enable interactive data exploration
and malware behavior comprehension. Figure 1 depicts the
architecture of MalView. The flow of information in MalView
is as follows: 1) It uses a data provider in dynamic analysis,
where the malware sample is executed on a host system, then
the data provider logs relevant information into execution
traces. 2) MalView takes in the raw data captured by the data
provider, extracts the information, and maps them to visual
features. 3) MalView explores the relationship between each
process and its dependencies. To the best of our knowledge,
this feature has not been taken into account in previous work,
not only the malware as an individual but also its interactions
with the system and the artifacts created.

The MalView prototype provides visual representations
for system and malware activities captured by Procmon [6]
utility. In the context of malware analysis, four important
system-level activities are of utmost importance that need
to be captured, namely registry, file system, processes and
threads, and network activities. These are four major cate-
gories that are highlighted by InfoSec [7], [8] as an indication
of malicious activities. The processes and events related to
these four activities are captured by Procmon, filtered, and
then fed to MalView.

MalView provides an analysis of linked views with inter-
actions for users to gain comprehensive insights into mal-
ware behaviors within the system. Details of MalView visual
components with their corresponding interactive features
are described in the following section, MalView: Visual
components.

The tool MalView is developed as a web-based appli-
cation using JavaScript and D3.js library created by
M. Bostock et al. [10]. The primary goal of MalView is to
provide an interactive visualization platform that demon-
strates the malware behaviors and interactions within the
system. The captured events are presented in multiple
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FIGURE 1. The schematic overview of MalView framework for analyzing the dynamic

behavior of malware. The visualization provides linked views and

supports interactive features, such as filtering, highlighting, ranking, and details-on-demand.

perspectives: in a temporal manner of processes and function

calls between them, the dependency graph between a pro-

cess and the objects it operates on, including registry, system

files, network addresses, and dynamic-link libraries. The plat-

form gives classification of malicious or benign connecting
domains with further analysis. To meet the primary goal, .
MalView implements the analysis tasks below, based on the
analysis task types for employing information visualization
systems [11]:

o« T1 Provide a comprehensive overview of system
activities. The visual design should present the general
distribution of activities chronologically to facilitate the
initial summary based on the selected malware.

o T2 Display details-on-demand for activities and .
interactions. The user can get a close-up look at an
entity or select an activity to view its event data. The
system should show the information in a deeper level
of supporting details that accompany the interactions
among different processes.

o T3 Characterize data distribution for processes and o
their dependencies. In addition to displaying the
detailed information of processes on demands, it is also
important to show the distribution of temporal patterns
of processes and simultaneously use that as the context
to explore their dependencies. To this end, the system

its dependencies. To characterize the complex associ-
ations between entities within the system, the system
should show the relationships caused by interactions
among processes and function calls from a process to its
dependencies.

TS Highlight critical activities in context. Here, crit-
ical is defined in context: For the timeline as a whole,
MalView should allow user to zoom into the time interval
that captured the most active interactions of the malware.
For malware activities in particular, the system should
incorporate filter-based feature to highlight the com-
monly encountered malicious types, besides the original
representation.

T6 Order the entities based on dependencies charac-
teristics. A specific ranking order along a data dimen-
sion be of tremendous help in the arrangement of
visual components to convey important characteris-
tics and allow the user to focus on the top essential
entities.

T7 Classify malicious vs. benign activities. Another
key to understand malware forensics is the ability to
show the malicious and benign activities. The system
should be able to classify the level of malice that cor-
responds with the malware sample captured.

should show the groupings of operated objects (e.g., IV. MalView: VISUAL COMPONENTS
dynamic-link libraries) based on their similarities in fea- Taking into account the mapping to time, the associations
tures. between processes and dependencies, and guided by the

o T4 Present the associations: relationships among designed tasks, we designed the user interfaces of MalView.
processes and function calls between a process and Figure 2 depicts the main modules of MalView for

99912
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FIGURE 2. The MalView system contains the following main views: Input and Operation Overview (A), Processes Activity (B), Classification (C), Process
Dependencies (D) and Libraries Matrix (E). The Process Activity view has another mode of showing the referenced operated object (B1), with feature of
lensing for zooming in upon a particular interval in both viewing modes. Detail-on-demand is provided upon mouse interaction on selected item, as in

the example in panel (B2).

supporting users in comprehension and visual reasoning of
malware activities and interactions.

A. INPUT AND OPERATION OVERVIEW

MalView provides the options for users to select input data
from a default set of data samples or from their local machine,
as depicted in Figure 2, panel (A1). The default dataset con-
tains more than 60 samples of primary input data, help-
ing users to familiarize themselves with the system and
explore how the tool works. In addition to the default dataset,
MalView allows users to use and analyze the output log file
from running Procmon on their machine via the “Choose
file” button for uploading the file for direct analysis.

After the input file is uploaded, the operation overview
(A) shows how the operations are categorized and allows
user to observe the the prevalence of event types (visualiza-
tion task T3). Each event type is represented as a rectangle,
stacked horizontally by its category in a bar chart visualiza-
tion. There are four color hue representing four categories:
yellow for File System, blue for Process and Thread, green for
Registry, red for Network. We employ the color coding based
on the category the event type belongs to and incorporated it
with the statistics of the amount of total corresponding func-
tion calls during the monitored period. An individual event
type is mounted with interactivity: it acts as a button provid-
ing filtering upon mouseclick, the result of which is shown
directly on the below adjacent panel, processes activity (B)

VOLUME 10, 2022

A special group of existing critical operations, defined by
“Commonly encounter’” from InfoSec [7], [8], is shown on
the right of panel A. All the available operations captured
that match the commonly encounter criteria are presented.
This list serves as a selection box for highlighting critical
activities in both operation overview and processes activity
(visualization task T5).

B. TEMPORAL PATTERNS

Building upon the visual information mantra by Shneider-
man [12]: “Overview first, zoom and filter, then details-on-
demand,” the process activity in Figure 2(B) is designed to
explore the temporal patterns from the system’s low-level
events along with inter-process communications. The time-
line is presented horizontally from left to right, while the
processes are listed vertically. Besides the operations exe-
cuted by a process itself, there are interactions between two
processes, such as one creating the other with its primary
thread, demonstrated by the arc connecting the two. On top
of panel B is an area chart showing the arc distribution, pro-
viding the overview of the function call frequencies (visual-
ization task T1).

Each process is associated with an aligned set of events
executed by the process itself. An individual event is rep-
resented by a thin vertical bar, color coded by its event
type, which is introduced in section II-B and presented in
panel A. These small, thin bars are presented with 50%
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transparency so that if multiple events appear at nearly the
same time, the color will add up on display (visualization
task T3); therefore, users can see that the calls are busy there
and there is a chance for anomalies detection at these spots
(visualization task T7).

The interaction arc starts from the parent process (the one
that initializes the call, or the source) and ends at the child
process (the destination, or the target of the call) (visualiza-
tion task T4). The interactions here are the typical events of
processes and thread, as specified in section II-B; hence they
have the blue color of process and thread category. One of
the most common events in this category is Process Create,
in which a process creates a new process and its primary
thread. Besides the source-target interactions, MalView also
supports to visualize the call-to-self events (or the loops).
In this case, the process is both the one that initializes and
the target of the call.

MalView supports details-on-demand in terms of process
detail, event call detail, filtering calls related to one specific
process, and zooming in a period (visualization task T2).
The details of an event can be shown on the tooltip by
mousing over the corresponding bar, including process name,
operation, event type, timestamp, process ID, and additional
operation-specific information about the event, as shown
in Figure 2(B2). Similarly, the detail of process interac-
tion is displayed on the tooltip by mousing over the arc,
providing information on the source process, target pro-
cess, and the event type of the call. For a particular pro-
cess, users can choose to observe only the call originated
from or to this process by a simple mouseclick on that pro-
cess. The zooming feature for the arc distribution (visu-
alization task TS) will be presented with a case study in
section VI-D.

1) OPERATED OBIJECTS

This processes activity panel supports the detail view by a
magnification feature called “Lensing” (visualization task
T2). When this feature is enabled, hovering along the time-
line will expand the current window at that time step. For
example, panel (B1) in Figure 2 presents the “Lensing” fea-
ture for the interval of 2:27:22 to 2:28:06. Here, the view
shows another mode of presenting the referenced stream-
graph rather than individual events. We utilize the event cate-
gorization that revolves around five key types: registry, file
system, network, process, and profiling, to determine the
operated objects. Since profiling operation can be less infor-
mative about process activity and more about kernel time
and memory used, we exclude profiling from the scope of
our operated objects. In addition, dynamic-link libraries that
contain code and data that can be used by more than one
program at once are also indispensable from the analysis pro-
cess. These considerations lead to our final operated object
list: registry, network address, system file, exe (executable
file), and dll, as shown in panel (D1). That serves as a ref-
erence to both panel (B1) and, later, process dependencies in
panel (D).

99914

C. MALWARE AND CLASSIFICATION

Figure 2(C) presents the classification for malicious or benign
activities of the captured log file produced by Procmon (visu-
alization task T7). Aligning with the primary aim of pro-
viding a visual analytics tool and platform to demonstrate
malware’s static and dynamic behavior, MalView captures
the results provided by the integrated APIs and visualizes
them to the end-user. MalView incorporates a number of APIs
such as VirusTotal API and inherently relies on the output
produced by these APIs. We investigate the target domains
that the network activities are connected to. The extracted
information for each connected domain contains its Internet
Protocol (IP) address, the detection classification results, the
associated process and activities related to the domain, and
lastly, the country to which the server is hosted.

Target Domains 1P Address VirusTotal Detection  Associated Processes | Activities  Country

maatuska 471158 200167c289c:9  Ji explorerexe | TCP Reconnect 2 Stockholm, Stockholm, Sweden

© undetected (7)
@ harmless (69)

svchostexe | UDP Send
svchostexe | UDP Receive

netdnsintacottuedu 129118147 = Lubbock, Texas, United States

any-in-20151e100net 2162393221 @ harmless explorerexe | TCP Connect = Mountain View, California, United States

FIGURE 3. MalView analysis summary of TeeracB malware on Windows 7.

The API automatically scans a given malware, and
their patterns are automatically compared with more than
70 servers and databases. The classification result consists of
four categories: malicious, suspicious, undetected, or harm-
less, each indicated by the number of detections found corre-
sponding to the targeted domain. Spring et al. [13] discussed
that the malicious domains are attempts to connect with a
command and control server or dropbox and are expected
to behave differently from a typical phishing or a drive-by-
download malicious site. In MalView, this list of connecting
domains is ordered by the variety of the outcomes of each
domain (visualization task T6). Figure 3 demonstrates the
analysis summary of TeeracB malware on Windows 7. One
malicious domain is detected, named ‘‘maatuska.4711.se”,
connected by the “explorer.exe” process with “TCP Recon-
nect” activity.

D. PROCESS DEPENDENCIES

This process dependencies view (Figure 2(D)) presents an
in-depth analysis of each process in the system, where one
process can operate on many types of objects, as introduced
in section IV-B1 and shown in panel (D1). The visualization
task T4 is actualized as presenting the one-to-many relation-
ships between the process and its dependencies. In addition,
as the number of dependencies increases in cases with com-
plex activity, we need a way to handle visual clutters by
reducing the number of visual elements while preserving the
structure. For these reasons, we employ 1) the force-directed
layout with node-link diagram to demonstrate the relation-
ships and 2) the node bundling technique [14] incorporated
into the force-directed layout to reduce visual clutter by node
aggregation. Force-directed layout has been explored in many
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efforts, such as [15], [16], [17], to represent the even distribu-
tion of nodes and links and speed up spring force calculations.

The process dependencies panel contains multiple win-
dows; each corresponds to one single process, ranked by the
degree of that process node (visualization task T6). In each
window, aside from the main process node (positioned in
the center of the graph with thick, dark stroke), each node
can be in one of the two states: individual or bundling. The
individual state corresponds to each node representing one
object operated on by the process. The bundling state leverage
the node bundling/aggregation technique [14], as shown in
the top panel of (D), where each node encompasses multiple
objects with the same type and connection. The size of this
bundled node is proportional to the number of the individual
nodes it comprises (visualization task T3). Mouse-clicking on
a bundled node transforms itself into a set of individual nodes
bounded by a convex hull, as shown in the lower panel. These
two states can be switched back and forth by a single mouse
click on the bundled node or the convex hull surrounding
the internal nodes. Besides the source-target type of connec-
tion, the graph also presents the available call-to-self events
(the loops) of each process, in accordance with the processes
activity panel in Figure 2(B).

E. LIBRARIES MATRIX

Figure 2(E) describes the dynamic-link library (DLL) calls
by each process (visualization task T4), supporting users to
detect the abnormal frequency patterns (visualization task
T7). These are the Windows API calls to the libraries
that are part of the Windows operating system, not to be
confused with the one calling VirusTotal/IPStack API for
scanning connected domains, as presented in Section IV-C.
System activities may involve multiple library calls from
one process or a common library providing resources for
various processes. To represent vast number of relation-
ships between processes and libraries, MalView utilizes an
interactive heat-map matrix to prevent cluttering in contrast
to conventional node-link graph visualization (visualization
task T3). In the matrix, each cell value is color encoded
by the gray color scale, in which darker presents frequent
calls while lighter is rare calls. There are several criteria for
ranking processes (rows)/libraries (columns): by similarity,
frequency, or the number of different libraries called.

V. CASE STUDIES

In an effort to provide its users with a safe and pro-
ductive experience, Microsoft provides information about
malware and unwanted applications affecting its operating
systems online [18] and details about these in its docu-
mentation platform [19]. Microsoft [19] classifies malware
into 13 categories categories:1) Backdoor, 2) Downloader,
3) Dropper, 4) Exploit, 5) Hacktool, 6) Macro virus, 7) Obfus-
cator, 8) Password Stealer, 9) Ransomware, 10) Rogue secu-
rity software, 11) Trojan, 12) Trojan clicker, and 13) Worm.
Furthermore, Microsoft also provides a tool to search for
current cyber threats, viruses, and malware in its online
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platform called Microsoft Security Intelligence (MSI) plat-
form [20].

MalView can be utilized in different settings. 1) When
the objective is to comprehend malware functionalities and
not detection, 2) when a new malware application (zero-day
malware) is developed and not detectable by any tool (due
to lack of profiles and signatures), 3) when the objective is
to classify a family of malware and then employ a set of
generic solutions and remedies to address each class of mal-
ware, and 4) when new malware is developed, and we are
interested in investigating whether it follows some existing
known malicious patterns or not (i.e., labeling malware type).
Accordingly, if there is an incident report about zero-day vul-
nerability where there is no clear patching solution developed,
MalView can help us to analyze and comprehend the malware
with zero-day vulnerability and thus enable us to identify
patches or solutions better. To demonstrate the usability of
MalView in analyzing malware software visually, we con-
ducted a set of case studies in which the output and behavior
of the selected malware were captured. Due to the space limit,
we capture and present the processes involved in seven mal-
ware, namely 1) Backdoor, 2) RemoteAccess, 3) Behaviour,
4) Ransomware, 5) EmailFlooder, 6) Hacktool, and 7) Trojan
(Info stealer). The following sections demonstrate the appli-
cations of MalView to several of these malware types.

A. EXPERIMENTAL SETUP

The malware experimentation setup needs an isolated and
controlled environment so that the malicious code does not
propagate or infect other entities in the network. This clean
and isolated environment also helps to identify the changes
and possible tampers in the system due to the malicious activ-
ities of the malware specimen. For this work, we installed
three different Windows systems on an Oracle Virtual Box:
Windows XP, Windows 7, and Windows 10. The windows
defender services, windows security services, firewalls, and
other automatic security updates were disabled on each of the
virtual OSs to prevent any interruption during the malware
sample’s execution and capture all the traces of their dynamic
behavior. To capture the interaction between the malware and
each host system, Procmon was installed on all environments.
More specifically, all the user applications on the virtual OS
were closed, the malware process name was added to the
monitor filter to capture only the events of the malware exe-
cutable. Then the executable was run for two minutes before
saving the time-ordered system activities from Procmon and
fed to MalView.

Since MalView depends on the output of Procmon, the
amount of information it visualizes depends on how long
Procmon is executed. The execution time also shortens the
amount of data captured by Procmon. According to our expe-
rience with MalView, a larger and more complex output and
traces produced by Procmon makes MalView less effective
since the visualization needs to capture a vast number of
processes and events. However, a key feature of MalView is
to offer different levels of abstraction and complexity. If we
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such as of Local Security Authority Subsystem Service Isass.exe or Virtual Box’s vboxservice.exe.

adjust the window width (interface size) and rerun the sample,
the visual components would readjust to fit the new window
size. More specifically, the execution time depends on how
large the malware sample is, ranging from 0.3s to several
seconds.

B. REMOTE ACCESS TROJAN (RAT)

Remote Access Tools are useful applications to provide
administrative assistance to the end-users remotely. However,
these pieces of software are increasingly abused by adver-
saries to gain control over the target systems and are referred
to as Remote Access Trojans (RATs). RATs are distributed
through email attachments or as a patch with pirated software
to infect the target in order to gain administrative control.
Once the target machines are infected, RATs have complete
control over the victim system to perform malicious activi-
ties, such as password sniffing, keylogging, track file transfer
information, webcam feed, control the system by issuing shell
commands, or even propagate some other malwares/viruses.
RATs are particularly hard to detect, as they execute legiti-
mate operating system processes resembling the behavior of
other commercial remote access tools, and they usually do not
show up as running tasks. Besides, there are tools that enable
performing obfuscation on a given application and produce
obfuscated malicious applications. Using various obfuscation
methods, along with managing resource utilization, RATs can
remain undetected. According to the October 2018 Global
Threat Index [21] published by Check Point, RAT's are ranked
among the top 10 “most wanted”” malware.
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We captured the run time behavior of RATs on differ-
ent Windows and visualized the behavior using visualization
tool MalView. The live malware sample was downloaded
from public malware dataset VirusShare [22]. According to
a multi-scan report from Virustotal [23], this sample has a
community score of 66 out of 70, i.e., out of 70 detection
engines, 66 could identify it as a malicious executable. Fig-
ure 4 shows the detail analysis performed on an RAT sam-
ple using MalView. The malicious indicators presented by
MalView are as follows:

o Process: The malicious executable spawns processes
like explorer.exe, wscript.exe, and svchost.exe. The exe-
cution of these processes indicates that the RAT pro-
gram is trying to start a command prompt and then run
some scripts to start a session to monitor the process
remotely.

o Registry: The sample RAT performs a large number of
registry operations, including the creation of registry
keys as well as a query of the registry entries.

« Files: The malicious PE performs a large number of var-
ious file operations, including the creation of new files
and mapping file systems.

« Network activity: The sample RAT does not demonstrate
any significant number of TCP/UDP requests.

Besides the malware-associated events, MalView is also
able to capture the recurrent pattern of periodical operations,
such as the system process of Local Security Authority Sub-
system Service Isass.exe or Virtual Box’s vboxservice.exe.
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The influence of running platform will be discussed further
in Section VI.

C. TROJANS

A Trojan is a type of malware that pretends to be a benign pro-
gram, but after installation, it executes hidden code and then
performs malicious activities such as deleting or tampering
with data, stealing information, running some other scripts,
and creating backdoors. In general, it enables the attacker to
access the victim’s system, and these types of malware are
not able to replicate themselves [24].

1) SAMPLE TROJAN

A sample of Trojan> was obtained from VirusShare [22]. The
output file containing all the processes was created after run-
ning the malware in a controlled environment using Windows
7 as its platform. Figure 5 shows the MalView output for this
malware. We applied lensing on the critical period to view
the activity details. We chose four important processes based
on the dependencies, including cmd.exe, tmp.exe, reg.exe, and
timeout.exe.

By clicking the name of this malware on MalView Pro-
cess Activity window, we can observe that this executable
file has created two processes: cmd.exe and tmp.exe (at the
blue links). By further clicking on the child process, we can
retrieve the list of processes created by cmd.exe and tmp.exe.
Then, the cmd.exe process has created two child processes:
reg.exe and timeout.exe. The tmp.exe process did not create
any child process. The process networks of cmd.exe, tmp.exe,
reg.exe, and timeout.exe are overlaid on top of the process
timeline on request.

2) TROJAN Multilnjector

Multilnjector, under trojan classification, is a trojan that tries
to inject code into other processes to hide or execute its pay-
load and download and install other malware [25]. Figure 6(a)

2MD5:b3eebe51cccda95815ddef3ef55604d2
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presents a sample of trojan Multilnjector under MalView anal-
ysis. MalView reveals the sequence of Process Create events
generated by the malware and its interactions with other
processes in the system, with multiple recurring patterns of
function calls. Panel (b) shows the result of zooming into the
most active/busy interval that was automatically detected by
the tool, while panel (c) presents the outcome from filtering to
highlight only interactions associated with the malware. The
final result patterns are shown in panel (d).

By exploring details-on-demand via mousing over,
as shown in panel (c), the first event in this sequence is
Process Create from the malware to cmd.exe leading to the
subsequent calls. Around 12:23:47, there are four consecutive
Process Create calls from the malware to net.exe. The subse-
quent calls can be seen in panel (b) and panel (a) (for a broad
view). Finally, the repeated event patterns associated with
malware are clear in panel (d): one Process Create event from
the malware to cmd.exe, followed by the four subsequences
to net.exe. The behavior from this observation aligns with
the characteristics of the malware of injecting code into other
processes. The visualization helps to discern these low-level
operations from the malware to other system processes.

D. BACKDOOR

A backdoor is a type of malware that provides unauthorized
remote access to the compromised system by exploiting secu-
rity vulnerabilities. The malware works in the background
while hiding from the user. Meanwhile, it enables the attacker
to have access to the victim’s computer, such as databases
and file servers, as well as running system-level commands.
The process of injecting Backdoor is usually performed in
two stages: First, a small file, called a dropper, is installed.
Second, the dropper downloads the main malicious file from
a remote location [26]. It is important to mention that Trojan
and backdoor malwares are not the same: A Trojan might con-
tain a backdoor, but a backdoor can execute as a stand-alone
program without being a part of a Trojan.
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FIGURE 6. Trojan Multilnjector under MalView analysis: the sequence of Process Create events generated by the malware and its

interactions with other processes in the system.

The MalView visualization of malware Backdoor Androm
execution on Windows 7 is presented in Figure 7. The
accumulation of interactions presented in the top area chart
divides the observation into two phases. The first phase
heavily involves activities associated with the malware and
svchost.exe. The last function call from the malware is to
regasm.exe (at the end of Box A), followed by an interest-
ing recurring pattern in the second phase, as highlighted in
Box B. This recurring pattern starts with a function call from
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regasm.exe itself to schtasks.exe, where the time between the
two patterns is about two seconds. Here, process regasm.exe
is the assembly registration tool, which reads metadata within
an assembly and adds necessary entries to the registry.

The overlay dependency graphs in Figure 7 open up sev-
eral interesting findings. First, although its activities end
early during the observation, the malware operates on mul-
tiple registry files, as shown by the large size of the green
registry nodes. Second, svchost.exe has a long sequence of

VOLUME 10, 2022



H. N. Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

IEEE Access

Box A

< ——A
rogameRe ~ g2 T0onGirom o

resyem a1 T Eea

ProcessThvead (734 [ERI]
oo [ ! |

Network (174 |||||

| 13ef35e912a54739a27015éecc3fbbaeafzba2b7a2a4gbfd11e26eogga330926.exe
‘l Malware Backdoor Androm

- (AR IRl !

sichostexe

7:25:46 7:25:50 ‘ \ 7

\ ® .
(I B | |[JH| [ EEIIE 1 ESv—r—rreeere = svhostexe
[ taskeng.
it gexe
F\, " googleupdate.exe
googlecrashhandlerexe
T A fl [T [ regasm.exe
(A | Schtasksiexe
-/ .
M§k>exe
/ xplorerexe
| T - [~ regamee
"|'<\:onhost‘exe .
1Ry

] software_reporter_toolex¢
‘ Isass.exe
vboxservice.exe
vboxtray.exe

‘ |services.exe

‘ taskhost.exe

‘ searchindexerexe

lsm.exe
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periodic operations on registry files and operates on numer-
ous types of objects, as seen on the dependency graph. As the
generic host process for Win32 services, it also makes func-
tion calls to the malware process twice, about five seconds
apart. Finally, while regasm.exe interacts with five other pro-
cesses, it only shares dependencies with schtasks.exe. The
dependency graphs and process activity timeline are comple-
mentary and can effectively support the analytical reasoning
of malware behaviors.

E. RANSOMWARE

A typical ransomware program encrypts the victims’ com-
puter files and demands a ransom to restore access to the
data. A ransomware program locks a system utilizes some
visual messages, imposing law enforcement to threaten the
target. The ransomware scam has matured over time, utiliz-
ing different methods to impair a computer. According to a
report published by Symantec [27], the latest advancement
prevents the computer from functioning and dismisses the
client from gaining any access. The system at such a stage
displays a message that proclaims to be from a local law
enforcement organization. The ransomware application asks
for money in exchange for letting the users re-gain access to
their systems. In recent news in July 2021 by Malwarebytes
report [28], a severe ransomware attack was reportedly taking
place against the popular Remote Monitoring and Manage-
ment software tool Kaseya VSA. This attack has forced to
immediately shut down the VSA servers, where Kaseya VSA
was used to encrypt over 1,000 businesses. The attackers
are asking for $70M in exchange for a universal decryp-
tor. Also reported by Malwarebytes [29], 35% of small and
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Malware Visualization

Processas

2

FIGURE 8. MalView analysis summary of ransomware WannaPeace on
Windows 7.

medium-sized businesses were under attack of ransomware.
A lot of times, these organizations end up paying for the
ransom. According to a multi-scan report from Virustotal, the
sample studied in this paper has a community score of 47 out
of 72, i.e., out of 72 detection engines, 47 could identify it as
a malicious executable.

Figure 8 shows the visualization for the dynamic activities
of the ransomware wannapeace.exe.> The malicious indica-
tors presented by the MalView are as follows:

3MD5:eefa6f98681d78b63115d7e58934c6ec
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o Processes: The time window shows that the ransomware
spawns: conhost.exe and consent.exe. The conhost.exe
indicates that the ransomware is accessing the command
line, whereas the consent.exe is an indicator that the
program is trying to utilize the user access.

o Registry: It creates a registry key to make changes.

« Files: Malicious PE performs a lot of file operations. For
instance, it performs 3434 times of CreateFile opera-
tions and 601 times of WriteFile operations.

o Network activity: The malware performs many
TCP/UDP connection requests, sends, and receives.

« Domain Activity: It connects to seven different domains,
as shown on the upper right corner of Figure 8.

F. BEHAVIORAL MALWARE

At the time of this writing, a search on Microsoft Security
Intelligence threat search platform [20] returned 500 malware
as Behavior type, in which the distribution of alert levels was
as 400, 38, 3, and 16 for severe, high, moderate, and low,
respectively. A behavior type of malware generally includes
malware that exhibits suspicious activities, but it is not clas-
sified into a specific popular category of malware. This type
of malware is difficult to detect because its activities can
greatly vary depending on the intention of the underlying
malware and the current user context. Our study of several
malwares in ‘“Behavior” type shows that these suspicious
activities include 1) disabling system recovery, 2) deleting
shadow copies, 3) hidden code executions, 4) creating files
in the user’s system, 5) changing the registry key to run itself,
and 6) accessing to netsh.exe to modify firewall configura-
tion that allows itself to run on system startup. Examples of
such behavioral malware include Bladabindi.gen [30], Vaw-
trak.A [31], and Teerac.B [32]. Furthermore, some behav-
ioral malware (e.g., Multilnjector [33]) involves accessing the
command prompt (CMD).

For instance, Figure 9 shows suspicious activities from an
example of the Behavior malware type called Bladabindi.
Panel (a) shows that it starts netsh.exe to modify firewall
configuration to add itself as a permissible program. Panel
(b) provides a piece of evidence as it sets the registry value
(RegSetValue) on the user system to runs itself at Windows
Startup for the same malware.

Progral bladabindi.exe (a) Program bladabindi.exe (b)

Operation ~ Process Create Operation  RegSetValue

Eventtype ProcessThread Eventtype Registry

Timestamp ~ 8:22:43 5055929 AM Timestamp 22450040051 AN
hkim\software\microsoftwindows\

Path currentversion\run\f84b68da87be0
e442dacbf93621b7919

Path c:\windows\system32\netsh.exe

PID: 2032, Command line: netsh

Detail firewall add allowedprogram Type: REG_SZ, Length: 88, Data:

"C:\Users\IEUsen\Desktop\Bladabi Detail "G:\Users\IEUser\Desktop\Bladabi
ndi.exe" "Bladabindi.exe" ENABLE ndi.exe" ..
PID 352 PID 352

FIGURE 9. MalView shows suspicious activities from a Behavior malware,
named Bladabindi. Panel (a) shows that it starts netsh.exe to modify
firewall configuration. Panel (b) depicts that it sets the registry values to
run itself.
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G. HACKTOOL MALWARE

Hacktool is a piece of software that malicious attackers use
to gain unauthorized access to user’s devices [18]. As of
the time of this writing, Microsoft lists 188 active entries as
Hacktools, of which 93 are severe, 80 are high, and 15 are
moderate in terms of alert levels [20]. The popular attacking
channel for Hacktool is via insecure Universal Serial Bus
(USB) communication design and Windows Autoplay fea-
tures [34]. Malicious activities for Hacktool launched from
USB include 1) changing registry settings, 2) installing a
backdoor, 3) stealing confidential information, and 4) reading
data encryption keys. Recently, besides Trojan, Hacktool is
also the second most prevalent type of malware embedded in
pirated software [35].

Figure 10 shows MalView view while analyzing a sample
of Hacktool malware type named Mailpassview [36]. It first
creates svchost.exe process (a). The svchost.exe process then
creates windows update.exe (b). This process then creates
several files like holdermail.txt (via using vcb.exe) to store
“Browser Password Recovery Report,” pidloc.txt to contain
information of compromised computers (c). These are the
pieces of evidence about the existence of Hawkeye Keylog-
ger [37] to steal sensitive data (e.g., email password).

| mailpassviewexe

B 1Y [|wscrintexe
L[ L IRERRE (0 |

I | conhostexe

(T R ] 0 UMNT 00
® S
o 1 LML

| powershellexe

svchostexe

‘ dllhost.exe

| l‘ ‘ ‘ | ‘ windows update
Program \ mailpassview.exe
\ (d) Program\_ windows update.exe (c)
Operation ~ Process Create .
Operation CreateFile
Eventtype ~ProcessThread Eventiype  FileSystem
Timestamp  1:10:55.0644694 PM MSMPENGEXe | 1ociamp  1:10:59.8371726 PM
Path cwindows\syswowB4\wscript.exe oath cAusers\ieusenappdatavoaming\pi [
_ o diocixt
PID: 6292, Command line:
i “C:\Windows\System32\WScript.e Desired Access: Read Attributes,
Detail xe Disposition: Open, Options: Open
'C:\Users\IEUser\AppData\Loca\T Detail Reparse Point, Attributes: n/a,
emp\s7.vbs" 0 ShareMode: Read, Write, Delete,
AllocationSize: n/a
PID 6772
PID 3844

FIGURE 10. MalView view on a Hacktool malware type called
Mailpassview. It first creates process svchost.exe (a), then svchost.exe
starts windows update.exe (b), and then windows update.exe creates
pidloc.txt (c).

Determining whether the connecting domains from net-
work activities are malicious or benign is important. The clas-
sification for malicious connecting domain for the malware
Mailpassview is shown is Figure 11. Among the examined
domains, iplogger.com is assessed as malicious and suspi-
cious by VirusTotal, with the IP address 88.99.66.31 from
Gunzenhausen, Bavaria, Germany. Recall from the chained
calls shown in Figure 10: The process corresponding to the
malware mailpassview.exe called and initiated wscript.exe
with Process Create (panel “D” in Figure 10), then
wscript.exe also called and initiated powershell.exe with
Process Create. This chain continues with process power-
shell.exe connecting to malicious target domain iplogger.com
with four different activities: TCP Connect, TCP Send, TCP
Receive and TCP Disconnect. Here, wscript.exe is stored
in C:\Windows\System32 and provides an environment in
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FIGURE 11. The classification for malicious connecting domains from
malware Mailpassview. The target domain iplogger.com is assessed as
malicious and suspicious by VirusTotal. This domain is connected from
powershell.exe via four activities: TCP Connect, TCP Send, TCP Receive
and TCP Disconnect.

which users can execute scripts, which is different from
the malicious programs that malware programmers or cyber
criminals write and name it as wscript.exe.

VI. THE INFLUENCE OF RUNNING PLATFORMS ON
MALWARE BEHAVIOR

To examine how malware behaves in different platforms,
we also executed multiple malware on Microsoft’s main-
stream Windows OSs.

A. RANSOMWARE

The ransomware samples were collected under different Win-
dows platforms and had their behaviors compared using
MalView. Figure 12 captures the behavior of the ransomware
on Windows XP, Windows 7, and Windows 10, respectively.

o The ransomware sample performs a large number of
registry operations on both Windows 10 and 7; whereas,
it accesses the registry just one time on Windows XP.

¢ On Windows 10, the ransomware did not perform any
file operations; whereas, Windows 7 shows many file
activities. The Windows XP platform shows traces of a
few file operations.

e The DLL called by the ransomware remained almost
unchanged for three platforms.

o The upper right panel of the tool shows a time interval
sequence of process, file, registry operations performed
by the ransomware. Both Windows 10 and Windows XP
show that the malicious PE executes sparsely; whereas,
on Windows 7, it shows more consecutive operations.

« The lower right panels show the statistics of commonly
encountered and critical activities of the ransomware.

B. EMAIL FLOODER

We chose the “‘email flooder” malware to compare the visu-
alization for this sample run in different platforms, including
Windows XP, 7, and 10, as depicted in Figure 13. In partic-
ular, the output for Windows XP is simpler than the outputs
produced by Windows 7 and 10. For example, the number
of different processes for Windows XP is four vs. seven and
nine for Windows 7 and 10, respectively. In addition, the total
number of operations is much higher in Windows 10 than in
Windows XP. It is observable that there is more information,
including more processes, calls, dependencies, and activities
in Windows 10 and 7 than XP. Since some of these pieces
of information might be because of the Windows activities
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FIGURE 12. MalView visualizations of the sample ransomware on

(a) Windows XP, (b) Windows 7, and (c) Windows 10.
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FIGURE 13. MalView visualizations of Email Flooder on (a) Windows XP,
(b) Windows 7, and (c) Windows 10.

themselves and not the malware activities, tracking malware
behavior in newer platforms might be more complicated.

C. BEHAVIORAL MALWARE

Figure 14 shows MalView views applied to Bladabindi
malware executed on these three Windows operating sys-
tems in the top panel, middle panel, and bottom panel,
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FIGURE 14. Bladabindi malware executions on different platforms:
Windows XP (a), Windows 7 (b) and Windows 10 (c).

respectively. In general, more platform-related processes are
being executed in the latter two operating systems in compari-
son to Windows XP. However, its suspicious activities remain
the same. In all platforms, it first starts netsh.exe to modify
firewall configuration and then sets the registry values to run
itself.

D. PATTERNS ACROSS PLATFORMS

One of the key features and benefits of employing visualiza-
tion tools is to perform pattern detection and classification
visually prior to delving into analytical approaches. MalView
captures key features that are indicators for profiling classes
or families of malware.

More specifically, using MalView it is possible to cap-
ture features such as volume of processes, registry activi-
ties, files manipulation and accesses, and network activities.
As described below, these features are able to detect any
“behavioral patterns in the set of malware studied and thus
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enable us to classify them according to their dynamic behav-
ior. Instead of trying to generate patterns of interest, in this
study, we show how the analysis works based on malware
behavior tracing, the kind of information it entails, and how
the tool can enable analysts to quickly study the interaction
of malware with system internals using selections, focus and
context technique, and aggregations.

With MalView, we focus on the interactions of the malware
program to other system internals processes. While Proc-
mon, as the data provider, brings detailed information into
each of the processes running in the system, the interval
and log activity captured may be subjective to the person
behind the capturing execution. To focus on the time inter-
val in which we can witness the most significant amount of
malware activity to other system internals processes, called
busy interval, we applied focus and context visualization
technique in MalView to support 1) close-up view for indi-
vidual malware analysis and 2) standardization for malware
comparison. To accommodate the context around the focal
point, we select the interval that satisfies either ensuring the
equal paddings to the first and last interaction to the bound-
ary of the interval or equal paddings to the peak of the area
chart - where there witness the highest amount of interactions.

Patterns of Bladabindi malware behavior across platforms:
(a) Windows XP, (b) Windows 7, and (c) Windows 10, all
under focus and context technique with busy interval length
of 20 seconds, are shown Figure 15. By using mousing over
an arc representing a function call, an user can observe the
detailed information including type of operation, source and
target processes. A recurring pattern observed from the blad-
abindi is the following sequence of calls: A ProcessCreate
from explorer.exe to the malware, following by a Process-
Create from the malware to netsh.exe. As shown in Fig-
ure 5 and Figure 7, different processes produce very different
dependency connections in terms of topology, grouping and
volume. However, as presented on the right of Figure 15,
the dependencies of the three bladabindi malware processes
across different platforms demonstrate many similarities: the
three biggest nodes that have the degree of one are all from
registry (green), file (sand color), and dll (grey). For nodes
with a degree of two - having connections with both blad-
abindi and netsh.exe, their categories are the same regardless
of the running platforms. For further analysis, these patterns
can serve as indicators for such classes of malware.

VIl. MALWARE VISUALIZATION TOOLS VS. MalView

This section compares the features offered by MalView with
the ones offered by some other malware visualization tools,
including Hybrid [38] and AnyRun [39]. First, we briefly
review each visualization tool and then compare its features.

A. AnyRun: INTERACTIVE ONLINE MALWARE SANDBOX

Funded in 2016 by a Russian security researcher, Alexey Lap-
shin, AnyRun [39] offers a free “interactive” sandbox tool
for dynamic analysis of malware. The tool enables uploading
a suspicious file and, in the meantime, interacting with the
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FIGURE 15. Patterns of malware behavior across platforms: Bladabindi malware executions on (a) Windows XP, (b) Windows 7, and (c) Windows 10, all
under focus and context technique with busy interval length of 20 seconds. On the right end are the corresponding dependency graphs of the malware
process. While different processes express different dependency graphs, as shown in Figure 5 and Figure 7, the dependency graph of Bladabindi malware

is relatively consistent across different platforms.

sandbox and thus with malware to trigger some function-
alities or execute macros embedded into the uploaded file.
AnyRun offers several key features, as follows:

« The tool’s main feature is the visualization of interactive
graphs and tree structure for comprehending malware.
The feature helps visually identify suspicious processes,
determine the family of malicious activities and patterns,
and highlight external files that are downloaded by the
malware.

« It also enables content analysis of different types of sus-
picious and malware files, including PCAP files (i.e.,
network activity dump).

« The tool also performs network analysis with the goal of
tagging suspicious events. It analyzes Hypertext Trans-
fer Protocol (Secure) (HTTP(s)) requests and responses
along with their headers

o The tool can be used as an educational and training tool
to assist the security experts to understand the structure
of attacks through Mitre Att&ck Mapping [40].

« It enables opening web addresses (URLs) in different
browsers and therefore helps in URL analysis and, more
importantly, phishing attacks using various mainstream
and supported browsers.

o The tool generates a fine-format report for publication
and sharing purposes. The professionally-looking report
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consists of supporting screenshots, Process Behavior
Graphs, indicators of being malicious/suspicious, and
many other components.

B. HYBRID: AUTOMATED MALWARE ANALYSIS SERVICE
Hybrid [38] is a free malware analysis tool that enables both
static and dynamic analysis. It utilizes several analysis reports
and sandbox tools, including Falcon Sandbox [41], a dynamic
analysis framework. In addition to the dynamic analysis
offered by Falcon Sandbox, Hybrid integrates some other
anti-virus tools such as VirusTotal, OPSWAT Metadefender,
SIEM systems, NSRL (i.e., white listing), TOR (e.g., avoid-
ing external IP fingerprinting), Phantom, Thug Honey Client
(e.g., URL exploit analysis), and Suricata (ETOpen/ETPro
rules). The tool provides several useful analysis features such
as:

o Risk summary and verdict of being malicious or benign.

o A good number of malicious/suspicious indicators

« A large set of network rules for intrusion detection and
network analysis

o Integration with YARA [42] for rule-based pattern
matching-based malware detection

o Analysis of a wide variety of files including binary sam-
ples and PCAP files

o Analysis of URLs for detection of phishing attacks
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TABLE 1. A feature-based comparison of Anyrun [39], Hybrid [38] and MalView.

# ] Features [ AnyRun [ Hybrid | MalView
I) General Features

1 | Integrated with VirusTotal [23] * N Vv
2 Integrated with MetaDefender [43] * Vv
3 Integrated with CrowdStrike Falcon [41] VA
4 Compliance with InfoSec Classification [7], [8] Vv
5 | Filtering (i.e., Simplification) Capabilities v
6 | Classification into Malicious/Benign v Vv Vv
7 | List of Imported DLLs Vv Vv Vv
8 | Statistics of Extracted Executable Files Vv Vv Vv
9 | Highlights Malicious Indicators (e.g., report from anti-viruses, installation activities, creation of a windows Vv Vv Vv

session/station, termination of a session, and spanning a lots of processes
10 | Highlights Suspicious Indicators (e.g., inspection of PE files, suspicious API calls, locating of resource files, v VA v

deleting executable files, creating files in Windows directory, importing suspicious APIs)

II) Behavioral Activities and Dynamic Analysis

11 | Behavioral Graphs/Activities V4 V4
12 | Different Classes and details of Processes Vv
13 | Call graph and Number of Calls for each Process/category V4 Vv
14 | Scalar representation of process calls Vv
15 | Dependencies among processes/executable files Vv
16 | Time Dependencies between processes/executable files Vv
17 | Lists dangerous/suspicious system level activities (creating/changing important files: registry, SVCHOST to v V4

execute hidden code, writes to start menu, etc.)
18 | Registry/File Activities v V4 Vv
19 | List of Registry/File changes and modifications and events v Vv Vv
20 | Statistics about events and registry activity including read/write/ delete events Vv
21 | Statistics about executable files Vv Vv Vv
22 | Provide Falcon Sandbox Report (Dynamic Execution) v Vv
23 | Basic Risk Assessment (e.g., access to clipboard, spanning processes, reading the computer name, and injecting v VA

into explorer)
24 | Extract memory strings and tokens v v
25 | The name of the extracted executable files Vv Vv Vv
26 | List the size of different Sections of PE files v Vv Partially

III) Network Level Analysis

27 | Domain Name System (DNS) Requests V4 VA V4
28 | Host Connections v v Vv
29 | HTTP Traffic/Requests v Vv Vv
30 | Network Threats Vv Vv
31 | PCAP Download v
32 | Registry Changes Vv
33 | Details on GET/POST methods v

*: The feature is under development.

C. A FEATURE-BASED COMPARISON

This section aims to highlight the key features of
AnyRun [39] and Hybrid [38] in comparison with the fea-
tures offered by MalView. The comparison is performed
through the classification of features into 1) general features,
2) behavioral activities and dynamic analysis, 3) structure-
based and static analysis, and 4) network-level analysis.
Table 1 lists the features classified into these four groups.

1) GENERAL FEATURES

MalView offers not only comparatively similar features but
also additional features that are unique to MalView. More
precisely, the tool offers features such as 1) compliance with
InfoSec classification with respect to malicious processors
and indicators (Feature #4), and 2) simplification of visualiza-
tion through filtering and focusing only a subset of processes
for the analysis (Feature #5).
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2) BEHAVIORAL ACTIVITIES AND DYNAMIC ANALYSIS
FEATURES

The features related to dynamic analysis are considerably
diverse. As a result, each analysis tool offers its own set of
unique features. Given the fact that MalView mostly visu-
alizes the output of Procmon [6], it is primarily a dynamic
analysis tool. Depending on how the underlying malware
visualization tool is implemented, most of these tools are
able to visualize the “basic” sets of dynamic data captured
through Procmon or similar utilities. For instance, as Table 1
shows, most of the behavioral features are visualizable by
these three tools.

The major and key feature that is unique to MalView is
the exploration of “time dependencies between processes”
(Features #15 and #16). The visualization of time and pro-
cess dependencies are an important part of malware anal-
ysis in order to comprehend the nature of the underlying
malware.
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3) SIGNATURE-BASED AND STATIC ANALYSIS

As stated earlier, MalView is primarily a visual analytics
tool based on the output of the dynamic analysis of the
underlying application or malware. As a result, it is less
focused on visualizing static features of executable files.
However, MalView is integrated with several static analysis
tools, including VirusTotal, and thus is capable of capturing
this information and visualize them accordingly. VirusTo-
tal is able to capture static information such as the size of
header files, type of files, PE Specific, and other static and
signature-based features. As a result, MalView can visualize
all the information captured by VirusTotal and uses its API to
retrieve this information and visualize them accordingly.

4) NETWORK LEVEL ANALYSIS

Similar to signature-based and static analysis features,
MalView is less focused on visualizing purely network-level
features. However, given the strength of Procmon in captur-
ing all related processes and events, MalView is capable of
visualizing the network-level events and processes captured
by Procmon and thus provides a process-level view on this
network-level information.

VIil. RELATED WORK

The malware analysis methods can be broadly catego-
rized into static vs. dynamic analysis [44]. Many of these
approaches utilize visual representation to enable the analysts
to visually capture general activities related to malware from
a large number of data files or logs which are infeasible to
digest in text or binary format [45].

A. SIGNATURE-BASED FEATURES/STATIC ANALYSIS

Panas [46] visualized software binaries in order to demon-
strate malware samples. In their approach, they first disas-
semble the file to obtain the Abstract Syntax Tree (AST) and
then provided the intermediate representation of the file by
using ROSE [47], an open-source compiler. Visualizing the
signature of a set of different malware families, they were able
to show the changes in different versions of a malware family.
Also utilizing visualizations in dynamic malware analysis,
Grégio et al. [45] proposed a solution with two interactive
visualization tools. The two visualization prototypes are a
timeline with a magnifier and a spiral view of the malicious
activities. The first tool provides analysts with views of the
malware activities over time. While the time selection for the
x-axis is similar to ours (and many others), the uses of colors
and what is to be presented in the y-axis are different. They
used the y-axis to represent activities and colors to different
processes or services involved by the malware execution.
Each event (an activity at a timestamp of an involved process)
is presented by a circle connected by a line, which represents
changes over time. This presentation leads to the visual clut-
tering issue, especially when malware does many different
activities in a short time interval [48].
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Gove et al. [49] presented their tool Similarity Evidence
Explorer for Malware (SEEM), which compares a focal sam-
ple of malware with other malicious samples in the database.
The malware features are grouped into nine categories, and
feature similarities are visually presented in three ways:
1) histogram, 2) Venn diagram list, and 3) a feature matrix.
The histogram utilizes the Jaccard similarity of the features
of the focal sample with the other samples. In contrast, the
Venn diagram is more granular and shows information of
overlap, strict subset, and disjoint features. The feature matrix
highlights the specific features present in the analyzed sam-
ple. Long et al. [50] proposed a versatile and instinctive tech-
nique to identify a given malware file from its image sets. The
authors argued that the desktop icons are one effective social
engineering attempt employed by some malware developers.
The victim clicks on the icon resulting in the execution of
the malware. Hence, comparing a new malware based on
its image with a previously known malware database results
in effective malware identification. Extracted greyscale mal-
ware images are shown using a force-directed graph [15],
[17], which is essentially a similarity network of sample mal-
ware images computed with the nearest neighbor index. The
visualization tool shows hash values of the executable, and
upon clicking on the values, it draws the similarity network
graph, and it provides zooming functionalities for multiple
hops of each node.

B. IMAGE-BASED AND DYNAMIC ANALYSIS

While static analysis is computationally efficient, its per-
formance could be impaired by packed or encrypted mal-
ware. On the other hand, dynamic analysis analyzes actual
behaviors from the malware while it is running, so it is more
efficient [51]. In their work [52], Shaid and Maarof pro-
posed a method to generate images representing malware
API calls. First, the API calls are monitored in the mal-
ware behavior capturing step. These calls are then sorted
from malicious to less malicious. Finally, each API call
is assigned a color depending on its maliciousness level.
Similarly, Kancherla et al. [51] proposed to convert the mal-
ware into a gray-scale image called byteplot. They then
used machine learning (ML) methods (e.g., Support Vector
Machines) to analyze the low-level features (e.g., intensity
and textures) extracted from the resulted images. Regarding
ML approaches, LeDoux and Lakhotia [53] presented that
ML has a natural fit with malware analysis, where ML oper-
ates by rapidly learning, discovering inherent patterns and
similarities in the corpus.

With image-based malware classification,
O’Shaughnessy [54] utilized the space-filling curves
approach to formalize a scalable solution for classification
ambiguity among anti-virus programs. Donahue [55] pro-
posed another idea of using Markov Byte Plot [56] to con-
vert Portable Executable (PE) files into truecolor (defined
by red, green, and blue (RGB) color components) images
that help to highlight the differences between the packed and
unpacked malware. Another common approach is to convert
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malware PE or binary files into images and analyze the
resulted images. There are various ways to turn the malware
into images and different methods to analyze the produced
images. For instance, Han et al., [57] proposed a three-step
approach to analyze malware in this direction. First, the
opcode sequences of the malware are extracted in Step 1. Step
2 generates an image with both width and height are of 2",
where 7 is a user-defined number. Next, this step applies a
hash function, such as SimHash [58], to each of the extracted
opcode sequences to generate a pixel with corresponding
x-y position and RGB color. Finally, similarities between the
resulted images are calculated in Step 3. In their extended
version of this approach [44], they also incorporated dynamic
analysis to filter for essential opcode sequences.

Miles et al. [59] presented VirusBattle, a system equipped
with intelligence navigation and visualization to mine and to
discover interrelationships between malware instances auto-
matically. This system provides two primary analyses: 1)
a program’s dynamic trace tree and 2) a scalable method
of discovering shared Computed Semantics artifacts among
instances of malware. VirusBattle analyzes the interrelation-
ships over many types of malware artifacts, including the
binary, code, code semantics, dynamic behaviors, malware
metadata. Shaid and Marrof [60] proposed the method of pre-
senting the behavioral pattern of malicious files using a Hot-
to-Cold color ramp. As the malware runs, the user-mode API
calls are captured, then ordered and grouped based on their
maliciousness. This behavior-to-color map of the malware
helps visualize when and in which order a malware sample
performs malicious activities during execution.

Besides software systems, research in hardware advance-
ment has introduced many approaches that facilitate mal-
ware analysis to build a transparent dynamic analysis
system. In terms of hardware virtualization extensions,
Dinaburg er al. [61] proposed Ether, an application that
remained transparent and defeated a large percentage of
obfuscation tools. Later, Lengyel et al. [62] built DRAKVUF
on a similar virtualization extensions approach and provided
greater insight into the execution of the system to trace system
execution for malware analysis.

This visual analytics approach in MalView can benefit the
branch prediction in dynamic environment analysis in Gold-
enEye by Xu et al. [63] and the analysis of sequences of
API calls in VECG by Alaeiyan et al. [64]. The interactive
visual representations can expedite the process of proactively
detecting environment-sensitive and context-based behav-
iors, where ‘“human-in-the-loop” can accelerate early stop-
ping and quickly capture patterns that emerged from the API
call sequences.

C. HYBRID (STATIC AND DYNAMIC) ANALYSIS

Most static approaches focus on comparing, clustering mal-
ware instances, or classifying if a new sample belongs to a
known family of malware. For example, Paturi et al., [65]
used Pythagoras tree to represent the similarities in codes
between malware. The similarity metrics might be *“Cosine
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similarity” or “Normalized Compression Distance.” The
hierarchical structure of the Pythagoras tree is characterized
as the distance between nodes at each lower depth of the
tree is reduced by +/2/2. Thus, the tree helps bring malware
with higher similarities into clusters as leaf nodes with shorter
distances stay close to one another.

Anderson et al. [66] presented a malware classification
system that works based on the combination of static and
dynamic features. For static feature extraction, they used
three sources, including 1) the binary file, 2) the disassem-
bled binary, and 3) the control flow graph of the disassem-
bled binary file. For dynamic feature extraction, they used
dynamic instruction sequence and the dynamic call sequence.
They tested their system using a large malware dataset and
achieved 98.07% accuracy with the combined static and
dynamic features. They also achieved a 96.14% accuracy by
using only static features. Yoo [67] designed the visualization
based on the belief that malicious content in an executable
file has a unique feature called SOM (Self-Organizing Map).
By calculating the SOM and visualizing a specific executable
file, the potential portion of the malicious content can be
determined, and by checking the generated pattern, the mal-
ware family can be detected.

Saxe et al. [68] developed an interactive visualization sys-
tem for comparing malware samples in a dataset using the
extracted features. Based on the presence of the system call
sequence, the similarity matrix for the malware dataset is gen-
erated. This system also provides a comparison view among
malware samples based on their malicious activity. On mobile
computing platforms such as Android devices, Jenkins and
Cai [69], [70] explored Inter-Component Communications
(ICC) via interactive visual explorations, showing thorough
ICC comprehension and security vulnerability inspection,
revealing the malicious behaviors that were normally hidden
to users.

D. VISUALIZATION TOOLS AND ANALYSIS

Analyzing malware through visual behaviors has been stud-
ied with the aim to observe the overall flow of a program,
discover malicious patterns, and quickly assess the nature
of the malware sample [5], [71]. Wagner et al. [72] pro-
posed KAMAS, a knowledge-assisted visualization system
for behavior-based malware analysis, which visualizes API
call sequences gathered during the execution of malicious
software. Our approach aligns with this direction, but we shift
the focus on the analysis side with different malware families
and the influence of operating systems on malware behavior.
In particular, the design decisions and techniques in MalView
are applied in the malware analysis domain and derived from
visualization principles for time-series data, which is the col-
lection of observations through repeated measurements over
time, including but not limited to numerical, geolocation,
and text data [73], [74], [75]. Using Ether [61] as the mon-
itoring platform, Quist and Liebrock [76] propose a directed
graph structure of all the basic blocks of an executable with
a navigable interface to explore the code structure. Treemaps
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and thread graphs are also visualization techniques that show
usefulness in detecting maliciousness of software and in clas-
sifying malicious behavior [77]. The classification decisions
can be supported by the visual analytics solution provided by
Angelini et al. [78] to provide the user a better understand-
ing of such decisions and the possibility of changing the
classification results. Visual analytics approach, when com-
bined with predictive analysis, can project potential threats or
detect malicious attacks for securing efficient manufacturing
automation [79].

Conti et al. [80] designed a system for file analysis
with these features: 1) Analyze undocumented file format,
2) Audit files for vulnerabilities, 3) Compare files, 4) Crack,
Cryptanalysis, and Forensic analysis, 5) Identify unknown
file format, 6) Malware analysis and 7) Reporting. Their sys-
tem is an extension to the hex editor and consists of both
textual and graphical visualization. Quist and Liebrock [76]
developed a tool called VERA (Visualization of Executables
for Reversing and Analysis) that can be used for visualizing
the structure and flow of an executable file, including memory
reads and writes. Later, they extended their work [81] by
adding more reverse engineering tools and providing more
testing case studies in detail.

Trinius et al. [77] used two different approaches for mal-
ware visualization. They first generated an XML file con-
taining dynamic analysis information of the malware sam-
ple using CWSandbox [82], including 1) loaded system
libraries, 2) outgoing and incoming network connections, and
3) accessed or manipulated registry keys. Using the XML
output, they visualized the key feature using two techniques:
“treemaps” and “thread graphs”. They argue that these two
methods are complementary and, using these two visual rep-
resentations, can effectively help detect the malicious behav-
ior of the given malware and identify the malware family.
They tested their proposed approach by executable and non-
executable (PDF format) malware samples.

Gregio and Santos [83] developed an interactive timeline
tool for visualizing dynamic malware behavior using various
techniques [48]. They ran the given malware in a controlled
environment and captured its behavior using a modified ver-
sion of BehEMOT [84] (a malware behavior monitoring tool).
They captured high-level activities such as file write and
delete, process creation and termination, registry reads and
writes, mutexes and network operations, and system calls
using System Service Dispatch Table (SSDT) hooking, which
operates at the kernel level. In addition, they used identifica-
tion labels provided by VirusTotal [23].

An interactive visualization tool called MalwareVis is
introduced by Zhou et al. [48] for malware dynamic anal-
ysis with a concentration on network traces including the
total number of packets, size of the transmission, number of
streams, and the packet trace’s duration. They ran the mal-
ware in a controlled environment and captured these network
traces by using packet sniffer software, where the output
packet capture (PCAP) files were used for visualization. They
used table views and shape views for representing the features
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that allow the user to browse, filter, and compare different
types of malware. Cappers et al. [85] also utilize PCAP to
discover the patterns in traffic to explore the intrusive behav-
ior from malware activities.

IX. CONCLUSION AND FUTURE WORK
This paper introduces MalView, an interactive visualization
platform for hybrid analysis and diagnosis of malware. Our
approach first represents the behavioral properties of the
major malware classes (such as Trojan or backdoor), aim-
ing to capture the common visual signatures of these mali-
cious applications. MalView implements a web-based proto-
type for demonstrating our approach to analyzing 60 malware
samples from seven different classes. The behavior aspects
of these malware files are captured using Process Monitor
(i.e., Procmon [6] on three different platforms (Windows XP,
Windows 7, and Windows 10). The functionality and fea-
tures offered by MalView are designed and developed based
on a thorough literature review and a comparison with the
state-of-the-art malware analysis tools, including AnyRun
and Hybrid. In order to have better insight regarding the
features offered by MalView, a feature table is presented
in which MalView is compared with AnyRun and Hybrid
analysis tools. The feature comparison is performed based
on four classes of features. The feature table demonstrates
that MalView comparatively implements most of the features
offered by the other two tools. In addition, the time and pro-
cessed dependencies, the key features of MalView, are imple-
mented in the prototype, making the analysis more thorough.
Given the ability to process, visualize and analyze the system
activities and put them into a comprehensive view, MalView
can serve as an informative and potential interest to develop-
ers, engineers, and practitioners outside the laboratory.
There are several lines of research that can be explored
through visual analytics when complemented by conven-
tional static and dynamic analysis: The early detection
of zero-day vulnerability and malware is a grand chal-
lenge. There are several machine learning-based approaches
for addressing this problem [1], [53]. With the capability
of visual analytics facilitating explainable machine learn-
ing [86], [87], applying visual analytics techniques to detect-
ing and analyzing unknown and zero-day malware is an inter-
esting research approach that can be explored using MalView.
The key feature of MalView is its features in demonstrating
time and process dependencies that occurred during static
and dynamic analysis. A potential research direction is to
model malware behavior through recurrent neural networks
on the visual signatures and then predict malware behaviors
or even classify suspicious programs into a particular class of
malware. It would also be interesting to model malware sam-
ples through genome alignments and then model the malware
classification or detection problem through deoxyribonucleic
acid (DNA) or sequence matching approaches. The sequence
matching might be useful in capturing the core malicious
functionalities of obfuscated malware. The obfuscation tech-
niques employed by the obfuscating tools often follow similar
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patterns, and thus we expect the control-flow graphs produced
for all these obfuscated malicious applications share fully or
partially the same core. MalView will offer a visual analytic
approach to spot these similar patterns in the execution traces.
Once a section of the underlying execution trace is identified
as obfuscated, it can be ignored by the user of MalView and
then enables the users to focus on other parts of the malware
in order to comprehend it. A second approach would be to
employ existing de-obfuscated tools to de-obfuscate the mal-
ware under investigation (MUI) and then let Procmon gener-
ates the de-obfuscated traces of execution and processes.
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