
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Faculty Research, Scholarly, and Creative Activity

1-1-2022

MalView: Interactive Visual Analytics for Comprehending Malware MalView: Interactive Visual Analytics for Comprehending Malware

Behavior Behavior

Huyen N. Nguyen
Texas Tech University

Faranak Abri
San Jose State University, faranak.abri@sjsu.edu

Vung Pham
Sam Houston State University

Moitrayee Chatterjee
New Jersey City University

Akbar Siami Namin
Texas Tech University

See next page for additional authors

Follow this and additional works at: https://scholarworks.sjsu.edu/faculty_rsca

Recommended Citation Recommended Citation
Huyen N. Nguyen, Faranak Abri, Vung Pham, Moitrayee Chatterjee, Akbar Siami Namin, and Tommy Dang.
"MalView: Interactive Visual Analytics for Comprehending Malware Behavior" IEEE Access (2022):
99909-99930. https://doi.org/10.1109/ACCESS.2022.3207782

This Article is brought to you for free and open access by SJSU ScholarWorks. It has been accepted for inclusion in
Faculty Research, Scholarly, and Creative Activity by an authorized administrator of SJSU ScholarWorks. For more
information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/faculty_rsca
https://scholarworks.sjsu.edu/faculty_rsca?utm_source=scholarworks.sjsu.edu%2Ffaculty_rsca%2F3084&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/ACCESS.2022.3207782
mailto:scholarworks@sjsu.edu

Authors Authors
Huyen N. Nguyen, Faranak Abri, Vung Pham, Moitrayee Chatterjee, Akbar Siami Namin, and Tommy Dang

This article is available at SJSU ScholarWorks: https://scholarworks.sjsu.edu/faculty_rsca/3084

https://scholarworks.sjsu.edu/faculty_rsca/3084

Received 22 July 2022, accepted 11 September 2022, date of publication 19 September 2022, date of current version 26 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3207782

MalView: Interactive Visual Analytics for
Comprehending Malware Behavior
HUYEN N. NGUYEN 1, FARANAK ABRI 2, VUNG PHAM 3, MOITRAYEE CHATTERJEE4,
AKBAR SIAMI NAMIN 1, AND TOMMY DANG 1
1Department of Computer Science, Texas Tech University, Lubbock, TX 79409, USA
2Department of Computer Science, San Jose State University, San Jose, CA 95192, USA
3Department of Computer Science, Sam Houston State University, Huntsville, TX 77304, USA
4Department of Computer Science, New Jersey City University, Jersey City, NJ 07305, USA

Corresponding author: Huyen N. Nguyen (huyen.nguyen@ttu.edu)

This work was supported in part by the U.S. National Science Foundation (NSF) under Grant number 1821560.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

ABSTRACT Malicious applications are usually comprehended through two major techniques, namely
static and dynamic analyses. Through static analysis, a given malicious program is parsed, and some
representative artifacts (e.g., control-flow graphs) are produced without any execution; whereas, the given
malicious application needs to be executed when conducting dynamic analysis. These two mainstream
techniques for analyzing the given software are effective in detecting certain classes of malware. More
specifically, through static analysis, the patterns and signature of the malware are exposed, helping in
detecting any known malicious payload hidden in or injected into the code. On the other hand, behavioral
and run-time execution patterns of software are explored through dynamic analysis. To ease the analysis
process, a third analysis approach, known as the visual representation of the artifacts created by both static
and dynamic analysis tools, would also be a supplementary asset for malware experts. This paper introduces
MalView, an interactive visualization platform, for malware analysis by which pattern matching techniques
on both signature-based and behavioral analysis artifacts can be utilized to 1) classify malware, 2) identify
the intention and location of the malicious payload in the artifacts, 3) analyze unknown malware (i.e.,
zero-day malware) by recognizing any unusual signature or behavior, and 4) explore the time dependencies
and thus the system components affected or tampered by the underlying malware. The results of several case
studies conducted in this work show that MalView offers more features and information compared to some
other visualization tools, facilitating the malware analysis process.

18 INDEX TERMS Malware analysis, dynamic analysis, malware visualization system, visual analytics.

I. INTRODUCTION19

Malicious software applications, or malware, are the pri-20

mary source of many security problems. These intention-21

ally manipulative malicious applications intend to perform22

unauthorized activities on behalf of their originators on the23

host machines for various reasons such as stealing advanced24

technologies and intellectual properties, governmental acts25

of revenge, and tampering sensitive information, to name a26

few. Malware applications are complex software programs27

that are often obfuscated to disguise their main intentions28

The associate editor coordinating the review of this manuscript and

approving it for publication was Laxmisha Rai .

and thus deceive network administrators and the underlying 29

intrusion detection systems. Although such obfuscations can 30

be captured, reported, and maintained in a repository as a 31

reference for building better detection mechanisms, newer 32

malware programs are constantly developed by professional 33

hackers raising the challenging problem of zero-day malware 34

detection [1]. As a result, in order to build an effective mal- 35

ware detection and defense system, it is crucial to understand 36

each malware and comprehend its behavior through rigorous 37

analysis. 38

There are two conventional approaches that are widely 39

adopted for analyzing software programs: 1) static anal- 40

ysis by which the underlying software is parsed, and 41

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 99909

H. N. Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

intermediate transformations of the underlying software are42

generated without actually executing the software program.43

For instance, a control-flow graph can be created to repre-44

sent the execution control of the program under test; and45

2) dynamic analysis by which the program under test is exe-46

cuted in a controlled environment (e.g., a sandbox) and the47

behavior of the program is observed under various environ-48

mental conditions for further analysis. For instance, a sand-49

box (e.g., Cuckoo [2]) can capture the processes that are50

created along with the files that are tampered with or mod-51

ified during the execution of the program under test. These52

two conventional program analysis techniques (i.e., static and53

dynamic) are often complementary to each other, each tar-54

geting different types of faults or malicious activities in the55

program that is being analyzed. There is also a third ‘‘hybrid’’56

approach that enables conducting both static and dynamic57

analysis of the program under test.58

Although these conventional program analysis techniques59

are shown to be effective in comprehending static and60

dynamic features of the software under test, it is often61

time-consuming, labor-intensive, and technically challeng-62

ing to build a customized analysis platform. Therefore,63

to ease performing such a complex analysis, some other64

analysis techniques with a smoother learning curve and65

faster comprehension of functionalities of the underlying66

software under test should be developed for analysis pur-67

poses. The visual analytics approach is one of those possi-68

ble solutions to facilitate the analysis process and efficiently69

and effectively showcase the processes involved in malware70

analysis.71

This paper introduces an interactive visualization platform,72

called MalView, for performing analytical reasoning of mal-73

ware behaviors. MalView1 is an analysis-oriented develop-74

ment to our previously created malware visualization tool75

[3].MalView emphasizes comprehensive understanding from76

visual analytics with in-depth, multi-faceted explorations of77

malware behavior and scalability to multiple malware fam-78

ilies. The result of malware triage and analysis is signifi-79

cantly enhanced if a provenance of software artifacts can be80

identified, especially when specific attributes of suspected81

malware are used to identify similarities to a set of known82

malware artifacts, as shown by Casey et al. [4]. In light of83

improving malware analysis utilizing malware artifacts, the84

current prototype provides a detailed graphical represen-85

tation for malware analysis to identify: (1) indicators of86

compromise and malicious activities, (2) tampering, modifi-87

cation, and possible damages occurred on the system, (3) the88

mechanic of how malware functions and infect, (4) the pri-89

mary target of themalware, (5) the suspicious events occurred90

on the network, (6) the impact on the host and its reg-91

istry, and more notably (7) the time and process dependen-92

cies occurred while executing the malware, the key feature93

of MalView.94

1The application and demonstration video ofMalView can be accessed at:
https://malview.netlify.app and https://malview.netlify.app/video.

Malware visualization systems can be categorized into 95

three categories: Malware forensics, Malware Comparison, 96

and Malware Summarization [5]. The work in MalView is 97

under Malware Forensics and Malware Comparison cate- 98

gories: assisting the understanding of the behavior of an 99

individual malware sample for forensics. By exploring the 100

characteristics and relationships between the process and its 101

dependencies and mapping them to visual features, MalView 102

provides an interactive and intuitive platform to comprehend 103

malware behavior towards the ultimate goal of generating 104

rules and signatures for fully-automated malware detection 105

systems. To demonstrate the effectiveness of MalView in 106

identifying and interpreting malicious and suspicious activ- 107

ities of malware, the paper reports the analysis of differ- 108

ent families of malware namely: Remote Access Trojans 109

(RATs), Backdoor, Ransomware, Behavioral, Email Flooder, 110

and Hacktool. The results show that usingMalView it is pos- 111

sible to quickly understand the main functionalities of the 112

underlying malware without delving into a complex analysis 113

of the static and dynamic analysis reports. 114

While conducting the case studies and inspecting some 115

malware families, the authors noticed the different behavior 116

exhibited by the same malware on different operating system 117

(OS) platforms. As a result, each malware was executed and 118

inspected on three different Windows platforms: Windows 119

XP, Windows 7, andWindows 10. Even though the execution 120

of each malware was performed in a controlled environment, 121

it was noticed that the newer platforms ofWindows operating 122

systems (e.g., Windows 10) were creating more system and 123

kernel-level processes making it harder to thoroughly inspect 124

and analyze the exact flow of each malware on these recent 125

versions of platforms. As a remedy for such problem, it is 126

suggested to apply additional filtering mechanisms in order 127

to analyze each malware and its processes thoroughly. This 128

paper makes the following key contributions: 129

1) It introduces MalView, a malware visualization tool to 130

enable analytical reasoning of malware behaviors. 131

2) TheMalView visualization tool visualizes the output of 132

several dynamic and static analysis tools. 133

3) The tool also integrates the output of many anti-virus 134

tools using their Application Programming Interface 135

(API) to provide additional insights for each malware. 136

4) The paper demonstrates the efficiency and effective- 137

ness ofMalView through several case studies conducted 138

on a set of the family of malware. 139

5) The paper also compares the behavior of each malware 140

when executed on three different Windows platforms 141

(i.e., XP, 7, and 10) in order to recognize the impact of 142

environmental settings on malware comprehension and 143

analysis. 144

A. ORGANIZATION OF THE PAPER 145

The rest of the paper is laid out as follows: Section II gives 146

an overview of the data collected and feed into the visual- 147

ization. Section III introduces the system and visualization 148

99910 VOLUME 10, 2022

H. N. Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

tasks that guide the system design. Next, section IV elaborates149

on the visual components with interactivity and highlights150

the key features of MalView. Section V presents the analy-151

sis performed using MalView on a set of family of malware152

types. The influence of the running platforms on malware153

behavior is articulated in Section VI. A feature-based com-154

parison of MalView and some other malware visualization155

tools is demonstrated in Section VII. The state-of-the-art of156

malware visualisation is presented in Section VIII. Section IX157

concludes the paper and highlights the future research work.158

II. CAPTURING DYNAMIC BEHAVIOR USING ProcMon159

Dynamic analysis aims at studying the behavior and actions160

of malware sample when it is executed. This technique ana-161

lyzes malware and returns the collected information of such162

behavior and actions for further processing or analysis [5].163

Assuming that the malicious sample does not employ any164

anti-forensics guards, in this paper, theWindows Sysinternals165

Process Monitor [6], or Procmon, is employed to capture166

the run time behavior of malware during execution.MalView167

visualizes the outputs and traces produced by Procmon rather168

than explicitly executing a given malware directly. During169

the dynamic analysis of malware execution, Procmon can170

capture five types of events that the Windows-based malware171

interacts with the host system: 1) file system, 2) registry,172

3) network, 4) process and 5) profiling.173

While capturing dynamic behavior of malware, it is impor-174

tant to use a proper Procmon filtering to avoid capturing175

unnecessary information from the normal execution of the176

system. Furthermore, even when the underlying system is177

idle, it has numerous background processes running that can178

be captured by the Procmon. As a result, the authors filtered179

out the activities by capturing suspicious processes only rep-180

resented by functions commonly encountered by malware181

analysts [7], [8]. Furthermore, they excluded the default sys-182

tem operations such as Procmon, Autoruns, Sysmon from183

further visualization and analysis.184

A. DATA ATTRIBUTES185

Procmon provides records of Windows activities through the186

low-level system events, where thousands of events are gener-187

ated every minute. The standard output in Comma Separated188

Value (CSV) format from Procmon is used as the primary189

input for visualization components in MalView. One row in190

the CSV log file demonstrates one specific event and com-191

prises of these major attributes [9]:192

• Time of Day: The timestamp of the day when the event193

occurred.194

• Process Name: The name of the process – active exe-195

cutable, performing the operation.196

• PID: Process identifier (ID).197

• Operation: The name of the executing operation.198

• Path: The path to the target object being operated199

on. This field can be empty, depending on the opera-200

tion/process.201

• Result: The result of the operation. The values for this 202

field include success, denied, or access. 203

• Detail: The additional notes about the event. 204

B. EVENT CATEGORIES 205

The log file output from Procmon contains fivemajor types of 206

process activities, which are color-coded in our framework. 207

• Registry: Events of registry operations, such as querying 208

and enumerating keys and values. 209

• File System: Events related to operations on local and 210

remote storage and file systems. 211

• Network: Network activities, including TCP and UDP. 212

• Process: Events of process/thread, such as process cre- 213

ation, start, and exit. 214

• Profiling: Events for every process in the system in terms 215

of memory used, kernel and user time charged, output as 216

a log for the profile. 217

III. MalView: SYSTEM OVERVIEW 218

MalView is aimed at accelerating malware analysis and inte- 219

grating visual analytics to enable interactive data exploration 220

and malware behavior comprehension. Figure 1 depicts the 221

architecture ofMalView. The flow of information inMalView 222

is as follows: 1) It uses a data provider in dynamic analysis, 223

where the malware sample is executed on a host system, then 224

the data provider logs relevant information into execution 225

traces. 2)MalView takes in the raw data captured by the data 226

provider, extracts the information, and maps them to visual 227

features. 3) MalView explores the relationship between each 228

process and its dependencies. To the best of our knowledge, 229

this feature has not been taken into account in previous work, 230

not only the malware as an individual but also its interactions 231

with the system and the artifacts created. 232

The MalView prototype provides visual representations 233

for system and malware activities captured by Procmon [6] 234

utility. In the context of malware analysis, four important 235

system-level activities are of utmost importance that need 236

to be captured, namely registry, file system, processes and 237

threads, and network activities. These are four major cate- 238

gories that are highlighted by InfoSec [7], [8] as an indication 239

of malicious activities. The processes and events related to 240

these four activities are captured by Procmon, filtered, and 241

then fed toMalView. 242

MalView provides an analysis of linked views with inter- 243

actions for users to gain comprehensive insights into mal- 244

ware behaviors within the system. Details of MalView visual 245

components with their corresponding interactive features 246

are described in the following section, MalView: Visual 247

components. 248

The tool MalView is developed as a web-based appli- 249

cation using JavaScript and D3.js library created by 250

M. Bostock et al. [10]. The primary goal of MalView is to 251

provide an interactive visualization platform that demon- 252

strates the malware behaviors and interactions within the 253

system. The captured events are presented in multiple 254

VOLUME 10, 2022 99911

H. N. Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

FIGURE 1. The schematic overview of MalView framework for analyzing the dynamic behavior of malware. The visualization provides linked views and
supports interactive features, such as filtering, highlighting, ranking, and details-on-demand.

perspectives: in a temporal manner of processes and function255

calls between them, the dependency graph between a pro-256

cess and the objects it operates on, including registry, system257

files, network addresses, and dynamic-link libraries. The plat-258

form gives classification of malicious or benign connecting259

domains with further analysis. To meet the primary goal,260

MalView implements the analysis tasks below, based on the261

analysis task types for employing information visualization262

systems [11]:263

• T1 Provide a comprehensive overview of system264

activities. The visual design should present the general265

distribution of activities chronologically to facilitate the266

initial summary based on the selected malware.267

• T2 Display details-on-demand for activities and268

interactions. The user can get a close-up look at an269

entity or select an activity to view its event data. The270

system should show the information in a deeper level271

of supporting details that accompany the interactions272

among different processes.273

• T3 Characterize data distribution for processes and274

their dependencies. In addition to displaying the275

detailed information of processes on demands, it is also276

important to show the distribution of temporal patterns277

of processes and simultaneously use that as the context278

to explore their dependencies. To this end, the system279

should show the groupings of operated objects (e.g.,280

dynamic-link libraries) based on their similarities in fea-281

tures.282

• T4 Present the associations: relationships among283

processes and function calls between a process and284

its dependencies. To characterize the complex associ- 285

ations between entities within the system, the system 286

should show the relationships caused by interactions 287

among processes and function calls from a process to its 288

dependencies. 289

• T5 Highlight critical activities in context. Here, crit- 290

ical is defined in context: For the timeline as a whole, 291

MalView should allow user to zoom into the time interval 292

that captured themost active interactions of themalware. 293

For malware activities in particular, the system should 294

incorporate filter-based feature to highlight the com- 295

monly encountered malicious types, besides the original 296

representation. 297

• T6 Order the entities based on dependencies charac- 298

teristics. A specific ranking order along a data dimen- 299

sion be of tremendous help in the arrangement of 300

visual components to convey important characteris- 301

tics and allow the user to focus on the top essential 302

entities. 303

• T7 Classify malicious vs. benign activities. Another 304

key to understand malware forensics is the ability to 305

show the malicious and benign activities. The system 306

should be able to classify the level of malice that cor- 307

responds with the malware sample captured. 308

IV. MalView: VISUAL COMPONENTS 309

Taking into account the mapping to time, the associations 310

between processes and dependencies, and guided by the 311

designed tasks, we designed the user interfaces of MalView. 312

Figure 2 depicts the main modules of MalView for 313

99912 VOLUME 10, 2022

H. N. Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

FIGURE 2. The MalView system contains the following main views: Input and Operation Overview (A), Processes Activity (B), Classification (C), Process
Dependencies (D) and Libraries Matrix (E). The Process Activity view has another mode of showing the referenced operated object (B1), with feature of
lensing for zooming in upon a particular interval in both viewing modes. Detail-on-demand is provided upon mouse interaction on selected item, as in
the example in panel (B2).

supporting users in comprehension and visual reasoning of314

malware activities and interactions.315

A. INPUT AND OPERATION OVERVIEW316

MalView provides the options for users to select input data317

from a default set of data samples or from their local machine,318

as depicted in Figure 2, panel (A1). The default dataset con-319

tains more than 60 samples of primary input data, help-320

ing users to familiarize themselves with the system and321

explore how the tool works. In addition to the default dataset,322

MalView allows users to use and analyze the output log file323

from running Procmon on their machine via the ‘‘Choose324

file’’ button for uploading the file for direct analysis.325

After the input file is uploaded, the operation overview326

(A) shows how the operations are categorized and allows327

user to observe the the prevalence of event types (visualiza-328

tion task T3). Each event type is represented as a rectangle,329

stacked horizontally by its category in a bar chart visualiza-330

tion. There are four color hue representing four categories:331

yellow for File System, blue for Process and Thread, green for332

Registry, red for Network. We employ the color coding based333

on the category the event type belongs to and incorporated it334

with the statistics of the amount of total corresponding func-335

tion calls during the monitored period. An individual event336

type is mounted with interactivity: it acts as a button provid-337

ing filtering upon mouseclick, the result of which is shown338

directly on the below adjacent panel, processes activity (B)339

A special group of existing critical operations, defined by 340

‘‘Commonly encounter’’ from InfoSec [7], [8], is shown on 341

the right of panel A. All the available operations captured 342

that match the commonly encounter criteria are presented. 343

This list serves as a selection box for highlighting critical 344

activities in both operation overview and processes activity 345

(visualization task T5). 346

B. TEMPORAL PATTERNS 347

Building upon the visual information mantra by Shneider- 348

man [12]: ‘‘Overview first, zoom and filter, then details-on- 349

demand,’’ the process activity in Figure 2(B) is designed to 350

explore the temporal patterns from the system’s low-level 351

events along with inter-process communications. The time- 352

line is presented horizontally from left to right, while the 353

processes are listed vertically. Besides the operations exe- 354

cuted by a process itself, there are interactions between two 355

processes, such as one creating the other with its primary 356

thread, demonstrated by the arc connecting the two. On top 357

of panel B is an area chart showing the arc distribution, pro- 358

viding the overview of the function call frequencies (visual- 359

ization task T1). 360

Each process is associated with an aligned set of events 361

executed by the process itself. An individual event is rep- 362

resented by a thin vertical bar, color coded by its event 363

type, which is introduced in section II-B and presented in 364

panel A. These small, thin bars are presented with 50% 365

VOLUME 10, 2022 99913

H. N. Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

transparency so that if multiple events appear at nearly the366

same time, the color will add up on display (visualization367

task T3); therefore, users can see that the calls are busy there368

and there is a chance for anomalies detection at these spots369

(visualization task T7).370

The interaction arc starts from the parent process (the one371

that initializes the call, or the source) and ends at the child372

process (the destination, or the target of the call) (visualiza-373

tion task T4). The interactions here are the typical events of374

processes and thread, as specified in section II-B; hence they375

have the blue color of process and thread category. One of376

the most common events in this category is Process Create,377

in which a process creates a new process and its primary378

thread. Besides the source-target interactions, MalView also379

supports to visualize the call-to-self events (or the loops).380

In this case, the process is both the one that initializes and381

the target of the call.382

MalView supports details-on-demand in terms of process383

detail, event call detail, filtering calls related to one specific384

process, and zooming in a period (visualization task T2).385

The details of an event can be shown on the tooltip by386

mousing over the corresponding bar, including process name,387

operation, event type, timestamp, process ID, and additional388

operation-specific information about the event, as shown389

in Figure 2(B2). Similarly, the detail of process interac-390

tion is displayed on the tooltip by mousing over the arc,391

providing information on the source process, target pro-392

cess, and the event type of the call. For a particular pro-393

cess, users can choose to observe only the call originated394

from or to this process by a simple mouseclick on that pro-395

cess. The zooming feature for the arc distribution (visu-396

alization task T5) will be presented with a case study in397

section VI-D.398

1) OPERATED OBJECTS399

This processes activity panel supports the detail view by a400

magnification feature called ‘‘Lensing’’ (visualization task401

T2). When this feature is enabled, hovering along the time-402

line will expand the current window at that time step. For403

example, panel (B1) in Figure 2 presents the ‘‘Lensing’’ fea-404

ture for the interval of 2:27:22 to 2:28:06. Here, the view405

shows another mode of presenting the referenced stream-406

graph rather than individual events. We utilize the event cate-407

gorization that revolves around five key types: registry, file408

system, network, process, and profiling, to determine the409

operated objects. Since profiling operation can be less infor-410

mative about process activity and more about kernel time411

and memory used, we exclude profiling from the scope of412

our operated objects. In addition, dynamic-link libraries that413

contain code and data that can be used by more than one414

program at once are also indispensable from the analysis pro-415

cess. These considerations lead to our final operated object416

list: registry, network address, system file, exe (executable417

file), and dll, as shown in panel (D1). That serves as a ref-418

erence to both panel (B1) and, later, process dependencies in419

panel (D).420

C. MALWARE AND CLASSIFICATION 421

Figure 2(C) presents the classification formalicious or benign 422

activities of the captured log file produced by Procmon (visu- 423

alization task T7). Aligning with the primary aim of pro- 424

viding a visual analytics tool and platform to demonstrate 425

malware’s static and dynamic behavior, MalView captures 426

the results provided by the integrated APIs and visualizes 427

them to the end-user.MalView incorporates a number of APIs 428

such as VirusTotal API and inherently relies on the output 429

produced by these APIs. We investigate the target domains 430

that the network activities are connected to. The extracted 431

information for each connected domain contains its Internet 432

Protocol (IP) address, the detection classification results, the 433

associated process and activities related to the domain, and 434

lastly, the country to which the server is hosted. 435

FIGURE 3. MalView analysis summary of TeeracB malware on Windows 7.

The API automatically scans a given malware, and 436

their patterns are automatically compared with more than 437

70 servers and databases. The classification result consists of 438

four categories: malicious, suspicious, undetected, or harm- 439

less, each indicated by the number of detections found corre- 440

sponding to the targeted domain. Spring et al. [13] discussed 441

that the malicious domains are attempts to connect with a 442

command and control server or dropbox and are expected 443

to behave differently from a typical phishing or a drive-by- 444

download malicious site. In MalView, this list of connecting 445

domains is ordered by the variety of the outcomes of each 446

domain (visualization task T6). Figure 3 demonstrates the 447

analysis summary of TeeracB malware on Windows 7. One 448

malicious domain is detected, named ‘‘maatuska.4711.se’’, 449

connected by the ‘‘explorer.exe’’ process with ‘‘TCP Recon- 450

nect’’ activity. 451

D. PROCESS DEPENDENCIES 452

This process dependencies view (Figure 2(D)) presents an 453

in-depth analysis of each process in the system, where one 454

process can operate on many types of objects, as introduced 455

in section IV-B1 and shown in panel (D1). The visualization 456

task T4 is actualized as presenting the one-to-many relation- 457

ships between the process and its dependencies. In addition, 458

as the number of dependencies increases in cases with com- 459

plex activity, we need a way to handle visual clutters by 460

reducing the number of visual elements while preserving the 461

structure. For these reasons, we employ 1) the force-directed 462

layout with node-link diagram to demonstrate the relation- 463

ships and 2) the node bundling technique [14] incorporated 464

into the force-directed layout to reduce visual clutter by node 465

aggregation. Force-directed layout has been explored inmany 466

99914 VOLUME 10, 2022

H. N. Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

efforts, such as [15], [16], [17], to represent the even distribu-467

tion of nodes and links and speed up spring force calculations.468

The process dependencies panel contains multiple win-469

dows; each corresponds to one single process, ranked by the470

degree of that process node (visualization task T6). In each471

window, aside from the main process node (positioned in472

the center of the graph with thick, dark stroke), each node473

can be in one of the two states: individual or bundling. The474

individual state corresponds to each node representing one475

object operated on by the process. The bundling state leverage476

the node bundling/aggregation technique [14], as shown in477

the top panel of (D), where each node encompasses multiple478

objects with the same type and connection. The size of this479

bundled node is proportional to the number of the individual480

nodes it comprises (visualization taskT3).Mouse-clicking on481

a bundled node transforms itself into a set of individual nodes482

bounded by a convex hull, as shown in the lower panel. These483

two states can be switched back and forth by a single mouse484

click on the bundled node or the convex hull surrounding485

the internal nodes. Besides the source-target type of connec-486

tion, the graph also presents the available call-to-self events487

(the loops) of each process, in accordance with the processes488

activity panel in Figure 2(B).489

E. LIBRARIES MATRIX490

Figure 2(E) describes the dynamic-link library (DLL) calls491

by each process (visualization task T4), supporting users to492

detect the abnormal frequency patterns (visualization task493

T7). These are the Windows API calls to the libraries494

that are part of the Windows operating system, not to be495

confused with the one calling VirusTotal/IPStack API for496

scanning connected domains, as presented in Section IV-C.497

System activities may involve multiple library calls from498

one process or a common library providing resources for499

various processes. To represent vast number of relation-500

ships between processes and libraries, MalView utilizes an501

interactive heat-map matrix to prevent cluttering in contrast502

to conventional node-link graph visualization (visualization503

task T3). In the matrix, each cell value is color encoded504

by the gray color scale, in which darker presents frequent505

calls while lighter is rare calls. There are several criteria for506

ranking processes (rows)/libraries (columns): by similarity,507

frequency, or the number of different libraries called.508

V. CASE STUDIES509

In an effort to provide its users with a safe and pro-510

ductive experience, Microsoft provides information about511

malware and unwanted applications affecting its operating512

systems online [18] and details about these in its docu-513

mentation platform [19]. Microsoft [19] classifies malware514

into 13 categories categories:1) Backdoor, 2) Downloader,515

3) Dropper, 4) Exploit, 5) Hacktool, 6)Macro virus, 7) Obfus-516

cator, 8) Password Stealer, 9) Ransomware, 10) Rogue secu-517

rity software, 11) Trojan, 12) Trojan clicker, and 13) Worm.518

Furthermore, Microsoft also provides a tool to search for519

current cyber threats, viruses, and malware in its online520

platform called Microsoft Security Intelligence (MSI) plat- 521

form [20]. 522

MalView can be utilized in different settings. 1) When 523

the objective is to comprehend malware functionalities and 524

not detection, 2) when a new malware application (zero-day 525

malware) is developed and not detectable by any tool (due 526

to lack of profiles and signatures), 3) when the objective is 527

to classify a family of malware and then employ a set of 528

generic solutions and remedies to address each class of mal- 529

ware, and 4) when new malware is developed, and we are 530

interested in investigating whether it follows some existing 531

knownmalicious patterns or not (i.e., labeling malware type). 532

Accordingly, if there is an incident report about zero-day vul- 533

nerabilitywhere there is no clear patching solution developed, 534

MalView can help us to analyze and comprehend the malware 535

with zero-day vulnerability and thus enable us to identify 536

patches or solutions better. To demonstrate the usability of 537

MalView in analyzing malware software visually, we con- 538

ducted a set of case studies in which the output and behavior 539

of the selected malware were captured. Due to the space limit, 540

we capture and present the processes involved in seven mal- 541

ware, namely 1) Backdoor, 2) RemoteAccess, 3) Behaviour, 542

4) Ransomware, 5) EmailFlooder, 6) Hacktool, and 7) Trojan 543

(Info stealer). The following sections demonstrate the appli- 544

cations ofMalView to several of these malware types. 545

A. EXPERIMENTAL SETUP 546

The malware experimentation setup needs an isolated and 547

controlled environment so that the malicious code does not 548

propagate or infect other entities in the network. This clean 549

and isolated environment also helps to identify the changes 550

and possible tampers in the system due to the malicious activ- 551

ities of the malware specimen. For this work, we installed 552

three different Windows systems on an Oracle Virtual Box: 553

Windows XP, Windows 7, and Windows 10. The windows 554

defender services, windows security services, firewalls, and 555

other automatic security updates were disabled on each of the 556

virtual OSs to prevent any interruption during the malware 557

sample’s execution and capture all the traces of their dynamic 558

behavior. To capture the interaction between the malware and 559

each host system, Procmonwas installed on all environments. 560

More specifically, all the user applications on the virtual OS 561

were closed, the malware process name was added to the 562

monitor filter to capture only the events of the malware exe- 563

cutable. Then the executable was run for two minutes before 564

saving the time-ordered system activities from Procmon and 565

fed to MalView. 566

Since MalView depends on the output of Procmon, the 567

amount of information it visualizes depends on how long 568

Procmon is executed. The execution time also shortens the 569

amount of data captured by Procmon. According to our expe- 570

rience with MalView, a larger and more complex output and 571

traces produced by Procmon makes MalView less effective 572

since the visualization needs to capture a vast number of 573

processes and events. However, a key feature of MalView is 574

to offer different levels of abstraction and complexity. If we 575

VOLUME 10, 2022 99915

H. N. Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

FIGURE 4. MalView analysis summary on RAT, with the filter set on displaying the interactions with RAT only: There are multiple and repeated function
calls between the process corresponding to the RAT and explorer.exe, wscript.exe and svchost.exe. Patterns of periodical operations are also presented,
such as of Local Security Authority Subsystem Service lsass.exe or Virtual Box’s vboxservice.exe.

adjust the windowwidth (interface size) and rerun the sample,576

the visual components would readjust to fit the new window577

size. More specifically, the execution time depends on how578

large the malware sample is, ranging from 0.3s to several579

seconds.580

B. REMOTE ACCESS TROJAN (RAT)581

Remote Access Tools are useful applications to provide582

administrative assistance to the end-users remotely. However,583

these pieces of software are increasingly abused by adver-584

saries to gain control over the target systems and are referred585

to as Remote Access Trojans (RATs). RATs are distributed586

through email attachments or as a patch with pirated software587

to infect the target in order to gain administrative control.588

Once the target machines are infected, RATs have complete589

control over the victim system to perform malicious activi-590

ties, such as password sniffing, keylogging, track file transfer591

information, webcam feed, control the system by issuing shell592

commands, or even propagate some other malwares/viruses.593

RATs are particularly hard to detect, as they execute legiti-594

mate operating system processes resembling the behavior of595

other commercial remote access tools, and they usually do not596

show up as running tasks. Besides, there are tools that enable597

performing obfuscation on a given application and produce598

obfuscated malicious applications. Using various obfuscation599

methods, along withmanaging resource utilization, RATs can600

remain undetected. According to the October 2018 Global601

Threat Index [21] published by Check Point, RATs are ranked602

among the top 10 ‘‘most wanted’’ malware.603

We captured the run time behavior of RATs on differ- 604

ent Windows and visualized the behavior using visualization 605

tool MalView. The live malware sample was downloaded 606

from public malware dataset VirusShare [22]. According to 607

a multi-scan report from Virustotal [23], this sample has a 608

community score of 66 out of 70, i.e., out of 70 detection 609

engines, 66 could identify it as a malicious executable. Fig- 610

ure 4 shows the detail analysis performed on an RAT sam- 611

ple using MalView. The malicious indicators presented by 612

MalView are as follows: 613

• Process: The malicious executable spawns processes 614

like explorer.exe, wscript.exe, and svchost.exe. The exe- 615

cution of these processes indicates that the RAT pro- 616

gram is trying to start a command prompt and then run 617

some scripts to start a session to monitor the process 618

remotely. 619

• Registry: The sample RAT performs a large number of 620

registry operations, including the creation of registry 621

keys as well as a query of the registry entries. 622

• Files: The malicious PE performs a large number of var- 623

ious file operations, including the creation of new files 624

and mapping file systems. 625

• Network activity: The sample RAT does not demonstrate 626

any significant number of TCP/UDP requests. 627

Besides the malware-associated events, MalView is also 628

able to capture the recurrent pattern of periodical operations, 629

such as the system process of Local Security Authority Sub- 630

system Service lsass.exe or Virtual Box’s vboxservice.exe. 631

99916 VOLUME 10, 2022

H. N. Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

FIGURE 5. MalView visualization for a sample Trojan. User can request to overlay the networks of suspicious processes (which contain the self calls).

The influence of running platform will be discussed further632

in Section VI.633

C. TROJANS634

ATrojan is a type of malware that pretends to be a benign pro-635

gram, but after installation, it executes hidden code and then636

performs malicious activities such as deleting or tampering637

with data, stealing information, running some other scripts,638

and creating backdoors. In general, it enables the attacker to639

access the victim’s system, and these types of malware are640

not able to replicate themselves [24].641

1) SAMPLE TROJAN642

A sample of Trojan2 was obtained from VirusShare [22]. The643

output file containing all the processes was created after run-644

ning the malware in a controlled environment usingWindows645

7 as its platform. Figure 5 shows theMalView output for this646

malware. We applied lensing on the critical period to view647

the activity details. We chose four important processes based648

on the dependencies, including cmd.exe, tmp.exe, reg.exe, and649

timeout.exe.650

By clicking the name of this malware on MalView Pro-651

cess Activity window, we can observe that this executable652

file has created two processes: cmd.exe and tmp.exe (at the653

blue links). By further clicking on the child process, we can654

retrieve the list of processes created by cmd.exe and tmp.exe.655

Then, the cmd.exe process has created two child processes:656

reg.exe and timeout.exe. The tmp.exe process did not create657

any child process. The process networks of cmd.exe, tmp.exe,658

reg.exe, and timeout.exe are overlaid on top of the process659

timeline on request.660

2) TROJAN MultiInjector661

MultiInjector, under trojan classification, is a trojan that tries662

to inject code into other processes to hide or execute its pay-663

load and download and install other malware [25]. Figure 6(a)664

2MD5:b3eebe51ccc4a95815ddef3ef55604d2

presents a sample of trojanMultiInjector underMalView anal- 665

ysis. MalView reveals the sequence of Process Create events 666

generated by the malware and its interactions with other 667

processes in the system, with multiple recurring patterns of 668

function calls. Panel (b) shows the result of zooming into the 669

most active/busy interval that was automatically detected by 670

the tool, while panel (c) presents the outcome fromfiltering to 671

highlight only interactions associated with the malware. The 672

final result patterns are shown in panel (d). 673

By exploring details-on-demand via mousing over, 674

as shown in panel (c), the first event in this sequence is 675

Process Create from the malware to cmd.exe leading to the 676

subsequent calls. Around 12:23:47, there are four consecutive 677

Process Create calls from the malware to net.exe. The subse- 678

quent calls can be seen in panel (b) and panel (a) (for a broad 679

view). Finally, the repeated event patterns associated with 680

malware are clear in panel (d): one Process Create event from 681

the malware to cmd.exe, followed by the four subsequences 682

to net.exe. The behavior from this observation aligns with 683

the characteristics of the malware of injecting code into other 684

processes. The visualization helps to discern these low-level 685

operations from the malware to other system processes. 686

D. BACKDOOR 687

A backdoor is a type of malware that provides unauthorized 688

remote access to the compromised system by exploiting secu- 689

rity vulnerabilities. The malware works in the background 690

while hiding from the user. Meanwhile, it enables the attacker 691

to have access to the victim’s computer, such as databases 692

and file servers, as well as running system-level commands. 693

The process of injecting Backdoor is usually performed in 694

two stages: First, a small file, called a dropper, is installed. 695

Second, the dropper downloads the main malicious file from 696

a remote location [26]. It is important to mention that Trojan 697

and backdoormalwares are not the same: ATrojanmight con- 698

tain a backdoor, but a backdoor can execute as a stand-alone 699

program without being a part of a Trojan. 700

VOLUME 10, 2022 99917

H. N. Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

FIGURE 6. Trojan MultiInjector under MalView analysis: the sequence of Process Create events generated by the malware and its
interactions with other processes in the system.

The MalView visualization of malware Backdoor Androm701

execution on Windows 7 is presented in Figure 7. The702

accumulation of interactions presented in the top area chart703

divides the observation into two phases. The first phase704

heavily involves activities associated with the malware and705

svchost.exe. The last function call from the malware is to706

regasm.exe (at the end of Box A), followed by an interest-707

ing recurring pattern in the second phase, as highlighted in708

Box B. This recurring pattern starts with a function call from709

regasm.exe itself to schtasks.exe, where the time between the 710

two patterns is about two seconds. Here, process regasm.exe 711

is the assembly registration tool, which reads metadata within 712

an assembly and adds necessary entries to the registry. 713

The overlay dependency graphs in Figure 7 open up sev- 714

eral interesting findings. First, although its activities end 715

early during the observation, the malware operates on mul- 716

tiple registry files, as shown by the large size of the green 717

registry nodes. Second, svchost.exe has a long sequence of 718

99918 VOLUME 10, 2022

H. N. Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

FIGURE 7. MalView visualization of malware Backdoor Androm on Windows 7. The top area chart demonstrates two separate phases: the first one with
malware activities, ending with a call to regasm.exe (Box A) and the second with recurring patterns involving regasm.exe itself (Box B).

periodic operations on registry files and operates on numer-719

ous types of objects, as seen on the dependency graph. As the720

generic host process for Win32 services, it also makes func-721

tion calls to the malware process twice, about five seconds722

apart. Finally, while regasm.exe interacts with five other pro-723

cesses, it only shares dependencies with schtasks.exe. The724

dependency graphs and process activity timeline are comple-725

mentary and can effectively support the analytical reasoning726

of malware behaviors.727

E. RANSOMWARE728

A typical ransomware program encrypts the victims’ com-729

puter files and demands a ransom to restore access to the730

data. A ransomware program locks a system utilizes some731

visual messages, imposing law enforcement to threaten the732

target. The ransomware scam has matured over time, utiliz-733

ing different methods to impair a computer. According to a734

report published by Symantec [27], the latest advancement735

prevents the computer from functioning and dismisses the736

client from gaining any access. The system at such a stage737

displays a message that proclaims to be from a local law738

enforcement organization. The ransomware application asks739

for money in exchange for letting the users re-gain access to740

their systems. In recent news in July 2021 by Malwarebytes741

report [28], a severe ransomware attack was reportedly taking742

place against the popular Remote Monitoring and Manage-743

ment software tool Kaseya VSA. This attack has forced to744

immediately shut down the VSA servers, where Kaseya VSA745

was used to encrypt over 1,000 businesses. The attackers746

are asking for $70M in exchange for a universal decryp-747

tor. Also reported by Malwarebytes [29], 35% of small and748

FIGURE 8. MalView analysis summary of ransomware WannaPeace on
Windows 7.

medium-sized businesses were under attack of ransomware. 749

A lot of times, these organizations end up paying for the 750

ransom. According to a multi-scan report from Virustotal, the 751

sample studied in this paper has a community score of 47 out 752

of 72, i.e., out of 72 detection engines, 47 could identify it as 753

a malicious executable. 754

Figure 8 shows the visualization for the dynamic activities 755

of the ransomware wannapeace.exe.3 The malicious indica- 756

tors presented by theMalView are as follows: 757

3MD5:eefa6f98681d78b63f15d7e58934c6cc

VOLUME 10, 2022 99919

H. N. Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

• Processes: The time window shows that the ransomware758

spawns: conhost.exe and consent.exe. The conhost.exe759

indicates that the ransomware is accessing the command760

line, whereas the consent.exe is an indicator that the761

program is trying to utilize the user access.762

• Registry: It creates a registry key to make changes.763

• Files: Malicious PE performs a lot of file operations. For764

instance, it performs 3434 times of CreateFile opera-765

tions and 601 times ofWriteFile operations.766

• Network activity: The malware performs many767

TCP/UDP connection requests, sends, and receives.768

• Domain Activity: It connects to seven different domains,769

as shown on the upper right corner of Figure 8.770

F. BEHAVIORAL MALWARE771

At the time of this writing, a search on Microsoft Security772

Intelligence threat search platform [20] returned 500malware773

as Behavior type, in which the distribution of alert levels was774

as 400, 38, 3, and 16 for severe, high, moderate, and low,775

respectively. A behavior type of malware generally includes776

malware that exhibits suspicious activities, but it is not clas-777

sified into a specific popular category of malware. This type778

of malware is difficult to detect because its activities can779

greatly vary depending on the intention of the underlying780

malware and the current user context. Our study of several781

malwares in ‘‘Behavior’’ type shows that these suspicious782

activities include 1) disabling system recovery, 2) deleting783

shadow copies, 3) hidden code executions, 4) creating files784

in the user’s system, 5) changing the registry key to run itself,785

and 6) accessing to netsh.exe to modify firewall configura-786

tion that allows itself to run on system startup. Examples of787

such behavioral malware include Bladabindi.gen [30], Vaw-788

trak.A [31], and Teerac.B [32]. Furthermore, some behav-789

ioral malware (e.g.,MultiInjector [33]) involves accessing the790

command prompt (CMD).791

For instance, Figure 9 shows suspicious activities from an792

example of the Behavior malware type called Bladabindi.793

Panel (a) shows that it starts netsh.exe to modify firewall794

configuration to add itself as a permissible program. Panel795

(b) provides a piece of evidence as it sets the registry value796

(RegSetValue) on the user system to runs itself at Windows797

Startup for the same malware.798

FIGURE 9. MalView shows suspicious activities from a Behavior malware,
named Bladabindi. Panel (a) shows that it starts netsh.exe to modify
firewall configuration. Panel (b) depicts that it sets the registry values to
run itself.

G. HACKTOOL MALWARE 799

Hacktool is a piece of software that malicious attackers use 800

to gain unauthorized access to user’s devices [18]. As of 801

the time of this writing, Microsoft lists 188 active entries as 802

Hacktools, of which 93 are severe, 80 are high, and 15 are 803

moderate in terms of alert levels [20]. The popular attacking 804

channel for Hacktool is via insecure Universal Serial Bus 805

(USB) communication design and Windows Autoplay fea- 806

tures [34]. Malicious activities for Hacktool launched from 807

USB include 1) changing registry settings, 2) installing a 808

backdoor, 3) stealing confidential information, and 4) reading 809

data encryption keys. Recently, besides Trojan, Hacktool is 810

also the second most prevalent type of malware embedded in 811

pirated software [35]. 812

Figure 10 shows MalView view while analyzing a sample 813

of Hacktool malware type named Mailpassview [36]. It first 814

creates svchost.exe process (a). The svchost.exe process then 815

creates windows update.exe (b). This process then creates 816

several files like holdermail.txt (via using vcb.exe) to store 817

‘‘Browser Password Recovery Report,’’ pidloc.txt to contain 818

information of compromised computers (c). These are the 819

pieces of evidence about the existence of Hawkeye Keylog- 820

ger [37] to steal sensitive data (e.g., email password). 821

FIGURE 10. MalView view on a Hacktool malware type called
Mailpassview. It first creates process svchost.exe (a), then svchost.exe
starts windows update.exe (b), and then windows update.exe creates
pidloc.txt (c).

Determining whether the connecting domains from net- 822

work activities are malicious or benign is important. The clas- 823

sification for malicious connecting domain for the malware 824

Mailpassview is shown is Figure 11. Among the examined 825

domains, iplogger.com is assessed as malicious and suspi- 826

cious by VirusTotal, with the IP address 88.99.66.31 from 827

Gunzenhausen, Bavaria, Germany. Recall from the chained 828

calls shown in Figure 10: The process corresponding to the 829

malware mailpassview.exe called and initiated wscript.exe 830

with Process Create (panel ‘‘D’’ in Figure 10), then 831

wscript.exe also called and initiated powershell.exe with 832

Process Create. This chain continues with process power- 833

shell.exe connecting to malicious target domain iplogger.com 834

with four different activities: TCP Connect, TCP Send, TCP 835

Receive and TCP Disconnect. Here, wscript.exe is stored 836

in C:\Windows\System32 and provides an environment in 837

99920 VOLUME 10, 2022

H. N. Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

FIGURE 11. The classification for malicious connecting domains from
malware Mailpassview. The target domain iplogger.com is assessed as
malicious and suspicious by VirusTotal. This domain is connected from
powershell.exe via four activities: TCP Connect, TCP Send, TCP Receive
and TCP Disconnect.

which users can execute scripts, which is different from838

the malicious programs that malware programmers or cyber839

criminals write and name it as wscript.exe.840

VI. THE INFLUENCE OF RUNNING PLATFORMS ON841

MALWARE BEHAVIOR842

To examine how malware behaves in different platforms,843

we also executed multiple malware on Microsoft’s main-844

stream Windows OSs.845

A. RANSOMWARE846

The ransomware samples were collected under differentWin-847

dows platforms and had their behaviors compared using848

MalView. Figure 12 captures the behavior of the ransomware849

on Windows XP, Windows 7, and Windows 10, respectively.850

• The ransomware sample performs a large number of851

registry operations on both Windows 10 and 7; whereas,852

it accesses the registry just one time on Windows XP.853

• On Windows 10, the ransomware did not perform any854

file operations; whereas, Windows 7 shows many file855

activities. The Windows XP platform shows traces of a856

few file operations.857

• The DLL called by the ransomware remained almost858

unchanged for three platforms.859

• The upper right panel of the tool shows a time interval860

sequence of process, file, registry operations performed861

by the ransomware. Both Windows 10 andWindows XP862

show that the malicious PE executes sparsely; whereas,863

on Windows 7, it shows more consecutive operations.864

• The lower right panels show the statistics of commonly865

encountered and critical activities of the ransomware.866

B. EMAIL FLOODER867

We chose the ‘‘email flooder’’ malware to compare the visu-868

alization for this sample run in different platforms, including869

Windows XP, 7, and 10, as depicted in Figure 13. In partic-870

ular, the output for Windows XP is simpler than the outputs871

produced by Windows 7 and 10. For example, the number872

of different processes for Windows XP is four vs. seven and873

nine for Windows 7 and 10, respectively. In addition, the total874

number of operations is much higher in Windows 10 than in875

Windows XP. It is observable that there is more information,876

including more processes, calls, dependencies, and activities877

in Windows 10 and 7 than XP. Since some of these pieces878

of information might be because of the Windows activities879

FIGURE 12. MalView visualizations of the sample ransomware on
(a) Windows XP, (b) Windows 7, and (c) Windows 10.

FIGURE 13. MalView visualizations of Email Flooder on (a) Windows XP,
(b) Windows 7, and (c) Windows 10.

themselves and not the malware activities, tracking malware 880

behavior in newer platforms might be more complicated. 881

C. BEHAVIORAL MALWARE 882

Figure 14 shows MalView views applied to Bladabindi 883

malware executed on these three Windows operating sys- 884

tems in the top panel, middle panel, and bottom panel, 885

VOLUME 10, 2022 99921

H. N. Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

FIGURE 14. Bladabindi malware executions on different platforms:
Windows XP (a), Windows 7 (b) and Windows 10 (c).

respectively. In general, more platform-related processes are886

being executed in the latter two operating systems in compari-887

son toWindows XP. However, its suspicious activities remain888

the same. In all platforms, it first starts netsh.exe to modify889

firewall configuration and then sets the registry values to run890

itself.891

D. PATTERNS ACROSS PLATFORMS892

One of the key features and benefits of employing visualiza-893

tion tools is to perform pattern detection and classification894

visually prior to delving into analytical approaches.MalView895

captures key features that are indicators for profiling classes896

or families of malware.897

More specifically, using MalView it is possible to cap-898

ture features such as volume of processes, registry activi-899

ties, files manipulation and accesses, and network activities.900

As described below, these features are able to detect any901

‘‘behavioral patterns in the set of malware studied and thus902

enable us to classify them according to their dynamic behav- 903

ior. Instead of trying to generate patterns of interest, in this 904

study, we show how the analysis works based on malware 905

behavior tracing, the kind of information it entails, and how 906

the tool can enable analysts to quickly study the interaction 907

of malware with system internals using selections, focus and 908

context technique, and aggregations. 909

WithMalView, we focus on the interactions of the malware 910

program to other system internals processes. While Proc- 911

mon, as the data provider, brings detailed information into 912

each of the processes running in the system, the interval 913

and log activity captured may be subjective to the person 914

behind the capturing execution. To focus on the time inter- 915

val in which we can witness the most significant amount of 916

malware activity to other system internals processes, called 917

busy interval, we applied focus and context visualization 918

technique in MalView to support 1) close-up view for indi- 919

vidual malware analysis and 2) standardization for malware 920

comparison. To accommodate the context around the focal 921

point, we select the interval that satisfies either ensuring the 922

equal paddings to the first and last interaction to the bound- 923

ary of the interval or equal paddings to the peak of the area 924

chart - where there witness the highest amount of interactions. 925

Patterns of Bladabindimalware behavior across platforms: 926

(a) Windows XP, (b) Windows 7, and (c) Windows 10, all 927

under focus and context technique with busy interval length 928

of 20 seconds, are shown Figure 15. By using mousing over 929

an arc representing a function call, an user can observe the 930

detailed information including type of operation, source and 931

target processes. A recurring pattern observed from the blad- 932

abindi is the following sequence of calls: A ProcessCreate 933

from explorer.exe to the malware, following by a Process- 934

Create from the malware to netsh.exe. As shown in Fig- 935

ure 5 and Figure 7, different processes produce very different 936

dependency connections in terms of topology, grouping and 937

volume. However, as presented on the right of Figure 15, 938

the dependencies of the three bladabindi malware processes 939

across different platforms demonstrate many similarities: the 940

three biggest nodes that have the degree of one are all from 941

registry (green), file (sand color), and dll (grey). For nodes 942

with a degree of two - having connections with both blad- 943

abindi and netsh.exe, their categories are the same regardless 944

of the running platforms. For further analysis, these patterns 945

can serve as indicators for such classes of malware. 946

VII. MALWARE VISUALIZATION TOOLS VS. MalView 947

This section compares the features offered by MalView with 948

the ones offered by some other malware visualization tools, 949

including Hybrid [38] and AnyRun [39]. First, we briefly 950

review each visualization tool and then compare its features. 951

A. AnyRun: INTERACTIVE ONLINE MALWARE SANDBOX 952

Funded in 2016 by a Russian security researcher, Alexey Lap- 953

shin, AnyRun [39] offers a free ‘‘interactive’’ sandbox tool 954

for dynamic analysis of malware. The tool enables uploading 955

a suspicious file and, in the meantime, interacting with the 956

99922 VOLUME 10, 2022

H. N. Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

FIGURE 15. Patterns of malware behavior across platforms: Bladabindi malware executions on (a) Windows XP, (b) Windows 7, and (c) Windows 10, all
under focus and context technique with busy interval length of 20 seconds. On the right end are the corresponding dependency graphs of the malware
process. While different processes express different dependency graphs, as shown in Figure 5 and Figure 7, the dependency graph of Bladabindi malware
is relatively consistent across different platforms.

sandbox and thus with malware to trigger some function-957

alities or execute macros embedded into the uploaded file.958

AnyRun offers several key features, as follows:959

• The tool’s main feature is the visualization of interactive960

graphs and tree structure for comprehending malware.961

The feature helps visually identify suspicious processes,962

determine the family of malicious activities and patterns,963

and highlight external files that are downloaded by the964

malware.965

• It also enables content analysis of different types of sus-966

picious and malware files, including PCAP files (i.e.,967

network activity dump).968

• The tool also performs network analysis with the goal of969

tagging suspicious events. It analyzes Hypertext Trans-970

fer Protocol (Secure) (HTTP(s)) requests and responses971

along with their headers972

• The tool can be used as an educational and training tool973

to assist the security experts to understand the structure974

of attacks through Mitre Att&ck Mapping [40].975

• It enables opening web addresses (URLs) in different976

browsers and therefore helps in URL analysis and, more977

importantly, phishing attacks using various mainstream978

and supported browsers.979

• The tool generates a fine-format report for publication980

and sharing purposes. The professionally-looking report981

consists of supporting screenshots, Process Behavior 982

Graphs, indicators of being malicious/suspicious, and 983

many other components. 984

B. HYBRID: AUTOMATED MALWARE ANALYSIS SERVICE 985

Hybrid [38] is a free malware analysis tool that enables both 986

static and dynamic analysis. It utilizes several analysis reports 987

and sandbox tools, including Falcon Sandbox [41], a dynamic 988

analysis framework. In addition to the dynamic analysis 989

offered by Falcon Sandbox, Hybrid integrates some other 990

anti-virus tools such as VirusTotal, OPSWAT Metadefender, 991

SIEM systems, NSRL (i.e., white listing), TOR (e.g., avoid- 992

ing external IP fingerprinting), Phantom, Thug Honey Client 993

(e.g., URL exploit analysis), and Suricata (ETOpen/ETPro 994

rules). The tool provides several useful analysis features such 995

as: 996

• Risk summary and verdict of being malicious or benign. 997

• A good number of malicious/suspicious indicators 998

• A large set of network rules for intrusion detection and 999

network analysis 1000

• Integration with YARA [42] for rule-based pattern 1001

matching-based malware detection 1002

• Analysis of a wide variety of files including binary sam- 1003

ples and PCAP files 1004

• Analysis of URLs for detection of phishing attacks 1005

VOLUME 10, 2022 99923

H. N. Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

TABLE 1. A feature-based comparison of Anyrun [39], Hybrid [38] and MalView.

C. A FEATURE-BASED COMPARISON1006

This section aims to highlight the key features of1007

AnyRun [39] and Hybrid [38] in comparison with the fea-1008

tures offered by MalView. The comparison is performed1009

through the classification of features into 1) general features,1010

2) behavioral activities and dynamic analysis, 3) structure-1011

based and static analysis, and 4) network-level analysis.1012

Table 1 lists the features classified into these four groups.1013

1) GENERAL FEATURES1014

MalView offers not only comparatively similar features but1015

also additional features that are unique to MalView. More1016

precisely, the tool offers features such as 1) compliance with1017

InfoSec classification with respect to malicious processors1018

and indicators (Feature #4), and 2) simplification of visualiza-1019

tion through filtering and focusing only a subset of processes1020

for the analysis (Feature #5).1021

2) BEHAVIORAL ACTIVITIES AND DYNAMIC ANALYSIS 1022

FEATURES 1023

The features related to dynamic analysis are considerably 1024

diverse. As a result, each analysis tool offers its own set of 1025

unique features. Given the fact that MalView mostly visu- 1026

alizes the output of Procmon [6], it is primarily a dynamic 1027

analysis tool. Depending on how the underlying malware 1028

visualization tool is implemented, most of these tools are 1029

able to visualize the ‘‘basic’’ sets of dynamic data captured 1030

through Procmon or similar utilities. For instance, as Table 1 1031

shows, most of the behavioral features are visualizable by 1032

these three tools. 1033

The major and key feature that is unique to MalView is 1034

the exploration of ‘‘time dependencies between processes’’ 1035

(Features #15 and #16). The visualization of time and pro- 1036

cess dependencies are an important part of malware anal- 1037

ysis in order to comprehend the nature of the underlying 1038

malware. 1039

99924 VOLUME 10, 2022

H. N. Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

3) SIGNATURE-BASED AND STATIC ANALYSIS1040

As stated earlier, MalView is primarily a visual analytics1041

tool based on the output of the dynamic analysis of the1042

underlying application or malware. As a result, it is less1043

focused on visualizing static features of executable files.1044

However, MalView is integrated with several static analysis1045

tools, including VirusTotal, and thus is capable of capturing1046

this information and visualize them accordingly. VirusTo-1047

tal is able to capture static information such as the size of1048

header files, type of files, PE Specific, and other static and1049

signature-based features. As a result, MalView can visualize1050

all the information captured by VirusTotal and uses its API to1051

retrieve this information and visualize them accordingly.1052

4) NETWORK LEVEL ANALYSIS1053

Similar to signature-based and static analysis features,1054

MalView is less focused on visualizing purely network-level1055

features. However, given the strength of Procmon in captur-1056

ing all related processes and events, MalView is capable of1057

visualizing the network-level events and processes captured1058

by Procmon and thus provides a process-level view on this1059

network-level information.1060

VIII. RELATED WORK1061

The malware analysis methods can be broadly catego-1062

rized into static vs. dynamic analysis [44]. Many of these1063

approaches utilize visual representation to enable the analysts1064

to visually capture general activities related to malware from1065

a large number of data files or logs which are infeasible to1066

digest in text or binary format [45].1067

A. SIGNATURE-BASED FEATURES/STATIC ANALYSIS1068

Panas [46] visualized software binaries in order to demon-1069

strate malware samples. In their approach, they first disas-1070

semble the file to obtain the Abstract Syntax Tree (AST) and1071

then provided the intermediate representation of the file by1072

using ROSE [47], an open-source compiler. Visualizing the1073

signature of a set of differentmalware families, theywere able1074

to show the changes in different versions of a malware family.1075

Also utilizing visualizations in dynamic malware analysis,1076

Grégio et al. [45] proposed a solution with two interactive1077

visualization tools. The two visualization prototypes are a1078

timeline with a magnifier and a spiral view of the malicious1079

activities. The first tool provides analysts with views of the1080

malware activities over time. While the time selection for the1081

x-axis is similar to ours (and many others), the uses of colors1082

and what is to be presented in the y-axis are different. They1083

used the y-axis to represent activities and colors to different1084

processes or services involved by the malware execution.1085

Each event (an activity at a timestamp of an involved process)1086

is presented by a circle connected by a line, which represents1087

changes over time. This presentation leads to the visual clut-1088

tering issue, especially when malware does many different1089

activities in a short time interval [48].1090

Gove et al. [49] presented their tool Similarity Evidence 1091

Explorer for Malware (SEEM), which compares a focal sam- 1092

ple of malware with other malicious samples in the database. 1093

The malware features are grouped into nine categories, and 1094

feature similarities are visually presented in three ways: 1095

1) histogram, 2) Venn diagram list, and 3) a feature matrix. 1096

The histogram utilizes the Jaccard similarity of the features 1097

of the focal sample with the other samples. In contrast, the 1098

Venn diagram is more granular and shows information of 1099

overlap, strict subset, and disjoint features. The feature matrix 1100

highlights the specific features present in the analyzed sam- 1101

ple. Long et al. [50] proposed a versatile and instinctive tech- 1102

nique to identify a given malware file from its image sets. The 1103

authors argued that the desktop icons are one effective social 1104

engineering attempt employed by some malware developers. 1105

The victim clicks on the icon resulting in the execution of 1106

the malware. Hence, comparing a new malware based on 1107

its image with a previously known malware database results 1108

in effective malware identification. Extracted greyscale mal- 1109

ware images are shown using a force-directed graph [15], 1110

[17], which is essentially a similarity network of sample mal- 1111

ware images computed with the nearest neighbor index. The 1112

visualization tool shows hash values of the executable, and 1113

upon clicking on the values, it draws the similarity network 1114

graph, and it provides zooming functionalities for multiple 1115

hops of each node. 1116

B. IMAGE-BASED AND DYNAMIC ANALYSIS 1117

While static analysis is computationally efficient, its per- 1118

formance could be impaired by packed or encrypted mal- 1119

ware. On the other hand, dynamic analysis analyzes actual 1120

behaviors from the malware while it is running, so it is more 1121

efficient [51]. In their work [52], Shaid and Maarof pro- 1122

posed a method to generate images representing malware 1123

API calls. First, the API calls are monitored in the mal- 1124

ware behavior capturing step. These calls are then sorted 1125

from malicious to less malicious. Finally, each API call 1126

is assigned a color depending on its maliciousness level. 1127

Similarly, Kancherla et al. [51] proposed to convert the mal- 1128

ware into a gray-scale image called byteplot. They then 1129

used machine learning (ML) methods (e.g., Support Vector 1130

Machines) to analyze the low-level features (e.g., intensity 1131

and textures) extracted from the resulted images. Regarding 1132

ML approaches, LeDoux and Lakhotia [53] presented that 1133

ML has a natural fit with malware analysis, where ML oper- 1134

ates by rapidly learning, discovering inherent patterns and 1135

similarities in the corpus. 1136

With image-based malware classification, 1137

O’Shaughnessy [54] utilized the space-filling curves 1138

approach to formalize a scalable solution for classification 1139

ambiguity among anti-virus programs. Donahue [55] pro- 1140

posed another idea of using Markov Byte Plot [56] to con- 1141

vert Portable Executable (PE) files into truecolor (defined 1142

by red, green, and blue (RGB) color components) images 1143

that help to highlight the differences between the packed and 1144

unpacked malware. Another common approach is to convert 1145

VOLUME 10, 2022 99925

H. N. Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

malware PE or binary files into images and analyze the1146

resulted images. There are various ways to turn the malware1147

into images and different methods to analyze the produced1148

images. For instance, Han et al., [57] proposed a three-step1149

approach to analyze malware in this direction. First, the1150

opcode sequences of the malware are extracted in Step 1. Step1151

2 generates an image with both width and height are of 2n,1152

where n is a user-defined number. Next, this step applies a1153

hash function, such as SimHash [58], to each of the extracted1154

opcode sequences to generate a pixel with corresponding1155

x-y position and RGB color. Finally, similarities between the1156

resulted images are calculated in Step 3. In their extended1157

version of this approach [44], they also incorporated dynamic1158

analysis to filter for essential opcode sequences.1159

Miles et al. [59] presented VirusBattle, a system equipped1160

with intelligence navigation and visualization to mine and to1161

discover interrelationships between malware instances auto-1162

matically. This system provides two primary analyses: 1)1163

a program’s dynamic trace tree and 2) a scalable method1164

of discovering shared Computed Semantics artifacts among1165

instances of malware. VirusBattle analyzes the interrelation-1166

ships over many types of malware artifacts, including the1167

binary, code, code semantics, dynamic behaviors, malware1168

metadata. Shaid andMarrof [60] proposed the method of pre-1169

senting the behavioral pattern of malicious files using a Hot-1170

to-Cold color ramp. As the malware runs, the user-mode API1171

calls are captured, then ordered and grouped based on their1172

maliciousness. This behavior-to-color map of the malware1173

helps visualize when and in which order a malware sample1174

performs malicious activities during execution.1175

Besides software systems, research in hardware advance-1176

ment has introduced many approaches that facilitate mal-1177

ware analysis to build a transparent dynamic analysis1178

system. In terms of hardware virtualization extensions,1179

Dinaburg et al. [61] proposed Ether, an application that1180

remained transparent and defeated a large percentage of1181

obfuscation tools. Later, Lengyel et al. [62] built DRAKVUF1182

on a similar virtualization extensions approach and provided1183

greater insight into the execution of the system to trace system1184

execution for malware analysis.1185

This visual analytics approach in MalView can benefit the1186

branch prediction in dynamic environment analysis in Gold-1187

enEye by Xu et al. [63] and the analysis of sequences of1188

API calls in VECG by Alaeiyan et al. [64]. The interactive1189

visual representations can expedite the process of proactively1190

detecting environment-sensitive and context-based behav-1191

iors, where ‘‘human-in-the-loop’’ can accelerate early stop-1192

ping and quickly capture patterns that emerged from the API1193

call sequences.1194

C. HYBRID (STATIC AND DYNAMIC) ANALYSIS1195

Most static approaches focus on comparing, clustering mal-1196

ware instances, or classifying if a new sample belongs to a1197

known family of malware. For example, Paturi et al., [65]1198

used Pythagoras tree to represent the similarities in codes1199

between malware. The similarity metrics might be ‘‘Cosine1200

similarity’’ or ‘‘Normalized Compression Distance.’’ The 1201

hierarchical structure of the Pythagoras tree is characterized 1202

as the distance between nodes at each lower depth of the 1203

tree is reduced by
√
2/2. Thus, the tree helps bring malware 1204

with higher similarities into clusters as leaf nodes with shorter 1205

distances stay close to one another. 1206

Anderson et al. [66] presented a malware classification 1207

system that works based on the combination of static and 1208

dynamic features. For static feature extraction, they used 1209

three sources, including 1) the binary file, 2) the disassem- 1210

bled binary, and 3) the control flow graph of the disassem- 1211

bled binary file. For dynamic feature extraction, they used 1212

dynamic instruction sequence and the dynamic call sequence. 1213

They tested their system using a large malware dataset and 1214

achieved 98.07% accuracy with the combined static and 1215

dynamic features. They also achieved a 96.14% accuracy by 1216

using only static features. Yoo [67] designed the visualization 1217

based on the belief that malicious content in an executable 1218

file has a unique feature called SOM (Self-Organizing Map). 1219

By calculating the SOM and visualizing a specific executable 1220

file, the potential portion of the malicious content can be 1221

determined, and by checking the generated pattern, the mal- 1222

ware family can be detected. 1223

Saxe et al. [68] developed an interactive visualization sys- 1224

tem for comparing malware samples in a dataset using the 1225

extracted features. Based on the presence of the system call 1226

sequence, the similarity matrix for themalware dataset is gen- 1227

erated. This system also provides a comparison view among 1228

malware samples based on their malicious activity. Onmobile 1229

computing platforms such as Android devices, Jenkins and 1230

Cai [69], [70] explored Inter-Component Communications 1231

(ICC) via interactive visual explorations, showing thorough 1232

ICC comprehension and security vulnerability inspection, 1233

revealing the malicious behaviors that were normally hidden 1234

to users. 1235

D. VISUALIZATION TOOLS AND ANALYSIS 1236

Analyzing malware through visual behaviors has been stud- 1237

ied with the aim to observe the overall flow of a program, 1238

discover malicious patterns, and quickly assess the nature 1239

of the malware sample [5], [71]. Wagner et al. [72] pro- 1240

posed KAMAS, a knowledge-assisted visualization system 1241

for behavior-based malware analysis, which visualizes API 1242

call sequences gathered during the execution of malicious 1243

software. Our approach aligns with this direction, but we shift 1244

the focus on the analysis side with different malware families 1245

and the influence of operating systems on malware behavior. 1246

In particular, the design decisions and techniques inMalView 1247

are applied in the malware analysis domain and derived from 1248

visualization principles for time-series data, which is the col- 1249

lection of observations through repeated measurements over 1250

time, including but not limited to numerical, geolocation, 1251

and text data [73], [74], [75]. Using Ether [61] as the mon- 1252

itoring platform, Quist and Liebrock [76] propose a directed 1253

graph structure of all the basic blocks of an executable with 1254

a navigable interface to explore the code structure. Treemaps 1255

99926 VOLUME 10, 2022

H. N. Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

and thread graphs are also visualization techniques that show1256

usefulness in detecting maliciousness of software and in clas-1257

sifying malicious behavior [77]. The classification decisions1258

can be supported by the visual analytics solution provided by1259

Angelini et al. [78] to provide the user a better understand-1260

ing of such decisions and the possibility of changing the1261

classification results. Visual analytics approach, when com-1262

bined with predictive analysis, can project potential threats or1263

detect malicious attacks for securing efficient manufacturing1264

automation [79].1265

Conti et al. [80] designed a system for file analysis1266

with these features: 1) Analyze undocumented file format,1267

2) Audit files for vulnerabilities, 3) Compare files, 4) Crack,1268

Cryptanalysis, and Forensic analysis, 5) Identify unknown1269

file format, 6) Malware analysis and 7) Reporting. Their sys-1270

tem is an extension to the hex editor and consists of both1271

textual and graphical visualization. Quist and Liebrock [76]1272

developed a tool called VERA (Visualization of Executables1273

for Reversing and Analysis) that can be used for visualizing1274

the structure and flow of an executable file, includingmemory1275

reads and writes. Later, they extended their work [81] by1276

adding more reverse engineering tools and providing more1277

testing case studies in detail.1278

Trinius et al. [77] used two different approaches for mal-1279

ware visualization. They first generated an XML file con-1280

taining dynamic analysis information of the malware sam-1281

ple using CWSandbox [82], including 1) loaded system1282

libraries, 2) outgoing and incoming network connections, and1283

3) accessed or manipulated registry keys. Using the XML1284

output, they visualized the key feature using two techniques:1285

‘‘treemaps’’ and ‘‘thread graphs’’. They argue that these two1286

methods are complementary and, using these two visual rep-1287

resentations, can effectively help detect the malicious behav-1288

ior of the given malware and identify the malware family.1289

They tested their proposed approach by executable and non-1290

executable (PDF format) malware samples.1291

Gregio and Santos [83] developed an interactive timeline1292

tool for visualizing dynamic malware behavior using various1293

techniques [48]. They ran the given malware in a controlled1294

environment and captured its behavior using a modified ver-1295

sion of BehEMOT [84] (amalware behaviormonitoring tool).1296

They captured high-level activities such as file write and1297

delete, process creation and termination, registry reads and1298

writes, mutexes and network operations, and system calls1299

using System Service Dispatch Table (SSDT) hooking, which1300

operates at the kernel level. In addition, they used identifica-1301

tion labels provided by VirusTotal [23].1302

An interactive visualization tool called MalwareVis is1303

introduced by Zhou et al. [48] for malware dynamic anal-1304

ysis with a concentration on network traces including the1305

total number of packets, size of the transmission, number of1306

streams, and the packet trace’s duration. They ran the mal-1307

ware in a controlled environment and captured these network1308

traces by using packet sniffer software, where the output1309

packet capture (PCAP) files were used for visualization. They1310

used table views and shape views for representing the features1311

that allow the user to browse, filter, and compare different 1312

types of malware. Cappers et al. [85] also utilize PCAP to 1313

discover the patterns in traffic to explore the intrusive behav- 1314

ior from malware activities. 1315

IX. CONCLUSION AND FUTURE WORK 1316

This paper introduces MalView, an interactive visualization 1317

platform for hybrid analysis and diagnosis of malware. Our 1318

approach first represents the behavioral properties of the 1319

major malware classes (such as Trojan or backdoor), aim- 1320

ing to capture the common visual signatures of these mali- 1321

cious applications. MalView implements a web-based proto- 1322

type for demonstrating our approach to analyzing 60malware 1323

samples from seven different classes. The behavior aspects 1324

of these malware files are captured using Process Monitor 1325

(i.e., Procmon [6] on three different platforms (Windows XP, 1326

Windows 7, and Windows 10). The functionality and fea- 1327

tures offered by MalView are designed and developed based 1328

on a thorough literature review and a comparison with the 1329

state-of-the-art malware analysis tools, including AnyRun 1330

and Hybrid. In order to have better insight regarding the 1331

features offered by MalView, a feature table is presented 1332

in which MalView is compared with AnyRun and Hybrid 1333

analysis tools. The feature comparison is performed based 1334

on four classes of features. The feature table demonstrates 1335

thatMalView comparatively implements most of the features 1336

offered by the other two tools. In addition, the time and pro- 1337

cessed dependencies, the key features ofMalView, are imple- 1338

mented in the prototype, making the analysis more thorough. 1339

Given the ability to process, visualize and analyze the system 1340

activities and put them into a comprehensive view, MalView 1341

can serve as an informative and potential interest to develop- 1342

ers, engineers, and practitioners outside the laboratory. 1343

There are several lines of research that can be explored 1344

through visual analytics when complemented by conven- 1345

tional static and dynamic analysis: The early detection 1346

of zero-day vulnerability and malware is a grand chal- 1347

lenge. There are several machine learning-based approaches 1348

for addressing this problem [1], [53]. With the capability 1349

of visual analytics facilitating explainable machine learn- 1350

ing [86], [87], applying visual analytics techniques to detect- 1351

ing and analyzing unknown and zero-day malware is an inter- 1352

esting research approach that can be explored usingMalView. 1353

The key feature of MalView is its features in demonstrating 1354

time and process dependencies that occurred during static 1355

and dynamic analysis. A potential research direction is to 1356

model malware behavior through recurrent neural networks 1357

on the visual signatures and then predict malware behaviors 1358

or even classify suspicious programs into a particular class of 1359

malware. It would also be interesting to model malware sam- 1360

ples through genome alignments and then model the malware 1361

classification or detection problem through deoxyribonucleic 1362

acid (DNA) or sequence matching approaches. The sequence 1363

matching might be useful in capturing the core malicious 1364

functionalities of obfuscated malware. The obfuscation tech- 1365

niques employed by the obfuscating tools often follow similar 1366

VOLUME 10, 2022 99927

H. N. Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

patterns, and thuswe expect the control-flow graphs produced1367

for all these obfuscated malicious applications share fully or1368

partially the same core. MalView will offer a visual analytic1369

approach to spot these similar patterns in the execution traces.1370

Once a section of the underlying execution trace is identified1371

as obfuscated, it can be ignored by the user of MalView and1372

then enables the users to focus on other parts of the malware1373

in order to comprehend it. A second approach would be to1374

employ existing de-obfuscated tools to de-obfuscate the mal-1375

ware under investigation (MUI) and then let Procmon gener-1376

ates the de-obfuscated traces of execution and processes.1377

REFERENCES1378

[1] F. Abri, S. Siami-Namini, M. A. Khanghah, F.M. Soltani, and A. S. Namin,1379

‘‘Can machine/deep learning classifiers detect zero-day malware with high1380

accuracy?’’ in Proc. IEEE Int. Conf. Big Data (Big Data), Dec. 2019,1381

pp. 3252–3259.1382

[2] C. Guarnieri. (2019). Cuckoo Sandox: Automated Malware Analysis.1383

[Online]. Available: https://cuckoosandbox.org/1384

[3] V. T. Nguyen, A. S. Namin, and T. Dang, ‘‘MalViz: An interactive1385

visualization tool for tracing malware,’’ in Proc. 27th ACM SIGSOFT1386

Int. Symp. Softw. Test. Anal. New York, NY, USA: ACM, Jul. 2018,1387

pp. 376–379.1388

[4] W. Casey, J. Havrilla, C. Hines, L. Metcalf, and A. Shelmire, ‘‘Sparse1389

representation modeling for software corpora,’’ in Results of SEI Line-1390

Funded Exploratory New Starts Projects. Pittsburgh, PA, USA: Carnegie1391

Mellon Univ., 2012, p. 43.1392

[5] M. Wagner, F. Fischer, R. Luh, A. Haberson, A. Rind, D. A. Keim,1393

W. Aigner, R. Borgo, F. Ganovelli, and I. Viola, ‘‘A survey of visualization1394

systems for malware analysis,’’ inProc. Eurographics Conf. Vis. (EuroVis)-1395

STARs, 2015, pp. 105–125.1396

[6] Microsoft. Process Monitor—Windows Sysinternals—Microsoft Docs.1397

Accessed: Nov. 29, 2020. [Online]. Available: https://docs.microsoft.1398

com/en-us/sysinternals/downloads/procmon1399

[7] Infosec. (2015). Windows Functions in Malware Analysis Cheat Sheet1400

Part 1. Accessed: Jun. 5, 2019. [Online]. Available: https://resources.1401

infosecinstitute.com/topic/windows-functions-in-malware-analysis-cheat-1402

sheet-part-1/1403

[8] Infosec. (2015). Windows Functions in Malware Analysis Cheat Sheet1404

Part 2. Accessed: Jun. 5, 2019. [Online]. Available: https://resources.1405

infosecinstitute.com/topic/windows-functions-in-malware-analysis-cheat-1406

sheet-part-2/1407

[9] M. E. Russinovich andA.Margosis.Windows Sysinternals Administrator’s1408

Reference, 1st ed. Redmond, WA, USA: Microsoft Press, 2011.1409

[10] M. Bostock, V. Ogievetsky, and J. Heer, ‘‘D3 data-driven documents,’’1410

IEEE Trans. Vis. Comput. Graph., vol. 17, no. 12, pp. 2301–2309,1411

Dec. 2011.1412

[11] R. Amar, J. Eagan, and J. Stasko, ‘‘Low-level components of analytic activ-1413

ity in information visualization,’’ in Proc. IEEE Symp. Inf. Vis. (INFOVIS),1414

Oct. 2005, pp. 111–117.1415

[12] B. Shneiderman, ‘‘The eyes have it: A task by data type taxonomy for1416

information visualizations,’’ in The Craft of Information Visualization.1417

Amsterdam, The Netherlands: Elsevier, 2003, pp. 364–371.1418

[13] J. M. Spring, L. B. Metcalf, and E. Stoner, ‘‘Correlating domain registra-1419

tions and DNS first activity in general and for malware,’’ Nat. Phys. Lab.,1420

Securing Trusting Internet Names (SATIN), Teddington, U.K., 2011.1421

[14] T. McGraw, ‘‘Glitch style visualization of disrupted neuronal connectiv-1422

ity in Parkinson’s disease,’’ in Proc. IEEE VIS Arts Program (VISAP),1423

Oct. 2017, pp. 1–8.1424

[15] N. V. Nguyen, H. N. Nguyen, J. Hass, and T. Dang, ‘‘JobNet: 2D and 3D1425

visualization for temporal and structural association in high-performance1426

computing system,’’ in Proc. Int. Symp. Vis. Comput. Cham, Switzerland:1427

Springer, 2021, pp. 210–221.1428

[16] H. N. Nguyen and T. Dang, ‘‘EQSA: Earthquake situational analytics from1429

social media,’’ in Proc. IEEE Conf. Vis. Analytics Sci. Technol. (VAST),1430

Oct. 2019, pp. 142–143.1431

[17] H. Van, H. N. Nguyen, R. Hewett, and T. Dang, ‘‘HackerNets: Visual-1432

izing media conversations on Internet of Things, big data, and cyber-1433

security,’’ in Proc. IEEE Int. Conf. Big Data (Big Data), Dec. 2019,1434

pp. 3293–3302.1435

[18] Microsoft. How Microsoft Identifies Malware and Potentially Unwanted 1436

Applications. Accessed: Nov. 29, 2020. [Online]. Available: https://docs. 1437

microsoft.com/en-us/windows/security/threat-protection/intelligence/ 1438

criteria 1439

[19] Microsoft. Malware Names. Accessed: Nov. 29, 2020. [Online]. 1440

Available: https://docs.microsoft.com/en-us/windows/security/threat- 1441

protection/intelligence/malware-naming 1442

[20] Microsoft. Cyberthreats, Viruses, and Malware—Microsoft Security 1443

Intelligence. Accessed: Dec. 24, 2019. [Online]. Available: 1444

https://www.microsoft.com/en-us/wdsi/threats 1445

[21] Check Point Software Technologies Ltd. Blog. (2019). October 1446

2018’s Most Wanted Malware: For the First Time, Remote 1447

Access Trojan Reaches Top 10 Threats. [Online]. Available: 1448

https://blog.checkpoint.com/2018/11/13/october-2018s-mostwanted- 1449

malware-for-the-first-time-remote-access-trojan-reaches-topthreats- 1450

cryptomining/ 1451

[22] Corvus Forensics. (2019). Virus Share. [Online]. Available: 1452

https://virusshare.com/ 1453

[23] H. Sistemas. (2019). Virustotal Public API V2.0. [Online]. Available: 1454

https://www.virustotal.com/en/documentation/public-api/ 1455

[24] Kaspersky.What is a Trojan Virus?—Definition. Accessed: 2019. [Online]. 1456

Available: https://usa.kaspersky.com/resource-center/threats/trojans 1457

[25] Microsoft Security Intelligence. Trojan: Win32/MultiInjector.C. Accessed: 1458

May 24, 2022. [Online]. Available: https://www.microsoft.com/en- 1459

us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/ 1460

MultiInjector.C 1461

[26] Imperva. Backdoor Attack—What is Backdoor?. Accessed 2019. [Online]. 1462

Available: https://www.imperva.com/learn/application-security/backdoor- 1463

shell-attack/ 1464

[27] G. O’Gorman and G. McDonald Ransomware: A Growing Menace. 1465

Tempe, AZ, USA: Symantec. 1466

[28] Malwarebytes Labs. (2021). Kaseya Hijacked, Thousands Attacked 1467

by Revil, Fix Delayed Again. [Online]. Available: https://www. 1468

malwarebytes.com/blog/news/2021/07/shutdown-kaseya-vsa-servers- 1469

now-amidst-cascading-revil-attack-against-msps-clients 1470

[29] W. Zamora. (2017). The State of Ransomware Among SMBS. [Online]. 1471

Available: https://blog.malwarebytes.com 1472

[30] Microsoft Security Intelligence. Behavior: Win32/Bladabindi.gen. 1473

Accessed: Dec. 24, 2019. [Online]. Available: https://www.microsoft.com/ 1474

en-us/wdsi/threats/malware-encyclopedia-description?Name=Behavior: 1475

Win32/Bladabindi.gen&threatId=-2147281575 1476

[31] Microsoft Security Intelligence. Behavior: Win32/Vawtrak.A. Accessed: 1477

Dec. 24, 2019. [Online]. Available: https://wdsi-filesubmission. 1478

trafficmanager.net/en-us/wdsi/threats/malware-encyclopedia-description? 1479

Name=Behavior:Win32/Vawtrak.A&threatId=-2147280787 1480

[32] Microsoft Security Intelligence. Behavior: Win32/Teerac.B. Accessed: 1481

Dec. 24, 2019. [Online]. Available: https://wdsi-filesubmission. 1482

trafficmanager.net/en-us/wdsi/threats/malware-encyclopedia- 1483

description?Name=Behavior:Win32/Teerac.B&threatId=-2147277970 1484

[33] Microsoft Security Intelligence. Behavior: Win32/MultiInjector. 1485

Accessed: Dec. 24, 2019. [Online]. Available: https://wdsi-filesubmission. 1486

trafficmanager.net/en-us/wdsi/threats/malware-encyclopedia-description? 1487

Name=Behavior:Win32/MultiInjector&threatId=-2147325646 1488

[34] D. V. Pham, A. Syed, and M. N. Halgamuge, ‘‘Universal serial bus based 1489

software attacks and protection solutions,’’ Digit. Invest., vol. 7, nos. 3–4, 1490

pp. 172–184, 2011. 1491

[35] S. Kumar, L. Madhavan, M. Nagappan, and B. Sikdar, ‘‘Malware in 1492

pirated software: Case study of malware encounters in personal com- 1493

puters,’’ in Proc. 11th Int. Conf. Availability, Rel. Secur. (ARES), 2016, 1494

pp. 423–427. 1495

[36] Microsoft Security Intelligence. HackTool: Win32/Mailpassview. 1496

Accessed: Dec. 24, 2019. https://www.microsoft.com/en-us/wdsi/threats/ 1497

malware-encyclopedia-description?Name=HackTool:Win32/Mailpassview 1498

&threatId=-2147395884 1499

[37] Quick Heal. Golroted Malware Uses Web Browser Weakness to Steal 1500

Sensitive Information. Accessed: Dec. 24, 2019. [Online]. Available: 1501

http://dlupdate.quickheal.com/documents/others/quick_heal_golroted_ 1502

malware_threat_report_june_2015.pdf 1503

[38] Payload Security. Free Automated Malware Analysis Service—Hybrid 1504

Analysis. Accessed: 2019. [Online]. Available: https://www.hybrid- 1505

analysis.com/ 1506

[39] ANY.RUN LLC. ANY.RUN—Interactive Online Malware Sandbox. 1507

Accessed: 2019. [Online]. Available: https://any.run/ 1508

99928 VOLUME 10, 2022

H. N. Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

[40] MITRE Corporation.Mitre Att&ck Framework. Accessed: 2019. [Online].1509

Available: https://attack.mitre.org/1510

[41] Crowdstrike. Automated Malware Analysis & Sandbox: Falcon Sandbox.1511

Accessed: 2019. [Online]. Available: https://www.crowdstrike.com/1512

[42] Victor Manuel Alvarez. Yara: The Pattern Matching Swiss Knife1513

for Malware Researchers. Accessed: 2019. [Online]. Available:1514

https://virustotal.github.io/yara/1515

[43] OPSWAT Inc., (2020). Metadefender Cloud. [Online]. Available:1516

https://metadefender.opswat.com/1517

[44] K. Han, B. Kang, and E. G. Im, ‘‘Malware analysis using visualized image1518

matrices,’’ Sci. World J., vol. 2014, Jul. 2014, Art. no. 132713.1519

[45] A. R. A. Grégio, A. O. C. Baruque, V. M. Afonso, D. S. O. F. Filho,1520

P. L. D. Geus, M. Jino, and R. D. C. D. Santos, ‘‘Interactive, visual-aided1521

tools to analyze malware behavior,’’ in Proc. Int. Conf. Comput. Sci. Appl.1522

Berlin, Germany: Springer-Verlag, 2012, pp. 302–313.1523

[46] T. Panas, ‘‘Signature visualization of software binaries,’’ in Proc. 4th ACM1524

Symp. Softw. Visuallization (SoftVis), New York, NY, USA: ACM, 2008,1525

pp. 185–188.1526

[47] Lawrence Livermore National Laboratory. Rose Compiler: Program1527

Analysis and Transformation. Accessed 2010. [Online]. Available:1528

http://rosecompiler.org/1529

[48] W. Zhuo and Y. Nadjin, ‘‘Malwarevis: Entity-based visualization of mal-1530

ware network traces,’’ in Proc. 9th Int. Symp. Vis. Cyber Secur. New York,1531

NY, USA: ACM, 2012, pp. 41–47.1532

[49] R. Gove, J. Saxe, S. Gold, A. Long, and G. Bergamo, ‘‘Seem: A scal-1533

able visualization for comparing multiple large sets of attributes for1534

malware analysis,’’ in Proc. 11th Workshop Vis. Cyber Secur., 2014,1535

pp. 72–79.1536

[50] A. Long, J. Saxe, and R. Gove, ‘‘Detecting malware samples with sim-1537

ilar image sets,’’ in Proc. 11th Workshop Vis. Cyber Secur., Nov. 2014,1538

pp. 88–95.1539

[51] K. Kancherla and S. Mukkamala, ‘‘Image visualization based malware1540

detection,’’ in Proc. IEEE Symp. Comput. Intell. Cyber Secur. (CICS),1541

Apr. 2013, pp. 40–44.1542

[52] S. Z. M. Shaid and M. A. Maarof, ‘‘Malware behaviour visualization,’’1543

Jurnal Teknologi, vol. 70, no. 5, pp. 1–9, 2014.1544

[53] C. LeDoux and A. Lakhotia, ‘‘Malware and machine learning,’’ in Intel-1545

ligent Methods for Cyber Warfare. Cham, Switzerland: Springer, 2015,1546

pp. 1–42.1547

[54] S. O’Shaughnessy, ‘‘Image-based malware classification: A space fill-1548

ing curve approach,’’ in Proc. IEEE Symp. Vis. Cyber Secur. (VizSec),1549

Oct. 2019, pp. 1–10.1550

[55] J. Donahue, A. Paturi, and S. Mukkamala, ‘‘Visualization techniques for1551

efficient malware detection,’’ in Proc. IEEE Int. Conf. Intell. Secur. Infor-1552

mat., Jun. 2013, pp. 289–291.1553

[56] K. Kancherla, J. Donahue, and S.Mukkamala, ‘‘Packer identification using1554

byte plot and Markov plot,’’ J. Comput. Virology Hacking Techn., vol. 12,1555

no. 2, pp. 101–111, May 2016.1556

[57] K. Han, J. H. Lim, and E. G. Im, ‘‘Malware analysis method using visu-1557

alization of binary files,’’ in Proc. Res. Adapt. Convergent Syst. (RACS),1558

2013, pp. 317–321.1559

[58] M. S. Charikar, ‘‘Similarity estimation techniques from rounding algo-1560

rithms,’’ in Proc. 34th Annu. ACM Symp. Theory Comput., 2002,1561

pp. 380–388.1562

[59] C. Miles, A. Lakhotia, C. LeDoux, A. Newsom, and V. Notani, ‘‘VirusBat-1563

tle: State-of-the-art malware analysis for better cyber threat intelligence,’’1564

in Proc. 7th Int. Symp. Resilient Control Syst. (ISRCS), Aug. 2014, pp. 1–6.1565

[60] S. Z. Mohd Shaid and M. A. Maarof, ‘‘Malware behavior image for mal-1566

ware variant identification,’’ in Proc. Int. Symp. Biometrics Secur. Technol.1567

(ISBAST), Aug. 2014, pp. 238–243.1568

[61] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, ‘‘Ether: Malware analysis1569

via hardware virtualization extensions,’’ in Proc. 15th ACM Conf. Comput.1570

Commun. Secur. (CCS), 2008, pp. 51–62.1571

[62] T. K. Lengyel, S. Maresca, B. D. Payne, G. D. Webster, S. Vogl, and1572

A. Kiayias, ‘‘Scalability, fidelity and stealth in the DRAKVUF dynamic1573

malware analysis system,’’ inProc. 30th Annu. Comput. Secur. Appl. Conf.,1574

Dec. 2014, pp. 386–395.1575

[63] Z. Xu, J. Zhang, G. Gu, and Z. Lin, ‘‘Goldeneye: Efficiently and effectively1576

unveiling malware’s targeted environment,’’ in Proc. Int. Workshop Recent1577

Adv. Intrusion Detection. Cham, Switzerland: Springer, 2014, pp. 22–45.1578

[64] M. Alaeiyan, S. Parsa, and M. Conti, ‘‘Analysis and classification of1579

context-basedmalware behavior,’’Comput. Commun., vol. 136, pp. 76–90,1580

Feb. 2019.1581

[65] A. Paturi, M. Cherukuri, J. Donahue, and S.Mukkamala, ‘‘Mobile malware 1582

visual analytics and similarities of attack toolkits (malware gene analy- 1583

sis),’’ in Proc. Int. Conf. Collaboration Technol. Syst. (CTS), May 2013, 1584

pp. 149–154. 1585
[66] B. Anderson, C. Storlie, and T. Lane, ‘‘Improving malware classification: 1586

Bridging the static/dynamic gap,’’ in Proc. 5th ACMWorkshop Secur. Artif. 1587

Intell. (AISec). New York, NY, USA: ACM, 2012, pp. 3–14. 1588
[67] I. Yoo, ‘‘Visualizing Windows executable viruses using self-organizing 1589

maps,’’ in Proc. ACM Workshop Vis. Data Mining Comput. Secur. 1590

(VizSEC/DMSEC). New York, NY, USA: ACM, 2004, pp. 82–89. 1591
[68] J. Saxe, D. Mentis, and C. Greamo, ‘‘Visualization of shared system 1592

call sequence relationships in large malware corpora,’’ in Proc. 9th Int. 1593

Symp. Vis. Cyber Secur. (VizSec). New York, NY, USA: ACM, 2012, 1594

pp. 33–40. 1595
[69] J. Jenkins and H. Cai, ‘‘Dissecting Android inter-component communica- 1596

tions via interactive visual explorations,’’ in Proc. IEEE Int. Conf. Softw. 1597

Maintenance Evol. (ICSME), Sep. 2017, pp. 519–523. 1598
[70] J. Jenkins and H. Cai, ‘‘ICC-inspect: Supporting runtime inspection of 1599

Android inter-component communications,’’ in Proc. 5th Int. Conf. Mobile 1600

Softw. Eng. Syst., May 2018, pp. 80–83. 1601
[71] M. Wagner, W. Aigner, A. Rind, H. Dornhackl, K. Kadletz, R. Luh, and 1602

P. Tavolato, ‘‘Problem characterization and abstraction for visual analytics 1603

in behavior-based malware pattern analysis,’’ in Proc. 11th Workshop Vis. 1604

Cyber Secur., 2014, pp. 9–16. 1605
[72] M. Wagner, A. Rind, N. Thür, and W. Aigner, ‘‘A knowledge-assisted 1606

visual malware analysis system: Design, validation, and reflection of 1607

KAMAS,’’ Comput. Secur., vol. 67, pp. 1–15, Jun. 2017. 1608
[73] T. Dang, N. H. Nguyen, and V. Pham, ‘‘WordStream: Interactive visual- 1609

ization for topic evolution,’’ in EuroVis 2019—Short Papers, J. Johansson, 1610

F. Sadlo, and G. E. Marai, Eds. Geneva, Switzerland: The Eurographics 1611

Association, 2019. 1612
[74] T. Dang, V. Pham, H. N. Nguyen, and N. V. T. Nguyen, ‘‘AgasedViz: 1613

Visualizing groundwater availability of Ogallala aquifer, USA,’’ Environ. 1614

Earth Sci., vol. 79, no. 5, pp. 1–12, Mar. 2020. 1615
[75] H. N. Nguyen, C. M. Trujillo, K. Wee, and K. A. Bowe, ‘‘Interactive 1616

qualitative data visualization for educational assessment,’’ in Proc. 12th 1617

Int. Conf. Adv. Inf. Technol., New York, NY, USA: ACM, Jun. 2021, 1618

pp. 1–9. 1619
[76] D. A. Quist and L. M. Liebrock, ‘‘Visualizing compiled executables for 1620

malware analysis,’’ in Proc. 6th Int. Workshop Vis. Cyber Secur., 2009, 1621

pp. 27–32. 1622
[77] P. Trinius, T. Holz, J. Gobel, and F. C. Freiling, ‘‘Visual analysis ofmalware 1623

behavior using treemaps and thread graphs,’’ inProc. 6th Int.Workshop Vis. 1624

Cyber Secur., Oct. 2009, pp. 33–38. 1625
[78] M. Angelini, L. Aniello, S. Lenti, G. Santucci, and D. Ucci, ‘‘The goods, 1626

the bads and the Uglies: Supporting decisions in malware detection 1627

through visual analytics,’’ in Proc. IEEE Symp. Vis. Cyber Secur. (VizSec), 1628

Oct. 2017, pp. 1–8. 1629
[79] D. D. Le, V. Pham, H. N. Nguyen, and T. Dang, ‘‘Visualization and explain- 1630

able machine learning for efficient manufacturing and system operations,’’ 1631

Smart Sustain. Manuf. Syst., ASTM Int., West Conshohocken, PA, USA, 1632

Tech. Rep., 2019, vol. 3, no. 2, pp. 127–147, doi: 10.1520/SSMS20190029. 1633
[80] G. Conti, E. Dean, M. Sinda, and B. Sangster, ‘‘Visual reverse engineer- 1634

ing of binary and data files,’’ in Visualization for Computer Security, 1635

J. R. Goodall, G. Conti, and K.-L. Ma, Eds. Berlin, Germany: Springer, 1636

2008, pp. 1–17. 1637
[81] D. A. Quist and L. M. Liebrock, ‘‘Reversing compiled executables for 1638

malware analysis via visualization,’’ Inf. Vis., vol. 10, no. 2, pp. 117–126, 1639

2011. 1640
[82] CWSandbox. Cwsandbox—Automated Online Malware Analysis. 1641

Accessed: 2020. [Online]. Available: http://cwsandbox.org/ 1642
[83] R. A. A. Gregio and D. C. R. Santos, ‘‘Visualization techniques for mal- 1643

ware behavior analysis,’’ in Proc. SPIE, vol. 8019, E. M. Carapezza, Ed. 1644

Jul. 2011, pp. 9–17. 1645
[84] A. R. Grégio, D. S. F. Filho, V. M. Afonso, R. D. Santos, M. Jino, and 1646

P. L. D. Geus, ‘‘Behavioral analysis of malicious code through network 1647

traffic and system call monitoring,’’ Proc. SPIE, vol. 8059, May 2011, 1648

Art. no. 80590O. 1649
[85] B. C. Cappers, P. N.Meessen, S. Etalle, and J. J. V.Wijk, ‘‘Eventpad: Rapid 1650

malware analysis and reverse engineering using visual analytics,’’ in Proc. 1651

IEEE Symp. Vis. Cyber Secur. (VizSec), Oct. 2018, pp. 1–8. 1652
[86] T. Dang, H. Van, H. Nguyen, V. Pham, and R. Hewett, ‘‘DeepVix: Explain- 1653

ing long short-term memory network with high dimensional time series 1654

data,’’ in Proc. 11th Int. Conf. Adv. Inf. Technol., Jul. 2020, pp. 1–10. 1655
[87] T. Dang, H. N. Nguyen, and N. V. T. Nguyen, ‘‘VixLSTM: Visual explain- 1656

able LSTM for multivariate time series,’’ in Proc. 12th Int. Conf. Adv. Inf. 1657

Technol., Jun. 2021, pp. 1–5. 1658

VOLUME 10, 2022 99929

H. N. Nguyen et al.: MalView: Interactive Visual Analytics for Comprehending Malware Behavior

HUYEN N. NGUYEN is currently pursuing the1659

Ph.D. degree in computer science with Texas Tech1660

University. She is also a member of the Interac-1661

tive Data Visualization Laboratory (iDVL), Texas1662

Tech University. Having a great interest in inter-1663

active data visualization and visual analytics, she1664

develops visualization systems to support data1665

insight discovery and exploration. Her visualiza-1666

tion research has won recognitions in visualization1667

competitions, such as IEEE Visual Analytics Sci-1668

ence and Technology (VAST) Challenge, Bio+MedVis Challenge, and has1669

appeared in EG/VGTC Conference on Visualization, Environmental Earth1670

Sciences. Her work has been funded by the National Aeronautics and Space1671

Administration (NASA) for interdisciplinary research in visualizing qualita-1672

tive data for science and education.1673

FARANAK ABRI received the Ph.D. degree in1674

computer science from Texas Tech University,1675

in 2022. She is currently an Assistant Professor in1676

computer science at San Jose State University. Her1677

research interests include modeling cybersecurity1678

problems using artificial intelligence (AI), natural1679

language processing (NLP), and machine learning1680

(ML) techniques. She has research experience in a1681

wide range of cybersecurity areas, including mal-1682

ware analysis, cloud security, automated deception1683

detection, social engineering, security comprehension, and usable security1684

and contributed to several federally funded projects, including the National1685

Science Foundation (NSF) and the Department of Defense (DoD).1686

VUNG PHAM received the Master of Science1687

degree in computer systems engineering from1688

the Politecnico di Milano, Milan, Italy, in 2010,1689

and the Ph.D. degree in computer science from1690

Texas Tech University, TX, USA. He is currently1691

an Assistant Professor with the Computer Sci-1692

ence Department, Sam Houston State University.1693

He has a great interest in data analytics and data1694

visualization. His research on big data and inter-1695

active visual analytics has appeared in Geoderma,1696

computers and electronics in agriculture, environmental earth sciences, and1697

International of ASTM, and has been presented at IEEE International Con-1698

ference on Big Data, IEEE VIS, and EuroVis.1699

MOITRAYEE CHATTERJEE received the Ph.D. 1700

degree from Texas Tech University, in 2020. She 1701

is currently an Assistant Professor at New Jersey 1702

City University. Her research work lies at the inter- 1703

section of machine/deep learning and cyber secu- 1704

rity. She has been contributing to various NSF and 1705

the U.S. Department of Education funded research 1706

projects and workshops on digital forensics, gener- 1707

ating secure software configuration, mental model 1708

development of cyber adversaries, reverse engi- 1709

neering, cloud security & abuse, and malware analysis. She regularly partic- 1710

ipates in top conferences, such as BlackHat, DefCon, IEEE Bigdata, IEEE 1711

COMPSAC as a Workshop Organizer, a Program Committee Member, and 1712

a Presenter. She has been over ten publications in various peer-reviewed 1713

journals and conferences with more than 100 citations, since 2018. Besides, 1714

academic and research involvements she has eight years of industry experi- 1715

ence working in software consulting industry in countries, such as India and 1716

Malaysia. 1717

AKBAR SIAMI NAMIN received the Ph.D. 1718

degree in computer science from Western Univer- 1719

sity, London, Canada, in August 2008. He is cur- 1720

rently an Associate Professor in computer science 1721

at Texas Tech University. His research interests 1722

and expertise include software engineering, testing 1723

and program analysis, software and cyber secu- 1724

rity and malware analysis, and machine and deep 1725

learning. He has coauthored over 100 research arti- 1726

cles published in premier journals and venues. His 1727

research on cyber security research and education is funded by the National 1728

Science Foundation. 1729

TOMMY DANG is currently an Assistant Profes- 1730

sor in computer science at Texas Tech University, 1731

where he directs the interactive Data Visualization 1732

Laboratory (iDVL). His research on big data visu- 1733

alization and visual analytics has appeared inCom- 1734

puter Graphics Forum and IEEE TRANSACTIONS 1735

ON VISUALIZATION AND COMPUTER GRAPHICS and has 1736

been presented at IEEE Information Visualization, 1737

IEEE Visual Analytics Science and Technology, 1738

and EG/VGTC Conference on Visualization. Pre- 1739

viously, he has been a Postdoctoral Researcher on a DARPA-funded project 1740

on biological network visualization at the Electronic Visualization Labora- 1741

tory, University of Illinois at Chicago, which focuses on advanced virtual 1742

reality, notably the CAVE2 hybrid reality environment and the SAGE2 scal- 1743

able amplified group environment. 1744

1745

99930 VOLUME 10, 2022

	MalView: Interactive Visual Analytics for Comprehending Malware Behavior
	Recommended Citation
	Authors

	tmp.1684265043.pdf.z9J3Q

