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ABSTRACT

Plasmids are mobile genetic elements that play a
key role in microbial ecology and evolution by me-
diating horizontal transfer of important genes, such
as antimicrobial resistance genes. Many microbial
genomes have been sequenced by short read se-
quencers and have resulted in a mix of contigs that
derive from plasmids or chromosomes. New tools
that accurately identify plasmids are needed to elu-
cidate new plasmid-borne genes of high biological
importance. We have developed Deeplasmid, a deep
learning tool for distinguishing plasmids from bacte-
rial chromosomes based on the DNA sequence and
its encoded biological data. It requires as input only
assembled sequences generated by any sequenc-
ing platform and assembly algorithm and its runtime
scales linearly with the number of assembled se-
quences. Deeplasmid achieves an AUC–ROC of over
89%, and it was more accurate than five other plas-
mid classification methods. Finally, as a proof of con-
cept, we used Deeplasmid to predict new plasmids in
the fish pathogen Yersinia ruckeri ATCC 29473 that
has no annotated plasmids. Deeplasmid predicted
with high reliability that a long assembled contig is
part of a plasmid. Using long read sequencing we in-
deed validated the existence of a 102 kb long plasmid,
demonstrating Deeplasmid’s ability to detect novel
plasmids.

INTRODUCTION

Plasmids are ubiquitous extrachromosomal elements capa-
ble of semi-autonomous replication and transmission be-

tween microbial host cells. Typically, bacterial plasmids are
small (<80 kb) circular replicons. Natural plasmids often
carry a cargo of ‘accessory genes’ that confer beneficial
traits to the microbial host, such as antibacterial resistance
(1,2), bacteriophage defense (3,4), heavy metal tolerance
(5), virulence (6,7) or unique catabolic pathways (8), thereby
improving bacterial adaptation to dynamic environments.
Some plasmids carry toxins and thereby constitute a serious
threat to human health (9). Finally, plasmids are involved
in plant-microbe interactions; for instance, the nodulation
plasmids of rhizobia guide the symbiosis of bacteria with
plants (10). Plasmid transmission by conjugation provides
an efficient mechanism of horizontal gene transfer and facil-
itates the spread of accessory genes in bacterial populations
and communities. Therefore, the studies of plasmid genet-
ics, evolution, and dynamics in bacterial populations have
many wide-reaching practical applications, such as clini-
cal management of antibiotic resistance (2), development
of industrial strains of bacteria for bioremediation (3) and
biofertilization (4). In addition, identification of new plas-
mids may guide the discovery of novel antibiotic resistance
genes, toxins, and genes that directly shape host-microbe in-
teractions, and these plasmids can be used as new tools for
efficient gene cloning and exogenous protein expression.

Advances in genomic sequencing technologies have
enabled high-throughput sequencing of genomes of mi-
crobial isolates and environmental populations (through
metagenome sequencing), including their respective
plasmidomes––the total collection of encoded plasmids
(5). Identification and classification of plasmid sequences
in this treasure trove of genomic and metagenomic data
can provide a unique opportunity to study the mechanisms
of plasmid persistence, transmission, and host specificity,
as well as the flow and evolution of plasmidic accessory
genes. However, in silico identification of plasmid contigs
in whole-genome shotgun sequences (WGS) is challenging.

*To whom correspondence should be addressed. Email: alevy@mail.huji.ac.il
Correspondence may also be addressed to William B. Andreopoulos. Tel: +972 8489596; Email: william.andreopoulos@sjsu.edu
†The authors wish it to be known that, in their opinion, the first three authors should be regarded as Joint First Authors.
Present address: Miriam Lucke, Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstr. 35, 72076 Tübingen, Germany.
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The challenge derives from poor genome assembly that
leads to numerous plasmid-size contigs that are difficult
to characterize as derived from plasmid or chromosomes.
In addition, there is a limited number of high-quality,
completely sequenced reference plasmids that can be
compared to while annotating new genomes (6). Sequences
from plasmids occasionally integrate into chromosomes,
making it difficult to computationally characterize contigs
from these chromosomes as plasmids or chromosomes.
Further, sometimes plasmid genes have features resembling
those of essential chromosomal genes (11).

A variety of in silico methods assisting with separation of
plasmid sequences from chromosomal contigs have been de-
veloped. Some of them target a subset of plasmids mostly
of clinical relevance, such as PlasmidFinder/pMLST (12)
for detection and typing of plasmids from Enterobacteri-
aceae and selected Gram-positive strains. Other tools, such
as PLACNET (13) and the Kraken classifier with a custom
database (14) rely on a combination of reference genomes
and manual curation to restructure an assembly graph and
to separate putative plasmid contigs from those of chro-
mosomal origin. PlasmidSPAdes (15), cBAR (16), Plas-
Flow (17), Recycler (18) and PlasmidSeeker (19) are fully
automated and perform identification of putative plasmid
contigs in genome assemblies by analyzing the topology
and read coverage of an assembly graph (Recycler and
plasmidSPAdes) or DNA composition of assembled con-
tigs (cBar and PlasFlow) or unassembled DNA (Plasmid-
Seeker). Recycler works on paired-end reads and detects cir-
cular plasmids by leveraging assembly graphs from conven-
tional assembly tools to assemble circular sequences likely
to be plasmids (18). HyAsP starts from raw reads and com-
bines read depth with GC content, as well as reference-
based occurrences of known plasmid genes in the assem-
bly (20). An assessment of methods that assemble plasmids
from short reads (21) concluded that their accuracy is re-
liant on a difference in the coverage of plasmids and chro-
mosomes; for some assemblies they demonstrated close to
a 90% precision in plasmid finding with just 55% recall,
whereas for assemblies with 80% recall generally the false
positive rate increases by 20% (21). Moreover, most of these
tools were not tested for their ability to detect novel plas-
mids that are experimentally validated following the com-
putational prediction.

Existing tools have limitations due to their reliance on
the circularity of the topology, bias towards certain tax-
onomies used in training (e.g. PlasmidFinder, PLACNET,
Kraken) and coverage of a de Bruijn assembly graph con-
structed from k-mers found in reads (e.g. Recycler and plas-
midSPAdes). The software packages cBAR (16), PlasFlow
(17), mlplasmids (22), Platon (23) and PlasmidVerify (24)
satisfy the above criteria, since they utilize only two types
of data: assembled sequences themselves (PlasFlow) and
features extracted from assembled sequences (cBar, mlplas-
mids, Platon, PlasmidVerify). PlasFlow relies on a deep neu-
ral network to find hidden structures encoded in the assem-
bled sequences, while cBar finds plasmids by applying self-
organizing maps to the extracted features in the form of
pentamer profiles of contigs and scaffolds. Various meth-
ods also differ in the way their models are trained: PlasFlow
was developed as a tool for finding plasmids in metagenome

data and is pre-trained on sequence fragments of up to 10
kb long, since metagenome assemblies are typically very
fragmented. In contrast, the cBAR and mlplasmids models
are based on the pentanucleotide profiles of full-length se-
quences of known plasmids and chromosomes. cBAR and
PlasFlow have demonstrated superior performance in com-
parison to other methods of plasmid identification (17).

Our goal was to develop a tool for post-assembly identi-
fication of complete plasmids and plasmid-derived contigs,
which (i) has high accuracy, (ii) is not biased towards the se-
quences of certain topology or taxonomic origin and (iii) is
able to run on genome assemblies from either short-read or
long-read sequencing technologies without assembly graph
or coverage information. We also confirmed that inclusion
of genes, protein domains, and other functional features in
addition to DNA sequence composition is helpful for contig
and scaffold classification. We present a new Deep Learning
(DL)-based method, Deeplasmid, for identification of plas-
mid contigs and scaffolds in WGS assemblies of microbial
isolate genomes, which achieves an AUC-ROC of 98.8% on
a sixfold cross-validation. Our method relies on a combi-
nation of assembled sequences and extracted features, in-
cluding GC content (25), oligonucleotide composition, hits
to plasmid- or chromosome-specific genes and protein do-
mains, as well as gene density within the contig. Since it does
not require raw read data, assembly graph or coverage infor-
mation, it can be applied to assembled WGS data, including
shotgun metagenomic data, generated by any sequencing
platform and assembly algorithm. We describe our Deeplas-
mid model, the training and testing methodology, and show
that it is capable of automated detection of plasmid se-
quences with over 84% accuracy. Deeplasmid surpasses the
accuracy of other tools largely due to its use of discrimi-
nating gene and protein features. We compared our trained
model on large plasmid-containing microbial test datasets
against the alternative tools cBAR, PlasFlow, PlasmidVer-
ify, Platon and mlplasmids. Deeplasmid achieved higher ac-
curacy than the other tools. Finally, we applied Deeplasmid
and predicted a novel plasmid in the fish pathogen Yersinia
ruckeri ATCC 29473. We then performed a re-sequencing
experiment to validate that the new plasmid indeed exists
as a separate replication unit. This led to discovery of a new
plasmid in this pathogenic strain.

MATERIALS AND METHODS

Training dataset assembly

We prepared the labeled dataset based on three sources.
As negative instances we used 40 000 sequences from 930
different genera from the RefSeq.bacteria dataset (26),
from which plasmid and any mitochondrial or chloro-
plast sequences were removed based on their fasta header
names. The training included also 3094 Archaeal chromo-
somal sequences from 45 genera, which are found in Ref-
Seq.archaea. As positive instances we used the ACLAME
dataset (27), which contains 1056 fully-sequenced plasmids
that were manually curated by experts, as well as the PLSDB
database, which contains 27 939 fully-sequenced plasmids.
ACLAME and PLSDB have higher-quality curation than
refseq.plasmids since some of the NCBI records tagged
as plasmids are mislabeled as chromosomal sequences and
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Table 1. Definition of features per sequence

Name Definition Type

gc content GC content of contig Float [0–1]
A(C/G/T) longest homop
olymer

Length of longest
homopolymer

Integer

A(C/G/T) total homopol
ymer

Total number of
homopolymers of length >5

Integer

hit chromosome proteins Hit to chromosome proteins Boolean
0/1

hit plasmid proteins Hit to plasmid proteins Boolean
0/1

hit plasmid ORIs Hit to plasmid ORI Boolean
0/1

gene count Number of genes in scaffold Integer
gene percent Coding percent of scaffold Float [0–1]
polypeptide aa avg len Average length of amino

acid sequence
Integer

len sequence Scaffold seq length Integer
pfam vector 1538 boolean (0 or 1) Pfam

hits
Vector

many entries do not represent complete records or con-
tain sequence fragments of unknown origin (28,29). From
ACLAME we discarded 39 sequences (3.69%) and from
PLSDB we discarded 1469 sequences (5.2%) that were
shorter than 1 kb or longer than 330 kb because the scaf-
folds and contigs longer than 330 kb are usually chromo-
somes, megaplasmids or chromids (genetic elements with
plasmid-type replication systems, but carrying some indis-
pensable genes (11)). We did not deal with the last two
classes as they are special cases. Data were shuffled before
training.

Input format

A single training data element consists of the label and two
input words: xseq––a 300 bp contiguous subsequence sam-
pled randomly from the full original scaffold sequence and
xf––a vector containing 16 features and 1538 Pfam hits ex-
tracted from the full sequence, as described in Table 1. In
order to ensure feature values like gene count, gene cod-
ing percentage, or sequence length are meaningful, the fea-
tures are computed on the entire scaffold, and the values
are copied into the xf feature vectors for all 300 bp se-
quences subsampled from the scaffold. The number (m) of
300 bp subsequences sampled from each scaffold is pro-
portional to the square root of the scaffold length. The
number of samples per scaffold was chosen according to
m = 10 + sqrt(seq len/20) to ensure a fair representation
of smaller and larger scaffolds, such that longer scaffolds
do not overwhelm the training step. Each sample is a differ-
ent xseq associated with the feature vector xf from the origi-
nating sequence. xseq is one-hot encoded in four nucleotide
bases. Namely, it is transformed into a binary array of size
300 × 4. Sequences with any ‘N’-bases are removed. The
values of xf were normalized to be bound within [–1,1].

Input feature selection

We initially explored the predictive power of several ex-
tracted features in conjunction with existing Machine
Learning tools. The particular choice of xf variables shown

in Table 1 was based on an initial sensitivity analysis with
the Gradient Boosting Classifier, a classic ML method that
produces a prediction model in the form of a mixture of
decision trees. Moreover, we confirmed the relative impor-
tance of a feature by training our tool and running predic-
tions with null values for the feature (namely, excluding the
feature) and checking the impact on the error rate (as dis-
cussed in the Supplementary Info).

We additionally included in xf plasmid-specific and
chromosome-specific features. These features are boolean
(0 or 1) and indicate whether any hit is found to these
sets of plasmid or chromosome-specific sequences. Overall,
we used thousands of plasmid-specific and chromosome-
specific proteins, Pfam domains, and DNA motifs as fea-
tures in the classification process, including sequences man-
ually curated from the literature. Here are the features that
were used:

1. Plasmid-specific DNA motifs: these are the origins of
replication of known plasmids (30). Sixteen origin of
replication sequences were used.

2. Plasmid-specific proteins: these are taken from 2826
known plasmids listed on 2019 in the European
Nucleotide Archive: https://www.ebi.ac.uk/genomes/
plasmid.html, after removing any plasmids not found in
Proteobacteria, Firmicutes, Bacteroidetes, or Actinobac-
teria using NCBI batch entrez function. We only kept
plasmids from these four phyla as these are the most
commonly sequenced and studied bacterial phyla and as
a result most contigs that will be classified by our tool
belong to these phyla. Some plasmidic proteins were ex-
tracted from publications (31–40) (Supplementary Table
S1). The final list included 136 638, 24 607, 1163 and 15
449 plasmidic genes from Proteobacteria, Firmicutes,
Bacteroidetes and Actinobacteria, respectively.

3. Chromosome-specific proteins: these are based on COGs
of genes that are usually carried on chromosomes. The
61 COGs used for making this list are based on chro-
mosomal housekeeping genes that are unclonable in high
copy plasmids (41,42). They appear in Supplementary
Table S1. To reduce sequence redundancy the chromoso-
mal and plasmid proteins were clustered by 90% identity
using cd-hit with otherwise default parameters giving a
representative sequence from each cluster (43).

4. Chromosome and plasmid-specific Pfam domains (Sup-
plementary Table S2): bacterial scaffolds from the IMG
database that were >1 Mb in size were considered to be
chromosomal in nature. Genes from these scaffolds an-
notated with Pfams were collected. DNA sequence ac-
cessions of plasmids from PLSDB were cross-referenced
with their corresponding protein entries on NCBI, and
those with Pfam annotations were collected. Equal num-
bers of Pfams were sampled randomly from the list of
chromosomal and plasmid Pfams (70 000 each). We cal-
culated the frequencies of each Pfam in either chromoso-
mal or plasmid Pfams to normalize them, and then com-
pared the ratio of frequencies. This resulted in a sorted
list of Pfams that were enriched in plasmids at one end of
the spectrum, and Pfams enriched in chromosomes at the
other end of the spectrum. We shortened this list by keep-
ing 800 plasmid-specific Pfams that occurred 10 times
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more frequently in plasmids than in chromosomes, and
738 chromosome-specific Pfams occurring 20 times more
frequently in chromosomes than in plasmids. The result
was a feature list of the 1538 strongest marker Pfam do-
mains that are checked for presence or absence in a scaf-
fold.

Output Format

A neural network is a function

F
(
xseq,xf |θ

)= y. (1)

that accepts sequences of nucleotides xseq and the feature
vector xf. The function F also depends implicitly on the DL
model parameters �, which are determined during the train-
ing process. The output of the network, Deeplasmid score
y, is computed using the softmax function, which ensures
that y satisfies y ∈ [0, 1]. By convention, the higher the score
is for the sequence, the more likely it is to be a true plasmid.

Model training

The model was trained with a binary cross-entropy loss
function (44) and Adam optimizer (45). We performed su-
pervised learning on the balanced set of 6 × 105 data points
with a batch size of 200. The initial learning rate was set to
0.001. Typically we sampled 50–100 300 bp long sequences
per scaffold.

We used the k-fold cross-validation method, setting k = 6,
with five data segments merged as the ‘training’ set and one
validation segment that provided the loss (model error) as
feedback during training. The ‘test’ data set was hidden dur-
ing the training. We performed 6 independent trainings, cy-
cling the segments to allow each of six segments to influence
a different model �k. Figure 1 illustrates the k-fold training
method. Each model was trained for 30 epochs, until it con-
verged, as shown in Figure 2A.

Model topology

We have used the LSTM-based network (46) to trans-
form the one-hot encoded nucleotide sequence into a one-
dimensional vector. The left branch is made out of two
LSTMs, accepts a 300 bp nucleotide sequence xseq, and
compresses information into a vector of 40 features. The
right branch is fully connected, accepts the feature vector
xf, and produces a vector of 100 features. Both outputs
are concatenated and passed to another block of fully con-
nected layers whose output is one value––the Deeplasmid
score y (Eq. 1). This model was implemented in Keras (47)
with Tensorflow 1.3.0 (48) as the backend. The deep learn-
ing model architecture is shown in Supplementary Figures
S1–S4.

Prediction for one 300 bp sequence

For each k-fold we saved two models, resulting in 12 dif-
ferent saved models. This was done to reduce the effects of
random variance in the predictions, as well as to ensure that
the results were reproducible for each k-fold. To make a pre-
diction on a 300 bp sequence we ran the sequence through

all 12 models and then averaged the score:

ŷ =
12∑

i=1

y (θ i ) / 12. (2)

The results are shown in Supplementary Table S3.

Prediction for one scaffold

One scaffold is sampled 50–100 times and for each 300 bp
sequence the average score is computed as in (Eq. 2). Next,
the scaffold-average score (yavr) and its standard deviation
(�) are computed. We allow for three-way classification as
‘plasmid’, ‘chromosome’ or ‘ambiguous’:

• if yavr > 0.5 + 2� then plasmid
• else if yavr < 0.5 – 2� then chromosome
• else ambiguous

DNA extraction and Oxford Nanopore sequencing

We validated our plasmid computational prediction using
genome re-sequencing with Oxford Nanopore long read se-
quencing. We used strain Yersinia ruckeri ATCC 29473 (a
gift from Dr. Yasuo Yoshikuni). Bacteria grew in the final
volume of 2 l Luria Broth until OD600 0.3 was reached.
DNA was extracted with Qiagen Genomic Tip 100/G (Cat
No./ID: 10243) and Genomic DNA Buffer Set (Qiagen, Cat
No./ID: 19060), by following suggested instructions. DNA
concentration and quality were tested with Nanopore,
Qubit and TapeStation. Prior sequencing samples were pre-
pared with Ligation Sequencing Kit (SQK-LSK109) and
Native Barcoding Expansion 1–12 (EXP-NBD104) and fi-
nally sequenced by Oxford Nanopore MinION. Reads were
assembled using Canu 2.0 (49). Reads were also assembled
in parallel by Shasta 0.6.0 (50). The 3 754 417 bp circu-
lar DNA and the 102 560 circular DNA were found from
the Canu and Shasta assemblies, respectively. To map lin-
ear scaffolds of Yersinia ruckeri ATCC 29473 to the newly
assembled plasmids, BLASTN was used, with a bitscore
cutoff of 30 000. The BLASTN hits were visualized using
DNAFeaturesViewer (51). The IMG scaffold names were
shortened in Figure 4; all scaffolds displayed are prefixed by
‘Ga0059170 ’, e.g. scaffold 114 is named ‘Ga0059170 114’
in the IMG database. Scaffold ‘Ga0059170 103’ coordi-
nates 1–145 000 were mapped to the newly found plasmid
(fragment is at 8 o’clock in Figure 4, marked 103*), away
from the rest of scaffold 103 (12 to 5 o’clock in Figure
4). This subsequence is small enough to be processed by
Deeplasmid and was thereby re-ran through Deeplasmid
to be predicted as a separate piece of DNA. Annotation
(Figure 4C) was performed based on IMG scaffold anno-
tations (i.e. IMG annotation of scaffolds Ga0059170 112
and Ga0059170 113). Mapping of fastq reads to assembled
plasmid (Supplementary Figure S6) was performed using
Minimap2 (52) with SAM format output.

RESULTS

Training and feature selection

We constructed a training dataset of 43 094 chromosomes
from 930 bacterial and 45 archaeal genera that was re-
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Figure 1. Deeplasmid training, validation and testing. The plasmid and chromosome dataset was split into six segments, of which five were used in training
a model. The sixth segment was used for validation of the trained model. We repeated over the training twice to derive 12 different models. Using 12 models
allows reducing the effects of random variance in the predictions.

Figure 2. (A) Training convergence through the epochs. Loss and accuracy are shown as a function of epochs. (B) Training was performed 12 times on
the plasmid-chromosome (ACLAME + PLSDB + refseq) dataset to derive 12 k-fold models (two per validation segment). All k-Fold models achieved an
accuracy (AUC) on the validation segment of over 0.98 with a small statistical variance in the prediction accuracy. (C) The ROC-AUC curve (TPs versus
FPs) on the IMG test dataset with 3280 scaffolds of length 1k–330k bases is 0.8985.

trieved from Refseq, and we retrieved 27 487 plasmids from
ACLAME and PLSDB (Materials and Methods). Features
included sequence-related physical features and features re-
lated to the genetic content of the contig (Table 1, Sup-
plementary Tables S1 and S2, Materials and Methods).
The first feature group includes gc content, repeats: num-
ber and size of the longest homopolymers, and total length
of the sequence. The second feature group includes boolean

variables of whether the sampled sequence shares simi-
larity with chromosomal genes, chromosomal protein do-
mains, plasmidic genes, plasmidic protein domains or ori-
gin of replication sequences (Supplementary Tables S1 and
S2 and Supplementary Figure S5). For example, ribosomal
proteins are usually carried on chromosomes and plasmid
replication and mobilization genes are carried on plasmids.
This second feature group of features includes the presence
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or absence of plasmid-enriched or chromosomal Pfam do-
mains. We also included in this group the number of genes
carried on the scaffold, the percent of the scaffold which is
coding, and the size of the genes (‘polypeptide aa avg len’)
as through manual inspection we noted that plasmids tend
to have more intergenic regions and smaller genes than
chromosomes.

Deeplasmid cross-validation

The training dataset was divided into six segments (Mate-
rials and Methods). One segment, called ‘validation’, was
used for validating a model’s training. Twelve models were
trained in total, two for each selection of a validation seg-
ment. The model training over 30 epochs is characterized
by an increase in prediction accuracy (defined as the ratio
of correct classifications to all queries) and decrease in er-
ror (loss) on the validation segment. The Receiver Operat-
ing Characteristic (ROC) curve is shown in Figure 2A. The
area under the curve (AUC) for Deeplasmid reached 0.988.
To be consistent with the standard definition of AUC we
have forced predictions to be binary by reducing the stan-
dard deviation � to 0 and setting threshold � to 0.5. The pre-
dictions made by Deeplasmid are averaged over 12 models
(Materials and Methods). Figure 2B shows prediction ac-
curacy individually for each of the 12 models over the ‘val-
idation’ data segment. There is a high agreement between
models.

Feature significance

We also evaluated the significance of various sets of fea-
tures by calculating the decrease in average AUC of the 12
models on the training data set after setting the features
to zero values (thus knocking them out). We retrained the
model on various combinations of features. Most of the
runs where features were removed resulted in a mean AUC
drop of >3 standard deviations away from the mean AUC
achieved when using all features. The use of all features re-
sulted in a mean AUC over 12 training segments of 0.987
with a relatively small standard deviation (over 12 runs)
of 0.0008. The mean AUC dropped to 0.897 when not us-
ing the Pfams. The mean AUC dropped further by 5% to
0.847 after removing the hits to plasmid and chromosome-
specific genes demonstrating the significance of this feature
in classification of annotated contigs. When using only hits
to plasmid and chromosome-specific genes (in addition to
the sequence data) the mean AUC also dropped to 0.8548.
Other features, each one separately, such as sequence length,
homopolymer-related features (the longest homopolymer
and the total number of homopolymers of length > 5), and
gene density in the scaffold had relatively little contribu-
tion. However, we trained the model with all features since
removing features translated to an increase in the error of
prediction. We provide an analysis of the mean AUCs ob-
served over 12 models with various feature sets (Supplemen-
tary Table S4). We conclude that using curated biological
information provides a clear advantage over previous algo-
rithms, which only used ‘physical’ features of the sequences
(such as gc content and scaffold length).

Testing Deeplasmid on independent dataset: isolate genomes
from IMG database

To test Deeplasmid, we used an independent dataset re-
trieved from IMG database (53,54). We downloaded the se-
quences of 1834 isolate genomes that have at least one repli-
con annotated as plasmid. This set included a total of 6820
scaffolds and contigs, with 3093 of them annotated as plas-
mids and 3727 annotated as chromosomes. Similar to our
training methodology, the IMG test dataset was reduced
to 4758 scaffolds of length 1k–330k bases, while scaffolds
outside this length range were classified as either too long
or too short. For testing on independent data, we removed
from the IMG test dataset any sequence that had 90% iden-
tity along 90% of length coverage with any sequence in the
training dataset, leaving us with 3280 sequences: 1500 chro-
mosomal and 1780 plasmids. Figure 2C shows the ROC
curve for the IMG test dataset, achieving an AUC of 0.8985
on the independent dataset. This indicates that the trained
Deeplasmid model is applicable widely, and does not suffer
from overfitting. We noted that several features could differ-
entiate well between plasmids and chromosomes in the test
set, including “genes per Mb”, hits to plasmid genes, hits to
plasmid Oris, and plasmid Pfam hits count (Supplementary
Figure S5).

Figure 3 shows the counts of plasmid and chromosomal
scaffolds assigned a certain score by Deeplasmid. Setting
the threshold for separating the two classes at 0.5, the pre-
cision or purity of the predicted positive class (plasmid se-
quences) is 94.45%. On the other hand, recall is 75.56% (de-
tails in Supplementary Info) indicating that the DL model
missed some plasmids, classifying them as chromosomal
fragments. Deeplasmid did not classify four chromosomal
sequences since they contained N bases.

We used this dataset to compare the performance of our
Deeplasmid model to the comparable state-of-the-art tools
PlasFlow (17), cBar (16), mlplasmids (22), Platon (23), and
PlasmidVerify (24) (Table 2). Deeplasmid achieved a preci-
sion of 94.45% on the test dataset compared to precisions
of 94.16% for Platon, 92% for PlasmidVerify, 80.9% for
PlasFlow, 77.5% for cBar, and 55–70% for mlplasmids (Ta-
ble 3). The overall accuracy, measuring the correct predic-
tions over the entire dataset is 84.2% for Deeplasmid, which
is higher than PlasmidVerify (82%), Platon (78%), cBar
(75%), PlasFlow (62%) or mlplasmids (52–64%). Deeplas-
mid’s specificity is 94.46%, which is a comparable success
rate for chromosome identification to those of PlasmidVer-
ify (93%) and Platon (95.33%). Deeplasmid did not clas-
sify four chromosomes with ‘N’ bases, significantly less
than PlasFlow’s 394 unclassified chromosomes that affected
PlasFlow’s specificity and accuracy metrics. This compari-
son demonstrates that addition of biological features vastly
improves the performance of programs with otherwise sim-
ilar inputs and goals.

The runtimes were taken on a Cray XC40 supercomputer
(5 Intel Xeon ‘Haswell’ nodes with 120GB, 16 cores). The
training runtime was ∼23 h for the ACLAME + PLSDB
and RefSeq.bacteria dataset with 43 094 sequences. There
was early stopping at 11 epochs, which translates to ∼2
h per epoch. The prediction runtime was <2 s per scaffold
or under 2 min for a microbial genome assembly, assuming a
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Figure 3. Evaluation on the IMG test dataset. The class separation is clear based on a threshold of 0.5. The percent of classifications above the threshold
that are plasmids is 94.45% (precision). The percent of all plasmids classified above the threshold is 75.56% (recall). The percent of all chromosomes that
are classified below the threshold (specificity) is 94.46%.

Table 2. Comparison of Deeplasmid to PlasmidVerify, PlasFlow, cBar, Platon and mlplasmids on the IMG test dataset. For mlplasmids we tested both
the Enterococcus model, since it was the most populous genus in the test data, and E. coli model. For Deeplasmid we removed from the IMG test dataset
any sequence that had 90% identity at 90% sequence length coverage with any sequence of the ACLAME + refseq.bacteria + PLSDB training dataset

Plasmids (1780) Chromosomes (1500)

Truth: Classified as: Plas. (TP) Chrom. (FN) Ambig. (FN) Total FN Chrom. (TN) Plas. (FP) Ambig. Total contigs

Deeplasmid 1345 435 0 435 1417 79 4 3280
PlasmidVerify 1294 486 0 486 1398 102 0 3280
PlasFlow 1219 161 400 561 819 287 394 3280
cBar 1395 385 0 385 1096 404 0 3280
Platon 1130 650 0 650 1430 70 0 3280
mlplasmids /Ent 1055 725 0 725 1061 439 0 3280
mlplasmids /Eco 1037 743 0 743 668 832 0 3280

Table 3. Performance of the difference plasmid prediction algorithms. For plasmids we used the Enterococcus faecium (Ent) and E. coli (Eco) models on
all plasmids. In bold are the best performing tools in each category

Precision
TP/(TP + FP)

Recall(Sens.)
TP/(TP + FN)

Specificity
TN/(#chromosomes)

Accuracy
(TP + TN)/(#contigs)

Deeplasmid 0.9445 0.7556 0.9446 0.842
PlasmidVerify 0.92 0.72 0.93 0.82
PlasFlow 0.809 0.684 0.546 0.62
cBar 0.775 0.78 0.73 0.75
Platon 0.9416 0.634 0.9533 0.78
mlplasmids /Ent 0.70 0.59 0.7 0.645
mlplasmids /Eco 0.554 0.58 0.45 0.52

typical microbial genome assembly contains 1–60 scaffolds.
This satisfies the scalability requirement for an automated
plasmid finding tool with Deeplasmid being potentially ap-
plicable to large-scale genomic and metagenomic data.

Plasmid prediction reproducibility

To test how reproducible Deeplasmid predictions are, we
compared its plasmid predictions from independent se-
quencing of highly similar strains of the same organism.
We selected Burkholderia pseudomallei NCTC 13392, the
causative agent of melioidosis. We found 10 versions of B.
pseudomallei NCTC 13392 strain in IMG (55). These are
the wildtype strain and related isolates that were isolated
after 1–4 days from mouse infection (55–57). The related
genomes had similar sizes of 6.96–7.16 Mb and were assem-

bled in 48–248 contigs (Table 4) with 5899–6016 genes. It is
yet unknown whether these strains encode one or more plas-
mids. Deeplasmid predicted at least one plasmid with high
score >0.9 in most cases (‘plasmid #1’ of at least 28 kb)
for all ten genomes showing high reproducibility between
genomes that were assembled differently and were only par-
tially overlapping. It seems like a replicable plasmid with
low coding density, several short genes, and genes mapped
to integrase, transposes, two toxin-antitoxin systems, and
several DNA manipulation genes (primase/helicase, restric-
tion enzyme, invertase, nuclease). However, important plas-
mid replication genes are lacking on the scaffold, suggest-
ing that the current sequencing and assembly status did not
capture the entire plasmid in a single scaffold. Two other
plasmids were predicted in only a subset of the genomes.
Four genome variants had ‘plasmid #2’ (6.2–7.4 kb) predic-
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Table 4. Plasmid prediction in ten genomes that were derived from Burkholderia pseudomallei NCTC 13392

IMG genome
ID

#
contigs

Predicted plasmid #1 Marker genes:
integrase, transposase, toxin-antitoxins.

scaffold, size, score
Predicted plasmid #2 Marker gene:

transposase. scaffold, size, score

Predicted plasmid #3
Marker gene: RepA.
scaffold, size, score

2551306687 176 D437DRAFT AUVI01000171 1.171,
15604, 0.945

NA NA

2551306690 158 D445DRAFT AWEO01000008 1.8,
15076, 0.948

NA NA

2551306691 248 D438DRAFT AUVJ01000245 1.245,
16121, 0.95

NA NA

2551306694 148 D439DRAFT AUVK01000143 1.143,
16122, 0.949

NA NA

2551306692 153 D440DRAFT AUVL01000036 1.36,
16743, 0.857

D440DRAFT AUVL01000132 1.132,
7408, 0.985

NA

2551306689 157 D441DRAFT AUVM01000076 1.76,
21079, 0.981

D441DRAFT AUVM01000141 1.141,
6269, 0.686

NA

2554235004 155 D442DRAFT AUVN01000143 1.143,
13744, 0.948

NA NA

2551306693 150 D443DRAFT AUVO01000133 1.133,
13024, 0.831

D443DRAFT AUVO01000128 1.128,
6259, 0.732

NA

2551306697 140 D444DRAFT AUVP01000078 1.78,
18565, 0.969

D444DRAFT AUVP01000112 1.112,
7409, 0.985

NA

2551306633 48 F520DRAFT AOUG01000024 1.24,
28064, 0.708

NA F520DRAFT AOU
G01000026 1.26, 18
669, 1.00

tions that include a transposase gene. The wildtype strain,
genome ID 2551306633, had ‘plasmid #3’ (18.7 kb), with
the maximal Deeplasmid score (1.00) and a RepA plasmid
replication plasmid. It is yet unknown whether predicted
plasmids #2 and #3 are bona fide and their presence varies
between related strains that are exposed to selection dur-
ing host infection, whether the sequencing and assembly did
not capture these in all cases (leading to polymorphism), or
whether these are false positive predictions. Overall, we see
strong replicability in Deeplasmid predictions.

Experimental validation of a new plasmid based on Deeplas-
mid prediction

In order to demonstrate Deeplasmid’s ability to predict
plasmids in biological samples, we focused on the fish
pathogen Yersinia ruckeri ATCC 29473 (IMG genome ID:
2609460118). Until this work, this strain had only been se-
quenced by 454 and Illumina short read sequencers, result-
ing in 15 linear scaffolds and therefore presumably lacking
a plasmid (58). Using comparative genomics, researchers
studying a similar bacterial strain inferred that Y. ruckeri
ATCC 29473 may encode a plasmid, but no long read se-
quencing was performed to confirm this hypothesis (59).
The 15 linear scaffolds of Y. ruckeri ATCC 29473 were then
used as input to Deeplasmid, and labeled as either plasmid
or chromosomal. One long scaffold of 35 kb (IMG scaffold
113, Figure 4A) got a Deeplasmid score of 0.907, strongly
suggesting that it is derived from a plasmid. In contrast,
other scaffolds were either very long (e.g. IMG scaffold 103
of 1.6 Mb) or received Deeplasmid score below 0.265, sug-
gesting that they derive from a bacterial chromosome. To
validate these labels, we grew Y. ruckeri bacteria in the lab,
extracted DNA, and sequenced it with a long read sequenc-
ing method (Oxford Nanopore Technology). In contrast to
the previous short read methods, we were able to find large
circular pieces of DNA. We found a ∼3.7 Mb chromosome,

and a ∼102 kb plasmid (Supplementary Figure S6). Beyond
the fact that it is circular, we are confident the latter piece
of DNA is a plasmid since it has very high similarity to a
known Yersinia plasmid (pYR3; Genbank: LN681230.1).

Upon mapping the linear assembled scaffolds onto the
newly sequenced circular DNA fragments, we indeed find
that predicted plasmid fragments map to the 102 kb plas-
mid, demonstrating the predictive power of Deeplasmid
and its ability to detect large plasmids in genomic data (Fig-
ure 4A). We note that a number of the linear scaffolds for
this genome did not undergo Deeplasmid prediction due to
their large size (>330 kb). Exactly because of their large size,
they are assumed to be chromosomal in origin. However,
those within the size range of Deeplasmid functionality (1–
330 kb) were largely predicted to be chromosomal in origin
(Figure 4B).

Looking at the functions of the genes carried on the plas-
mid, we see many genes previously found on similar plas-
mids (59), and that have plasmid-related functions. We iden-
tified Type IV pilus genes, which may be used for transfer
of plasmid from one cell to another (60), or possibly used
as a virulence factor (59). Also encoded on the plasmid is
the Type IV Secretion System, which may also be involved
in plasmid transfer (61) and/or virulence (59). We also de-
tected on the plasmid RelE, a toxin which is commonly
found in plasmid addiction systems (62). Furthermore, we
found mobilization genes like transposon genes, integrases,
and DNA recombinases. Overall, we conclude that this is a
bona fide plasmid based on its circularity, separation from
the main chromosome, similarity to known plasmids, and
plasmidic gene content.

DISCUSSION

In this work, we provide an accurate algorithm to classify
assembled contigs or scaffolds generated by any sequencing
platform and assembly algorithm, as parts of plasmids and
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Figure 4. Deeplasmid validation. Yersinia ruckeri ATCC 29473 was sequenced with Oxford Nanopore MinION and assembled with Canu and with Shasta.
(A) The assembled contigs included a circular piece of DNA that shares 92.78% identity with a known Yersinia plasmid (pYR3; Genbank: LN681230.1).
Two linear scaffolds of this genome were predicted by Deeplasmid to be from plasmids (shades of red), and indeed they align with the newly-found plasmid.
(B) The assembled contigs also contained a chromosome. Most of the linear scaffolds for this genome did not undergo Deeplasmid prediction, due to their
large size (>330kb; dark navy blue). However, those within the size range were largely predicted to be chromosomal in origin (lighter shades of blue).
Scaffold 103* is a subsequence of a larger IMG scaffold that matched twice to the assembled chromosome; this short region was predicted by Deeplasmid
here (see Materials and Methods). (C) Validated plasmid gene functions. Annotations show genes that are classically associated with plasmids. Color
scheme is indicated in the center; grey = ‘hypothetical protein’; tan = other functions.

chromosomes using a deep learning approach. Importantly,
Deeplasmid was the most accurate when compared to five
other plasmid prediction tools. By training deep learning
models on the specific features of plasmids and chromo-
somes, we have shown that it is possible to efficiently sep-
arate plasmids from chromosomal sequences. While physi-
cal sequence features can be used to predict if a sequence is
of plasmid or chromosome origin, the DNA sequence itself
improves the deep learning models by keeping a memory of
what came earlier in the sequence. The reason is that statis-
tical features of sequence composition, such as GC content
or oligonucleotide profiles, fail to capture the nucleotide
composition over the length of the sequence, as explained
in earlier work (8). One of the reasons why our Deeplas-
mid model has better precision at predicting plasmids than
other methods is that it averages predictions over multiple
300 bp windows sampled over the length of the sequence,
instead of analyzing contigs and scaffolds as a single DNA
molecule. As a result, each prediction for a 300 bp sequence
contributes to the overall result. Additionally, we comple-

mented sequences with extracted feature data that enhance
the prediction accuracy. The plasmid-specific ORIs, Pfams,
and genes, as well as chromosome-specific Pfams and genes
serve as essential data features. Averaging the predictions
over many 300-base sequences and including biologically
meaningful features resulted in a better ability to classify
a sequence as a plasmid or chromosome.

Just like other methods that rely on the nucleotide com-
position signatures of plasmids and chromosomes, whether
as hidden or extracted features, Deeplasmid is likely to have
problems with very short sequences for which it may have
trouble obtaining a proper sequence signature. For this rea-
son, we limited the sequences used in the model construc-
tion to those of minimum 1 kb length. There are also very
few existing plasmids that are larger than 330 kb and there-
fore we could not train our algorithm on these megaplas-
mids.

Prediction of plasmids is complicated in large genomic
datasets with possible chromosomal integrations of plas-
mids. Current challenges in the field of plasmid identifi-
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cation include discriminating chromosomes that resemble
plasmid sequences or plasmids with chromosomal replica-
tion genes. Another challenge is to achieve high prediction
accuracy on unknown or understudied microbial lineages
that may contain exotic plasmids, since any machine learn-
ing tool will be trained with the current knowledge. The
chromosomes and plasmids used in the training step are bi-
ased towards the most studied lineages such as proteobacte-
ria, actinobacteria, firmicutes, and bacteroidetes. However,
we hypothesize that using the large set of Pfam domains will
allow classification of plasmidic or chromosomal scaffolds
that exist beyond these phyla.

Deeplasmid predicts plasmids with a low false positive
error rate using only an assembled fasta file as input. It can
identify both circular and linear plasmids. The output is a
per-scaffold classification of chromosomal, plasmid, or am-
biguous contig, along with a score representing the con-
fidence of the prediction. Although the default probabil-
ity threshold for separation of classes was set at 0.5 based
on our benchmarking, users can specify their own filter-
ing cutoffs. Deeplasmid out-performed other available tools
in terms of accuracy for single microbial assembly plas-
midome analyses. Moreover, we provided experimental ev-
idence for a new plasmid that was predicted using Deeplas-
mid. A future research direction is to employ Deeplas-
mid for identification of plasmids in large-scale metage-
nomic data from different environments or to uncover novel
plasmid-borne antimicrobial resistance genes or novel mi-
crobial genes that are horizontally transferred via plasmids.
This and myriad other high impact applications of Deeplas-
mid are possible due to its fast running time and scalability.

SUPPLEMENTARY INFORMATION

The Supplementary Information file includes Deeplas-
mid running instructions, comments on features used
in chromosome/plasmid classification, Code Repository,
Software Design, Deep learning model architecture, AUC
per fold on the training dataset, ROC curve for the IMG
test dataset, and other data.

DATA AVAILABILITY

The software is available with a BSD license: https://github.
com/wandreopoulos/deeplasmid. A Docker container is
available on DockerHub under: https://hub.docker.com/r/
billandreo/deeplasmid. The raw reads from the Oxford
Nanopore sequencing project that was used to validate a
new plasmid in Yersinia ruckeri were deposited to NCBI’s
Sequence Read Archive (SRA) under study PRJNA721367.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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