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Abstract

Let A be a nontrivial additive abelian group and A∗ = A\{0}. A graph is A-magic
if there exists an edge labeling f using elements of A∗ which induces a constant vertex
labeling of the graph. Here, the induced label on a vertex is obtained by calculating the
sum of the edge labels adjacent to that vertex. Such a labeling f is called an A-magic
labeling and the constant value of the induced vertex labeling is called an A-magic
value. In this paper, we use the Combinatorial Nullstellensatz to show the existence
of Zp-magic labelings (prime p ≥ 3 ) for various graphs, without having to construct
the Zp-magic labelings. Through many examples, we illustrate the usefulness and
limitations in applying the Combinatorial Nullstellensatz to the integer-magic labeling
problem. Finally, we focus on Z3-magic labelings and give some results for various
classes of graphs.

1 Introduction

Let G = (V,E) be a connected simple graph. For any nontrivial additive abelian group A,
let A∗ = A \ {0}. A mapping f : E(G)→ A∗ is called an edge labeling of G. Any such edge
labeling induces a vertex labeling f+ : V (G)→ A, defined by f+(v) =

∑
uv∈E(G)

f(uv). If there

exists an edge labeling f whose induced mapping f+ on V (G) is a constant map, we say that
f is an A-magic labeling of G and that G is an A-magic graph. The corresponding constant
is called an A-magic value. A-magic graphs were first introduced by Lee, Lee, Sun, and Wen
in [8]. If G has a Zk-magic labeling (for some k ≥ 2), then G is an integer-magic graph. The
integer-magic spectrum of a graph G is the set IM(G) = {k ≥ 2 : G is Zk-magic}. Many
results on these topics can be found cited in Gallian’s dynamic survey of graph labelings [2],
as well as in the mathematical literature.

2 The Combinatorial Nullstellensatz

In [1], Alon proved the following result and successfully applied it to problems in additive
number theory and graph theory.

Theorem 2.1. (Combinatorial Nullstellensatz). Let f = f(x1, . . . , xm) be a polynomial of
degree d over a field F. Suppose that the coefficient of the monomial xt1

1 · · ·xtm
m in f is nonzero

and t1 + · · ·+ tm = d. If S1, . . . , Sm are subsets of F with |Si| ≥ ti + 1, then there exists an
x′ = (x′1, x

′
2, . . . , x

′
m) ∈ S1 × · · · × Sm for which f(x′) 6= 0.

For example, let f(x1, x2, x3, x4) = x4
1x2x3 − 2x5

1 + x2
1x

2
2x

2
3 + x2

4 ∈ Z3[x1, x2, x3, x4]. We will
apply Theorem 2.1 on the term x2

1x
2
2x

2
3 in f . Note that deg(f) = 6 = deg(x2

1x
2
2x

2
3). Since

the exponents of x1, x2 and x3 (in x2
1x

2
2x

2
3) are all 2, we must have |Si| = 3 for 1 ≤ i ≤ 3.

As the exponent of x4 (in x2
1x

2
2x

2
3) is 0, our choice for S4 must satisfy 1 ≤ |S4| ≤ 3. Thus,

we choose S1 = {0, 1, 2}, S2 = {0, 1, 2}, S3 = {0, 1, 2} and S4 = {2}. Then, Theorem 2.1
implies that there exist si ∈ Si, where 1 ≤ i ≤ 4, such that f(s1, s2, s3, s4) 6= 0. Note that
the Combinatorial Nullstellensatz cannot be applied to any of the other monomial terms in f .
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In relatively short order, the Combinatorial Nullstellensatz would soon become a powerful
tool in extremal combinatorics [6]. With regards to graph labeling and coloring problems, it
has been used to prove theorems on anti-magic labelings, neighbor sum distinguishing total
colorings, and list colorings [4, 11, 13]. For a recent research monograph on the Combinatorial
Nullstellensatz and graph coloring problems, the reader is directed to [17].

When studying A-magic labeling problems, there are two prevailing techniques that are
often used to prove results. Either a construction of a desired labeling is obtained through
ingenuity, or one shows the non-existence of the labeling (via proof by contradiction). In
practice, these methods can be time-consuming and difficult to use.

We use the Combinatorial Nullstellensatz to show that certain graphs are Zp-magic (prime
p ≥ 3), without having to construct an actual Zp-magic labeling. As far as the authors know,
this is the first time that a nonconstructive method has been used to analyze integer-magic
graph labelings. Section 3 contains some examples to illustrate this approach.

First, we note a few important facts which are known about Zk-magic labelings. Lemmas
2.3 and 2.4 are found in [9], whereas Lemma 2.2 is a slight generalization of a lemma found
in [9].

Lemma 2.2. For a graph G, let i(v) denote the number of edges (multiple edges, loops)
incident to v ∈ V (G). Then, G is Z2-magic⇐⇒ i(v) are of the same parity, for all v ∈ V (G).

Lemma 2.3. If G is Zk-magic and k|n, then G is Zn-magic.

Remark. The converse of Lemma 2.3 is not true, in general. For example, it was shown
in [7] that IM(K4 − {uv}) = {4, 6, 8, . . . }. In particular, K4 − {uv} is Z6-magic. However,
K4 − {uv} is not Z3-magic.

Lemma 2.4. Let p be prime. If G is Zp-magic for some magic value t 6= 0, then G is
Zp-magic with magic value t′ for any nonzero t′ ∈ Zp.

Lemmas 2.2 and 2.3 allow us to focus on primes p ≥ 3. Because of Lemma 2.4, it suffices
to look at Zp-magic labelings with magic values equal to 0 and 1.

Throughout this paper, we only consider connected simple graphs. Let G = (V,E), where
|V (G)| = n and E(G) = {x1, x2, . . . , xm}. Let p ≥ 3 be prime and t ∈ {0, 1}. We define the
polynomials ft in Zp[x1, . . . , xm] in the following way:

ft(x) = ft(x1, . . . , xm) =
∏

v∈V (G)

1−

t−
∑
v∈xj

xj

p−1 .

The motivation for defining ft in this way is to capture whether or not each induced
vertex label is equal to t. In the product, each vertex of G corresponds to one factor. Each
factor is designed to evaluate to 1 if the corresponding induced vertex label is equal to t, and
evaluates to 0 otherwise. Therefore the product evaluates to either 0 or 1, as the coefficients
of ft come from the field Zp. Given a particular input vector, the polynomial ft returns 1 if
and only if that input vector is a Zp-magic labeling of G with magic value t.

Remark. Note that deg(ft(x)) = |V (G)| · (p− 1). This follows from:
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1. There are |V (G)| factors in ft(x).

2. Each of the factors is of degree p− 1.

3. Theorem in [5]: Let R be a commutative ring with unity and g, h ∈ R[x1, x2, . . . , xm].
If R has no zero divisors, then deg(gh) = deg(g) + deg(h).

Observations. Let x′ be an m-tuple in Z∗p × Z∗p × · · · × Z∗p. Then, we note the following:

1. ft(x) is defined for all connected multigraphs G.

2. The range of ft(x) is {0, 1}. This follows from the fact that each factor of ft takes on
a value of 0 or 1, due to Fermat’s Little Theorem [5]: If p is prime, then ap = a for all
a ∈ Zp.

3. f0(x
′) = 1⇒ x′ is a Zp-magic labeling of G with magic value 0.

4. f1(x
′) = 1⇒ x′ is a Zp-magic labeling of G with magic value 1.

5. f0(x
′) = 0 and f1(x

′) = 0 ⇒ x′ is not a Zp-magic labeling of G with magic value 0 or
1.

6. f0(x
′) = 1⇒ f1(x

′) = 0. If f0(x
′) = 1, then x′ is a Zp-magic labeling of G with magic

value 0. Thus, x′ is not a Zp-magic labeling of G with magic value 1.

7. f1(x
′) = 1⇒ f0(x

′) = 0. This is the contrapositive of Observation 6.

3 Applications and Examples

This section provides a proof of concept for the algebraic approach discussed in Section 2.
In particular, we give some examples to illustrate the usefulness and limitations of the Com-
binatorial Nullstellensatz, when applied to Zp-magic labelings of graphs.

Example 1. Let p = 3 and H be the first graph in Figure 1. Then, f1(x) ∈ Z3[x1, x2, . . . , x7],
where

f1(x) = [1− (1− x1)
2] · [1− (1− (x2 + x3))

2] · [1− (1− (x1 + x2 + x4 + x5))
2] ·

[1− (1− (x3 + x4 + x6 + x7))
2] · [1− (1− (x5 + x6))

2] · [1− (1− x7)
2].

Choosing x′ = (1, 2, 2, 2, 2, 2, 1), we see that f1(x
′) = 1. The second graph in Figure 1 illus-

trates this Z3-magic labeling (with magic value 1) of H.

Example 2. Let p = 3. Clearly, C3 cannot be Z3-magic with magic value 0. We also easily
see that C3 has a Z3-magic labeling with magic value 1. However, suppose we did not know
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Figure 1: A Z3-magic labeling of H with magic value 1.

of this particular Z3-magic labeling. Let us see if we can use Theorem 2.1 to determine if a
Z3-magic labeling (with magic value 1) of C3 exists. We have f1(x) ∈ Z3[x1, x2, x3], where

f1(x) = [1− (1− (x1 + x3))
2] · [1− (1− (x1 + x2))

2] · [1− (1− (x2 + x3))
2].

Note that deg(f1(x)) = 6. We wish to find a monomial term (degree 6) of f1(x), where each
exponent of the monomial term is as small as possible. Using Mathematica 12.1 [16], we
see that there are thirteen non-vanishing monomial terms of degree 6, modulo 3. None of
them satisfy the hypothesis of Theorem 2.1. For example, 2x2

1x
2
2x

2
3 is such a monomial term.

However, there do not exist subsets S1, S2 and S3 of {1, 2} such that |Si| ≥ 2 + 1, for i = 1, 2
and 3. Hence, we cannot apply Theorem 2.1 in this example.

Remark. Let prime p ≥ 3. Then, Theorem 2.1 will show that graph G is Zp-magic, if the
following hold:

1. |E(G)| ≥ p−1
p−2 ·|V (G)|. If G does not satisfy this inequality, a straightforward application

of the Pigeonhole Principle shows that ft cannot possibly satisfy the hypothesis of
Theorem 2.1. See Example 2.

2. An ft polynomial (corresponding to G) must have a non-vanishing monomial term,
modulo p, (having degree = deg(ft)), where all the exponents are ≤ p− 2.

Example 3. Let p = 3 and G3 be the first graph in Figure 2. Then, f1(x) ∈ Z3[x1, x2, . . . , x15],
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where

f1(x) = [1− (1− (x1 + x7 + x8 + x14 + x15))
2] · [1− (1− (x1 + x2 + x11 + x12))

2] ·
[1− (1− (x2 + x3 + x8 + x9))

2] · [1− (1− (x3 + x4 + x12 + x13))
2] ·

[1− (1− (x4 + x5 + x9 + x10 + x15))
2] · [1− (1− (x5 + x6 + x13 + x14))

2] ·
[1− (1− (x6 + x7 + x10 + x11))

2].

Note that deg(f1(x)) = 14. Using Mathematica 12.1, we see that f1(x) contains the monomial
term −6400x1x2 · · ·x11x12x14x15. Let Si = {1, 2}, for i = 1, 2, . . . , 12, 14, 15 and S13 = {1}.
By Theorem 2.1, we have that f1(x

′) 6= 0, for some x′ ∈ S1×S2×· · ·×S15. Thus, f1(x
′) = 1

and we conclude that G3 has a Z3-magic labeling with magic value 1. With some consid-
erable effort (by hand), one can obtain a Z3-magic labeling of G3 with magic value 1, as
illustrated in the second graph in Figure 2.
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Figure 2: A Z3-magic labeling of G3 with magic value 1.

Example 4. Let p = 3 and G4 be the graph G1121 from [12] illustrated in Figure 3. Then,
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f0(x) ∈ Z3[x1, x2, . . . , x14], where

f0(x) = [1− (0− (x1 + x5 + x6 + x9 + x10 + x14))
2] · [1− (0− (x1 + x2 + x11))

2] ·
[1− (0− (x2 + x3 + x7 + x8 + x10))

2] · [1− (0− (x3 + x4 + x13 + x14))
2] ·

[1− (0− (x4 + x5))
2] · [1− (0− (x6 + x7 + x11 + x12))

2] ·
[1− (0− (x8 + x9 + x12 + x13))

2].

Note that deg(f0(x)) = 14. Using Mathematica 12.1, we see that f0(x) contains the mono-
mial term −4096x1x2 · · ·x13x14. Let Si = {1, 2}, for i = 1, 2, . . . , 14. By Theorem 2.1, we
have that f0(x

′) 6= 0, for some x′ ∈ S1 × S2 × · · · × S14. Thus, f0(x
′) = 1 and we conclude

that G4 = G1121 is Z3-magic with magic value 0.
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Figure 3: Graph G4 = G1121 from [12].

Example 5. Let p = 5 and G5 be the first graph illustrated in Figure 4. Then, f1(x) ∈
Z5[x1, x2, . . . , x8], where

f1(x) = [1− (1− (x1 + x3))
4] · [1− (1− (x1 + x2 + x6 + x7))

4] ·
[1− (1− (x2 + x8))

4] · [1− (1− (x3 + x4))
4] ·

[1− (1− (x4 + x5 + x7 + x8))
4] · [1− (1− (x5 + x6))

4].

Note that deg(f1(x)) = 24. Using Mathematica 12.1, we see that f1(x) contains the mono-
mial term 1069056x3

1x
3
2 · · ·x3

8. Let Si = {1, 2, 3, 4}, for i = 1, 2, . . . , 8. By Theorem 2.1, we
have that f1(x

′) 6= 0, for some x′ ∈ S1×S2×· · ·×S8. Thus, f1(x
′) = 1 and we conclude that

G5 has a Z5-magic labeling with magic value 1. With some considerable effort (by hand),
one can obtain a Z5-magic labeling of G5 with magic value 1, as illustrated in the second
graph of Figure 4. Observe that G5 is an Eulerian graph with an even number of edges.
Traveling along an Eulerian circuit, we label the edges with 1,−1, 1,−1, . . . , 1,−1, which
gives a Z5-magic labeling of G5 with magic value 0.

Example 6. Let p = 5 and G6 be the first graph illustrated in Figure 5. Since f1(x) is of
degree 6 · 4 = 24 and |E(G6)| = 8, the only (deg 24) monomial term which could possibly
satisfy the hypothesis of Theorem 2.1 is of the form x3

1x
3
2x

3
3 · · ·x3

8. Using Mathematica 12.1,
we see that no such term exists in f1(x). Thus, we cannot conclude if G6 has a Z5-magic
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Figure 4: A Z5-magic labeling of G5 with magic value 1.

labeling (with magic value 1) or not. However, with some considerable effort (by hand), one
can obtain a Z5-magic labeling of G6 with magic value 1, as illustrated in the second graph
of Figure 5.

Example 7. Let p = 3 and G7 be the graph illustrated in Figure 6. Note that G7 is the graph
F4 in [12]. The degree of f0(x) is 16. Using Mathematica 12.1, we see that f0(x) contains
the monomial term 14336x5x6 · · ·x20. Let Si = {1, 2} for i = 5, 6, . . . , 20, and Si = {1} for
i = 1, 2, 3 and 4. By Theorem 2.1, we have that f0(x

′) 6= 0, for some x′ ∈ S1×S2×· · ·×S20.
Thus, f0(x

′) = 1 and we conclude that G7 has a Z3-magic labeling with magic value 0. Note
that in some cases (like this one), Theorem 2.1 can be used to give a lower-bound on the
number of different Zp-magic labelings. In this particular example, G7 has at least 24 = 16
different Z3-magic labelings (ignoring symmetry) with magic value 0. This is because Si can
be chosen to be {1} or {2}, for i = 1, 2, 3 and 4.

Computations in Examples 2-7 were done on a 2018 Mac mini (3 GHz 6-Core Intel Core
i5, 8 GB RAM, macOS Catalina 10.15.5). The “Computational Time” column in Table 1
gives the time required to list a single degree |V (G)| ·(p−1) reduced (mod p) monomial term
(of ft) with exponents≤ p−2, or return ∅. Here, the “AbsoluteTiming” and “MonomialList”
functions in Mathematica 12.1 were used.

Currently, our Mathematica program has not yet been optimized. We point out that the
computational power of Mathematica (or any other software) should be used intelligently,
along with Theorem 2.1.

For example, in Table 1 (for graph G3), we see that 25.8 minutes were required to
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Figure 5: A Z5-magic labeling of G6 with magic value 1.

Graph G |V (G)| |E(G)| Zp Computational Time
C3 3 3 Z3 .001 seconds
G3 7 15 Z3 25.8 minutes
G4 7 14 Z3 3.6 minutes
G5 6 8 Z5 1.5 minutes
G6 6 8 Z5 2.1 minutes
G7 8 20 Z3 > 3.5 days*

Table 1: Runtimes of calculations in Examples 2-7.

obtain a (degree 14) non-vanishing monomial term (with exponents ≤ 1), modulo 3. Even
before running our program, we already knew the list of monomials to consider. Because
|E(G3)| ≈ 2 · |V (G3)|, there are only

(
15
14

)
= 15 monomials which could possibly satisfy the

hypothesis of Theorem 2.1. They are of the form x1x2x3 · · ·x15, where exactly one of the
xi is omitted. Using Mathematica (interactively), one can determine the coefficients (mod
3) of these 15 monomials very quickly.

As another example, consider the graph G4 in Table 1. There, we see that 3.6 minutes
were required to obtain a (degree 14) non-vanishing monomial (with exponents ≤ 1), modulo
3. Even before running our program, we know that there is only one monomial which needs
to be considered. The unique monomial which could possibly satisfy the hypothesis of
Theorem 2.1 is of the form x1x2x3 · · ·x14. Mathematica can determine the coefficient (mod
3) of x1x2x3 · · · x14 instantly.

The computational time for graph G7 was greater than 3.5 days and thus, we terminated
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Figure 6: G7 has a Z3-magic labeling with magic value 0.

our Mathematica program manually. The monomial term in Example 7 was quickly obtained
by using Mathematica interactively and examining monomials of a particular form.

4 Z3-magic Graphs

When working with integer-magic labelings, one typically wishes to establish the entire
integer-magic spectrum of G. Determining whether or not 3 ∈ IM(G) is often a degener-
ate and difficult case to resolve. Currently, there is no known characterization of Z3-magic
graphs. Nevertheless, in this section, we use Theorem 2.1 and obtain additional results on
Z3-magic graphs.

We first recall the following definition from [3].

Definition. Let G and H be connected simple graphs. The join of G and H (denoted by
G + H) is the graph union G ∪H, together with all of the edges joining V (G) and V (H).

Lemma 4.1. Let G be a Z3-magic graph with magic value 1, where |V (G)| is even. Then,
G + P2 has a Z3-magic labeling with magic value 1.

Proof. For G + P2, let x and y be the vertices of P2; x1, x2, . . . , x|V (G)| be the edges joining
x to the vertices vi of G and y1, y2, . . . , y|V (G)| be the edges joining y to the vertices vi of G.
Let LG,1 be a Z3-magic labeling of G with magic value 1. Now, consider the following edge
labeling of G + P2:

LG+P2,1(ei) =


LG,1(ei) if ei ∈ E(G);

1 if ei = x1, x3, . . . , x|V (G)|−1, y2, y4, . . . , y|V (G)|;

2 if ei = x2, x4, . . . , x|V (G)|, y1, y3, . . . , y|V (G)|−1;

1 if ei = xy.

This gives a Z3-magic labeling of G + P2 with magic value 1.
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Notation. For n ≥ 3, let K∗n = Kn−{uv}. For n ≥ 4, let K∗∗n = Kn−{uv, uw}. For n ≥ 5,
let K∗∗∗n = Kn − {uv, uw, uz}.

Remark. K∗3 = P3 is not Zk-magic, for all k ≥ 2. In [7], it was shown that IM(K∗4) =
{4, 6, 8, . . . }. For n ≥ 5, K∗n = Kn − {uv} was shown to be Z3-magic in [15]. Note that K∗∗4
is isomorphic to C3 with a pendant edge. A straightforward exhaustive proof can be used to
show that K∗∗4 is not Z3-magic.

We now analyze the Z3-magic property for K∗∗n = Kn − {uv, uw} and K∗∗∗n = Kn −
{uv, uw, uz}, for n ≥ 5.

Theorem 4.2. For n ∈ {6, 8, 10, . . . }, K∗∗n = Kn − {uv, uw} is Z3-magic.

Proof. Using f1(x) and Theorem 2.1, we see that K∗∗6 has a Z3-magic labeling LK∗∗
6 ,1 with

magic value 1. Note that K∗∗n+2 = K∗∗n + P2. Repeated use of Lemma 4.1 establishes the
claim.

Theorem 4.3. For n ∈ {5, 7, 9, . . . }, K∗∗n = Kn − {uv, uw} is Z3-magic.

Proof. Figure 7 illustrates a Z3-magic labeling of K∗∗5 with magic value 1. Using f0(x) and
Theorem 2.1, we see that K∗∗7 has a Z3-magic labeling LK∗∗

7 ,0 with magic value 0. We observe
that K∗∗9 = K∗∗7 + P2. Here, let x and y be the vertices of P2; x1, x2, . . . , x7 be the edges
joining x to the vertices vi of K∗∗7 and y1, y2, . . . , y7 be the edges joining y to the vertices vi
of K∗∗7 . Now, consider the following edge labeling of K∗∗9 :

LK∗∗
9 ,1(ei) =

{
LK∗∗

7 ,0(ei) if ei ∈ E(K∗∗7 );

2 otherwise.

This gives a Z3-magic labeling of K∗∗9 with magic value 1. In similar fashion, we can then
extend the labeling LK∗∗

9 ,1 to obtain a Z3-magic labeling LK∗∗
11 ,2

of K∗∗11 with magic value 2:

LK∗∗
11 ,2

(ei) =

{
LK∗∗

9 ,1(ei) if ei ∈ E(K∗∗9 );

2 otherwise.

Continuing to extend LK∗∗
11 ,2

, we construct

LK∗∗
13 ,1

(ei) =


LK∗∗

11 ,2
(ei) if ei ∈ E(K∗∗11);

1 if ei = x1, x2, . . . , x11, y1, y2, . . . , y11;

2 if ei = xy.

(1)

This gives a Z3-magic labeling of K∗∗13 with magic value 1. In similar fashion, we can then
extend the labeling LK∗∗

13
to obtain a Z3-magic labeling LK∗∗

15 ,0
of K∗∗15 with magic value 0:

LK∗∗
15 ,0

(ei) =


LK∗∗

13 ,1
(ei) if ei ∈ E(K∗∗13);

1 if ei = x1, x2, . . . , x13, y1, y2, . . . , y13;

2 if ei = xy.

(2)
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Extending LK∗∗
15 ,0

, we construct

LK∗∗
17 ,2

(ei) =


LK∗∗

15 ,0
(ei) if ei ∈ E(K∗∗15);

1 if ei = x1, x2, . . . , x15, y1, y2, . . . , y15;

2 if ei = xy.

(3)

This gives a Z3-magic labeling of K∗∗17 with magic value 2. From this, we obtain a Z3-magic
labeling LK∗∗

19 ,1
of K∗∗19 with magic value 1. This is accomplished by constructing a labeling

of type (1). Using LK∗∗
19 ,1

, we then obtain a Z3-magic labeling LK∗∗
21 ,0

of K∗∗21 with magic value
0. This is accomplished by constructing a labeling of type (2). Using LK∗∗

21 ,0
, we then obtain

a Z3-magic labeling LK∗∗
23 ,2

of K∗∗23 with magic value 2. This is accomplished by constructing
a labeling of type (3). Continuing in this manner, Z3-magic labelings are constructed (by
“cycling through” type (1), (2) and (3) labelings) for K∗∗25 , K∗∗27 , K∗∗29 , etc. This establishes
the claim.
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Figure 7: A Z3-magic labeling of K5 − {v5v1, v5v4} with magic value 1.

Theorem 4.4. For n ∈ {6, 8, 10, . . . }, K∗∗∗n = Kn − {uv, uw, uz} is Z3-magic.

Proof. Figure 8 illustrates a Z3-magic labeling of K∗∗∗6 with magic value 1. Note that K∗∗∗n+2 =
K∗∗∗n + P2. Repeated use of Lemma 4.1 establishes the claim.

Theorem 4.5. For n ∈ {5, 7, 9, . . . }, K∗∗∗n = Kn − {uv, uw, uz} is Z3-magic.

Proof. Figure 9 illustrates a Z3-magic labeling of K∗∗∗5 with magic value 1. Using f0(x) and
Theorem 2.1, we see that K∗∗∗7 has a Z3-magic labeling LK∗∗∗

7 ,0 with magic value 0. Using
an identical argument (as found in the proof of Theorem 4.3), the claim is established.

Here are some results which give constructions of Z3-magic graphs using the join opera-
tion.
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Figure 8: A Z3-magic labeling of K6 − {v4v6, v4v1, v4v2} with magic value 1.

Theorem 4.6. Let G be a Z3-magic graph (with magic value 1), where |V (G)| is even. Then,
G + P2 + P2 + · · ·+ P2 is Z3-magic.

Proof. This follows immediately from repeated use of Lemma 4.1.

Theorem 4.7. Suppose k ≥ 2. Let G and Hi be Zk-magic graphs (with magic value 0),
where |V (G)| and |V (Hi)| are even. Then, G + H1 + H2 + · · ·+ Hl is Zk-magic.

Proof. First, we consider G+H1. Let V (G) = {v1, v2, . . . , v2r} and V (H1) = {w1, w2, . . . , w2s}.
Keeping the Zk-magic labelings (with magic value 0) of G and H1, we now label the edges
viwj (for 1 ≤ i ≤ 2r and 1 ≤ j ≤ 2s) in the following way:

f(viwj) =

{
1 if i + j is even;

k − 1 otherwise.

This gives a Zk-magic labeling of G+H1 with magic value 0. Since |V (G+H1)| is even, we
can proceed in similar fashion to obtain a Zk-magic labeling of (G+H1)+H2 = G+H1+H2,
with magic value 0. Iterating this process, the claim is now established.

Corollary 4.8. Let G be a Z3-magic graph (with magic value 0), where |V (G)| is even. If
Hi are Eulerian graphs where |V (Hi)| and |E(Hi)| are even, then G+H1 +H2 + · · ·+Hl is
Z3-magic.

Proof. For each Hi, we travel along an Eulerian circuit and label the edges 1, 2, 1, 2, . . . , 1, 2.
Thus, each Hi has a Z3-magic labeling with magic value 0. By Theorem 4.7, the claim is
now established.
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Figure 9: A Z3-magic labeling of K5 − {v5v1, v5v3, v5v2} with magic value 1.

5 Further Directions and some Open Questions

The Combinatorial Nullstellensatz can be generalized in different ways. Theorem 2.1 is
true over integral domains. The Generalized Combinatorial Nullstellensatz [14] sharpens
Theorem 2.1; instead of analyzing a monomial with degree = deg(f), it suffices to consider
a monomial that does not divide any other monomial term in f . In [10], the author remarks
that the Combinatorial Nullstellensatz is true over any commutative ring R with unity, as
long as a− b is not a zero divisor in R, for any a, b ∈ Si (i = 1, 2, . . . ,m). Can any of these
generalizations of the Combinatorial Nullstellensatz help us in analyzing the Zp-magic graph
labeling problem (prime p ≥ 3)?

Another question that we have not yet explored is the Inverse Problem. Is it possible to
use the ft polynomials and Theorem 2.1 to generate large classes of Zp-magic graphs (prime
p ≥ 3)? One possible approach to tackle this is to write a Mathematica program and have
it perform a Monte-Carlo simulation on

• Kn − {e1, e2}, Kn − {e1, e2, e3}, etc.,

• Kn with a pendant, for n ≥ 6,

• A highly symmetric graph with an added or deleted edge.

Other open questions include the following:

• Let G be a Zp-magic graph, where |E(G)| ≥ p−1
p−2 · |V (G)|. Are there substructures in

G which cause the ft polynomials to not satisfy the hypothesis of Theorem 2.1 (in the
context of Zp-magic labelings)? See Example 6.

• Are there classes of graphs where the ft polynomials always satisfy the hypothesis of
Theorem 2.1 (in the context of Zp-magic labelings)?

• Are there other types of graph labeling problems where the Combinatorial Nullstellen-
satz can be used?
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