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ABSTRACT
Providing uncertainty estimates for predictions derived from species distribution
models is essential for management but there is little guidance on potential sources
of uncertainty in predictions and how best to combine these. Here we show where
uncertainty can arise in density surface models (a multi-stage spatial modelling
approach for distance sampling data), focussing on cetacean density modelling. We
propose an extensible, modular, hybrid analytical-simulation approach to encapsulate
these sources. We provide example analyses of fin whales Balaenoptera physalus in the
California Current Ecosystem.

Subjects Conservation Biology, Marine Biology, Statistics, Natural Resource Management, Spatial
and Geographic Information Science
Keywords Density surface models, Distance sampling, Uncertainty quantification, Spatial
modelling, Species distribution modelling, Model uncertainty, Environmental uncertainty

INTRODUCTION
Reliable estimates of uncertainty in abundance are essential for management and
conservation of biological populations. One of the most popular methods of estimating
abundance is distance sampling (Buckland et al., 2001), which uses data collected on the
distances between sampler and observation to estimate the detection probability. This
detection probability can be used in design-based estimates (via a Horvitz-Thompson-like
estimator) or in model-based estimates to obtain abundance and density estimates.
Here we focus on density surface models (DSMs; Hedley & Buckland, 2004; Miller et
al., 2013), a model-based approach to obtain spatially-explicit abundance and density
estimates. Spatially-explicit models allow managers and scientists to ask more fine-
grained questions of their data. For example, marine species applications include spatial
abundance estimation (Becker et al., 2016; Becker et al., 2017; Forney et al., 2015), habitat
preference (Cañadas & Hammond, 2008; Torres, Read & Halpin, 2008; Hazen et al., 2017),
spatial prioritization (Winiarski et al., 2014), risk assessment (Gilles et al., 2016; Redfern et
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al., 2013) and as a tool to assess potential impacts on cetaceans as required by government
regulations (Roberts et al., 2016;Mannocci et al., 2017b). Ensuring that the major sources of
uncertainty are included in final estimates allows managers and policy makers to make the
best possible decisions by allowing them to evaluate the degree to which they can believe
their results or the impact of proposed management actions. Failing to correctly account
for uncertainty may lead to management strategies that have dire consequences, especially
for endangered species.

Our interest in uncertainty quantification comes from the legal requirements
surrounding the US Marine Mammal Protection Act of 1972 (MMPA), which bans the
intentional ‘‘take’’ (disturbance or harm) of marine mammals but permits activities that
may incidentally take them, provided that the number of takes is estimated with suitable
methods and found to be sufficiently small. Uncertainty is built-in to the calculation of this
limit (potential biological removal, PBR; e.g., Taylor et al., 2000) as it uses the 20% quantile
of the distribution of abundance to give a minimum abundance estimate.

Every seven years the US Navy must apply for a ‘‘Letter of Authorization’’ to conduct
peacetime testing and training activities that may take cetaceans, e.g., during the use
of tactical SONAR. The US Navy uses simulations to assess the impact of sound from
SONAR and other sources on cetaceans, and quantifies the take of each affected stock (US
Department of the Navy, 2017). A primary input to these simulations are spatially explicit
models of cetacean density (Roberts et al., 2016; Becker et al., 2016). In this and similar
processes, it is critical that the major sources of uncertainty are clearly accounted for and
propagated through the different phases of impact modelling.

In this article we propose an approach to uncertainty characterization and estimation
that will help practitioners in two ways: (i) we give a checklist of the major sources
of uncertainty, so possible pitfalls can be considered before a survey is conducted and
appropriate field methods can be adapted in advance; (ii) we provide a framework to
estimate the combined uncertainty from various sources, once data are collected.

In this article we adopt a modular, simulation-based approach to uncertainty estimation
for DSMs. Rather than deriving a single, complex analytical expression, we use posterior
simulation (sometimes referred to as ‘‘parametric bootstrapping’’) where possible. Our
approach uses the (posterior) distribution of the model parameters and samples from
that distribution, from which we can obtain corresponding predictions. The variation in
these predictions represents the uncertainty in our model. Simulation-based approaches
can be easier to understand, less technically and notationally demanding, and more
easily parallelizable. Our approach includes uncertainty from each model component
while estimating covariance between components where possible. It is conceptually and
computationally tractable, while avoiding potential pitfalls that occurwith other approaches
like the non-parametric bootstrap (see ‘Discussion’).

The article is structured as follows: ‘Density Surface Models’ gives a brief overview of
the density surface modelling framework. ‘Characterising Components of Uncertainty’
then lists the various sources of uncertainty that may be present in these models and gives
a summary of current methods to estimate uncertainty for each. ‘Combining Uncertainty
from Multiple Model Components’ presents our framework for integrating uncertainty
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and we apply this to line transect survey data of fin whales (Balaenoptera physalus) in
the California Current Ecosystem in ‘Example: Fin Whales in the California Current’.
Extensions and future work are outlined in ‘Discussion’.

DENSITY SURFACE MODELS
DSMs are multi-stage species distribution models (SDMs), where biases in the observation
process(es) are first addressed, and then a spatial model is fitted to the resulting corrected
data. An overview of DSM methodology is given in Miller et al. (2013) (see also Hedley
& Buckland, 2004). A typical DSM might take into account changes in detectability
resulting from the distance between sampler and observation using distance sampling
methods (Buckland et al., 2001). A detection function is fitted to the distances between
the sampler and collected observations, and from that detection function a probability
of detection (unconditional on distance), p̂, is estimated. This probability is then used as
an offset (along with the effort expended) in a generalized additive model (Wood, 2017),
which might have the following mathematical form:

E(nj)=Aj p̂j exp
[
β0+ fxy(xj,yj)+ fSST(SSTj)

]
, (1)

where j indexes sample units. In the case of point transects, j indexes the points; for line
transects, the longer transects are cut into segments and then indexed by j (without loss of
generality we refer to sample units as segments henceforth). Aj is the area of segment j, p̂j
is the estimated probability of detection in that segment. nj is the number of observations
(individuals or groups) in segment j. We assume that nj is distributed according to
some count distribution (e.g., Tweedie or negative binomial) and β0 is the intercept. In this
example fxy is a smooth function of location and fSST is a smooth of sea surface temperature;
more generally, any number of smooth terms can be added (denoted f with subscript for
the covariate).

We can adapt (Eq. (1)) to include information about other observation processes.
These could include additional data collected either during the survey or during some
other period. For example, we may want to include whether an animal is available to be
detected (a problem for animals which dive under the water such as seabirds, cetaceans
or pinnipeds). Availability can be addressed as another offset multiplier in Eq. (1), ûj . We
may also want to relax the distance sampling assumption that animals on the trackline
are detected with certainty, e.g., by applying mark-recapture distance sampling (Burt et al.,
2014), in which we use data from multiple observers to estimate g (0), the probability of
detecting an animal on the trackline in segment j. Again this quantity can be included in
the offset of Eq. (1). We can extend Eq. (1) to include these additional estimates as follows:

E(nj)=Aj p̂j ĝ (0)j ûj exp
[
β0+ fxy(xj,yj)+ fSST(SSTj)

]
. (2)

DSMs are commonly developed using multiple years of survey data, both to increase
sample size and capture a wider range of environmental conditions, and then model
predictions are made on finer temporal scales to evaluate seasonal and inter-annual
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differences in abundance and distribution (Becker et al., 2012; Forney et al., 2012; Redfern
et al., 2019). For this reason, accounting for these biases is important, especially in the case
where we are potentially combining data from multiple sources (e.g., Miller et al., 2021),
as we need to ensure that any spatial heterogeneity that the GAM models is due to spatial
effects, not down to unaddressed biases in the data. Model predictions can bemade on days,
weeks, or months, depending on the scale of the ecological question and the variability of
the study ecosystem (Mannocci et al., 2017a).

CHARACTERISING COMPONENTS OF UNCERTAINTY
Our aim is to think about uncertainty estimation in a modular way. We first give a
taxonomy and our general strategies for including uncertainty from model components
into our estimates, beforemoving on to review availablemethods for uncertainty estimation
for the components we have seen so far.

We are generally concerned with two types of components: ones which have covariance
with the spatial model and those which do not; we refer to these as coincident and
non-coincident, respectively. Non-coincident components can use the delta method (Seber,
1987) and add their squared coefficient of variation to that of the model. This is easily
justified if the estimate is from a different place and time (e.g., an estimate of availability
from the literature for this species). The non-coincident case trivially includes the case
where there are no covariates in that model component. If estimates are coincident in
space and time, our general strategy here is to absorb this into the spatial model if possible,
using the method of Bravington, Miller & Hedley (2021). A typical example is that detection
functions will usually be coincident as they are estimated from data collected during the
survey, in that case it is likely that weather conditions that affect detectability (e.g., sea
state) vary in space, so there will be covariance between the detectability and spatial model
that must be accounted for.

Methods for uncertainty estimation are more developed for some model components
than others. We begin by looking at those which are fairly mature in some depth before
moving onto areas that are still in development or have not been applied in the DSM
context yet.

GAM (smooths, smoothing parameters, model structure)
Smooths in the spatial model (such as fxy and fSST) are estimated and so have associated
model-based uncertainties from standard GAM theory, based on their basis function
coefficients (β̂). We can also incorporate uncertainty in the smoothing parameter(s), λ,
which dictate how wiggly the smooths should be.

GAMs fitted using the popular R package mgcv using restricted maximum likelihood
(REML) are empirical Bayes estimates (Wood, 2017, Section 6.2.6), so we have an
approximate posterior distribution β|λ∼N (β̂,Vβ̂) (where β̂ are the estimated GAM
coefficients and Vβ̂ is their corresponding covariance matrix). Taking samples from this
distributionwe canmake predictions of abundance, thenmake appropriate summaries over
these predictions to obtain estimates of the variance, intervals, or other desired uncertainty
statistics for the spatiotemporal extents that are useful for species management.
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In order to move between the statements about parameters to statements about
predictions (and then total abundance estimates) we form a matrix, X̃, that maps the
model parameters to the linear predictor, η. We can then multiply X̃ by a sample from
N (β̂,Vβ̂) to obtain predictions on the linear predictor scale. Applying the link function
gives us predictions on the response scale (y= g−1(η)= g−1(X̃β)). A simulation-based
approach also takes into account the situation where our summary is a non-linear function
of the linear predictor (e.g., the log link function) (Wood, 2017, Section 7.2.6).

For example, to depict uncertainty geographically, we can perform a number of
simulations (B) for the area of interest and summarize predictions on a per-grid-cell
basis using the following algorithm:
1. For b= 1,...,B:

(a) Simulate from N (β̂,Vβ̂), to obtain βb.
(b) Calculate predicted abundance for each prediction grid cell for this βb,

N̂∗b = g−1
(
X̃βb

)
.

(c) Store N̂∗b , a vector of abundances, with one element per cell.
2. For each grid cell, calculate the empirical variance, percentiles, or statistic of interest

for the N̂∗bs.
In practice B does not have to be particularly large. Marra, Miller & Zanin (2012)

achieved reasonable results with B= 100, though this is dependent on the summaries
required. We note that here we talk about simply sampling from the multivariate normal
distribution but in practice the approximation may not hold. In this case either importance
sampling or a random-walk Metropolis–Hastings sampler can be used (the latter is
implemented as gam.mh in the mgcv package).

Two further sources of model uncertainty from the GAM can be included in Vβ̂

during model fitting and leave the above procedure unchanged. (i) Smoothing parameter
uncertainty: estimated uncertainty in how wiggly terms should be, using the approach
outlined in Wood, Pya & Säfken (2016), we then denote the covariance matrix as Vβ̂λ̂.
(ii) Model structural uncertainty: using shrinkage smoothers (either thin plate regression
splines via the ts basis or cubic regression splines via the cs basis, in mgcv) that shrinkmodel
terms to zero (or near zero) effect size if necessary (Marra & Wood, 2011) as opposed to
term selection via p-values or AIC. As terms are retained (but their effect sizes are shrunk),
resulting uncertainty includes uncertainty about the model structure (conditional on the
terms that were included).

Variability in environmental covariates
In dynamic environments that exhibit high environmental variability, a major contributor
to uncertainty in estimates of abundance is the associated variability in population density
due to movement of animals within, into, or out of the study area (e.g., Forney, 2000; Becker
et al., 2014; Becker et al., 2019). To account for the potentially large changes that can occur
within short periods, model predictions need to be made over temporally-relevant time
periods, which may change depending on ecosystem dynamics (Mannocci et al., 2017a).
For example, in a highly dynamic ecosystem such as the California Current (Bograd et al.,
2009) environmental covariates (and hence model predictions) vary dramatically over time
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scales as short as several days during coastal upwelling events. Making predictions over
multiple time periods allows the model to include different oceanic states and account for
the variability in environmental covariates. One can think of this as being analogous to the
procedure above but generating predictions from the realized (observed) distribution of
possible environmental covariates, rather than the model parameters.

In ecosystems with limited seasonal or inter-annual variability or for models over larger
areas and longer time periods, this environmental variability may be small, as illustrated for
the Central North Pacific (Forney et al., 2015). Thus, both ecosystem factors and modelling
scales will play a role in determining the relative importance of variability in environmental
covariates.

Detectability
If we assume that detectability only varies at the segment level (e.g., with covariates
representing weather conditions, e.g., Beaufort wind force scale), and not at the level of an
individual observation, then we can use the variance propagation method of Bravington,
Miller & Hedley (2021) to include the uncertainty about the detection function in Vβ̂ (the
GAM covariance matrix). Briefly, the method consists of refitting the GAM including a
random effect that has the covariance from the detection function model (Vθ̂). We then
obtain a modified covariance matrix, incorporating uncertainty in both detection function
andGAM (Vβ̂θ̂ orVβ̂λ̂θ̂ if smoothing parameter uncertainty is also included). If detectability
varies at the level of the observations (e.g., with group size or behavioural state), we may be
able to apply the factor-smooth model of Bravington, Miller & Hedley (2021), categorising
the detection covariate and then applying the variance propagation procedure. Finally,
if detectability is constant (i.e., p̂j = p̂∀j), we can simply apply the delta method. We do
not recommend using the delta method in any other case, as then covariance between
detectability and spatial model are ignored.

Trackline detectability
Relaxing the assumption that all objects on the trackline are observed (‘‘g (0)= 1’’) can
be handled in a number of ways (Hiby, 1999; Barlow, 1995; Burt et al., 2014; Barlow,
2015). Most rely on having an additional observer or observers who are independent (or
conditionally independent) of the main observer team. The proportion of observations
missed by the main team can then be used to correct g (0). For the mark-recapture distance
sampling method where g (0) is another component of the detection function model, the
variance propagation approach can be used to include this uncertainty. Uncertainty around
independent estimates of g (0) can be included via the delta method. Other methods for
trackline detectability would need to be adapted appropriately.

Availability
If estimates of availability are constant in space/time (either calculated from observational
studies or tags) then corresponding uncertainty can be included via the delta method
(Ver Hoef et al., 2014). More complex models such as Borchers et al. (2013) and Borchers
& Langrock (2015), which account for ĝ (0) and availability simultaneously using auxiliary
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data from tags or a modified survey protocol, could be included in the GAM with some
modification of the procedures in Bravington, Miller & Hedley (2021).

Other sources of uncertainty
Some sources of uncertainty do not have methods that can currently be applied in a spatial
context, or have not yet been applied in the DSM literature. We discuss these briefly for
completeness but do not address them fully here.

To account for measurement error in the environmental covariates, the procedure
proposed by Stoklosa et al. (2015) to deal with both classical andBerkson-typemeasurement
errors could be used. These require adaptation in how the spatial model (GAM in our case)
is fitted.

When using a DSM, we have substituted the usual group size and encounter rate
components that occur in distance sampling for the spatial model and as such these are
handled as part of the GAM above. Group size uncertainty that arises from measurement
error in observers’ counts needs to be addressed at the spatial model stage as it is likely that
corrections may vary according to group size and sighting conditions, which vary spatially.
Such errors will also likely effect estimates of response distribution hyper-parameters
(such as overdispersion). Constant correction factors for group size uncertainty could be
estimated depending on species and environment (Hodgson, Peel & Kelly, 2017), but this is
currently an active area of research.

There are several methods to investigate species identification uncertainty. Methods that
pro-rate species identity from additional data (e.g., Johnston et al., 2015) may not always be
an option (though if they are, uncertainty can be included). Joint modelling or approaches
where true species identity is a latent variable (Conn et al., 2013) might be one way to allow
for this in the spatial model.

COMBINING UNCERTAINTY FROM MULTIPLE MODEL
COMPONENTS
Wenow focus on combining the abovemethods to create a single procedure for uncertainty
estimation from complex DSMs (e.g., Eq. (2)). This modular workflow allows us to exclude
any of the steps in the case where the model does not contain that uncertainty component.
Our procedure is as follows (shown diagrammatically in Fig. 1):
1. Fit the DSM, with detectability, trackline detectability and/or availability included in

the offset.
2. If any offset corrections are coincident, incorporate their uncertainty via the variance

propagation method of Bravington, Miller & Hedley (2021).
3. Extract posterior estimates of the GAM parameters (β̂) and related covariance matrix

(Vβ̂,Vβ̂,λ̂,Vβ̂θ̂ orVβ̂λ̂θ̂ ; see ‘GAM (Smooths, Smoothing Parameters, Model Structure)’
and ‘Detectability’ for definitions).

4. Simulate B samples from βb∼N (β̂,V∗) where V∗ is one of Vβ̂, Vβ̂,λ̂, Vβ̂θ̂ or Vβ̂λ̂θ̂ .
5. For each time period that needs to be predicted (t = 1,...,T ):

(a) Form the prediction matrix X̃t for this time period’s prediction grid.
(b) For b= 1,...,B posterior samples generated above:
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Figure 1 Flow diagram showing our process for capturing uncertainty frommultiple model com-
ponents. In this case we have a GAMmodel of spatial counts, a detection function and environmental
variability to include in the model. Once detection function uncertainty is included in the GAM, some
number (nb) posterior samples of model parameters (β̂b) can be generated using the GAM-plus-other-
components mean (β̂) and covariance matrix (Vβ̂,λ̂,θ̂ here). These samples are used to generate potential
density surfaces exploring both model parameter and environmental space. Finally, summaries can be cal-
culated from these predictions.

Full-size DOI: 10.7717/peerj.13950/fig-1

i. Calculate predicted abundance for each prediction grid cell: N̂∗b,t = g−1
(
X̃tβb

)
.

ii. Store N̂∗b,t for this iteration–time-period combination.
6. Summarize the per iteration–time-period predictions (N̂∗b,t ) by computing the

appropriate summary statistic (typically mean or median) and the empirical standard
error of the estimates.

7. Include uncertainty from non-coincident estimates via the delta method.
At point 5 above, we may wish to make spatial summaries: per-time-period abundances

at each prediction location or average abundance across all time periods for each prediction
location. We could also compute a time series of abundance. We show examples of these
in the next section. We also note that the exact form of the variance estimators depends
on the summary taken. Appendix S1 gives details of some common situations and their
estimators.
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The above algorithm can be implemented in any statistical programming language, and
we include example code for the analysis in the next section with this article R. For step one
we rely on functions in the R packages Distance and mrds for detection function fitting
and dsm for fitting the DSM (examples of how to use these packages for model fitting are
provided at http://examples.distancesampling.org). Step two can be accomplished using
the function dsm_varprop in dsm. Step three relies on functions from the mgcv package,
coef and vcov can be used to extract the parameter estimates and covariance matrix,
respectively. To sample from the posterior distribution of the parameters we can use the
rmvn function from mgcv. The remaining steps can be coded in base R and we recommend
interested readers consult the code provided for examples.

EXAMPLE: FIN WHALES IN THE CALIFORNIA CURRENT
To illustrate our approach, we use the example of fin whales in the California Current
Ecosystem (CCE). Data were collected from line transect surveys conducted by NOAA’s
Southwest Fisheries Science Center (SWFSC), July through early December of 1996, 2001,
2005, 2008, and 2014. Each of these surveys covered a broad area off the entire United
States West Coast and, when combined, provided dense coverage of waters from the coast
to approximately 556 km offshore (Fig. 2, left panel). Standardized line transect protocols
were followed during all years using a team of three experienced observers stationed on
the flying bridge of the ship (Barlow & Forney, 2007; Kinzey, Olson & Gerrodette, 2000).
Our aims for this analysis are to estimate uncertainty around: (i) estimates of monthly
abundance, (ii) a density map of fin whales in the study area, averaged over the whole time
period, (iii) density maps of fin whales in the study area averaged within each year.

The analysis presented here is designed to be as close to SWFSC’s modelling process as
possible, to give an idea of how our framework can be adapted in practical situations. We
refer readers to the technical memos and papers below for detailed information on this
process. Our model consisted of the following components.
1. Detection function from Barlow, Ballance & Forney (2011). A half-normal detection

functionwas fitted using the R package Distance (Miller et al., 2019) to all observations
of large whales (Bryde’s, sei, blue, fin, humpback, and unidentified large whales), with
covariates for ship (6 level factor), species (10 level factor), visibility, log average total
school size for fin whales over all sightings and Beaufort (all continuous). Distances
were truncated at 5.5 km. Fig. S1 shows the detection function.

2. Fixed estimate of g (0) from (Barlow & Forney, 2007, Table 3): ĝ (0) = 0.921,
CV = 0.023. This estimated was based on the method developed by Barlow (1995)
using conditionally independent observer data.

3. Dynamic environmental covariates taken from a 10 km resolution data-assimilative
implementation of the Regional Ocean Modeling System (ROMS) in the CCE, which
was produced by the University of California Santa Cruz Ocean Modeling and Data
Assimilation group (Moore et al., 2011). The covariates sea surface temperature, sea
surface height, mixed layer depth, and the standard deviation of each covariate within
a 3 × 3 cell box surrounding each point were extracted at three-day intervals for the 5
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Figure 2. Raw data and results from applying our procedure to the fin whale data. Top row, left:
locations of segment centroids (black dots) for the fin whale survey with observation locations (orange
dots) and underlying bathymetry. Top row, middle: predicted density for fin whales in the California
Current Ecosystem. Top row, right: estimated standard error for the predictions, using the procedure we
outline. Black dots give locations of observations of fin whales in the centre and right plots. Bottom row:
confidence surfaces derived from a log-normal approximation; left is lower 2.5%, right is upper 97.5%.
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years of sampled data. Bathymetric data (depth and standard deviation of depth) were
derived from the ETOPO1 1-arc-min global relief model (Amante & Eakins, 2009).

4. A generalized additive model to describe the spatio-temporal variation in fin whale
density as a function of a subset of the above environmental covariates. We used the
same model structure and covariate selection procedure as Becker et al. (2016), yielding
the final model:
E(nj)=Aj p̂j ĝ (0)j exp[β0+ fxy(xj,yj)+ fSST(SSTj)+ fSSTSD(SSTSDj)+ fSSH(SSHj)

+ fMLD(MLDj)+ fyear(yearj)], (3)
where SSTSD is the standard deviation of sea surface temperature, SSH is sea surface
height, MLD is mixed layer depth and yearj is the year in which segment j was surveyed.
All smooths used a thin plate spline basis with shrinkage (Marra & Wood, 2011). fxy
was constructed using a tensor product of smooths of longitude and latitude. Model
term plots are shown in Fig. S3.
Predictions were made over grids of 11,860 cells covering the CCE, with a grid size of

0.09 degrees (≈ 10 km square). There were 821 grids giving daily values of covariates, 26
June through 6 December, for each of the 5 years, although occasionally the daily grids
had missing grid cells because the covariates were not available from the ROMS model
outputs. Based on the algorithm given in the previous section, we took the following steps
to estimate uncertainty for Eq. (3).
1. Propagate detectability uncertainty into Eq. (3) via Bravington, Miller & Hedley (2021).
2. Extract β̂ and Vβ̂λ̂θ̂ .
3. Simulate 1000 samples from from N (β̂,Vβ̂λ̂θ̂), to obtain βb for b= 1,...,1,000.
4. For each time period that needs to be predicted (t = 1,...,821):

(a) Form the prediction matrix X̃t for this time period, t .
(b) For b= 1,...,1,000 posterior samples:

i. Predict abundance for each prediction grid cell: N̂∗b,t = g−1
(
X̃tβb

)
.

ii. Store N̂∗b,t .
5. Calculate per-prediction-cell means and variances over N̂∗b,t for all years and for each

month.
6. Calculate monthly means and for N̂∗b,t to obtain abundance time series.
7. Include ĝ (0) uncertainty via the delta method.
This procedure encapsulates spatial model uncertainty, detection function uncertainty,

trackline detection uncertainty and spatial covariate variability.
Resulting maps of overall predictions and corresponding standard errors are shown

in Fig. 2. Yearly maps (Fig. S2) and monthly time series plots of abundance (Fig. 3)
showed increasing abundance between years (in agreement with e.g., Moore & Barlow,
2011). Uncertainty appeared to be highest in 2008 and on June 26 in particular; further
investigation showed that this was due to large mixed layer depth values (Fig. S4). On June
26, 2008 the mixed layer depth reached 137 m, whereas in the data used to build the model
the maximum was about 100 m, at which point the smooth showed increasing behaviour
(Fig. S3, bottom row left panel). There are a number of options for modellers when this
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kind of extrapolation occurs, including excluding the cell from predictions, winsorizing or
leaving as-is; Bouchet et al. (2020) provide an overview and practical tools for DSMs.

The data used to fit models here had some overlap with those used in Becker et al. (2016),
but for a more direct comparison Figs. S5 and S6 show plots comparable to Fig. 2 and
Fig. S2 but where only environmental uncertainty was included in the variance calculation
procedure (as was the case in Becker et al., 2016). We note that when only environmental
variability is accounted for, plots seem to show much less detail in spatial uncertainty
patterns.

Similar analyses of these data were provided by Moore & Barlow (2011) and Nadeem et
al. (2016). Both provided a state-space model for abundance and the latter used a spatial
(only over four large areas) Ricker model to obtain abundance estimates. Neither provided
spatially-explicit estimates; only stratified abundance was calculated. Detection probability
and trackline detection (using estimates from Barlow & Forney, 2007), along with their
associated uncertainties were included in estimates of abundance. For comparison (Fig. 4),
we calculated summary abundance estimates at the yearly level, along with 95% intervals
(based on a log-normal approximation).

DISCUSSION
Maps of point estimates (e.g., mean density over a time period) are often given prominence
in articles and reports but without some measure of uncertainty they are not useful for
conservation (Jansen et al., 2022). In many cases, only uncertainty from the spatial model
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is reported in studies, perhaps because it could be obtained as a convenient output directly
from that modelling stage, and modellers lacked ready methods for considering other
sources of uncertainty. The framework we provide here allows modellers to estimate and
evaluate these sources of uncertainty in their DSMs. These approaches can be adapted to
other spatial modelling methodologies.

We see the deltamethod as the last resort whenwe are not able to include that uncertainty
via other methods. We do not however want to discourage people from using this method
if that is all that is available to them. A significant advantage of incorporating covariances
via Bravington, Miller & Hedley (2021) where possible over using the delta method is that
uncertainty estimates can go down as well as up (e.g., when there is negative covariance
between the detection function and spatial model).

A practical benefit to using the simulation-based approach we outline here is the
computation is easily parallelizable; speeding it up is simply a matter of splitting the
simulation runs across a larger number of cores. Storage and retrieval of interim results
may prove to be more of an issue; in our example we switched to using serialized objects
(via R’s saveRDS functionality) over text-based (comma separated value) files to improve
the speed of final calculations and reduce disk space, though storing in this format still
used about 68GB of disk space. More efficient binary storage options could be investigated
for larger prediction grids. Iteration over time period is conceptual and was done for a
practical computing consideration; we could have created a prediction matrix of all time
periods at once ( X̃ rather than X̃t ), but this may not fit in memory so we formed one
matrix for each time period. We applied the online variance calculation method ofWelford
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(1962) post hoc. This approach could be included in the algorithms above, avoiding storage
of N̂∗b,t . Appendix S1 also provides equivalent analytic expressions for the variances in
some useful situations. We find the simulation framework easier to understand and reason
about, so that is the main focus here.

A popular reply to the question of how to calculate uncertainty for complex models
is ‘‘do a bootstrap’’. What is usually meant by this is that one should resample the data
with replacement, refitting models each time and calculating some summary statistic (a
non-parametric bootstrap). This seems appealing but it has been shown that the use of
so-called ‘‘naïve’’ bootstraps leads to underestimation of uncertainty. The issue stems from
the fact that GAM terms are structured random effects, which have priors on them. When
data are resampled, the structure (prior) is ignored so uncertainty is collapsed leaving
only the sampling variation in the bootstrap resamples. Bravington, Miller & Hedley (2021)
show a simple simulated example of this happening. A secondary issue is that of coming
up with a resampling scheme for spatial uneven data. A sufficiently complicated bootstrap
might be constructed to achieve our aims here, but we have instead focussed on an
easily-implementable, modular approach.

We have proposed a framework for uncertainty estimation to allow for the inclusion of
relevant sources of uncertainty in final estimates. We do not believe that all of these sources
should be included in all models, at least in part because the corresponding mean model
components may not be necessary (e.g., availability may not be an issue for large terrestrial
mammals). There are situations in which we think the environmental variability may not
be necessary (models with non-dynamic covariates) or may be less of an issue (less dynamic
system), so this component can be easily omitted (or included and tested). We also note
that there are multiple approaches possible for each source of uncertainty and for many
there is no best practice at the moment, so our intention is not to be prescriptive. Our hope
is that this framework will prompt more discussion of the issue of how to estimate these
quantities, since we can now include their uncertainty final estimates.
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