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1. Introduction
Dissolved oxygen concentration in the global ocean and coastal waters has been declining over many decades, 
causing much concern over documented and anticipated impacts on marine ecosystems and biogeochemical 
cycling (e.g., Breitburg et al., 2018; Helm et al., 2011; Keeling et al., 2010; Schmidtko et al., 2017). This deple-
tion in oxygen is attributed to increasing global temperatures, upper ocean stratification and biological produc-
tion combined with increasing run-off of nutrients in coastal zones. Hypoxic regions in coastal areas (Chan 
et al., 2008) and the vertical expansion of the oxygen minimum zones in the Northeast Pacific are well docu-
mented (Bograd et al., 2008; Chan et al., 2008; Pierce et al., 2012; Pitcher et al., 2021). In the deep ocean, changes 
in oxygen concentration can be attributed to biological consumption, advection, surface saturation levels, and 
age of the water since ventilation. Depletion of oxygen in the deep ocean has been related to reduced exchange 
with the surface mixed layer allowing more time for biologically mediated utilization. This depletion of dissolved 
oxygen has been estimated from time-series hydrocast sampling through 2000 (Helm et al., 2011) and analysis 
of observational databases (Schmidtko et  al.,  2017). Because of the paucity of time-series measurements of 
dissolved oxygen below 1,000 m, general ocean circulation models have also been used to estimate deeper water 
concentrations (e.g., Keeling et al., 2010; Sarmiento et al., 1998).

Oxygen depletion in the California Current has been well documented (e.g., Pitcher et al., 2021). A 16-year time 
series (1998–2013) along a transect of stations across the central California Current (CalCOFI line 67) showed a 
significant decline of dissolved oxygen at depths down to 400 m (Ren et al., 2018). This decline can be attributed 

Abstract Dissolved oxygen depletion in the global ocean is well documented over several decades from 
the surface ocean to abyssal depths. This decline is especially prevalent in the Northeast Pacific. A significant 
decline in dissolved oxygen has been measured over 30 years at 4,000–4,100 m depth (Station M) beneath the 
California Current off central California. Three principal hypotheses examined the relationship of declining 
oxygen with biological and physical factors over the 30-year time series. Annual resolution revealed Ekman 
pumping, coastal upwelling, particulate matter flux, and sediment community oxygen consumption having 
significant correlations with bottom water dissolved oxygen concentration. Coastal upwelling accounted for 
65% of the annual variation in bottom water oxygen concentration. Stepwise regression yielded descriptive 
models of bottom water dissolved oxygen using coastal upwelling, wind stress and primary production 
variables. Is continued oxygen depletion in the Northeast Pacific indicative of abyssal regions in the world 
ocean?

Plain Language Summary The dissolved oxygen content of the global ocean has been declining 
over many decades. This decrease is well documented in the upper ocean particularly in the Northeast Pacific 
Ocean. To examine the change in dissolved oxygen at greater depths, we measured the bottom water oxygen 
concentration at 4,000–4,100 m depth at a single station in the Northeast Pacific over a 30-year period from 
1989 through 2019. We recorded a significant decline in dissolved oxygen at this abyssal station over three 
decades. We then examined possible biological and physical causes of this declining dissolved oxygen. 
Surface ocean Ekman pumping, coastal upwelling, particulate matter flux, and sediment community  oxygen 
consumption on the seafloor revealed significant relationships with bottom water dissolved oxygen. 
Coastal upwelling overlying this station accounted for 65% of the annual variation in bottom water oxygen 
concentration. The question we are now poised to address is whether there is a similar long-term decline in 
dissolved oxygen concentration at abyssal depths in other regions of the world ocean.
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to changes in the northward transport of deoxygenated tropical waters in the California Undercurrent (Meinvielle 
& Johnson, 2013), decadal-scale variability in thermocline depth and respiration in the eastern North Pacific 
(Deutsch et al., 2011), or periods of reduced ventilation in the western North Pacific (Mecking et al., 2008). A 
time-series of bottom water dissolved oxygen concentration was measured over a 30-year period (1989–2019) 
at 4,000–4,100 m depth (Station M), to the south of line 67, showed a significant decrease (Smith et al., 2020). 
Such a decrease in oxygen at abyssal depths could be influenced by reduction in oceanic overturn and ventilation, 
and/or increased biological consumption. Changes in oxygen concentration strongly indicate a changing deep-
sea ecosystem at Station M. To address the possible reasons for the decline in dissolved oxygen concentration at 
Station M, we analyzed biological parameters including chlorophyll concentration, primary production, export 
flux of carbon from the euphotic zone, the flux of particulate material to abyssal depths, the accumulation of 
phytodetrital matter on the seafloor, and the consumption of oxygen by the sediment community. In addition, phys-
ical parameters were examined including temperature, salinity, potential density (σθ), wind stress, Ekman  pump-
ing and coastal upwelling, the North Pacific Gyre Oscillation (NPGO, Di Lorenzo et al., 2008) and the Pacific 
Decadal Oscillation (PDO, Mantua & Hare, 2002) over 30 years from 1989 through 2019. Null hypotheses were 
tested to address whether changes in biological attributes, water mass, surface ocean, and climate conditions in 
overlying waters may explain the long-term decline in oxygen concentration at abyssal depths at Station M. The 
three principal null hypotheses with corollary components are listed below:

1.  Oxygen depletion in abyssal waters at Station M was not significantly correlated (p < 0.05) with biological 
parameters from 1989 through 2019, specifically:
a)  Chlorophyll concentration (Chl), primary production (PP), and export flux (EF) from the euphotic zone,
b)  Particulate mass or carbon flux between 3,400 and 4,050 m depth,
c)  Detrital aggregate cover on the seafloor between 4,000 and 4,100 m depth,
d)  Oxygen consumption by the sediment community (SCOC) between 4,000 and 4,100 m depth.

2.  Oxygen depletion in abyssal waters at Station M was not significantly correlated (p < 0.05) with change in 
water mass as indicated by:
a)  Temperature, salinity and potential density of bottom water.

3.  Oxygen depletion in abyssal waters at Station M was not significantly correlated (p < 0.05) with climate and 
surface ocean conditions, specifically:
a)  Wind stress,
b)  Upwelling (Ekman pumping, coastal upwelling),
c)  PDO,
d)  NPGO.

These hypotheses and corollary components were tested at two temporal resolutions, monthly and annual. Monthly 
means offered the largest sample sizes for interpreting pairwise relationships. However, given the limited tempo-
ral resolution of bottom water oxygen measurements (Winkler titrations), comparable data for all variables were 
only available for a limited number of months. Given the desire to interpret and provide a descriptive model for 
long-term trends in bottom water dissolved oxygen, analyses were also conducted using annual means.

2. Materials and Methods
2.1. Study Site

Bottom water oxygen samples were collected at the Station M time-series site in the Northeast Pacific (Figure 
S1 in Supporting Information  S1, blue circle), with a bottom depth ranging from ∼4,100  m (1989–2005) to 
∼4,000 m (2006–2019). Station M is located at the base of the Monterey Deep-Sea Fan, chosen to represent an 
abyssal area with low relief underlying the California Current upwelling region with productive headland plumes 
of high primary production reaching the area (Smith & Druffel,  1998). Particulate organic carbon and mass 
fluxes have increased over the past decade of this time-series study, with large episodic events accounting for an 
increasing fraction of yearly food supply to the abyss (Smith et al., 2018, 2020).

 19448007, 2022, 24, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022G

L
101018 by San Jose State U

niversity, W
iley O

nline L
ibrary on [23/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Geophysical Research Letters

SMITH JR. ET AL.

10.1029/2022GL101018

3 of 11

2.2. Physical and Biological Parameters

2.2.1. Bottom Water Dissolved Oxygen

Dissolved oxygen concentration was measured with Winkler titration (Parsons et  al.,  1984) of bottom water 
samples collected using Niskin bottles mounted to a human occupied vehicle (HOV Alvin), remotely operated 
vehicles (ROVs Tiburon and Doc Ricketts), and on CTD rosettes. Water sample data were available for sites in 
proximity to Station M at approximately 4,000 m depth (Figure S1 in Supporting Information S1) taken during 
the World Ocean Circulation Experiment (WOCE) in 1991 (Goyet et al., 1997). Oxygen saturation over the time 
series was calculated using the method outlined by Garcia and Gordon (1992).

2.2.2. Bottom Water Temperature, Salinity and Potential Density

Bottom water temperature, salinity and potential density (𝐴𝐴 𝐴𝐴𝜃𝜃 ) values at Station M prior to 1997 were published 
previously based on reversing thermometers and water samples from Go-Flo bottles (Masiello et al., 1998). Later 
temperature and salinity values were measured from CTD casts in 2005 and 2006, and remotely operated vehicles 
during bottom transects (2006–2019). Potential density was calculated using the international one-atm equation 
of state of seawater (Millero & Poisson, 1981) and potential temperature (Bryden, 1973).

2.2.3. Ocean Color Products

Phytoplankton growth in surface waters and export of that material below the mixed layer are often represented 
by three satellite data sets: chlorophyll concentration (Chl), primary production (PP), and export flux (EF). Here 
we used custom products optimized for the California Current (Kahru et al., 2009, 2015, 2020); PP is derived 
from chlorophyll, sea surface temperature and photosynthetically active radiation using a linear transformation of 
the Vertically Generalized Production Model by Behrenfeld and Falkowski (1997) and Kahru et al. (2009); and 
EF is a linear function of PP (Kahru et al., 2020). Monthly data were downloaded from http://spg-satdata.ucsd.
edu/CC4km/ and averaged within a 100-km radius around Station M.

2.2.4. Particulate Mass and Organic Carbon Flux

Particulate matter flux was measured from samples collected by sequencing sediment traps (McLane Parflux). 
Cups were filled with a preservative (mercuric chloride from 1989 to 2009, 3%–5% buffered formalin from 
2009 to 2019) prior to deployment at 600 and 50 m above bottom (mab) at Station M. Zooplankton swimmers 
were manually removed before the samples were freeze-dried, weighed to calculate mass flux, and analyzed for 
inorganic and total carbon content using a coulometer (UIC) and elemental analyzer (Perkin-Elmer or Exeter 
Analytical, University of California Santa Barbara Marine Science Institute Analytical Laboratory) respectively. 
Data from the 600 mab trap were used when available. Gaps in this data set were infilled using the linear rela-
tionship between data from the 600 mab and 50 mab traps. Full details of these methods can be found in Baldwin 
et al. (1998).

2.2.5. Detrital Aggregate Cover

Detrital aggregate cover on the seafloor at Station M was estimated once per day from benthic time-lapse images 
annotated to identify areas with phytodetritus and gelatinous detritus. The area with optimum lighting (approx-
imately 5 m 2 of the seafloor) was analyzed. Total detrital aggregate coverage was estimated using a Canadian 
Grid system (Wakefield & Genin, 1987) and divided by the field of view to yield percent cover. A single observer 
(KLS) annotated detrital aggregate cover throughout the entire 30-year time series. Full details of these methods 
can be found in Smith et al. (2018).

2.2.6. Oxygen Consumption by the Seafloor Community

Sediment community oxygen consumption (SCOC) was estimated over the 30-year time series from 2-day 
respirometry incubations by four different instruments: an autonomous free vehicle grab respirometer, tube core 
respirometers, the Benthic Rover I, and the Benthic Rover II. Carbon consumption rates were calculated using 
a  respiratory quotient of 0.85 (Smith, 1987). Further details of SCOC measurements at Station M are provided 
in Smith et al. (2016, 2021).
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2.3. Overlying Surface and Climate Conditions

Wind stress, coastal upwelling (Ekman transport), and Ekman pumping were computed from the CCMP wind 
product v2.0 (Atlas et al., 2011; Wentz et al., 2015), produced by Remote Sensing Systems and available online 
at https://www.remss.com/measurements/ccmp/. The V2 CCMP processing combines Version-7 RSS radiometer 
wind speeds, QuikSCAT and ASCAT scatterometer wind vectors, moored buoy wind data, and ERA-Interim 
model wind fields using a Variational Analysis Method to produce four maps daily of 0.25° gridded vector 
winds. CCMP wind speeds were averaged daily from 1989 to 2019 and wind stress computed following Large 
and Pond (1981). Ekman pumping (at each grid cell) and coastal upwelling (at each latitude) were computed from 
daily wind stress (Messié et al., 2009, 2022) and averaged monthly. Ekman pumping and wind stress were aver-
aged spatially within a 100 km radius circle centered on Station M, and coastal upwelling was averaged between 
34.5° and 36.5°N, which roughly represents the latitudinal region most expected to contribute to Station M export 
flux (Ruhl et al., 2020).

Data and indices representing long-term climate conditions overlying Station M were compiled at the monthly 
scale from online sources. The PDO index was downloaded from the National Oceanic and Atmospheric Admin-
istration (PDO: https://www.ncei.noaa.gov/pub/data/cmb/ersst/v5/index/ersst.v5.pdo.dat) and the NPGO index 
from http://www.o3d.org/npgo/data/NPGO.txt.

2.4. Data Analysis

Statistical analyses were conducted using R (R Core Team, 2021) in R Studio (R Studio Team, 2022). Figures 
were generated using “ggOceanMaps” (Vihtakari,  2020) and “ggplot” (Wickham & Wickham, 2016). Spear-
man's rank correlations were adjusted for autocorrelation using methods outlined in Pyper and Peterman (1999). 
Stepwise linear regression was conducted using “olsrr” (Hebbali & Hebbali, 2017) and the “all possible” option. 
Potential density (𝞼𝞱) and detrital aggregate cover did not clearly pass the test for normality (α < 0.07) using 
the Shapiro Wilk test. Transformation (log10) did not achieved normality, so was not used. Potential density 
(𝞼𝞱) had one extreme value, in 1993 driven by an anomalously low salinity. This extreme value was temporarily 
removed to assess its influence. This removal did not alter the results, and it was left in the data set for final 
analyses. Because Chl, PP and EF use many of the same data inputs and are strongly correlated, only primary 
production was used for stepwise linear regression. The lack of model heteroscedasticity was confirmed using the 
Breusch-Pagan Lagrange Multiplier test (Breusch & Pagan, 1979).

3. Results
Bottom water oxygen measurements over a 30-year time-series at Station M from 1989 through 2019 were 
compared with time-series estimates of conditions in the climate, surface waters, and abyssal depths.

3.1. Physical and Biological Parameters

3.1.1. Bottom Water Dissolved Oxygen

Bottom water oxygen at Station M ranged from 144.8 μmol kg −1 in the early 1990s decreasing to 126.9 μmol kg −1 
beginning in 2012 and remaining low through 2019 (Figures 1a and 2a). Bottom water samples taken in proximity 
to Station M at 4,005–4,156 m depth during the World Ocean Circulation Experiment (Goyet et al., 1997) in 1991 
had similar oxygen concentrations to those taken the same year at Station M at 4,100 m. A regression fitted to the 
bottom water oxygen values showed a significant decrease (R 2 = 0.526; p < 0.002) over the 30-year time series 
(Figure 1a). Calculated oxygen saturation exhibited a narrow range from 336.0 to 337.5 μmol kg −1 encompassing 
values calculated from the WOCE stations (Figure 1b).

3.1.2. Bottom Water Temperature, Salinity, and Potential Density

Monthly bottom water temperature ranged between 1.53 and 1.47°C with a mean of 1.50 ± 0.013 exhibiting no 
significant change over the time series (R 2 = 0.011; p = 0.59) (Figure 1c). Similarly, bottom water salinity showed 
no significant change over the time series (R 2 = 0.077; p = 0.14) (Figure 1d). Potential density (𝐴𝐴 𝐴𝐴𝜃𝜃) (Figure 1e) 
associated with bottom water oxygen measurements at Station M was generally stable throughout the full time 
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series except for periods of lower values in November 1993 (27.34 kg m −3), February 1994 (27.68 kg m −3), 
and December 2006 through September 2007 (27.61–27.67 kg m −3). Other than those periods, 𝐴𝐴 𝐴𝐴𝜃𝜃 values were 
consistently between 27.7 kg m −3 and 27.8 kg m −3 with an average of 27.77 ± 0.093 kg m −3 (R 2 = 0.06; p = 0.19) 
(Figure 1e). The consistent values for bottom water temperature, salinity and potential density indicate the same 
water mass was sampled throughout the time series.

3.1.3. Ocean Color Products

Chlorophyll concentration (Chl) exhibited a consistent seasonal signal with highs in the late fall through early 
spring (Figure 2b). The monthly mean Chl was 0.5 ± 0.2 mg C m −3 over the time series, peaking at 1.6 mg m −3 in 
August 2018. Chl was generally low in 2014 through 2016, though the lowest value was in April 2019 (0.2 mg −3). 
Primary production (PP) and export flux (EF, which was calculated from primary production) exhibited a consist-
ent seasonal signal with highs in the spring and summer (Figure 2c). Low values were evident between late 2014 
and 2017, with a high peak in August 2018 (PP: 1296.7 mg C m −2d −1 EF: 425.2 mg C m −2d −1). The monthly 
mean primary production over the time series was 538.9 ± 149.2 mg C m −2d −1, while export flux averaged 
123.5 ± 40.6 mg C m −2d −1.

3.1.4. Particulate Mass and Organic Carbon Flux

Total mass flux exhibited strong seasonal and inter-annual variability ranging from a high of 498.9 mg m −2 d −1 
down to 0.82 mg m −2d −1 over the time series (Figure 2d). A similar pattern was observed in particulate organic 
carbon (POC) flux with monthly ranges from 0.34 to a high of 37.24 mg C m −2d −1 over the time series with a 

Figure 1. Bottom water conditions at Station M (averaged monthly) and nearby WOCE stations (red dots; Goyet et al., 1997) 
(a) Oxygen concentrations with linear regression (blue line), (b) oxygen saturation, (c) temperature, (d) salinity, and 
(e) potential density (σθ; Temperature, salinity, and potential density values prior to 1997 were published in Masiello 
et al. [1998]).
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mean of 8.35 ± 6.68 mg C m −2d −1. Rates rarely peaked seasonally above 20 mg C m −2d −1 until frequent highs 
began in 2011 and persisted through 2019 (Figure 2d).

3.1.5. Phytodetritus Cover on Sea Floor

The percent phytodetritus cover on the seafloor during the time series never exceeded 10% until 2012 when 
several peaks reached 99.3% (Figure  2e). High percent cover became more frequent beginning in 2016 and 
extending through 2019. Many of these peaks corresponded with high POC and mass fluxes from 2016 to 2019. 
The mean percent cover of phytodetritus on the seafloor was 6.1 ± 18.9% over the time series.

3.1.6. Sediment Community Oxygen Consumption (SCOC)

SCOC measured using four different in situ instruments ranged from 5.6 to 21.15 mg C m −2d −1 between 1989 
until 2011 (Figure 2f). Beginning in 2011 with more frequent measurements using the Benthic Rover II, there 
were many peaks in SCOC above 20  mg  C  m −2d −1, one exceeding 30  mg  C  m −2d −1 in 2012 which corre-
sponded to a high in phytodetritus cover on the seafloor (Figures 2e and 2f). The monthly mean SCOC was 
10.9 ± 3.0 mg C m −2 d −1 over the time series.

Figure 2. Time series of (a) monthly oxygen concentration at Station M (gray circles) and WOCE stations (red dots; Goyet et al., 1997), along with biological 
conditions: (b) monthly chlorophyll (Chl) concentration, (c) monthly primary production (PP, black) and export flux (EF, blue), (d) monthly particulate organic carbon 
(black) and mass flux (brown), (e) monthly detrital aggregate cover of the seafloor (blue = gelatinous detritus, green = phytodetritus), (f) sediment community oxygen 
consumption (SCOC) daily averages measured by the free vehicle grab respirometer (pink circles), tube core respirometers (purple circles), Benthic Rover I (green 
circles) and Benthic Rover II (blue circles).
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3.2. Overlying Surface and Climate Conditions

Wind stress, Ekman pumping and coastal upwelling showed seasonal highs and lows. Wind stress (Figure 3a) had a 
monthly mean of 0.07 ± 0.03 Pa, ranging from 0.01 Pa in February 2005 to 0.14 Pa in May 1999. Ekman pumping 

Figure 3. Surface and climate conditions overlying Station M (monthly averages). (a) Wind stress, (b) Ekman pumping, (c) Coastal upwelling, (d) the Pacific Decadal 
Oscillation (PDO), and (e) the North Pacific Gyre Oscillation (NPGO).
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(Figure 3b) over Station M averaged 0.35 ± 0.74 × 10 −6 m s −1, with a mini-
mum of −2.19 m s −1 in May 2008 and a maximum of 3.16 m s −1 in December 
2002. Coastal upwelling (Figure 3c) averaged 0.36 ± 0.20 m 2 s −1, peaking at 
0.96 m 2 s −1 in March 2008, and with a low of −0.30 m 2 s −1 in January 1995. 
PDO (Figure  3d) oscillated on multi-year scales, averaging −0.37  ±  1.13, 
peaking at 2.55 in June 1997, and with a low of −2.99 in September 2012. 
NPGO averaged 0.03  ±  1.27, and oscillated on decadal scales, with low 
periods in 1993, 1994, 2005, 2015, and 2018 (lowest approximately −3.0 in 
November 1993) and peaking in early 2001 at approximately 3.0.

3.3. Relationships Between Parameters: Monthly and Annual Scales

There was only one significant correlation (p < 0.005) between bottom water 
dissolved oxygen and the measured parameters calculated monthly over the 
time series adjusted for autocorrelation (Table S1 and Figure S2 in Support-
ing Information S1). PDO was significantly and positively correlated with 
oxygen concentration (p = 0.003). No significant correlations were identi-
fied at the monthly scale among the biological (Chl, PP, EF, organic carbon 
flux, mass flux, detrital aggregate cover, SCOC), potential density (𝐴𝐴 𝐴𝐴𝜃𝜃) , and 
remaining surface and climate conditions (upwelling).

At the annual scale, Ekman pumping (p  =  0.05), coastal upwelling 
(p  =  0.009), mass flux (p  =  0.05), POC flux (p  =  0.05), and SCOC 
(p  =  0.037) showed significant correlations with bottom water dissolved 
oxygen concentration (Table  1, Figure S2 in Supporting Information  S1). 
Coastal upwelling accounted for 65% of the variation (R 2 = 0.65) in bottom 
water oxygen concentration. Like dissolved oxygen concentration, there 
are significant temporal trends in coastal upwelling (0.0043  m 2  s −1  yr −1, 
p = 0.014) and SCOC (0.086 mg C m −2 d −1 yr −1, p = 0.021). A significant 
correlation between coastal upwelling and bottom water oxygen concentra-

tion remains when the temporal trends are removed from each variable (rho = −0.780, p = 0.009 after adjustment 
for autocorrelation).

4. Discussion and Conclusions
Results from the 30-year time series at Station M suggest that the observed bottom water oxygen decline from 
1989 to 2019 is linked to variability in upwelling-driven carbon export to the deep ocean. At the annual scale, 
bottom water oxygen concentration was correlated with carbon supply (POC flux) and sediment community 
oxygen consumption (SCOC), and their key drivers at the surface (Ekman pumping and coastal upwelling). 
Decadal increases in POC flux (Smith et al., 2018, 2020) and SCOC (Smith et al., 2016) at Station M have coin-
cided with increases in wind stress and upwelling along the California coast (Xiu et al., 2018), trends that are 
likely to continue with changing climate.

At the monthly time scale, only the PDO correlated significantly. Neither the biological factors examined here, 
water mass variation (as indicated by 𝐴𝐴 𝐴𝐴𝜃𝜃 ), nor upwelling explained monthly variation in oxygen concentrations 
at Station M (Table S1 in Supporting Information S1). This is likely because, unlike the PDO, these variables 
exhibit strong seasonal variability (Figures 1 and 2). The positive correlation between oxygen concentration and 
the PDO at the monthly time scale is consistent with relationships observed in the upper ocean from the late 
1950s to the early 2000s in the CalCOFI time series (Deutsch et al., 2011). Deutsch et al. (2011) attributed low 
oxygen during negative phases of the PDO to shoaling of the thermocline, high export flux and high respiration 
rates in the eastern Pacific. Positive phases of the PDO are associated with the introduction of oxygen rich water 
into the North Pacific interior (Kwon et al., 2016), but it is unlikely that these processes affect the abyssal depths 
examined here.

A stepwise linear regression was applied to the annually calculated parameters to generate a descriptive model 
for bottom water oxygen at Station M over the 30-year time series given the limited data sets. All combinations 

Environmental condition
Spearman's 

ρ P
Degrees of 

freedom
Adjusted 

R 2

Biological parameters

 PP 0.464 0.166 4 0.432

 EF 0.536 0.121 4 0.357

 Chl 0.464 0.169 4 0.632

 Mass flux −0.503 0.050 9 −0.013

 POC flux −0.578 0.050 7 0.178

 Detrital aggregate cover −0.314 0.181 8 0.081

 SCOC −0.547 0.037 9 0.247

Potential density

 Potential density (𝐴𝐴 𝐴𝐴𝜃𝜃 ) 0.073 0.416 9 −0.064

Overlying surface and climate conditions

 Station M wind stress −0.415 0.107 8 0.155

 Ekman pumping 0.547 0.050 8 0.196

 Coastal upwelling −0.780 0.009 6 0.646

 PDO index 0.371 0.164 6 0.100

 NPGO 0.090 0.419 5 −0.075

Note. Bold indicates P < 0.05. Adjusted R 2 is based on a linear model not 
adjusted for autocorrelation.

Table 1 
Correlations Between Bottom Oxygen Concentration (μmol kg −1) and 
Environmental Conditions at Station M, Aggregated Annually, After 
Adjustment for Autocorrelation According to Pyper and Peterman (1999)
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of variables were considered. Based on adjusted R 2 values, the top performing models with two, three and four 
independent variables respectively were:

Two variables:

Oxygen concentration = 138.27 – 100.32 ∗ Coastal upwelling

+ 436.48 ∗ Wind stress
(

�2
adj = 0.76, � =< 0.001

)

 

Three variables:

Oxygen concentration = 122.25 + 0.006 ∗ PP –137.58 ∗ Coastal upwelling

+ 814.47 ∗ Wind stress + PP
(

�2
adj = 0.95, � = 0.006

)

 

Four variables:

Oxygen concentration = 128.51 –160.55 ∗ Coastal upwelling + 876.45 ∗ Wind stress – 0.94 ∗ PDO

+ 0.002 ∗ PP
(

�2
adj = 0.98, � = 0.016

)

 

These models reinforce the link between coastal upwelling and bottom dissolved oxygen concentrations at abys-
sal depths at Station M. Coastal upwelling occurs seasonally in the California Current System from Baja Cali-
fornia to Washington. Time-series studies in this region have recorded declines in dissolved oxygen from surface 
waters to depths of 4,100 m over time periods from 1960 to 2019 (Table 2). The declines in dissolved oxygen 
have ranged from 0.08 up to 1.92 μmol kg −1 yr −1 with the highest depletion measured along line 67 off the 
central California coast over a depth range from the surface to 800 m (Ren et al., 2018). The recorded decline at 
Station M, 4,000–4,100 m depth, over 30 years is comparable to the range measured through the water column 
during four independent studies (Table 2). The highest declines are recorded at depths shallower than 1,000 m. 
The only other study in the Northeast Pacific with data at similar abyssal depths is Ocean Station Papa to the 
northwest (Figure S1 in Supporting Information S1; Table 2), where a smaller decline of −0.08 μmol kg −1 yr −1 
was observed at 4,000 m (Whitney et al., 2007). The larger decline at Station M may be due to the different time 
period considered and a stronger influence of upwelling-driven primary productivity. Given the regional decline 
in dissolved oxygen in the Northeast Pacific, the next question is whether this decrease is evident at other abyssal 
long time-series stations worldwide. This is the subject of our next study.

Conflict of Interest
The authors declare no conflicts of interest relevant to this study.

Data Availability Statement
Supplemental data are available in Zenodo at https://doi.org/10.5281/zenodo.7387248.

References Potential density (𝐴𝐴 𝐴𝐴𝜃𝜃 ) Depth range (m) Decline (μmol kg −1 year −1) Time period Region

Bograd et al. (2015) 26.5 0–525 −0.87 to −1.7 1984–2012 S. California Bight

Pierce et al. (2012) 26.3–26.7 0–1000 −0.27 to −0.41 1960s–2000s Newport Oregon Line

Whitney et al. (2007) 26.3–27 0–4,000 −0.084 to −0.967 1950s–2006 Ocean Station Papa (50°N, 145°W)

Ren et al. (2018) 26.6–26.8 0–800 −1.92 1998–2013 Line 67, Central California

This study 27.3–27.8 4,000–4,100 −0.41 1989–2019 Northeast Pacific Station M

Table 2 
Summary and Comparison of Oxygen Concentration Decline in the California Current and Northeast Pacific, Adapted From Ren et al. (2018)
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