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A B S T R A C T

Speaker recognition has become very popular in many application scenarios, such as smart homes and smart
assistants, due to ease of use for remote control and economic-friendly features. The rapid development of
SRSs is inseparable from the advancement of machine learning, especially neural networks. However, previous
work has shown that machine learning models are vulnerable to adversarial attacks in the image domain,
which inspired researchers to explore adversarial attacks and defenses in Speaker Recognition Systems (SRS).
Unfortunately, existing literature lacks a thorough review of this topic. In this paper, we fill this gap by
performing a comprehensive survey on adversarial attacks and defenses in SRSs. We first introduce the basics
of SRSs and concepts related to adversarial attacks. Then, we propose two sets of criteria to evaluate the
performance of attack methods and defense methods in SRSs, respectively. After that, we provide taxonomies
of existing attack methods and defense methods, and further review them by employing our proposed criteria.
Finally, based on our review, we find some open issues and further specify a number of future directions to
motivate the research of SRSs security.

1. Introduction

Biometrics such as fingerprint, face, and voiceprint is widely used
for user identification and authentication [1,2]. Speaker recognition,
as a technology that recognizes a speaker’s identity through his/her
voiceprint [3,4], has attracted special attention from both academia
and industry due to its ease of use for remote control and economic-
friendly features. The last decade has seen a dramatic improvement in
Speaker Recognition Systems (SRSs), which can be divided into Speaker
Identification Systems (SISs) and Speaker Verification Systems (SVSs)
according to different tasks. The former is responsible for identifying
which enrolled speaker utters an input, and the identification result
is an enrolled speaker. The latter aims to verify whether an input is
uttered by a claimed speaker, and the verification result is yes or no.
SRSs have been deployed in both classical and emerging Internet-of-
Things (IoT) devices [5], such as smartphones, laptops, smart speakers,
and smart homes.

The rapid development of SRSs is inseparable from the advancement
of Neural Networks (NNs), especially Deep Neural Networks (DNNs).
While SRSs based on traditional methods, such as i-vector [6] and
Gaussian Mixture Model (GMM) [7], have prospered for decades, they
are being replaced by NN-based methods due to the strong ability
of NNs. However, previous work has demonstrated that NNs are sus-
ceptible to adversarial attacks [8]. Adversarial attacks mean that an

∗ Corresponding author at: State Key Laboratory on Integrated Services Networks, School of Cyber Engineering, Xidian University, China.
E-mail address: zyan@xidian.edu.cn (Z. Yan).

adversary utilizes adversarial examples, which are generated by adding
small perturbations, i.e., adversarial perturbations, into clean samples,
to make a machine learning model misbehave. Adversarial attacks
were first conducted in the image field. Szegedy et al. [8] successfully
fooled an image classification model using adversarial examples. After
that, adversarial attacks have gained widespread attention in the image
field and many effective attack methods, such as Fast Gradient Sign
Method (FGSM) [9] and Basic Iterative Method (BIM) [10], have been
proposed. Defense methods have also been extensively studied, such as
feature squeezing [11] and adversarial training [9]. Akhtar et al. [12]
and Yuan et al. [13] comprehensively reviewed existing adversarial
attack methods and defense methods in the image field, respectively.

Inspired by the advancement of adversarial attacks in the image
field, an increasing number of researchers pay their attention to adver-
sarial attacks in the audio field. As the most widely used voice process-
ing system, the speech recognition system was successfully deceived by
adversarial examples in 2015 [14]. Three years later, Kreuk et al. [15]
first successfully attacked an SRS through FGSM, which proves the
effectiveness of adversarial attacks in SRSs. Since then, adversarial
attacks and defenses in SRSs started to draw special attention.

Several researchers have surveyed the security of SRSs from differ-
ent perspectives. Wu et al. [16] presented a study on spoofing attacks,
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including impersonation, relay, speech synthesis, and voice conversion,
and countermeasures in SVSs. However, adversarial attacks and de-
fenses were not mentioned in their work. SISs were also missed. Das
et al. [17] demonstrated the security vulnerabilities of SVSs from the
perspective of attackers by considering both spoofing attacks and ad-
versarial attacks. Nevertheless, they ignored SISs and did not consider
how to evaluate the performance of different attack methods or defense
methods. Abdullah et al. [18] researched adversarial attack methods
on both speaker recognition and speech recognition comprehensively.
However, they paid little attention to defense methods. Overall, a
comprehensive review on the recent advance of adversarial attacks and
defenses in SRSs shall be done.

In this paper, we fill the gap by providing a thorough survey
on adversarial attacks and defenses in SRSs. We first illustrate the
basics of SRSs. At the same time, we introduce several basic concepts
and threat models related to adversarial attacks and defenses. After
that, we propose taxonomies of attack methods and defense methods
respectively. The former includes optimization-based attacks and signal
processing-based attacks, and the latter involves proactive defenses
and passive defenses. Based on classification and evaluation criteria,
we comprehensively review attack methods and defense methods in
SRSs and analyze their pros and cons. Finally, we figure out several
unsolved issues and suggest future research directions. Specifically, the
contributions of this paper are as follows:

• This paper proposes two sets of evaluation criteria for adversarial
attacks and defenses in SRSs, respectively.

• This paper provides taxonomies of existing adversarial attacks
and defense methods.

• Based on the taxonomies, this paper comprehensively reviews
the existing attacks and defenses in SRSs, and evaluates them by
employing our proposed criteria.

• This paper points out several open issues and suggests future
research directions based on systematic reviews.

The rest of this paper is organized as follows. Section 2 gives a
brief overview of SRSs and introduces the basic concepts related to
adversarial attacks and defenses. In Section 3, we propose two sets of
criteria for evaluating adversarial attacks and defenses, respectively.
Section 4 provides the taxonomy of adversarial attacks in SRSs and
conducts a thorough review of existing attacks, followed by the taxon-
omy of countermeasures and a thorough review on them in Section 5.
In Section 6, we highlight open issues and propose future research
directions. Finally, we conclude this paper in the last section.

2. Preliminaries

In this section, we first introduce the basics of SRSs followed by the
definitions of the three important concepts in this paper, i.e., adversar-
ial examples, adversarial perturbations and adversarial attacks. Finally,
we list possible threat models in adversarial attacks and defenses.

2.1. Speaker recognition systems overview

Fig. 1 shows an overview of a typical SRS. The SRS includes three
modules, i.e., preprocessing module, feature extraction module, and
model inference module. Meanwhile, the lifecycle of an SRS involves
three stages, i.e., training stage, enrollment stage, and recognition
stage.

When audio is input, the preprocessing module first filters out back-
ground noise and high-frequency signals beyond the frequency range of
human voices. Feature extraction algorithms are then used to generate
a feature vector that reduces dimensions of the audio by capturing
its most important features and characteristics. Various feature extrac-
tion algorithms have been proposed, such as Mel-Frequency Cepstral
Coefficients (MFCC) [19], Spectral Subband Centroid (SSC) [20], and

Perceptual Linear Predictive (PLP) [21]. Among them, MFCC is the
most popular one in SRSs due to its ability to expose important acoustic
features, similar to human ears. After that, the feature vector is passed
to a model for either training or inferencing.

In the training stage, corpora are used to train the SRS and adjust
system parameters to obtain a capable SRS. After that, multiple speak-
ers enroll in the SRS. All enrolled speakers form a speaker group. The
SRS calculates and stores a feature vector for every enrolled speaker,
which is used in the recognition stage. In the recognition stage, the SRS
is responsible for recognizing the identity of unknown input audio.

According to the difference of recognition tasks, SRSs can be divided
into two categories: Speaker Verification and Speaker Identification.
For an arbitrary input audio 𝑥, a Speaker Identification System (SIS)
determines which enrolled speaker utters 𝑥. Regarding a Speaker Ver-
ification System (SVS), an unknown speaker not only needs to input
his/her audio 𝑦 but also needs to claim his/her identity. The SVS deter-
mines whether 𝑦 is uttered by the claimed speaker, and the verification
result is ‘‘yes’’ or ‘‘no’’.

2.2. Adversarial examples generation

Adversarial attack is a kind of attack method that an adversary
generates adversarial examples to make a machine learning model
misbehave. An adversarial example refers to specifically crafted input
designed to look normal to humans but causes misbehaviors of a
machine learning model [8]. Given an input 𝑥 with its corresponding
label 𝑦, and a well-trained machine learning model 𝑓 (⋅), an adversarial
example 𝑥′ can be constructed as:

𝑥′ = 𝑥 + 𝛿 ∧ 𝑓 (𝑥′, 𝜃) ≠ 𝑦 ∧ ‖𝛿‖ < 𝜀

Here, 𝛿 is called adversarial perturbation, which is the noise that is
added to a clean sample to make it an adversarial example [8]. 𝜃 is the
parameter of the machine learning model 𝑓 (⋅). The hyperparameter 𝜖 is
used to control the maximum perturbation generated. Suppose 𝐿(⋅) is
the loss function and 𝑦′ is the target label, the adversarial perturbation
𝛿 can be calculated by

min𝐿(𝑓 (𝑥 + 𝛿, 𝜃), 𝑦′)
𝑠.𝑡. ‖𝛿‖ < 𝜀

To solve the above formula, many attack methods have been pro-
posed. We first introduce a classic and well-known method, FGSM [9].
The adversarial perturbation can be calculated by the following for-
mula.

𝛿 = 𝜂𝑠𝑖𝑔𝑛(∇𝑥𝑓 (𝑥, 𝜃))

Here, 𝜂 is the magnitude of the perturbation. The adversarial exam-
ple 𝑥′ is calculated as: 𝑥′ = 𝑥 + 𝛿. Kurakin et al. [10] proposed BIM
which iterates FGSM for multiple rounds. The adversarial example is
generated in multiple iterations.

𝑥′0 = 𝑥

𝑥′𝑛+1 = 𝐶𝑙𝑖𝑝(𝑥′𝑛 + 𝜂𝑠𝑖𝑔𝑛(∇𝑥𝑓 (𝑥′𝑛, 𝜃)))

Here, 𝐶𝑙𝑖𝑝(⋅) is a function which limits the change of the generated
adversarial example in each iterations.

2.3. Threat models

In this subsection, we introduce threat models of attack methods
and defense methods, respectively.
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Fig. 1. An overview of a typical SRS.

2.3.1. Threat models of attack methods
The threat model of an attack method is related to the adversary’s

goal, which is also called adversarial specificity, and the adversary’s
knowledge about target attack models. Based on the adversary’s goal,
adversarial attacks can be categorized into targeted attacks and untar-
geted attacks. Based on the adversary’s knowledge about target attack
models, attacks can be divided into white-box attacks, gray-box attacks,
and black-box attacks. The specific definitions are as follows.

Targeted Attacks: since an SVS only has two possible decisions
(i.e., yes or no), we regard all adversarial attacks on SVSs as targeted
attacks. In terms of an SIS, the targeted attack means a speaker is
maliciously identified as a specific speaker.

Non-targeted Attacks: it means a speaker fails to be identified or is
identified as any other speaker in an SIS.

White-box Attacks: the adversary has full knowledge about a tar-
get model, such as model architecture, parameters, gradients, layer
outputs, input and output pairs, etc.

Gray-box Attacks: the adversary only knows part of knowledge about
a target model.

Black-box Attacks: the adversary can only get the input and output
pairs of a target model.

2.3.2. Threat models of defense methods
The threat model of a defense method is related to the adversary’s

knowledge about defense methods. Based on the adversary’s knowledge
about defense methods, attacks can be divided into adaptive attacks
and non-adaptive attacks. Their specific definitions are as follows.

Adaptive Attacks: the adversary has full knowledge about a deployed
defense method. Using this knowledge, the adversary can adjust its
attack methods to overcome the deployed defense method. But a strong
defense method can still counter this type of attack.

Non-adaptive Attacks: the adversary does not have any knowledge
about a deployed defense method. Resisting non-adaptive attacks is the
minimum requirement that a feasible defense method needs to meet.

3. Evaluation criteria

In this section, we propose two sets of evaluation criteria (As shown
in Fig. 2). One is used to evaluate attack methods against SRSs, thus
analyzing the performance of each attack method. The other is used
for evaluating defense methods, thus analyzing the performance of each
defense method.

3.1. Evaluation criteria for attack methods

In this subsection, we put forward evaluation criteria for attack
methods from three aspects: practicability, imperceptibility, and effec-
tiveness.

3.1.1. Practicability
Practicability refers to the ability of an attack method to be used in

the real world. We introduce the following five metrics to evaluate the
practicability of an attack method.

Transferability : it is the ability of an adversarial example to continue
to make an impact on SRSs other than the one created it. In the
real world, SRSs are usually black-box to adversaries. Thus, investi-
gating transferable attack methods is meaningful since they can be
used to attack different SRSs. According to the difference between
two SRSs before and after transferring, transferability can be classi-
fied into cross-feature, cross-dataset, cross-model, etc. Cross-feature,
cross-dataset, and cross-model indicate that two SRSs differ from fea-
ture extraction technologies, training datasets, and model frameworks,
respectively.

Universality : it is the ability of an adversarial perturbation to fool
a given model on any clean samples with high probability. If an
adversary can generate a universal adversarial perturbation, he can
obtain adversarial examples by adding the perturbation to any clean
samples effortlessly, which helps to achieve real-time attacks.

Attack Media: adversarial examples can be fed into an SRS via
different medium, each of which introduces different challenges such
as background noise and distortion. There are three common attack
media including over-line, over-air, and over-telephone-network. Over-
line attacks indicate that a Waveform Audio file is directly fed to an
SRS. They are the easiest to execute since over-line ensures lossless
transmission. Over-air attacks indicate that an audio file played by a
speaker is fed to an SRS. Although over-air attacks are more difficult
to implement than over-line attacks since the quality of adversarial
examples will decrease due to the background noise, attenuation, and
multi-path effects during transmission, they are close to the real world.
Over-telephone-network attacks are more difficult to implement than
over-air attacks since adversarial examples not only pass through the air
but also the telephone network. Serious signal processing operations,
such as jitter and compression, will further reduce the quality of
adversarial examples. To summarize, the overall difficulty of achiev-
ing adversarial attacks in the above media is over-line < over-air <
over-telephone-network.

Distance: the farther the adversarial example travels in loss medium,
the worse the audio quality. Therefore, distance is used to measure the
farthest distance an adversarial example can spread without losing its
ability to attack.

Commercial SRSs: it is used to evaluate whether an attack method
can successfully attack commercial SRSs, such as Azure Verification
API [22] and Azure Attestation API [23], which are more complex and
have higher security requirements. Once a commercial SRS is attacked
successfully, the security and privacy of its users and the reputation of
the vendor will be severely damaged.

3.1.2. Imperceptibility
Imperceptibility indicates that adversarial perturbations impair ut-

terances very slightly for human perception. Since if ordinary people
can distinguish an adversary example and its corresponding clean
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Fig. 2. Evaluation criteria of attack and defense methods.

sample, the adversarial example is likely to be discarded before en-
tering SRSs. We introduce the following four metrics to evaluate the
imperceptibility of adversarial perturbations.

Types of Adversarial Audio: depending on the attack type and sce-
nario, adversaries can produce different types of adversarial audio.
Adversarial audio can be categorized into three classes, including noisy,
clean, and inaudible audio. Noisy audio sounds like noise to humans
but is considered legitimate audio by SRSs. Clean audio is perturbed
at such low intensity that human listeners cannot perceive these per-
turbations at all, even though there is a hidden command embedded
in it. However, SRSs can detect and execute these embedded com-
mands. Inaudible audio is generated by an adversary exploiting the
characteristics of human auditory system. On the one hand, the human
auditory system can only perceive frequency that ranges from 20 Hz to
20 kHz. Therefore, audio whose frequency is beyond 20 kHz cannot be
heard by humans but can be recognized by SRSs. On the other hand,
frequency masking which refers to the phenomenon that one faint but
audible sound becomes inaudible in the presence of another louder
audible sound can also be used to generate inaudible adversarial audio.
To summarize, the imperceptibility in the above audio types is noisy
audio<clean audio<inaudible audio.

Perturbation Norm: it indicates the restricted 𝑙𝑝−𝑛𝑜𝑟𝑚 of the pertur-
bations to make them imperceptible. 𝑙2 and 𝑙∞ are two commonly used
metrics. 𝑙2 measures the Euclidean distance between the clean sample
and the corresponding adversarial example, and 𝑙 denotes the maxi-
mum change direction between the clean sample and the corresponding
adversarial example.

Human Perception: it is used to evaluate whether human perception
has been considered, in other words, whether user studies (e.g., ABX

test) have been implemented in a paper. Human perception is the most
direct metric to measure the imperceptibility of adversarial examples.

Signal-to-noise Ratio (SNR): it is defined as the ratio of signal power
to the noise power and is often expressed in decibels (dB). The noise
is the adversarial perturbations. A larger SNR value indicates a smaller
perturbation.

3.1.3. Effectiveness
Effectiveness is used to quantitatively measure the performance of

an attack method. We introduce the following six metrics to evaluate
the effectiveness of attack methods. Generation time and attack success
rate are direct metrics to measure the effectiveness of an attack method.
The remaining four metrics are indirect metrics since they are used to
evaluate the performance of an SRS. The difference between these four
metrics before and after the SRS is attacked can be used to measure the
effectiveness of an attack method.

Generation Time: it refers to the time required to generate an ad-
versarial example. The less the generation time, the more efficient the
attack method.

Attack Success Rate (ASR): for targeted attacks, ASR refers to a
proportion of adversarial examples that are recognized as the targeted
speaker. For non-targeted attacks, ASR indicates a proportion of adver-
sarial examples that are recognized as other speakers rather than the
original speaker.

Recognition Accuracy (RA): it is a proportion of utterances correctly
recognized by an SRS.

False-positive Rate (FPR): it is a proportion of utterances of non-
original speakers that are recognized as the original speaker.

False-negative Rate (FNR): it is a proportion of utterances of original
speakers that are recognized as non-original speakers.
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Table 1
Comparison of adversarial attacks against SRSs.

Ref Type Task AK-M AS Practicability Imperceptibility Effectiveness Attack Method
Tr Un AM Dis (m) CS ToA PN HP SNR (dB) GT BA AA Met(%)

[15] O SVS W Ta ?
× L - × C 𝑙∞ ✓ ? ? 87.5/4.88 25.75/94.63 RA/FPR FGSM

B ✓ 81.55/12 58.93/46

[24] O SVS W Ta ?
× L - × C 𝑙∞ ✓ ? ? 7.2/7.2 96.87/97.64 FPR/EER FGSM

B ✓ 6.62 74.32 EER

[25] O SIS G Uta ? ✓ L - × C 𝑙2 ? 44.13 Real-time - 97.5 ASR Generative Network
Ta 48.53 97.2

[26] O SIS W Ta ? ✓ L, A ? × C ? ? 9.42 real-time – 90.19 ASR Optimization + RIR

[27] O SIS W Ta ? ✓ L, A 1.6–3 ✓ C 𝑙2 ? 8.3 real-time – 96.9 ASR AdvPulse

[28] O SIS,
SVS

B Ta ✓ × L, A 1 ✓ C 𝑙∞ ✓ 30.2 minutes – 99 ASR FakeBob

[29] SP SIS,
SVS

B Ta ✓ × L, A 0.3 ✓ N – ? ? seconds – 100 ASR TDI, RPG, HFA, TS

[30] SP SIS B Uta ✓ × L, TN – ✓ C 𝐿2 ✓ ? seconds – 10–20 ASR Filtering Out Low-
intensity Components

[31] SP SIS W Ta ? × L – ✓ In 𝐿∞ ✓ 34.111 ? – 93.8 ASR Frequency Masking

AK-M: Adversary’s Knowledge about Models; AS: Adversarial Specificity; Tr: Transferability; Un: Universality; AM: Attack Media; Dis: Distance;
CS: Commercial SRSs; ToA: Types of Adversarial Audio; PN: Perturbation Norm; HP: Human Perception; SNR: Signal-to-noise Ratio;
GT: Generation Time; BA: Before Attack; AA: After Attack; Met: Metrics; O: Optimization; SP: Signal Processing; W: White-box; G: Gray-box;
B: Black-box; Ta: Targeted; Uta: Untargeted; L: Line; A: Air; TN: Telephone Network; C: Clean; N: Noisy; In: Inaudible; ✓: satisfied;
×: not satisfied; ?: not discussed; -: not available.

Equal Error Rate (EER): it refers to the rate when FPR is equal to
FNR. The lower the EER, the greater the performance of an SRS.

3.2. Evaluation criteria for defenses

From the perspective of practicability and effectiveness, we propose
a set of criteria to evaluate the performance of defense methods in SRSs.

3.2.1. Practicability
Practicability refers to the ability of a defense method to be used

in the real world. We introduce the following three metrics to evaluate
the practicability of a defense method.

Generality : it is the ability of a defense method to resist different
attack methods. In the real world, designers of SRSs usually cannot
know which attack methods will be used by adversaries in advance.
Therefore, the more attack methods a defense method can resist, the
more practical it is. Based on the number of attack methods that can be
resisted, we divide defense methods into three levels: high-, medium-,
and low-generality. Firstly, highly general defense methods can resist
any attack methods. Because attack–agnostic defense methods do not
rely on any attack methods, they can be used to resist any attack
methods theoretically. Therefore, attack–agnostic defense methods are
high-generality. Secondly, in addition to attack–agnostic defense meth-
ods, there are some defense methods that rely on attack methods. For
example, a defense method needs adversarial examples, which can be
generated by FGSM or other attack methods, to adjust parameters. In
terms of them, the transferable defense method is medium-generality
since it can not only detect adversarial examples generated by the
attack method it depends on, but also detect adversarial examples
generated by other attack methods. At last, the non-transferable defense
method, which can only resist adversarial examples generated by the
attack method it depends on, is low-generality.

Defense Media: similar to attack media, there are three common de-
fense media including over-line, over-air, and over-telephone-network.
In Section 3.1.1, we analyze that the overall difficulty of achieving
adversarial attacks in the above media is over-line < over-air < over-
telephone-network. The overall difficulty of achieving defenses in the
above media is over-line > over-air > over-telephone-network.

Defendable Attacks: for a defense method, its corresponding defend-
able attacks refer to the attacks that can be resisted, as proved by
experiments. The more attacks that can be resisted, the more effective
the defense method is.

3.2.2. Effectiveness
Effectiveness is used to quantitatively measure the performance of a

defense method. Six metrics are introduced to evaluate the effectiveness
of a defense method. Defense time and detection accuracy are direct
metrics, while, the same as Section 3.1.3, the remaining four metrics,
including RA, FPR, FNR, and EER, are indirect metrics. We can evaluate
the ability of a defense method through the difference between the
four metrics before and after deploying the defense method. We do not
repeat the definition of RA, FPR, FNR, and EER in this subsection.

Defense Time: it refers to the time required for a defense method to
detect or purity an input utterance.

Detection Accuracy (DA): it refers to the ratio of correct discrimina-
tion on adversarial examples. The higher the DA is, the more effective
the defense method is.

4. Adversarial attacks against SRSs

In this section, we first propose a taxonomy of existing adversarial
attack methods against SRSs. Then, we review them based on the tax-
onomy. Furthermore, we evaluate and compare these attack methods
(as shown in Table 1) with our proposed criteria in Section 3.1.

4.1. Taxonomy of adversarial attacks against SRSs

Adversarial attacks against SRSs can be categorized as optimization-
based attacks and signal processing-based attacks. The optimization-
based attacks generate adversarial examples by solving an optimization
problem that is obtained by formalizing the purpose of adversarial
attacks. In recent years, several optimization-based adversarial example
generation algorithms have been proposed, such as FGSM [9] and
BIM [10]. The signal processing-based attacks use signal processing
techniques to generate adversarial examples. Although these attacks do
not directly target machine learning models embedded in SRSs, they
can still force machine learning models to misbehave.

4.2. Optimization-based attacks

Inspired by the success of adversarial attacks in computer vision and
speech recognition, Kreuk et al. [15] tried to fool a DNN-based SVS
by adversarial examples for the first time. Adversarial examples were
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generated by FGSM, which is 𝑙∞ perturbation norm. They verified the
effectiveness of adversarial attacks in SVSs by a white-box attack. Then
they deployed two black-box attacks to explore the transferability of
adversarial examples they generated. Experimental results show that
the adversarial examples are transferable in both cross-feature and
cross-dataset settings. Finally, through human perception experiments,
they found that human listeners cannot distinguish between clean
samples and adversarial examples, which reflected the imperceptibility
of adversarial perturbations generated by FGSM. However, since the
purpose of this work was to verify that SVSs are susceptible to adversar-
ial examples, the authors did not make efforts to pursue a better attack
effect and did not attack commercial SRSs. In addition, they ignored
generation time and over-air attacks, which are more practical than
over-line attacks.

Li et al. [24] found that [15] has two limitations. On the one
hand, [15] studied the impact of adversarial attacks on DNN-based
SVSs, but ignored GMM-based SVSs. On the other hand, cross-model
transferability was not discussed. To overcome the two limitations, they
deployed a white-box attack to verify that GMM-based SVSs are also
subject to adversarial examples. They then implemented three black-
box experiments to study the transferability of adversarial examples
generated by FGSM. The results show that adversarial examples are
transferable in cross-feature, cross-dataset, and cross-model settings.
Finally, they demonstrated the imperceptibility of adversarial examples
they generated to human listeners by human perception experiments.
Although [24] solved two limitations of [15], the attack performance
of [24] was not good enough since it generated adversarial examples
by simple FGSM. In addition, they did not discuss generation time and
over-air attacks.

The aforementioned work cannot achieve real-time attacks since
they generated different adversarial perturbations for different audio,
which usually costs a lot of time. Real-time attacks are inseparable from
universal adversarial perturbations since universal adversarial pertur-
bations can be added to any samples to generate effective adversarial
examples. If an adversary obtains universal adversarial perturbations
in advance, it only needs one addition operation to generate an adver-
sarial example, which is time-efficient. Li et al. [25] tried to generate
universal adversarial perturbations for SincNet [32], a state-of-the-
art speaker identification model, with a generative network, which
can learn the mapping from a low-dimensional normal distribution to
a universal adversarial perturbation subspace. They conducted both
untargeted attacks and target attacks against SincNet [32] in gray-
box settings. The results show the existence of universal adversarial
perturbations. In addition, they studied the imperceptibility of univer-
sal adversarial perturbations by SNR. However, they did not deploy
over-air attack experiments and did not try to attack commercial SRSs.

Xie et al. [26] almost simultaneously conducted similar work. While
Li et al. [25] generated universal perturbations with a generative
network, Xie et al. [26] generated universal perturbations with a con-
ventional optimization-based approach. They attacked an SIS in white-
box settings successfully. After that, they tried to attack the SIS in
the real world, i.e., over-air attacks. However, they failed because of
the attenuation and multi-path effects of sound in the propagation
process. They then assumed that the adversary has the knowledge
of the room’s layout and took Room Impulse Response (RIR) into
consideration to enhance the robustness of adversarial examples. The
results show that considering RIR can greatly increase the ASR in over-
air attacks. However, the high attack success rate came at the cost of
low SNR. That means they need to make a trade-off between the attack
effect and the imperceptibility of the adversarial perturbations.

Although [25,26] generated universal adversarial perturbations suc-
cessfully, Li et al. [27] found that they only focused on static-speech
attack scenarios, but ignored streaming-speech attack scenarios. In
static-speech attack scenarios, an adversary should obtain universal
adversarial perturbations and clean samples to generate adversarial
examples before feeding adversarial examples into an SRS. On the

contrary, in streaming-speech scenarios, an SRS takes streaming audio
inputs (e.g., live human speech) and an adversary can fool the SRS
by playing universal adversarial perturbations through a nearby loud-
speaker. There is no doubt that streaming-speech scenarios are closer
to the real world than static-speech scenarios. Therefore, Li et al. [27]
designed AdvPulse, a method to generate a subsecond-level adversarial
perturbation that can be added at any point of a streaming audio input
to launch targeted adversarial attacks. In other words, they generated
universal adversarial perturbations against SRSs in streaming-speech
attack scenarios. In addition, when a loudspeaker and an SRS are
less than three meters apart, adversarial examples they generated can
successfully deceive the SRS. This work is advanced. Unfortunately,
they only considered white-box settings but ignored black-box settings.

Chen et al. [28] proposed an attack method named Fakebob, which
formalizes the generation of adversarial examples into an optimiza-
tion problem. In this optimization problem, a score threshold and
the strength of adversarial perturbations are considered. To solve the
optimization problem, they proposed an approach that utilizes a novel
algorithm to estimate the threshold, a natural evolution strategy (NES)
to estimate gradient, and finally the BIM method is applied to generate
adversarial examples. This work is currently the most comprehensive
one. It has four main contributions. Firstly, they effectively imple-
mented targeted attacks on SRSs in black-box settings and the ASR
can reach 99%. Secondly, they considered all possible SRSs based
on different tasks, including SVSs and SISs. Thirdly, they did many
experiments, including over-line and over-air experiments, on both
open source systems and commercial systems, which prove the transfer-
ability and practicability of Fakebob. Fourthly, they tried four defense
methods to defend against Fakebob. Experimental results show that
Fakebob still affects the performance of victim systems, which demon-
strates the robustness of Fakebob. Meanwhile, they employed human
perception experiments to explore the imperceptibility of adversarial
perturbations. However, FakeBob took several minutes to generate an
adversarial example, which limits its wide use in the real world.

4.3. Signal processing-based attacks

Abdullah et al. [29] noticed that different audio samples may have
the same feature vector when being transformed by acoustic feature
extraction algorithms (e.g., MFCC) and nearly all SRSs appear to rely
on several feature extraction algorithms. Based on this knowledge, they
successfully attacked a commercial SVS and a commercial SIS in black-
box settings. They first obtained desired audio (e.g., OK, Google uttered
by Alice). Then they designed four methods to obfuscate the desired
audio as much as possible to generate obfuscated audio, i.e., adversarial
examples. The four methods include Time Domain Inversion (TDI),
Random Phase Generation (RPG), High Frequency Addition (HFA), and
Time Scaling (TS). Although this work achieved efficient attacks since
an adversarial example could be generated in a few seconds, adversarial
examples it generated were noise in human perception which were easy
to be noticed by human listeners.

Abdullah et al. [30] designed an attack method to circumvent
surveillance in telephone networks. They assumed that SISs rely on the
components of audio that are non-essential for human comprehension.
In order to find out the non-essential components, they first split audio
into phonemes. Then, signal decomposition algorithms were used to
decompose the phoneme into individual components and correspond-
ing intensities. Since the low-intensity components are less perceptible
to humans, the low-intensity components are likely what is looked
for. Therefore, adversarial examples are generated by filtering out low-
intensity components of every phoneme. They employed an untargeted
attack in black-box settings to prove the effectiveness of the attack
method they proposed. The results show that when only one phoneme
in an utterance is perturbed, the ASR of the utterance can reach 10%–
20% for most phonemes. An adversary can perturb multiple phonemes
in an utterance to achieve a high ASR. They further demonstrated that
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the attack method is transferable in a cross-model setting. Although
they achieved untargeted attacks and over-telephone-network attacks,
most adversaries cannot obtain the right to monitor the telephone
network. Targeted attacks and over-air attacks against intelligent voice
assistants embedded in smart devices are the mainstream of adversarial
attacks against SRSs now and even in the future.

While [30] successfully achieved untargeted attacks by removing
low-intensity components of clean samples, Wang et al. [31] tried
to achieve target attacks by adding additional components to clean
samples. They also aimed to generate inaudible adversarial pertur-
bations, instead of maintaining a slight noise to the clean sample.
Inspired by previous work [33,34] on speech recognition systems,
they first obtained the desired audio (e.g., OK, Google) as adversarial
perturbations. Then, they leveraged frequency masking, which refers to
the phenomenon that one faint but audible sound becomes inaudible
in the presence of another louder audible sound, to hide adversarial
perturbations in normal audio, such as birdsong and white noise. They
successfully attacked a DNN-based SIS by inaudible adversarial audio in
human perception. Unfortunately, they deployed experiments in white-
box settings rather than more practical black-box settings. In addition,
they did not explore the transferability of adversarial examples they
generated and did not explore over-air attacks.

4.4. Comparison and discussion

In Section 4, we comprehensively review adversarial attack methods
in SRSs and compare them in Table 1. Based on Table 1, we conclude
our review as below.

Among all the works we reviewed in this section [15,24–31], the
methods based on optimization [15,24–28] account for two-third, while
the methods based on signal processing [29–31] account for one-third.
The first type of method can be transferred from computer vision
directly since they generate adversarial examples from digital vectors
rather than raw audio or images. For example, Goodfellow et al. [9]
proposed FGSM to deceive an image classification model, while Kreuk
et al. [15] and Li et al. [24] also used FGSM to fool SRSs successfully.
The methods based on signal processing cannot be transferred in dif-
ferent domains directly since they leverage acoustic signal processing
techniques to generate adversarial examples. For example, Abdullah
et al. [30] generated adversarial examples by filtering out low-intensity
components in raw audio. Obviously, this type of method cannot be
used to deceive image processing tasks.

We observe that researchers not only focus on simple white-box
attacks but also pay attention to black-box attacks. More than half
of reviewed works [15,24,28–30] explored the effectiveness of attack
methods in black-box settings. In addition, all reviewed works ex-
cept [30] achieved targeted attacks, which are more difficult than
untargeted attacks.

Three of all reviewed works [25–27] generated universal adversarial
perturbations, which help adversaries to achieve practical real-time
attacks. More than half of reviewed methods [15,24,28–30] proved
that adversarial examples they generated are transferable. Transferable
adversarial examples can not only deceive the SRS that generates them,
but also deceive other SRSs. In other words, transferable adversarial
examples can deceive multiple SRSs, while non-transferable adversarial
examples can only deceive the SRS that generates them. Therefore,
transferable adversarial examples are more practical in the real world.
In addition, four of all reviewed studies [26–29] considered over-air
attacks and deployed experiments to explore over-air attacks. Among
them, the effective attack distance of adversarial examples generated
by [29] is only 0.3 m, while the effective attack distance of adversarial
examples generated by [27] can reach 3 m. More than half of reviewed
attack methods [27–31] can successfully attack commercial SRSs.

Adversarial examples generated by the optimization-based attack
methods [15,24–28] sound clean to humans. Adversarial examples gen-
erated by the three attack methods based on signal processing [29–31]

are clean, noisy, and inaudible to humans, respectively. Additionally,
more than half of reviewed works [15,24,28,30,31] deployed human
perception experiments to explore the imperceptibility of adversar-
ial perturbations. At the same time, four reviewed works [25–28,31]
measured SNR of adversarial examples to quantitatively represent the
relationship between audio and perturbations in adversarial examples.

Three of all reviewed works [25–27] achieve real-time attacks since
they generate universal adversarial perturbations. The optimization-
based attack method proposed in [28] takes several minutes to generate
an adversarial example, while the signal processing-based attack meth-
ods proposed in [29,30] only take several seconds. This indicates that
the methods based on signal processing are more time-efficient than
the optimization-based attack methods.

5. Defenses against SRSs

In this section, we first propose a taxonomy of existing defenses
against SRSs. After that, we review and evaluate some defense methods
against adversarial attacks in SRSs (as shown in Table 2) by applying
the criteria proposed in Section 3.2.

5.1. Taxonomy of defenses against SRSs

There are two types of defense methods against adversarial attacks:
(1) proactive defenses, (2) passive defenses. Proactive defense meth-
ods employ adversarial data augmentation to retrain original models
such that they can be robust to adversarial examples. Passive defense
methods defend against adversarial attacks by adding new components
rather than modifying original models. According to the function of
new components, passive defense methods can be divided into detec-
tion methods and purification methods. When an adversarial example
is identified, a detection method aims to refuse it to enter systems,
while a purification method aims to feed it to systems after removing
adversarial perturbations.

5.2. Proactive defenses

Wang et al. [35] proposed adversarial regularization based on ad-
versarial examples to defend against adversarial attacks. Adversarial
regularization aims to seek the worst sample around an input sample
and then use the worst sample to optimize an SRS. They used adver-
sarial examples generated by FGSM and virtual adversarial training
based on local distributional smoothness (LDS) to attack a DNN-based
SVS. It is worth noting that virtual adversarial training can calculate
adversarial perturbations for unlabeled samples. To the best of our
knowledge, this is the first work to apply virtual adversarial training
into SVSs. After that, they leveraged FGSM and LDS to regularize
the SVS, respectively. They showed that adversarial regularization
is a medium-general defense method through several experiments.
However, the performance of adversarial regularization is not good
enough, since the EER of the regularized SVS only decreased slightly.
In addition, this work did not consider adaptive attacks and did not
mention defense time.

Many previous works have explored defense methods to resist spoof-
ing attacks, including synthesis, convert and replay attacks, for SVSs.
However, spoofing countermeasure models are still vulnerable to ad-
versarial attacks. To address this issue, Wu et al. [36] proposed two
defense methods, one is proactive, i.e., adversarial training, and the
other is passive, i.e., spatial smoothing, to improve the robustness
of SVS spoofing countermeasure models. We will introduce spatial
smoothing in Section 5.3. Adversarial training refers to a defense
method that uses adversarial data augmentation to retrain the model to
enhance the robustness of the model. They retrained a DNN-based SVS
by adversarial data augmentation which was generated by Projected
Gradient Descent (PGD) method. They proved that the performance of
adversarial training is better than spatial smoothing through several
experiments, which is because adversarial training is model-specific.
However, adversarial training is low-generality. In addition, defense
time and adaptive attacks were not mentioned in the paper.
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Table 2
Comparison of defense methods against SRSs.

Ref Type Task AK-
DM

Practicability Effectiveness Defense method
Ge DM DfA DT Ori AA AD Met

(%)

[35] Pro SVS Nad Me L FGSM, LDS ? 4.87 11.89 8.31 EER Adversarial regularization

[36] Pro SVS Nad Lo L PGD ? 99.99 37.06 98.60 DA Adversarial training

[37] P-D SVS Nad Me L BIM, JSMA ? 5.97/
-

39.87/
-

0.18/
99.83

EER/
DA

Separate detection
network

[38] P-D SVS Nad Hi L BIM ? 2.24/
2.56

71.83/
74.92

10.66/
24.68

FPR/
FNR

Voting for the
right answer

Ad 13.29/
27.75

[39] P-D SVS Nad Hi L BIM ? 2.88/
-

99.33/
-

-/
99.76

EER/
DA

Neural vocoders

[36] P-P SVS Nad Hi L PGD ? 99.99 48.32 93.95 DA Spatial smoothing

[40] P-P SVS,
SIS

Nad Me L FGSM, MT,
PGD, DDN

? 0.89 13.81 3.62 EER Adversarial Separate
network

[41] P-P SVS Nad Hi L BIM ? 8.87 66.02 22.94 EER Cascaded self-supervised
learning modelsAd 40.69

AK-DM: Adversary’s Knowledge about Defense Methods; Ge: Generality; DM: Defense Media;
DfA: Defendable Attacks; DT: Defense Time; Ori: Original; AA: After Attack; AD: After Defense;
Met: Metrics; Pro: Proactive; P-D: Passive-Detection; P-P: Passive-Purification; Ad: Adaptive;
Nad: Non-adaptive; Hi: High; Me: Medium; Lo: Low; L: Line; ?: not discussed; -: not available.

5.3. Passive defenses

Passive defense methods utilize new components to detect or purify
adversarial examples. In this subsection, we first review detection
methods, followed by a review of purification methods.

5.3.1. Detection methods
Although adversarial training is effective, it is difficult to obtain

adversarial data augmentation since we need to label every adversarial
example. Inspired by [42,43], Li et al. [37] made the first attempt
to defend SVSs against adversarial attacks with a separate detection
network which is a VGG-like network structure. The separate detection
network not only avoids retraining well-developed SVSs but also can
combine with countermeasures against spoofing attacks to obtain a
powerful defense method. They first respectively adjusted parameters
of two separate detection networks using adversarial examples gener-
ated by BIM and Jacobian-based Saliency Map Attack (JSMA) to obtain
two different separate detection networks, i.e., a BIM-based separate
detection network and a JSMA-based separate detection network. Then,
they proved that the BIM-based separate detection network can not
only detect adversarial examples generated by BIM but also detect
adversarial examples generated by JSMA to a certain extent. Similarly,
the JSMA-based separate detection network can also detect adversarial
examples generated by BIM to a certain extent. In other words, the
defense method they proposed, i.e. the separate detection network, is
effective and medium-general. However, they did not consider adaptive
attacks, which are more challenging, and also did not mention defense
time.

The above defense methods [35–37] require knowledge of the
attack methods used by adversaries. However, it is impractical for
SRSs designers to know which attack methods will be implemented by
adversaries in advance. Therefore, Wu et al. [38] proposed a highly
general defense method called voting for the right answer. It means
that whether an input utterance is accepted by the SVS is determined by
the similarity between the input utterance and the enrollment utterance
and the similarities between the enrollment utterance and neighbors of
the input utterance which are some samples randomly selected around
the input utterance. As its name suggests, this method means that the
input utterance and its neighbors are voting on whether to accept the
input. They used adversarial examples generated by BIM to attack a

DNN-based SVS in white-box settings and considered both adaptive at-
tacks and non-adaptive attacks. Although the proposed defense method
is simple and effective, there are still two issues: (1) the performance of
the defense method is related to some parameters that are difficult to
select; (2) during defense, the SVS needs to run many times for every
sample since we need to calculate the similarities between its neighbors
and the enrollment utterance, which is time-consuming; (3) they did
not discuss defense time quantitatively.

Wu et al. [39] also proposed a highly general defense method. They
leveraged Parallel WaveGan, a neural vocoder, to re-synthesize the
input utterance, and then used the difference between the SVS scores,
i.e., the similarity with the enrollment utterance, for the input and
re-synthesized utterance to determine whether the input utterance is
an adversarial example. Since neural vocoders can purify adversarial
perturbations, the large difference in SVS scores indicates the input
utterance is an adversarial example. This is the first work to adopt
neural vocoders as shields to detect adversarial examples for SVSs,
and it showed neural vocoders are effective to detect adversarial ex-
amples by several experiments. Meanwhile, this work also clarified by
experiments that the defense method slightly affected clean samples.
However, it did not analyze adaptive attacks and defense time.

5.3.2. Purification methods
Inspired by [44], Wu et al. [36] proposed a highly general defense

method based on spatial smoothing. The reason is that implementing
smoothing does not need extra training efforts. In image processing,
spatial smoothing uses nearby pixels to smooth the central pixel. Ac-
cording to different weighting mechanisms of nearby pixels, spatial
smoothing can be divided into many categories, such as median filter,
mean filter, and Gaussian filter. The authors leveraged these filters for
SVSs, and employed experiments to prove the effectiveness of spatial
smoothing. They further explored the combination of spatial smoothing
and adversarial training, which achieves better performance. However,
they ignored adaptive attacks and did not analyze defense time.

Zhang et al. [40] designed an adversarial separation network (AS-
Net) to defend against adversarial attacks in SRSs. AS-Net aims to
eliminate adversarial perturbations and restore natural clean utter-
ances. Two optimized components, including compression structure
and speaker quality loss, are introduced. The former is responsible
for reconstructing adversarial perturbations, and the latter supervises
whether the restored utterances generated by AS-Net are correctly
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labeled by the target SRS. They deployed a lot of experiments to
defend against FGSM, PGD, Decoupled Direction and Norm (DDN) and
Momentum attack (MT), which show the effectiveness and medium-
generality of AS-Net in DNN-based SRSs. In addition, they compared
the performance of different countermeasures, including adversarial
training, feature-squeezing, and AS-Net. The results show that AS-Net
significantly outperformed other countermeasures. However, they did
not consider defense time and ignored adaptive attacks.

Wu et al. [41] proposed a highly general defense method based on
cascaded self-supervised learning models, which possesses the ability
to mitigate superficial perturbations in the input utterance after pre-
training. Transformer encoder representations from alteration (TERA)
as an advanced self-supervised learning model was used to construct
the defense method. They generated adversarial examples by BIM to
attack a DNN-based SVS. It is worth noting that they considered both
adaptive attacks and non-adaptive attacks. The results show the defense
method is effective on both of them to some extent and it is more
difficult to defend against adaptive attacks. However, the experimental
results also show that the defense method they proposed has a negative
impact on clean samples. In addition, defense time was neglected.

5.4. Comparison and discussion

In Section 5, we comprehensively review the existing works about
defense methods [35–41] for adversarial attacks in SRSs. Meanwhile,
we compare all the defense methods reviewed in this section in Table 2.
Based on Table 2, we summarize our review as below.

Among all the studies reviewed in this section, passive defense
methods [36–41] are distinctly overwhelming with three-quarters of all
reviewed papers. Passive defense methods are so popular since they
can be deployed in any SRSs to defend against adversarial attacks.
However, proactive defense methods [35,36] cannot be transferred
between different SRSs since they are model-specific, which makes
them receive less attention than passive defense methods.

We observe that all reviewed works deployed experiments to de-
fend against non-adaptive attacks, while only two works [38,41] try
to defend against adaptive attacks that are more threatening than
non-adaptive attacks.

Half of reviewed defense methods [36,38,39,41] are highly general.
Highly general defense methods are favored by researchers since they
can defend against any attack methods theoretically. In addition, all
reviewed works considered and deployed over-line attacks. Over-line
ensures lossless transmission of adversarial examples. Therefore, de-
fense methods that can defend against over-line attacks can also defend
against over-air and over-telephone-network attacks.

All reviewed works employ experiments to show the effectiveness
of defense against conventional attack methods, such as FGSM, BIM,
and PGD. However, they do not defend against some advanced attacks,
such as AdvPluse [27] and FakeBob [28]. At last, defense time, an
important evaluation criterion of practicability, is missed in discussion
in all reviewed works.

6. Open issues and future directions

6.1. Open issues

By reviewing and comparing the above literature with our proposed
criteria, we figure out several open issues for adversarial attacks and
defenses in SRSs.

First, it is difficult to enhance the robustness of SRSs. Adversarial
training, which utilizes adversarial data augmentation to retrain SRSs,
is an effective way to enhance the robustness of SRSs. However, obtain-
ing adversarial data augmentation, i.e., adversarial example and its true
label pairs, is time-consuming since we need to manually label each
adversarial example. Therefore, how to enhance the robustness of SRSs
efficiently is still an open and tough issue.

Second, it is not convenient to directly compare the performance
of attack methods or defense methods proposed in different works.
This is caused by the differences in experimental settings and eval-
uation metrics applied in different works. For example, the defense
methods proposed in [38,39] were used to defend against adversarial
examples generated by BIM. However, we cannot directly compare the
performance of them since [38,39] used different evaluation metrics,
i.e., [38] used FPR and FAR, and [39] used EER and DA. Similarly,
we cannot compare the performance of defense methods proposed
in [40,41] since they were used to defend against adversarial examples
generated by different attack methods. All in all, the differences in
experimental settings and evaluation metrics among different works
hinder researchers from comparing the performance of attacks methods
and defense methods in a direct way. Uniform evaluation metrics or
criteria should be defined and adopted.

Third, signal processing-based attacks receive little attention. On
one hand, although signal processing-based attacks are more efficient
than optimization-based attacks as discussed in Section 5.4, to the best
of our knowledge, only three articles [29–31] raise signal processing-
based attacks in SRSs, which are far less than optimization-based
attacks. On the other hand, all defense methods are proposed to defend
against adversarial examples generated by optimization-based attacks,
such as FGSM and BIM, while ignoring signal processing-based attacks.
We cannot judge if current defense methods can defend against signal
processing-based attacks. In short, signal processing-based attacks have
not been paid sufficient attention in the current literature.

Fourth, the literature still lacks research on poisoning attacks
against SRSs. The poisoning attacks refer to adding malicious data into
training data, resulting in a biased model. Previous work has shown
that poisoning attacks can seriously threaten the security and privacy
of ML models in the image field [45–47]. However, as the structure of
SRSs is more complex than image processing systems, little work pays
attention to poisoning attacks against SRSs.

6.2. Future directions

We suggest several future research directions motivated by the
above open issues as below.

Firstly, applying virtual adversarial training [48] to enhance the
robustness of SRSs is worthy of deep-insight research. Virtual adver-
sarial training can relieve the pressure of labeling adversarial examples
since it retrains SRSs in semi-supervised settings. In addition, virtual
adversarial training has low computational costs and a small number
of hyperparameters. Therefore, virtual adversarial training in SRSs may
be an interesting attempt to enhance the robustness of SRSs.

Secondly, unified adversarial attack and defense evaluation frame-
works should be established. Specifically, the attack evaluation frame-
work should clarify target SRSs, which include both open source sys-
tems and commercial systems, and attack evaluation metrics as shown
in Section 3.1.3. The defense evaluation framework should include
defendable attacks, which are used to generate adversarial examples
for evaluating the performance of defense methods, and defense evalu-
ation metrics as shown in Section 3.2.2. To comprehensively evaluate
the performance of defense methods, both optimization-based attacks
and signal processing-based attacks should be included into defend-
able attacks. In short, establishing unified frameworks for both attack
and defense is an effective way to help researchers compare the per-
formance of different methods of adversarial attack and defense to
stimulate mutual development. Thirdly, the research on the security
of preprocessing module and feature extraction module should be
strengthened. As shown in Fig. 1, the SRS includes three modules,
i.e., preprocessing module, feature extraction module and model in-
ference module. The structure of SRSs is more complex than image
recognition systems due to the addition of preprocessing and fea-
ture extraction. Each module introduces a surface of attacks, causing
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exploitable vulnerabilities from the perspective of an adversary. Re-
searchers in the audio field proposed some signal processing-based
attacks that utilize vulnerabilities of the preprocessing module or the
feature extraction module, such as those mentioned in [29–31] for
SRSs and in [14,49] for speech recognition systems. However, there are
still many unknown vulnerabilities. Therefore, we recommend strength-
ening the vulnerability mining of preprocessing module and feature
extraction module. Correspondingly, defense methods should also be
studied to enhance the robustness of these two modules. We believe
that such an arms race will promote the security of SRSs.

Finally, we suggest studying poisoning attacks against SRSs and
corresponding defense methods. On one hand, state-of-the-art SRSs
require a huge amount of training data and it is common to collect
these data from potentially untrustworthy sources (e.g., edge devices).
Therefore, it is easy to poison the training dataset of SRSs. On the
other hand, federated learning is a popular method to train ML models
in a somehow privacy-preserving way, including ML models used in
SRSs. However, it is difficult to guarantee that each party participating
in federated learning is honest and trustworthy. A malicious party
may deliberately use poisoned data for model training resulting in
security and privacy threats. Therefore, it is interesting and promising
to research poisoning attacks against SRSs and corresponding defense
methods, especially in the context of federated learning, as well as other
learning models.

7. Conclusion

In this paper, we overviewed the adversarial attacks and attack
countermeasures in SRSs. We proposed two sets of criteria to evaluate
the performance of adversarial attacks and defense methods. Based on
our proposed taxonomies of existing adversarial attacks and defense
methods, we reviewed existing adversarial attacks and defense methods
by employing our proposed criteria, respectively. Through thorough
review and analysis, we figured out several open research issues and
highlighted future research directions to motivate the research of SRSs
security.
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