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Nonlinear dynamics of the non-Hermitian Su-Schrieffer-Heeger model
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We numerically determine the robustness of the lasing edge modes in a spin-torque oscillator array that
realizes the non-Hermitian Su-Schrieffer-Heeger model. Previous studies found that the linearized dynamics
can enter a topological regime in which the edge mode is driven into auto-oscillation, while the bulk dynamics
are suppressed. Here we investigate the full nonlinear and finite-temperature dynamics, whose understanding
is essential for spin-torque oscillators-based applications. Our analysis shows that the lasing edge mode dynamics
persist in the nonlinear domain for a broad range of parameters and temperatures. We investigate the effects of
perturbations relevant to experimental implementations and discuss which ones might be detrimental to the
stability of the lasing edge mode. Finally, we map our model onto a photonic model. Our analysis has the
potential to shed light onto the dynamics of a plethora of non-Hermitian systems with nonlinearities.

DOI: 10.1103/PhysRevB.105.104433

I. INTRODUCTION

The application of topology to condensed matter systems
has been profoundly fruitful on both theoretical and ex-
perimental fronts and has lead to the discovery of a wide
range of new phenomena and materials [1]. Recently, con-
siderable effort has been devoted towards the exploration of
non-Hermitian systems [2,3] with active gain and loss. A
framework for addressing non-Hermitian topological phases
has been provided by the growing field of topological theories
of non-Hermitian systems [4–7].

Recent studies have shown that the bulk-boundary cor-
respondence [8], which is the cornerstone of topology in
Hermitian systems, also holds for specific non-Hermitian sys-
tems [9], although not in general [10–12]. Some systems
also exhibit a non-Hermitian skin effect, where even the bulk
modes can be very sensitive to boundary conditions [13].
Nevertheless, the existence of non-Hermitian edge modes has
been shown in a variety of systems, such as microring res-
onators [14–16] and electrical circuits [17–19].

One of the most striking properties of non-Hermitian topo-
logical phases is the coexistence of lasing edge modes, i.e.,
edge states with gain-like dynamics, with a purely real bulk
spectrum. Most importantly, these modes are topologically
protected [5] and can therefore be useful in applications, since
they are robust against disorder. In photonics these lasing
modes have been used to build a single-mode laser stable
against perturbations [20].

The majority of developments in non-Hermitian topolog-
ical insulators have been in the field of photonics [21–24],
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where gain and dissipation can be readily tuned. Recent works
have also unveiled non-Hermitian topological phases in me-
chanical [25,26], electrical [17–19,27], and magnetic systems
[28–30]. Here we focus on magnetic systems, in which the
loss is inherently present due to coupling of the magnonic
excitations to the lattice and whose dynamics can be driven
using spin-transfer torques. Due to the tunability of gain and
loss, magnetic systems might represent a nearly ideal system
to explore non-Hermitian phenomena.

Specifically, we consider the topology of the one-
dimensional (1D) array of spin-torque oscillators (STOs) as
shown in Fig. 1, building on the work of Flebus et al. [31].
Spin-torque oscillators are current-driven magnetic nanopil-
lars, whose magnetization dynamics are determined by the
balance of spin current injection and intrinsic (Gilbert-like)
dissipation [32]. It has been experimentally shown that the
coupling between STOs arranged in an array can be tuned
[33,34]. Flebus et al. [31] have shown that, by modulating
the coupling between STOs and the local spin injection, the
array can be driven into the topological phase of the non-
Hermitian Su-Schrieffer-Heeger (SSH) model [35], known
to host lasing edge states [36,37]. However, STOs also
exhibit strong nonlinear effects, such as a nonlinear fre-
quency shift [32]. Furthermore, thermal fluctuations have
also been shown to introduce significant noise into these
systems [38]. In this paper, we aim to investigate in detail
how nonlinearities and thermal fluctuations affect the topo-
logical character of a 1D array of STOs, in order to assess
the experimental feasibility of this setup. Our results can
be straightforwardly generalized to the realization of this
model in photonic systems, which also exhibit nonlinear and
stochastic dynamics, making our paper of interest to a broader
audience.
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FIG. 1. Schematic illustration of the model considered in this
paper. The array of STOs is represented as a 1D lattice with a
two-sublattice (A and B) unit cell. The STOs are connected via
a metallic spacer that mediates an intracell (Ji, Gi) and intercell
(J̃i, G̃i) complex nearest-neighbor hopping. The inset shows a pos-
sible experimental realization of the STOs array, with the stacking
of contact|fixed layer|spacer|free layer|contact. The magnetic layers
extend throughout the array, and spin waves excited by one STO can
reach and dissipatively couple the neighboring STOs.

This paper is organized as follows: In Sec. II we start by
introducing our model and we analyze its topological proper-
ties. In Sec. III, we discuss in detail the numerical simulations
deployed to investigate the nonlinear dynamics at finite tem-
peratures. We present the results of our simulations for a wide
range of parameters in Sec. IV and we identify the parameter
regions where the lasing edge mode is realized. In Sec. V we
show how our model is similar to previous implementations
of the non-Hermitian SSH model in photonic systems. A
summary and conclusions are given in Sec. VI. Finally, we
discuss the details of our numerical and analytical calculations
in, respectively, Appendix A and B.

II. SYSTEM

We consider an array of 2N STOs that realize the non-
Hermitian SSH model, as shown in Fig. 1. A STO consists
of a magnetic polarizing layer separated from a magnetic free
layer by a thin spacer. An external magnetic field H = H0ẑ
sets the equilibrium direction of the magnetic order parameter
m of the free layer. The polarizing layer converts a DC current
into a spin current Js, which, in turn, exerts a spin-transfer
torque on the magnetic order parameter m. The loss and gain
dynamics of the ferromagnetic order parameter m associated
with each nanopillar is described by the Landau-Lifshitz-
Gilbert (LLG) equation as [32]

∂t mη,i|0 = ωη,i ẑ × mη,i + αη,imη,i × ∂t mη,i

+ Jsη,imη,i × (mη,i × ẑ), (1)

where i labels the unit cells and η = A, B. Here, ωη,i =
γη,i(H0 − 4πmz;η,i ) is the ferromagnetic resonance frequency,
γη,i is the gyromagnetic ratio, and Mη,i the saturation mag-
netization. αη,i � 1 is the Gilbert damping parameter that
captures the relaxation of the macrospin Kittel mode. The last
term is the spin-transfer torque exerted by the spin current Jsη,i

on the magnetic order parameter.
We consider three kinds of intra (inter)-cell couplings

between the STOs. Firstly, we account for the Ruderman-

Kittel-Kasuya-Yosida (RKKY)-type exchange, parameterized
by the frequencies Ji (J̃i ). Secondly, there is a dissipative
coupling Gi (G̃i ), which is mediated by spin pumping through
the spacer layers [39]. The exchange and dissipative couplings
only couple the nearest neighbors, as indicated in Fig. 1.
These two coupling were already introduced in Ref. [31].
Additionally, in this paper we also introduce the dipolar cou-
plings between the STOs, which affect the nonlinear dynamics
[40,43].

The dynamics of the coupled array are then described by

∂t mA,i|coup = −mA,i × (JimB,i + J̃i−1mB,i−1)

− GimB,i × ∂t mB,i − G̃i−1mB,i−1 × ∂t mB,i−1

− �dmA,i ×
′∑

η, j

3x̂(x̂ · mη, j ) − mη, j

r3
Aη,i j

, (2)

∂t mB,i|coup = −mB,i × (JimA,i + J̃imA,i+1)

− GimA,i × ∂t mA,i − G̃imA,i+1 × ∂t mA,i+1

− �dmB,i ×
′∑

η, j

3x̂(x̂ · mη, j ) − mη, j

r3
Bη,i j

, (3)

where
∑′ indicates that the sum excludes the self-interaction.

The dipolar interaction is parametrized by �d = γη,iVeffη,i/a3,
where Veffη,i is the effective volume of a STO and a is the
separation distance between STOs, which we assume to be
constant. rηη,i′ j = Rηη,i′ j/a is the normalized distance between
STOηi and STOη′ j . Here we have incorporated terms pro-
portional to the Gilbert-like on-site damping of the Gi, G̃i

couplings into the Gilbert damping, i.e., αA,i = αη,i + Gi + G̃i

and αB,i = αη,i + Gi + G̃i−1. In what follows we assume iden-
tical unit cells and drop the dependency on the unit cell
index i, unless stated otherwise, such that ωη,i = ω, αη,i =
α + G + G̃, Ji = J, J̃i = J̃ , Gi = G and G̃i = G̃. Furthermore,
we assume spin-current injection only on sublattice A, i.e.,
Js,B = 0, Js,A = Js.

The equations of motion for this system are then given
by Eqs. (1)–(3), which can be linearized around the equi-
librium direction of the magnetic order parameter. We write
mη,i = (mx

η,i, my
η,i, 1) and neglect terms that are second or-

der in the fluctuations from equilibrium. We then introduce
the complex variable 2mη,i = mx

η,i − imy
η,i and invoke the

Holstein-Primakoff transformation [44] mη,i(t ) = 〈ηi〉e−iωt ,
where ηi = ai, bi are second-quantized operators annihilating
magnons at sublattice η and obeying bosonic commutation
relations. From the corresponding Heisenberg equation of
motion we can identify the effective quadratic magnon
Hamiltonian, which we will use next for topological classi-
fication.

The nonlinear character of the equations of motion means
that the Hamiltonian should also contain higher order inter-
actions. The on-site dynamics, i.e., Eq. (1), would introduce
on-site interaction terms, and the exchange interaction would
result in quartic and higher order interactions terms between
neighboring spins. How these interaction terms affect the
topology is still an unanswered question [41,42]. We there-
fore only consider the quadratic Hamiltonian to determine the
topological properties. However, in our numerical simulations
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we do take into account the nonlinearities of the equations of
motion, thus capturing the full dynamics resulting from the
higher order interaction terms.

Our starting point is the PT (parity-time) symmetric case,
analyzed as well by Flebus et al. [31]. Here Js = 2αω and
�d = G = G̃ = 0. In this regime, the system hosts two edge
modes with energies Re E − ω = 0 and Im E �= 0 for |J| <

|J̃|. The PT symmetry indicates the system is invariant under
combined parity (swapping site A with B and vice versa)
and time reversal (t → −t) operations [2,3]. We assume the
strength of the dissipative coupling and the dipole-dipole
interactions to be small compared to ω, and treat them as
perturbations. We note here that we do have access to the full
(including nonlinear) dynamics that result from the dissipative
and dipolar coupling and only treat them as perturbations in
the topological analysis. In the simulations that follow we
describe the full dynamics of the system, including dissipative
and dipolar couplings.

The Hamiltonian of the PT -symmetric model is

Hi = ω[a†
i ai + b†

i bi] + i(JsA − αω)a†
i ai

− iαωb†
i bi − J[a†

i bi + H.c.]

− J̃[a†
i bi−1 + H.c.], (4)

for i �= 1, N , with open boundary conditions

Hj = ω[a†
j a j + b†

jb j] + i(JsA − αω)a†
j a j

− iαωb†
jb j − J[a†

j b j + H.c.]

− J̃[b†
jal + H.c.], (5)

where j = 1, N and l = 2, N − 1. The full Hamiltonian, in-
cluding the dissipative and dipole-dipole coupling, is given in
Appendix B.

We first briefly discuss the phase diagram, which captures
the linear dynamics. For a full discussion the reader is referred
to the earlier work of Flebus et al. [31]. The topological nature
of the edge modes can be characterized by a global complex
Berry phase [36], i.e., an integer that predicts the number of
pairs of edge modes. The complex Berry phase can be found
to be one for |J| < |J̃|, signaling the presence of topologically
protected edge states.

Furthermore, the system has an exceptional point at
|J̃ ± αω| = |J|, where the system transitions from the
PT -unbroken into the PT -broken regime [36]. In the
PT -unbroken regime the edge state spectra come as complex-
conjugated pairs, while the the bulk spectrum is purely real.
Thus, the edge mode with positive imaginary energy starts las-
ing, while the bulk modes remain inactive. In the PT -broken
regime the bulk modes also become complex valued, such that
they also will start lasing spontaneously. In order to isolate
the dynamics of the lasing edge mode we therefore require
|J| < |J̃ − αω|, i.e., to be in the PT -unbroken regime.

When dissipative couplings G, G̃ are present, all bulk
modes will have a nonzero imaginary component, since the
system is no longer PT symmetric. The edge mode is still
well defined and separated in energy from the bulk modes.
However, because all bulk modes have a nonzero imaginary
component, these modes can start lasing as well, as was also
noted by Flebus et al. [31]. We note that chiral-inversion (CI)

symmetry protects the stability of the edge states [45], such
that the topologically protected edge modes are now present
for |J − iGω| < |J̃ − iG̃ω|. Since in almost all experimental
realizations of the setup discussed here the dissipative cou-
pling will be much weaker than the RKKY-type coupling, the
system will most likely still be in the topologically nontrivial
regime.

For the dipole-dipole interactions we note that the dipolar
fields are PT invariant, and thus the bulk spectrum will re-
main real. However, long-range interactions are typically not
captured by topological classifications [46], and it is unclear
from the linearized model alone how the long-range dipolar
interaction will affect the lasing edge modes. This will be
investigated numerically in the next section.

As was noted before, the phase diagram only captures the
linear behavior of the STO array. In the STO array considered
here, the STOs are easily driven into the nonlinear regime
[31,47]. Nonlinearities therefore need to be taken into account
when describing this topological array. Thus, we proceed to
investigate the full nonlinear dynamics numerically.

III. SIMULATIONS

We numerically simulate the system described by Eqs. (1)–
(3), using the parametrization outlined in Appendix A. This
parametrization maps the magnetic order parameter mη,i to the
microwave power pη,i (which is experimentally measurable)
and the azimuthal angle φη,i. The thermal fluctuations are
taken into account by using a stochastic field, the strength of
which is chosen such that an isolated STO reaches thermal
equilibrium [38]. We note that this noise will equilibrate the
whole array to 2N individual STOs in thermal equilibrium,
since the couplings between STOs are not taken into account
in the equilibration. However, we assume couplings to be
weak compared to the on-site dynamics (i.e., J, J̃ � ω), mak-
ing this a valid approximation. The noise is thus chosen to
have zero mean and a second-order correlator

〈 fη,i(t ) fη′, j (t
′)〉 = 0; 〈 fη,i(t ) f ∗

η′, j (t
′)〉

= 2δi, jδη,η′Dη,i(pη,i )δ(t − t ′), (6)

where Dη,i(p) is a diffusion coefficient that characterizes the
noise amplitude, which has to be taken to be dependent on
pη,i in order to correctly describe the stochastic dynamics of
a nonlinear oscillator. The explicit form of Dη,i(p) is reported
in Appendix A.

In order to integrate the resulting stochastic differential
equation we use the Euler-Heun algorithm as implemented
in the DifferentialEquations.jl package [48]. As initial con-
ditions we take the phase φη,i to be uniformly and randomly
distributed between 0 and 2π and the power pη,i to be dis-
tributed according to the equilibrium Boltzmann distribution

Peq ∝ exp

[
−2λη,i

kBT
pη,i

]
, (7)

where λη,i is a scale factor relating the dimensionless oscilla-
tor power p and the oscillator energy.

Since this system is inherently stochastic, both from the
initial conditions and the thermal fluctuations, we collect
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FIG. 2. Three types of behavior of the system, with J̃ = −0.025/4πγ M, J/J̃ = 0.5, kBT/λ = 10−5, and G = �d = 0. (a) Only the edge
mode starts lasing, while all the bulk modes are suppressed. (b) No modes start lasing within the specified time frame. (c) Both the edge modes
and bulk modes start lasing. The simulation is run for 4πγ Mt = 105, which for a typical STO with 4πγ M = 10 GHz is equal to 10 μs.

statistics by running every configuration of parameters NR

times. The main observable we are interested in is the number
of lasing modes, where a lasing mode is defined as any mode
that has power pη,i � εp0, where p0 is the steady-state power
of a single oscillator [32]. We let the system run for a time
tend and choose ε = 0.9 to account for the fluctuations around
the equilibrium power of a STO. Our stochastic simulations
may not capture all possible processes, such as rare low prob-
ability events, in a single run. However, by running multiple
“trajectories” we can gather statistics and gain insight into
the behavior of the system. This is also true of experimental
runs, where the number of lasing modes will vary in any one
realization of the experiment. We will discuss this problem
in greater detail in Sec. IV B, where we also show how the
experimental observation times should be chosen.

IV. RESULTS

In this section, we present the results from the simulations
described in Sec. III. Unless stated otherwise, we set α =
10−2, ω/4πγ M = 0.5, Js,A = 2αω, Js,B = 0, and G=�d =0,
such that we are in the PT -symmetric regime and work with
an array of N = 10 unit cells. We run the simulations of
Eqs. (1)–(3) for 4πγ Mt = 105, which for a typical STO with
4πγ M = 10 GHz corresponds to 10 μs and collect statistics
over NR = 100 runs. We are interested in two main observ-
ables: whether the edge mode starts lasing, and how many
bulk modes also start lasing. It is worth noting that since the
B-sites dynamics are suppressed because they are not directly
driven, we only have N possible lasing modes. We choose
kBT/λ in the range 10−6 to 10−4, with the latter corresponding
to room temperature for a typical STO [32].

In Fig. 2 we show three typical examples of the system
dynamics. The system is initially in thermal equilibrium,
and at t = 0 the spin-torque current is turned on for all A
sites. Figure 2(a) show the case where after some time the
left-most mode starts lasing at the steady-state power for a
single oscillator, whilst the dynamics of the bulk modes are
suppressed. Alternatively, no modes can start lasing at all
[Fig. 2(b)], which we will discuss further in Sec. IV B. We
also observed the lasing of bulk modes together with the edge
mode, as shown in Fig. 2(c). In this specific example the bulk
mode starts lasing shortly after the edge mode. We have not

investigated this timing further, but it seems likely that a lasing
edge mode could also excite bulk modes close to the edge.
Moreover, we also observed cases where bulk modes start
lasing later in time, seemingly independent of the lasing of
the edge mode.

Since all three cases are possible, we further explore the
parameter space, and focus on the amount of lasing modes as
an observable. We note that in all of the cases discussed here
we never observed a lasing bulk mode without a lasing edge
mode. This is a direct result of the topology of the array.

As discussed before, the system hosts a lasing topological
edge state for −1 < J/|J̃| < 1. We thus show the average
number of lasing bulk (dashed line) and edge (solid line)
modes as a function of J/|J̃| for different temperatures in
Fig. 3. The transition from the topological to the trivial regime
at J/|J̃| = −1 is affected by the temperature. For low tem-
peratures the transition is sharper than for high temperatures.
However, at high temperatures the system still exhibits signs
of a non-Hermitian topological insulator (suppressing of the
bulk modes, with only a single lasing edge mode), even if the
system is in the trivial phase, i.e., if |J| > |J̃|.

As was previously discussed, the system has bro-
ken PT symmetry when |J̃ − αω| < |J| < |J̃ + αω|, where

−5 −4 −3 −2 −1 0

J/|J̃ |

0.0

0.5

1.0

1.5

2.0

#
m

od
es

kBT/λ
10
10
10

Edge
Bulk

FIG. 3. Average number of lasing bulk (dashed line) and edge
(solid line) modes as a function of |J|, for different temperatures.
The PT -broken regime is indicated by the shaded region. Note that
these simulations were only run for 4πγ Mt = 105 and this is there-
fore only a snapshot of the number of lasing modes. The error bars
show the 95% confidence interval.
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FIG. 4. Average number of lasing bulk (dashed line) and edge (solid line) modes for different perturbations that will always be present in
any realistic system. The error bars show the 95% confidence interval. Here J̃ = −0.025/4πγ M, J/J̃ = 0.5. (a) As a function of the strength of
the dissipative coupling G = Gi = G̃i, which is mediated by the spacer layers between the STOs. (b) As a function of the dipole-dipole coupling
strength �d/4πγ M, which can be tuned by the spacing between the STOs. (c) As function of the variation of the individual FMR-frequency
ωη,i, chosen from a normal distribution with mean ω/4πγ M = 0.5 and standard deviation σω.

multiple modes will start to lase. In Fig. 3 the PT -broken
regime is indicated by the shaded area and it is easy to see
that more bulk modes start lasing. For higher temperatures
more bulk modes will start to lase. We remark here that these
simulations were only run for a fixed time tend, and therefore
not all modes might have started lasing yet. We return to this
issue in Sec. IV B.

The number of lasing bulk modes also increases as a
function of temperature. Instead of a sharp transition at the ex-
ceptional point (EP), there is a transitional regime, due to the
nonlinear and stochastic effects. This indicates that, depend-
ing on the operating temperature, it is necessary to stay further
away from the EP than one might initially expect. Specifically
for this parameter set it would mean choosing |J| � |J̃ + αω|,
such that there are no unwanted bulk contributions from the
PT -broken regime. The fact that the PT -broken regime ex-
tends further than expected might also have implications for
applications using the exceptional point, such as enhanced
sensing [49,50] and encircling the exceptional point [51].

A. Sensitivity to perturbations

We now consider three main perturbations present in any
experimental realization of the system: (1) the dissipative cou-
pling modulated by spin-waves traveling in the metallic spacer
layer, (2) the dipole-dipole coupling between the macrospins
of the STOs, and (3) variations in the parameters of the indi-
vidual STOs.

We first consider the inter (intra)-layer dissipative coupling
G (G̃), induced by the metallic spacer layer. This coupling is
known to synchronize STOs [43]. Since it is modulated by
the metallic spacer layer it can be tuned to an extent, e.g., by
choosing a spacer layer with a certain spin relaxation. It is
also possible to choose a STO nanopillar geometry in which
the metallic spacer layer does not extend in between the STOs
and therefore no spin waves can propagate, thus suppressing
the dissipative coupling [32].

We vary the dissipative coupling G = Gi = G̃i, the re-
sults of which are shown in Fig. 4(a). We note here that
even though the dissipative coupling breaks the PT symmetry,
the edge modes are still protected by CI symmetry. When

G/|J̃| > 10−3, first the bulk modes are suppressed. This can
be attributed to the increased overall dissipation in the system,
suppressing the bulk excitations. When G/|J̃| > 0.05 the edge
modes are also suppressed, which again can be attributed to
the increased overall dissipation. This result thus suggests
that it is desirable to design a system where the dissipative
coupling is weak, such as by using the nanopillar geometry.
However, a small dissipative coupling might be beneficial,
effectively suppressing the bulk excitations, while allowing
the edge modes to lase.

Next, we discuss the dipole-dipole coupling, which is
present in any magnetic system. It has also been known to syn-
chronize the precession in STOs [43]. The dipolar coupling
strength can be controlled by the spacing between the STOs.
We vary the dipolar coupling strength �d/4πγ M for different
temperatures, as shown in Fig. 4(b). For small �d we see no
changes, and only for �d/4πγ M > 10−3 the bulk modes will
start to lase. For STOs of typical dimensions 10×10×10 nm
and a separation distance 10 nm, �d/4πγ M ≈ 10−3. Our re-
sults indicate a lower bound on the spacing between STOs in
order to avoid activation of the bulk lasing modes due to the
dipole-dipole interaction.

In any experimental setup there will be small variations
between the individual STOs. Since the system considered
here is only symmetric if the dissipation is balanced with the
driving, even small variations in any parts of the STO array
involved in the driving and dissipation processes will break
the PT symmetry. Since the topological classification of this
system is based on the PT symmetry, it is useful to consider
the effect of breaking this symmetry.

In order to model spatial disorder we consider an array
with small variations in the individual frequencies ωi, by
assuming they are normally distributed with standard devi-
ation σω and mean ω. If the local spin-transfer torque is
kept constant at Js = 2αω throughout the array, the system
is no longer PT symmetric. This spin-injection model corre-
sponds to setup in which a single current source, rather than
individual ones, are used to inject spin angular momentum
into the STOs. The number of lasing modes is shown in
Fig. 4(c), where it is clear that as the variance is increased,
more bulk modes start lasing. The disorder we introduce
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FIG. 5. The average time for the edge mode to start lasing, for
different ratios J/|J̃|. These simulations are all in the unbroken PT -
regime. For a typical FMR frequency 4πγ M = 10 GHz these times
are in the order of 0.01 ms to 1 ms. The error bars show one standard
deviation.

breaks the PT symmetry, and the edge states are no longer
topologically protected. The bulk modes are therefore no
longer suppressed and can start lasing. We have also mod-
eled the case where Js,i = 2αωi, i.e., where the STOs are
individually driven. This did not affect the results, indicating
that it is not just the PT symmetry within one unit cell, but
rather the PT symmetry of the complete array that protects
the edge states. The robustness of non-Hermitian topological
states against disorder is still poorly understood. From the
linear dynamics we know that if a variance σω is introduced
the bulk modes also gain a nonzero imaginary component and
will therefore start lasing or be suppressed. This is thus in
essence not a nonlinear or stochastic effect, in contrast to the
other effects discussed previously.

We thus conclude that the non-Hermitian SSH chain can
be experimentally realized using STOs, but care needs to be
taken to control the dissipative coupling, dipolar interactions
and the variations between STOs.

B. Nucleation

The processes that we consider in this paper are fully
stochastic, and so is the lasing of the edge mode: there is
a finite probability that the edge mode will start lasing. It is
therefore possible that even in the topological phase, the edge
mode might only start lasing at time scales longer than the
experimental observation time. Motivated by this considera-
tion, we thus investigate here the nucleation times of the lasing
edge modes.

As before, we prepare our system in thermal equilibrium,
and turn on the spin current at t = 0. We only consider the
RKKY-type coupling, and set G = G̃ = �d = 0. In Fig. 5
we show the temperature dependence of the time at which
the edge mode starts lasing, for different ratios J/|J̃|. We
have chosen the ratio J/|J̃| such that we are in the unbroken
PT regime and we only expect the edge state to start lasing.

It is clear that the time until the edge mode starts lasing
follows an exponential distribution as a function of temper-
ature. Moreover, for lower intracell coupling J , the average
time decreases. This observation can be explained in terms
of overcoming an energy barrier. The probability of the edge

mode to start lasing is

P1 ∝ exp

[
− �E

kBT

]
, (8)

where �E is the energy difference between the state with no
modes lasing and the state with a lasing edge mode, which is
directly related to the coupling strength J .

The nucleation problem also illustrates that the finite
runtimes inherent with numerical simulations might not be
representative of experiments. Since the nucleation is a
stochastic process, it is possible that for longer runtimes,
such as seconds, all modes will start lasing. In order to have
robust isolated edge modes, these devices might therefore be
limited to shorter runtimes (on the order of µs), especially
at higher temperatures. The opposite problem of course also
exist, where one has to wait a long time for the edge mode
to start lasing. The nucleation time can however be tuned
with the exchange coupling, as is shown in Fig. 5. The in-
herent stochastic nature of this device could make it useful for
stochastic computing, which relies on systems with inherent
randomness [52,53].

V. COMPARISON TO PHOTONIC SYSTEMS

The array of STOs considered here shares many similar-
ities with the photonic microring resonators experimentally
realized in Ref. [14]. The linear dynamics of the magnetic
excitations considered in this model are closely related to the
dynamics of the photonic excitations in the microring res-
onators. Both models realize the non-Hermitian SSH model
as described by Eq. (4). Moreover, their nonlinear dynamics
are similar, as we show next.

The dynamics of the microring resonator array are, up to
second order in the (normalized) electric modal field ampli-
tudes aη

n , described by [54]

∂t a
A
n = −i�aA

n − γ − σA
(
1 − ∣∣aA

n

∣∣2)
+ iκ1aB

n + iκ2aB
n−1,

∂t a
B
n = −i�aB

n − γ − σB
(
1 − ∣∣aB

n

∣∣2)
+ iκ1aA

n + iκ2aA
n+1, (9)

where � is the lasing mode frequency, γ is the mode loss, ση

is the mode gain, and κ1,2 are the coupling constants. Thus,
we can draw a direct analog between the two systems, by
identifying γ as the constant part of the Gilbert damping
(γ = αω), the lasing mode frequency � as the precession
frequency (� = ω) and the mode gain as the spin current
contribution (ση = Js,η). One distinction is the linear coupling
κ1,2, whereas the RKKY coupling between the STOs is non-
linear. However, we note that up to first order in pi the RKKY
coupling is linear as well. In order to fully describe the dy-
namics of the microring resonators the carrier density also has
to be taken into account. However, for timescales longer than
the time-response of the laser, typically a few nanoseconds
[55], the carrier dynamics can be disregarded and one obtains
Eq. (9).

Most importantly, both systems have saturated gain. This
feature is inherent to many driven non-Hermitian system,
if the driving is limited in some way. We do note that the
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nonlinear contributions to the precession and Gilbert damping
that are present in STO systems are not present in photonics.
The phase diagram, as presented in Fig. 3, might thus be
different for the photonic system.

In this paper we have considered three perturbations: dis-
sipative couplings, dipole-dipole interactions, and variations
in the FMR-frequency, as shown in Fig. 4. Dissipative cou-
pling can also be present in photonic systems, but when
employing evanescent coupling is usually negligible [56], in-
dicating that it is less relevant for photonic implementations of
the non-Hermitian SSH chain. The long-range dipole-dipole
interaction has no photonic analog, but variations in the pa-
rameters are inevitably present in photonic systems.

Nonlinear effects are a common feature of many exper-
imental realizations of non-Hermitian systems. Our results
are therefore applicable beyond STO arrays to other non-
Hermitian topological phases.

VI. CONCLUSIONS AND DISCUSSIONS

In conclusion, we have shown that the lasing topological
edge states can be successfully accessed using STOs in a
realistic non-Hermitian SSH array. We have considered both
nonlinear and stochastic dynamics, to determine if an exper-
imental implementation of this model is feasible. Firstly, we
found that the lasing edge mode is robust in the presence of a
wide range of temperatures and perturbations, provided that
we are in the topological regime. This occurs despite vari-
ous perturbations breaking the PT symmetry of the original
Hamiltonian such that topological protection is not guaran-
teed. Our result is important for ensuring that the lasing edge
mode can be probed in an experiment. Secondly, we found
that even though the system is topological in the linear regime,
in which no bulk modes should start to lase, nonlinear and
stochastic effects can still access these bulk modes, reducing
the usefulness of the topologically protected edge modes. We
have explored the transition between the PT -unbroken and
PT -broken regimes, which is not a sharp transition. Instead,
we find a regime around the exceptional point where more
bulk modes will start to lase.

Moreover, we have considered three kinds of perturbations
that can naturally be present in this array and have shown
in which regime the topology of the system is unaffected.
We hope that these results can be used to guide future ex-
periments. We find that at a given temperature and for equal
strength of the perturbative term, the perturbation that mostly
affects the dynamics of bulk modes is the variation in the
parameters of the individual STOs. This might complicate
the experimental realization of the STO array, and will be
an inherent complication in any physical realization of a
non-Hermitian SSH model, where variations are more likely.
Finally, we have shown that there is a finite nucleation time,
after which the edge state will start lasing.

Interactions between STOs as considered here are not eas-
ily tunable, since they depend on the spacing between the
STOs [43]. Moreover, STOs cannot be brought arbitrarily
close together because of Joule heating [57]. To circumvent
this problem, one could couple the STOs using strip-line
antennas above each STO, controlled by the microwave cur-
rent generated at the adjacent STO [58]. This more direct

method has the advantage that the signal could be electrically
amplified, thus allowing control over the coupling strength.
Even though this coupling has a different physical origin, the
conclusions as presented in this paper will still hold.
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APPENDIX A: NUMERICAL IMPLEMENTATION

A single STO η in unit cell i can be parametrized with the
complex amplitude cη,i(t ) [32]

mη,i = Mη,i

⎛
⎜⎝

√
1 − pη,i(cη,i + c∗

η,i )√
1 − pη,i(icη,i − ic∗

η,i )

1 − 2pη,i

⎞
⎟⎠, (A1)

where pη,i = |cη,i|2 and Mη,i is the magnetization length. The
Langevin equation of motion then becomes

dcη,i

dt
+ iωη,i(pη,i )cη,i + �+

η,i(pη,i )cη,i

− �−
η,i(pη,i )cη,i = fη,i(t ), (A2)

where

ωη,i(p) = ω + 2p, (A3)

�+
η,i(p) = ωη,iαη,i(1 + (2/ωη,i − 1)p), (A4)

�−
η,i(p) = Js;η,i(1 − p), (A5)

where the superscript + (−) indicates loss (gain) and fη,i(t )
is a complex field, representing the thermal fluctuations.
The stochastic field is a phenomenological description of all
thermal processes and chosen to have zero mean and a second-
order correlator

〈 fη,i(t ) fη′, j (t
′)〉 = 0, 〈 fη,i(t ) f ∗

η′, j (t
′)〉

= 2δi, jδη,η′Dη,i(pη,i )δ(t − t ′), (A6)

The diffusion coefficient Dη,i(p) has to be taken dependent
on p such that the system tends to thermal equilibrium. This
is done by deriving the Fokker-Planck equation from the
Langevin Eq. (A2) and finding a physically-consistent solu-
tion [38]. For a single STO this is

Dη,i(p) = �+
η,i(p)

kBT

λη,iωη,i(p)
, (A7)
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where λη,i is a scale factor relating the dimensionless os-
cillator power p and the oscillator energy, which is λη,i =
Veffη,iMη,i/γη,i for our choice of parametrization.

As initial conditions we choose cη,i = √
p0eiφ , where φ is

randomly chosen between 0 and 2π and p0 is drawn from
a thermal equilibrium distribution Peq for an ensemble of
isolated STOs

Peq ∝ exp

[
−2λη,i

kBT
pη,i

]
. (A8)

For the array as considered in the main text, the equation of
motion is given by

∂t cA,i = fSTO(cA,i )cA,i

+ Ji fJ (cA,i, cB,i ) + J̃i−1 fJ (cA,i, ci−1,B)

+ Gi fG(cA,i, cB,i ) + G̃i−1 fG(cA,i, ci−1,B)

+ �d

′∑
η, j

fdip(cA,i, c j,η )

r3
Ai,η j

, (A9)

∂t cB,i = fSTO(cB,i )cB,i

+ Ji fJ (cB,i, cA,i ) + J̃i fJ (cB,i, ci+1,A)

+ Gi fG(cB,i, cA,i ) + G̃i−1 fG(cB,i, ci+1,A),

+ �d

′∑
η, j

fdip(cB,i, c j,η )

r3
Bi,η j

, (A10)

where fJ (cη,i, c j,η′ ), fG(cη,i, c j,η′ ) and fdip(cB,i, c j,η ) are the
RRKY, dissipative and dipolar couplings between the STOηi

and STOη′ j . These are given by

fSTO(cη,i ) = −i(ωη,i + 2pη,i ) − αη,iωη,i(1 + (2/ωη,i − 1)pη,i ) + Js,η,i(1 − pη,i ), (A11)

fJ (cη,i, c j,η′ ) = i

2
√

1 − pη,i
(c j,η′ (2 − 3pη,i )

√
1 − p j,η′ + cη,ic

∗
j,η′ (4c j,η′

√
1 − pη,i − cη,i

√
1 − p j,η′ ) − 2cη,i

√
1 − pη,i ), (A12)

fG(cη,i, c j,η′ ) = 1

1 − pη,i
(c j,η′ω j,η′ (−√

1 − p j,η′
√

1 − pη,i + c∗
j,η′ (2c j,η′

√
1 − p j,η′

√
1 − pη,i − cη,i ))

− 2c j,η′ p j,η′ (
√

1 − p j,η′
√

1 − pη,i + cη,ic
∗
j,η′ )), (A13)

fdip(cη,i, c j,η′ ) = i√
1 − pη,i

(cη,i

√
1 − pη,i + 2c2

η,ic
∗
j,η′

√
1 − p j,η′ − 2cη,i p j,η′

√
1 − pη,i

− √
1 − p j,η′ (1 − 3cη,iRe[cη,i])(c j,η′ − 3Re[c j,η′ ])). (A14)

APPENDIX B: HAMILTONIAN

The full Hamiltonian is given by H = ∑
i Hi + HG

i + Hdip
i , where Hi is given in Eq. (4) and

HG
i = iGω[a†

i bi + H.c.] + iG̃ω[a†
i bi−1 + H.c.], (B1)

Hdip
i = �d

∑
η

[
η

†
i ηi +

′∑
j,η′

η
†
i η

′
j + 3η

†
i η

′†
j + 3ηiη

′
j

2r3
ηi,η′ j

]
, (B2)

with η, η′ = a, b and the
∑′ indicates that the sum excludes self-interactions (i.e., i = j, ν = η). The boundary conditions are

then given by Eq. (5) and

HG
j = iGω[a†

j b j + H.c.] + iG̃ω[b†
jal + H.c.]. (B3)
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