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Abstract

Zero forcing is a coloring process on a graph that was introduced more
than fifteen years ago in several different applications. The goal is to color
all the vertices blue by repeated use of a (deterministic) color change rule.
Probabilistic zero forcing was introduced by Kang and Yi in [Bull. Inst.
Combin. Appl. 67 (2013), 9–16] and yields a discrete dynamical system,
which is a better model for some applications. Since in a connected graph
any one vertex can eventually color the entire graph blue using proba-
bilistic zero forcing, the expected time to do this is a natural parameter
to study. We determine expected propagation time exactly for paths and
cycles, establish the asymptotic value for stars, and present asymptotic
upper and lower bounds for any graph in terms of its radius and order. We
apply these results to obtain values and bounds on �-round probabilistic
zero forcing and confidence levels for propagation time.
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1 Introduction

Zero forcing is a coloring process on a graph that was introduced independently in
the study of control of quantum systems in mathematical physics [8] and the study
of the maximum nullity problem in combinatorial matrix theory [3]. It was later
observed to have connections with graph searching [29] and power domination [6].
As noted in [24], zero forcing is an example of a cellular automaton; such processes
are common in mathematics and computer science. Variants of zero forcing, such
as positive semidefinite zero forcing related to the maximum positive semidefinite
nullity problem [5] and k-forcing [4], have also been studied (see also [17]). The
initial focus of much work on zero forcing and variants was on the minimum number
of vertices that needed to be colored initially in order to color the entire graph
through the propagation process (see, for example, [16] and the references therein).
Computation of the zero forcing number is NP-hard [1] and various papers giving
bounds on the zero forcing number in terms of other graph parameters have appeared
(see, for example, [12, 13]). More recently, derived parameters such as propagation
time [11, 22] and throttling [9] have generated substantial interest and established
connections between zero forcing and other graph searching parameters such as Cops
and Robbers (see [7]). Zero forcing, its variants, propagation time, and throttling
are one of the main subjects of the forthcoming book [23].

Zero forcing on a graph G is described by the following (standard) zero forcing
color change rule: Given a set B of vertices of G that are colored blue with the
remaining vertices colored white, a blue vertex u can change the color of (force)
a white vertex w to blue if w is the only white neighbor of u; this is denoted by
u → w. A force performed using the zero forcing color change rule is also called
a deterministic force. A zero forcing set of G is a set Z ⊆ V (G) of vertices such
that when the vertices of Z are colored blue and the remaining vertices are colored
white, every vertex can eventually be colored blue by repeated applications of the
color change rule. The zero forcing number of G, Z(G), is the minimum cardinality
of a zero forcing set.

Probabilistic zero forcing was introduced by Kang and Yi in [25, Definition 1.1].
Given a set B of currently blue vertices, in one round each blue vertex u ∈ B fires
at, i.e., attempts to force (change the color to blue), each of its white neighbors
w ∈ V (G) \B independently with probability

Pr(u → w) =
|N [u] ∩ B|

deg u
. (1)

The coloring rule just described is the probabilistic color change rule (in [25] Pr(u →
w) is denoted by F (u → w)). Probabilistic zero forcing refers to the process of
coloring a graph blue by repeatedly applying the probabilistic color change rule. As
noted in [25], the definition of probability of a force in (1) has the property that a
deterministic force will be performed with probability one.

The probabilistic color change rule produces a discrete dynamical system that
is of mathematical interest and that plausibly describes many applications. The
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evolution of this discrete dynamical system is a Markov process, as Kang and Yi
note in [25]. Zero forcing is sometimes used to model rumor spreading in social
networks, and given human nature a probabilistic model is reasonable to study. A
probabilistic model is also of interest for the spread of infection among a population,
or the spread of a computer virus in a network. A related model from the literature
is the push model, also called randomized rumor spreading, where an initial vertex
in the graph is given a rumor, and then in each round, every vertex that knows
the rumor selects one of its neighbors uniformly at random and passes the rumor to
them [27]. For any regular graph on n vertices, it is known that randomized rumor
spreading takes Ω(log n) rounds to complete [15], and that the complete graph on n
vertices has the fastest completion time among regular graphs [18].

Probabilistic zero forcing also offers a new perspective on forcing and propagation,
and it is necessary to revise the parameters of interest. For zero forcing, determining
the minimum number of vertices needed to color the graph blue is a main research
question (on a connected graph of order at least three that is not a path, no one
vertex is a zero forcing set). However, in probabilistic zero forcing any one vertex
in a connected graph can eventually force the entire graph blue. Since a minimum
zero forcing set is not of interest, we consider other parameters for the study for
probabilistic zero forcing.

A natural object of study is the expected number of rounds needed to color all
vertices blue with a given starting set of vertices, especially starting with a single
vertex; this is the parameter studied in Section 2. In the deterministic case, the
propagation time pt(G,Z) of a zero forcing set Z for G is the number of time steps
needed to color all vertices blue, performing independent forces simultaneously at
each time step [22]. The propagation time pt(G) of a graph G is the minimum of
pt(G,Z) over all minimum zero forcing sets Z.

We can recast the definition of zero forcing in parallel with that of probabilistic
zero forcing, which is particularly useful for defining a time step in the study of prop-
agation time. Given a set B of currently blue vertices, in one time step (analogous
to a round) each blue vertex u ∈ B fires at, i.e., attempts to force (change the color
to blue), each of its white neighbors w ∈ V (G) \B independently with probability

Pr(u → w) =

{
1 if w is the only white neighbor of u,

0 otherwise.
(2)

The probabilistic propagation time of a nonempty set Z of vertices of a connected
graph G, ptpzf(G,Z), is a random variable that reflects the time (number of the
round) at which the last white vertex turns blue when applying a probabilistic zero
forcing process starting with the set Z blue (if G is not connected, we assume Z
contains at least one vertex from each connected component of G). For a graph G
of order n and a set Z ⊆ V (G) of vertices, the expected propagation time of Z for G
is the expected value of the propagation time of Z, i.e.,

ept(G,Z) = E[ptpzf(G,Z)].
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The expected propagation time of a connected graph G is the minimum of the expected
propagation time of Z for G over all one-vertex sets Z, i.e.,

ept(G) = min{ept(G, {v}) : v ∈ V (G)}.
In Section 2 we determine ept(G) exactly when G = Pn (a path on n vertices) or
G = Cn (a cycle on n vertices). We also determine asymptotic upper and lower
bounds on expected propagation time for all connected graphs and apply them to
additional families of graphs.

While we consider expected propagation time the most natural object of study for
probabilistic zero forcing, there are other parameters of interest. Aazami introduced
the study of �-round zero forcing for (deterministic) zero forcing in [1, 2]; an �-
round zero forcing set can (deterministically) force the entire graph blue in at most �
time steps. In Section 3 we define the �-round probability as the maximum possible
probability of all vertices being colored blue in � rounds starting with a single vertex of
the graph; this parameter is a possible alternative to the parameter PB(G) introduced
by Kang and Yi in [25] (see Section 3.2 for the definition of PB(G)). In Section 4
we approach propagation time from the perspective of confidence levels, i.e., what is
the minimum number of rounds needed to ensure the entire graph will be blue with
probability at least α (e.g., α = .95 for a 95% confidence level). Many of the results
on expected propagation time can be applied to obtain results for these parameters.

A preprint of this paper appeared on the arXiv in 2018 as [21]. As a result of the
posting of that preprint, several other researchers have studied expected propagation
time, and in [10, 14, 26] they have improved some of our results about expected
propagation time as well as introducing new directions. Whenever a result presented
here has subsequently been improved, that is noted immediately after we conclude
our proof. In addition to improving the bound in Theorem 2.5, Narayanan and Sun
establish the bounds log2 log2(2n) ≤ ept(G) ≤ n

2
+O(logn) for all graphs G of order

n. English et al. study expected propagation time of random graphs (and improve
Corollary 2.6). Markov chain techniques (see Remark 2.12) are the focus of [10] and
numerous additional such results appear there. We include the original results and
proof here because because in some cases the improved results rely explicitly on the
proofs included here and in some cases the methods differ significantly. A question
that appeared in the original preprint has subsequently been answered, and thus does
not appear here as a question. Question 2.6 in [21] asked whether adding an edge
to the graph could raise the expected propagation time. This question is answered
in the affirmative in [10], where the exact values of expected propagation time of a
tadpole graph and a tadpole graph with extra edge are presented.

We conclude this introduction with some notation that will be used through-
out and statements of results from probability theory that will be used repeatedly.
The distance between vertices u and v is denoted by dist(u, v), and dist(u, S) =
minx∈S dist(u, x) for S ⊆ V (G). The eccentricity of a set U ⊆ V (G) is defined by
ecc(U) = maxv∈V (G) dist(U, v). The radius of G is rad(G) = minu∈V (G) ecc({u}).

For functions f(n) and g(n) from the nonnegative or positive integers to the real

numbers, asymptotic bounds are defined as follows: f(n) = o(g(n)) if limn→∞
f(n)
g(n)

=
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0, f(n) = O(g(n)) if there exists c > 0 such that f(n) ≤ cg(n) for all n sufficiently
large, f(n) = ω(g(n)) if g(n) = o(f(n)), f(n) = Ω(g(n)) if g(n) = O(f(n)), and
f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)).

Theorem 1.1 (Markov’s inequality). Let X be a nonnegative random variable. For
any constant a > 0,

Pr(X ≥ a) ≤ E[X ]

a
.

Theorem 1.2 (Chebyshev’s inequality). Let X be a random variable. For any con-
stant c > 0,

Pr(|X −E[X ]| ≥ c) ≤ Var(X)

c2
.

Observation 1.3. If the probability of an event is p, then the expected trial of the
event’s first occurrence in repeated trials is 1

p
.

2 Expected propagation time

In this section we determine the expected propagation time of cycles and paths
exactly, develop several tools for bounding the expected propagation time, and apply
these tools to obtain bounds on the expected propagation time of several additional
families of graphs.

Proposition 2.1. For a cycle of order n > 2,

ept(Cn) =

{
n
2

+ 1
3

if n is even,
n
2

+ 1
2

if n is odd.

Proof. Since Cn is vertex transitive, it does not matter which vertex is chosen as the
blue vertex. Observe that ept(Cn) is the sum of the expected number of rounds until
the first successful probabilistic force plus the number of rounds for the remainder of
the vertices to be deterministically forced blue, since the process becomes determin-
istic as soon as there are at least two adjacent blue vertices. Since the probability
that one blue vertex forces at least one of its white neighbors in any round is 3

4
,

the expectation for the first force is 4
3

by Observation 1.3. The number of rounds r
needed to deterministically force all remaining vertices once two or three consecutive
vertices are blue is the maximum of the distance dist(w,B) of a white vertex w to
the set B of (two or three) blue vertices. For n even, r = n−2

2
(regardless of whether

there are two or three blue vertices), so ept(Cn) = 4
3

+ n−2
2

= n
2

+ 1
3
.

Now assume n is odd. The case of three blue vertices must be distinguished from
two blue vertices because it affects r = maxw∈V (G)\B dist(w,B). When there are
three consecutive blue vertices, r = n−3

2
, whereas with two adjacent blue vertices

r =
⌈
n−2
2

⌉
= n−1

2
. Assuming that the first force has taken place in the prior round,

the probability of exactly three blue vertices (two forces occurred) is 1
3

and the
probability of exactly two blue vertices (one force occurred) is 2

3
. Thus ept(Cn) =

4
3

+ 1
3
(n−3

2
) + 2

3
(n−1

2
) = n

2
+ 1

2
.
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Proposition 2.2. For a path of order n > 2,

ept(Pn) =

{
n
2

+ 2
3

if n is even,
n
2

+ 1
2

if n is odd.

Proof. Number the vertices of Pn in order from 1 to n. We begin by considering the
case that a center vertex u =

⌈
n
2

⌉
is the blue vertex. For odd n, the situation is the

same as that of a cycle (see Lemma 2.1) and ept(Pn) = 4
3

+ 1
3
(n−3

2
) + 2

3
(n−1

2
) = n

2
+ 1

2
.

Now assume n is even, which means the distance from u = n
2

to n is n
2

whereas
the distance from u to 1 is n

2
− 1. Assuming that at least one force takes place, the

probability of n
2

+ 1 being forced (with or without n
2
− 1 being forced) is 2

3
and the

probability of only n
2
−1 being forced is 1

3
. Thus ept(Pn) = 4

3
+ 2

3
(n
2
−1)+ 1

3
(n
2
) = n

2
+ 2

3
.

Finally, consider the case of ept(Pn, {v}) when v is not a center vertex. The
computation is analogous to that for the even case, but with the maximum distance
being greater than n

2
, which results in a greater expected propagation time.

Next we prove a main lemma that provides an upper bound for expected propa-
gation time for the neighborhood of a vertex based on its degree.

Lemma 2.3. Let G be a graph. Then for any vertex v of G,

ept(G[N [v]]) = O(log deg v).

Proof. Let d = deg v. Let G′ be the graph obtained from G[N [v]] by removing all
edges except for those incident to v; note that the order of G′ is d + 1. Since the
degree of v is the same in both G and G′ and additional forcing of vertices in G[N [v]]
may be possible in G, ept(G[N [v]]) ≤ ept(G′, {v}). Thus it suffices to prove that
ept(G′, {v}) = O(log d). Since asymptotic bounds are for sufficiently large values,
we assume d ≥ 272. We establish the following three claims, using b to denote the
number of currently blue vertices in G′ and w = d + 1 − b to denote the number of
currently white vertices.

(C1) For 1 ≤ b ≤ 36, the probability of at least one new blue vertex in G′ in one
round is at least 1

2
.

(C2) For 36 ≤ b ≤ d
2
, the probability of at least b

4
new blue vertices in G′ in one

round is at least 1
2
.

(C3) For 1 ≤ w ≤ d
2
, the probability of at least w

4
new blue vertices in G′ in one

round is at least 16
17

.

Once the three claims have been established, by Observation 1.3 the expected number
of rounds to satisfy the condition for one new blue vertex, at least b

4
new blue vertices,

or at least w
4

new blue vertices, is at most 2, 2, or 17
16

, respectively. Thus the expected
number of rounds to go from 1 to at least 36 blue vertices is O(1). Starting with
between 36 and d

2
blue vertices, the expected number of rounds until the number
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of blue vertices goes up by 25% is at most 2. Thus the expected number of rounds
until the number of blue vertices is at least

(
5
4

)r
36 is at most 2r, and the expected

number of rounds to go from at least 36 blue vertices to at least d
2

+ 1 blue vertices
is O(log d). Starting with at least d

2
+ 1 blue vertices, or at most d

2
white vertices,

the expected number of rounds until the number of white vertices decreases by 25%
is 17

16
. Thus the expected number of rounds until the number of white vertices is at

most
(
3
4

)r(d
2

)
is at most 17

16
r, and the expected number of rounds to go from at least

d
2

+ 1 blue vertices to all blue vertices is O(log d). Thus ept(G′, {v}) = O(log d).

For (C1), note that when there are b blue vertices, the probability that at least
one additional vertex gets colored blue in the current round is

1 −
(

1 − b

d

)d+1−b

≥ 1 −
(

1 − b

d

)d−b

≥ 1 − 1

eb(d−b)/d
≥ 1

2

for b ≤ 36.

For (C2), let p(b) be the probability that the number of vertices forced in the
current round is at least b

4
, given that there are currently b blue vertices and 36 ≤

b ≤ d
2
. For each white vertex v1, . . . , vd+1−b, define Xi to be 1 if vi is colored blue

in this round and 0 otherwise. Let X =
∑d+1−b

i=1 Xi. Since the Xi’s are independent

identically distributed (i.i.d.) random variables with E[Xi] = b
d

and Var[Xi] = b(d−b)
d2

,

we have E[X] = b(d+1−b)
d

> b
2

and Var[X] = b(d−b)(d+1−b)
d2

≤ b. For 36 ≤ b ≤ d
2
,

1 − p(b) = Pr

(
X <

b

4

)

≤ Pr

(
X ≤ b

4

)

= Pr

(
b

2
−X ≥ b

4

)

≤ Pr

(
E[X ] −X ≥ b

4

)

≤ Pr

(
|X − E[X]| ≥ b

4

)
≤ Var[X ]

( b
4
)2

≤ 16

b
<

1

2

where Pr
(|X − E[X]| ≥ b

4

) ≤ Var[X]

( b
4
)2

is Chebyshev’s inequality and the other equal-

ities and inequalities follow from the definitions, the values above, or algebraic ma-
nipulation. Thus in this case p(b) > 1

2
.

For (C3), let q(w) be the probability that the number of new blue vertices in
the current round is at least w

4
, given that there are currently w ≤ d

2
white vertices

in G′. For each white vertex v1, . . . , vw, define Yi to be 1 if vi is colored blue and
0 otherwise. Let Y =

∑w
i=1 Yi. Since the Yi’s are i.i.d. with E[Yi] = d+1−w

d
and

Var[Yi] = (d+1−w)(w−1)
d

, we have E[Y ] = (d+1−w)w
d

≥ w
2

and Var[Y ] = (d+1−w)(w−1)w
d2

.
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Since d ≥ 272,

1 − q(w) ≤ Pr
(
Y ≤ w

4

)
= Pr

(w
2
− Y ≥ w

4

)
≤ Pr

(
E[Y ] − Y ≥ w

4

)
≤ Pr

(
|Y −E[Y ]| ≥ w

4

)
≤ Var[Y ]

(w
4
)2

≤ 16

d
≤ 1

17
.

The next lemma will be used to establish a general upper bound.

Lemma 2.4. Let G be a graph and suppose that the vertices v1, . . . , vb each have
degree at most k and all are colored blue. Then the expected number of rounds until
all of their neighbors are colored blue is O(log b log k).

Proof. In Lemma 2.3, we proved that if v is a vertex with k neighbors, then once v
turns blue, the expected number of rounds before all of the neighbors of v are blue
is at most c log k for some constant c.

Define a block as a consecutive sequence of 2c log k rounds. By Markov’s inequal-
ity the probability that all of the neighbors of v get colored within one block after v
is colored is at least 1

2
. We bound the expected number of blocks for all neighbors

of the vertices v1, . . . , vb to be successfully colored from the first time at which all of
v1, . . . , vb have been colored blue.

Let Xi be the random variable for the number of blocks that it takes for all
the neighbors of vi to be colored blue, and define X = max(Xi : 1 ≤ i ≤ b). If
F (x) = min(Pr(Xi ≤ x) : 1 ≤ i ≤ b), then observe that Pr(X ≤ x) ≥ F (x)b.

Note that F (x) ≥ 1 −(1
2

)�x�
, so

E[X] ≤
∫ ∞

0

⎛
⎝1 −

(
1 −
(

1

2

)�x�)b
⎞
⎠ dx =

∞∑
n=0

(
1 −
(

1 −
(

1

2

)n)b
)

≤
∞∑
n=0

min

(
1, b

(
1

2

)n)
≤ 	log2 b
 + 3.

Thus if the vertices v1, . . . , vb all are colored blue, then the expected number of rounds
for all neighbors of v1, . . . , vb to get colored is O(log b log k).

Since a vertex at a distance r from the one initially blue vertex cannot be reached
in fewer than r rounds, it is natural to develop general bounds that apply to all graphs
in terms of both the radius, rad(G), and the order of G.

Theorem 2.5. For all connected graphs G of order n,

rad(G) ≤ ept(G) = O(rad(G)(logn)2)

and the lower bound is asymptotically tight.
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Proof. The lower bound of rad(G) is immediate because the vertices colored in round
i can be distance at most i from the one vertex that was colored blue initially. The
path and cycle show that the lower bound is asymptotically tight (see Propositions
2.2 and 2.1).

For the upper bound, initially color a center vertex of G blue. At an arbitrary
step of the coloring process, suppose that there are b ≤ n blue vertices v1, . . . , vb
that have at least one white neighbor. In Lemma 2.4, we proved that if v1, . . . , vb are
vertices each with at most k neighbors, then there exists a constant c such that once
v1, . . . , vb are all blue, the expected number of rounds before all of their neighbors
are blue is at most c log k log b.

Thus after the round during which the last of v1, . . . , vb is colored blue, the
expected number of rounds for all neighbors of v1, . . . , vb to get colored blue is
O((logn)2). Since all vertices in G are within distance rad(G) of the initial blue
vertex, the expected number of rounds until every vertex in G is blue is
O(rad(G)(logn)2).

The upper bound in Theorem 2.5 is improved in Theorem 3.1 of [26] to ept(G) =

O
(

rad(G) log
(

n
rad(G)

))
, and in [26, Theorem 3.6] it is shown that this upper bound

is tight.

The Erdős-Rényi random graph with edge probability p is denoted by G(n, p).
For a fixed probability p or a probability bounded by a function of n, we say G(n, p)
has some property P with with high probability if the probability that G(n, p) has
the property P goes to one as n goes to infinity.

Corollary 2.6. For p ≥ (
√

2 + o(1))
√
logn√
n

, with high probability ept(G(n, p)) =

O((logn)2).

Proof. For p ≥ (
√

2 + o(1))
√
logn√
n

, the random graph G(n, p) has diameter at most 2

with high probability (see, for example, [19, Theorem 7.1]). Thus G(n, p) has radius
at most 2 with high probability. Thus the result follows from Theorem 2.5.

Corollary 2.6 is improved in Theorems 3.1 and 4.1 of [14], showing for fixed
probability 0 < p < 1, ept(G(n, p)) = (1 + o(1)) log2 log2 n with high probabil-
ity. These theorems are individually stronger, e.g., [14, Theorem 3.1] shows that
ept(G(n, p)) = (1 + o(1)) log2 log2 n + (1 + o(1)1

p
with high probability whenever

p = ω
(
logn
n

)
.

Next we apply previous results to graphs with certain properties and families of
graphs. The next result is immediate from Lemma 2.3.

Corollary 2.7. If a graph G of order n has a universal vertex, then ept(G) =
O(logn).

Corollary 2.7 is used in the proof Theorem 3.2 of [10] to establish the following
result: Let c be a fixed positive integer. Then ept(G) = Θ(log n) for a graph G of
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order n with a universal vertex u whose deletion leaves a graph having maximum
degree at most c.

Theorem 2.8. For the star on n + 1 vertices, ept(K1,n) = Θ(log n).

Proof. The upper bound follows from Lemma 2.3. For the lower bound, let h(b) be
the probability that the number of new blue vertices colored in the current round
is at most 4b, given that there are currently b blue vertices in K1,n and the center
vertex is blue. Using the same setup with the random variables Xi for each i =
1, . . . , n + 1 − b and X =

∑n+1−b
i=1 Xi as in Lemma 2.3, E[X] = b(n+1−b)

n
≤ b and

Var[X] = b(n−b)(n+1−b)
n2 ≤ b. We again use Chebyshev’s inequality to show that

h(b) = 1 − O(
√
n
−1

) for
√
n ≤ b ≤ n

2
:

1 − h(b) ≤ Pr(X − b ≥ 3b) ≤ Pr(|X − E[X]| ≥ 3b)

≤ Var[X ]

(3b)2
≤ 1

9b
≤ 1

9
√
n

= O

(
1√
n

)
.

Since starting with
√
n ≤ b ≤ n

2
blue vertices and coloring at most 4b additional

vertices blue means there are at most 5b blue vertices after the round, the probability

that there are at most 5rb blue vertices after r rounds is at least
(

1 −O( 1√
n
)
)r

. Thus

going from b ≤ √
n blue vertices to at least n

2
blue vertices requires that 5r

√
n ≥ n

2
,

or r ≥ log5

(√
n
2

)
. Thus with probability at least (1 −O(

√
n
−1

))log5(
√
n/2) = 1 − o(1),

it takes at least log5

(√
n
2

)
rounds for the number of blue vertices to increase from

at most
√
n to at least n

2
. Since

√
n ≥ 2 for n > 3, we have covered the case in

which the first blue vertex is a leaf rather than the center, because in that case the
expected propagation time is one more than the expected propagation time starting
with two blue vertices, one of which is the center. Thus ept(K1,n) = Ω(log n).

Theorem 2.8 is extended in Theorem 3.3 of [10] to ept(Kc,n) = Θ(log n) for a
fixed positive integer c.

Proposition 2.9. For the complete graph on n vertices, ept(Kn) = Ω(log log n).

Proof. Let ĥ(b) be the probability that the number of additional blue vertices colored
in the current round is at most 4b2, given that there are currently b blue vertices.
For each white vertex v1, . . . , vn−b, define Xi to be 1 if vi gets colored blue and 0

otherwise and X =
∑n−b

i=1 Xi. Since the Xi’s are i.i.d. with E[Xi] = 1−(1 − b
n−1

)b
and

Var[Xi] =
(

1 −(1 − b
n−1

)b)(
1 − b

n−1

)b
, we have E[X ] =

(
1 −(1 − b

n−1

)b)
(n−b), and

furthermore Var[X] =
(

1 −(1 − b
n−1

)b)(
1 − b

n−1

)b
(n−b) ≤ E[X] ≤ b2 by Bernoulli’s

inequality. By algebraic manipulation and Chebyshev’s inequality,

1 − ĥ(b) ≤ Pr
(
X − b2 ≥ 3b2

) ≤ Pr
(|X −E[X]| ≥ 3b2

) ≤ Var[X ]

(3b2)2
≤ 1

9b2
= O

(
1

b2

)
.
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Since starting with log n ≤ b ≤ n blue vertices and coloring at most 4b2 additional
vertices blue means there are at most 5b2 ≤ b3 blue vertices after the round for
b ≥ 5, the probability that there are at most b(3

r) blue vertices after r rounds is at

least
(

1 −O( 1
(logn)2

)
)r

. Thus with probability at least 1− o(1), going from b ≤ logn

blue vertices to n blue vertices requires that (log n)(3
r) ≥ n, or r ≥ log3

(
logn

log logn

)
.

Thus with probability at least 1 − o(1), it takes Ω(log log n) rounds for the number
of blue vertices to increase from at most log n to exactly n. Therefore ept(Kn) =
Ω(log log n).

Proposition 2.9 is extended in Theorem 3.1 of [10] to establish that ept(Kn) =
Θ(log logn). Note that this is much faster than the Θ(logn) completion time of
randomized rumor spreading for Kn [18].

A spider is a tree with exactly one vertex of degree at least three, which is called
the body vertex. The legs are the paths that result from deleting the body vertex.
The number of legs is the degree of the body vertex.

Proposition 2.10. Let G be a spider with k legs. Then ept(G) = rad(G)+O(log k).

Proof. By Theorem 2.5, ept(G) ≥ rad(G). For the upper bound, we initially color a
center vertex v of G blue. Let u be the body vertex of G. If v �= u, then the expected
time of first force is 4

3
. After the first force the process becomes deterministic until u

is colored blue. By Lemma 2.3, the number of rounds after u is colored blue for all of
u’s neighbors to get colored blue is O(log k). Then the process becomes deterministic
until the graph is all blue. This proves the upper bound since all vertices of G are
within rad(G) of v.

Recall that a full k-ary tree of height h, denoted by Tk,h, is constructed from a
root by performing h steps in which k leaves are appended to each vertex of degree at
most one. Observe that the order of Tk,h is n = kh+1−1

k−1
, so h = logk((k−1)n+ 1)−1.

Proposition 2.11. Let Tk,h be a full k-ary tree of order n. Then logk((k−1)n+1)−
1 ≤ ept(Tk,h) = O((logn)2), where the constant in the upper bound depends on k.

Proof. The lower bound follows from Theorem 2.5 and rad(Tk,h) = h = logk((k −
1)n + 1) − 1. For the upper bound, we initially color the root vertex v of G blue.
The expected number of rounds for all of the neighbors of v to be colored blue is
O(log k) by Lemma 2.3.

Suppose that at some stage of the coloring process, all of the kt vertices v1, . . . , vkt

in level t of the k-ary tree have been colored blue. By Lemma 2.4, the expected
number of rounds for all neighbors of v1, . . . , vkt to get colored after v1, . . . , vkt have
been colored is O(t), where the constant in the bound depends on k.

Since Tk,h has h = Θ(log n) levels (where the constants in the bound depend on k),

the expected number of rounds for every vertex in G to be colored is
∑O(logn)

t=1 O(t) =
O((logn)2).
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Finally, note that a probabilistic zero forcing process is a Markov chain. For
a discussion of the construction of the Markov transition matrix, see [25] (which
introduced the Markov chain approach), [10] (which builds on results presented here),
or the proof of Lemma 2.13 for an example of such a matrix. In the next remark,
we explain how to use the Markov transition matrix M to compute the expected
propagation time ept(G,Z).

Remark 2.12. Given a graph G and an initial set of blue vertices Z, each possible
set of blue vertices in the probabilistic zero forcing process is a state. Suppose there
are m states, in state 1 the blue vertices are exactly those in Z, and in state m all
vertices are blue. Let M denote the m × m Markov transition matrix defined by
these states and q = [1, 0, . . . , 0] (since state 1 has exactly the vertices of Z blue).
Then the probability that all vertices are blue after round r is (qM r)m =(M r)1m, so

ept(G,Z) =
∞∑
r=1

r
(
(M r)1m −(M r−1

)
1m

)
.

The method described in Remark 2.12 is particularly useful for specific small
cases, as in the next lemma. Recall that it was shown in Lemma 2.3 that ept(G[N [v]])
= O(log deg v) by considering a spanning star of G[N [v]] with center v.

Lemma 2.13. Let G be a graph and let v be a vertex of G. Then

ept(G[N [v]]) ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if deg v = 1,

2 if deg v = 2,

2.76316 if deg v = 3,

3.34171 if deg v = 4.

Proof. Let d = deg v. Let G′ be the graph obtained from G[N [v]] by removing all
edges except for those incident to v, so G′ is a star. As in the proof of Lemma 2.3,
it suffices to determine ept(G′, {v}) for d = 1, 2, 3, 4.

The case deg v = 1 is deterministic zero forcing. For deg v = 2, ept(G′, {v}) =
ept(P3) = 2 by Proposition 2.2. The remaining probabilities are computed using the
Markov transition matrices Md for d = 3, 4 shown below (see [20] for the computa-
tional details). These transition matrices were defined by using the states consisting
of 0, 1, . . . , d blue leaves.

M3 =

⎡
⎢⎢⎣

8
27

4
9

2
9

1
27

0 1
9

4
9

4
9

0 0 0 1
0 0 0 1

⎤
⎥⎥⎦ and M4 =

⎡
⎢⎢⎢⎢⎢⎣

81
256

27
64

27
128

3
64

1
256

0 1
8

3
8

3
8

1
8

0 0 1
16

3
8

9
16

0 0 0 0 1
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦.

The use of Markov transition matrices to determine expected propagation times
was subsequently developed more fully in [10].
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3 �-round probability

While we believe that expected propagation time is the most interesting parameter
associated with probabilistic zero forcing, several related parameters are also of in-
terest. Some results for the parameters discussed in this section and in Section 4
can be obtained by applying results for expected propagation time. In this section
we build on Aazami’s definition of �-round (deterministic) zero forcing to define the
�-round probability for probabilistic zero forcing. An �-round zero forcing set [1, 2]
is a set of vertices that is able to color the entire graph blue in at most � time steps.
The �-round propagation problem is to determine the minimum size of an �-round
zero forcing set. A dynamic programming algorithm is provided in [1] to optimally
solve the �-round propagation problem in polynomial time for graphs of bounded
tree-width.

Given a connected graph G, a set B of blue vertices, and a positive integer �,
the �-round probability of B, P

(�)
B (G), is the probability that all vertices of G are

blue after � rounds of probabilistic zero forcing starting with exactly the vertices of
B blue. The �-round probability of G, P (�)(G), is the maximum of P

(�)
B (G) over all

one vertex sets B. We begin by determining the �-round probability for cycles and
paths.

Proposition 3.1. For a cycle of order n > 2, P (�)(Cn) = 0 for � <
⌊
n
2

⌋
, and for

� ≥ ⌊n
2

⌋
,

P (�)(Cn) =

{
1 − (1

4
)�−n/2+1 if n is even,

1 − 3
4

(
1
4

)�−(n−1)/2
if n is odd.

Proof. The probability that the first force occurs in the kth round is
(
1
4

)k−1(3
4

)
. The

probability that two forces occur in the first round that has a force is 1
3
, and the

probability that only one force occurs on the first round that has a force is 2
3
.

First assume n is even. Then there will be n
2
− 1 rounds after the first force,

regardless of how many forces occur on the first round that has a force (call this

round k). Thus, the process takes t = n
2
−1 +k rounds with probability

(
1
4

)k−1(3
4

)
=

3
4

(
1
4

)t−n/2
. This implies that P (�)(Cn) = 0 for � < n

2
and

P (�)(Cn) = 1 −
∞∑

t=�+1

3

4

(
1

4

)t−n/2

= 1 −
(

1

4

)�−n/2+1

for every � ≥ n
2
.

Now assume n is odd. Then there will be n−1
2

rounds after the first force if there
is only one force on the first round that has a force, and there will be n−3

2
rounds

after the first force if there are two forces on the first round that has a force. The
probability of two forces in the first round is 1

3

(
3
4

)
= 1

4
, and t = 1+ n−3

2
= n−1

2
rounds

are needed to color all vertices blue. For each t ≥ n−1
2

+ 1, there are two ways to
achieve the last vertex turning blue in round t: Only one force happens in round

t−n−1
2

(and no forces earlier) with probability 2
3

(
1
4

)t−(n−1)/2−1(3
4

)
. Two forces happen
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in round t − n−1
2

+ 1 (and no forces earlier) with probability 1
3

(
1
4

)t−(n−1)/2(3
4

)
. So

the probability of the last vertex turning blue in round t ≥ n−1
2

+ 1 is 9
16

(
1
4

)t−(n+1)/2
.

This implies that P (�)(Cn) = 0 for � < n−1
2

and

P (�)(Cn) =
1

4
+

3

4

(
1 −
(

1

4

)�−(n−1)/2
)

= 1 − 3

4

(
1

4

)�−(n−1)/2

for every � ≥ n−1
2

.

Proposition 3.2. For a path of order n > 2, P (�)(Pn) = 0 for � <
⌊
n
2

⌋
, and for

� ≥ ⌊n
2

⌋
,

P (�)(Pn) =

{
1 − 1

2

(
1
4

)�−n/2
if n is even,

1 − 3
4

(
1
4

)�−(n−1)/2
if n is odd.

Proof. As in the proof of Proposition 2.2, it suffices to start the forcing at a central
vertex, since the forcing process becomes deterministic after the first force. The
probability of the first force occurring on the kth round and the probabilities of one
or two forces in the round with the first force are the same as for a cycle. If n is
odd, then the situation is the same as for a cycle, so P (�)(Pn) = 0 for � < n−1

2
and

P �(Pn) = 1 − 3
4

(
1
4

)�−(n−1)/2
for every � ≥ n−1

2
.

If n is even, then as in the proof of Proposition 2.2, we need to distinguish
whether the neighbor in the longer direction is forced: There will be n

2
− 1 rounds

after the first force with probability 2
3
, and there will be n

2
rounds after the first

force with probability 1
3
. Thus if n is even, then the process takes t = n

2
rounds

with probability
(
3
4

)(
2
3

)
= 1

2
and t ≥ n

2
+ 1 rounds with probability

(
2
3

)(
1
4

)t−n/2(3
4

)
+(

1
3

)(
1
4

)t−n/2−1(3
4

)
=
(
3
8

)(
1
4

)t−n/2−1
. This implies that P (�)(Pn) = 0 for � < n

2
and

P (�)(Pn) = 1
2

+ 1
2
(1 −(1

4

)
)�−n/2) for every � ≥ n

2
.

3.1 Applications of expected propagation time to �-round probability

We can obtain numerous corollaries about P (�)(G) from prior results about expected
propagation time and the next two lemmas. Lemma 3.3 is an application of Markov’s
inequality and Lemma 3.4 follows from Lemma 3.3.

Lemma 3.3. If G is a connected graph and � > ept(G), then P (�)(G) ≥ 1 − ept(G)
�

.

Lemma 3.4. For all connected graphs G, ept(G) = O(f(n)) implies P (�)(G) =
1 − o(1) for � = ω(f(n)).

Corollary 3.5. P (�)(G) = 1−o(1) for � = ω(logn) for every graph G with a universal
vertex.

We obtain the next table of bounds on P (�)(G) for various graph classes G.
The statements in rows 2, 4, 6, 7, and 8 follow from Lemma 3.4 together with
Theorem 2.8, [10, Theorem 3.1], Propositions 2.10 and 2.11, and Corollary 2.6. The
third and fifth rows use the same methods as in Theorem 2.8 and Proposition 2.9.
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An interesting open problem would be to see if more sophisticated techniques than
Markov’s inequality, such as Chebyshev’s inequality, could be used to sharpen any
of the following bounds.

graph class G � P (�)(G)
K1,n ω(logn) 1 − o(1)
K1,n o(logn) o(1)
Kn ω(log log n) 1 − o(1)
Kn o(log logn) o(1)
spider S with k legs ω(rad(S) + log k) 1 − o(1)
full k-ary tree T ω((logn)2) 1 − o(1)
G(n, p) for fixed 0 < p < 1 ω((logn)2) 1 − o(1)

Table 3.1: Bounds on P (�)(G) for classes of graphs G.

Corollary 3.6. P (�)(G) = 0 for � < rad(G) and P (�)(G) = 1 − o(1) for all � =
ω(rad(G)(logn)2) for every connected graph G.

Proof. The first statement is true since the number of steps in the coloring pro-
cess cannot be less than rad(G) if we start with only one blue vertex. The second
statement follows from Lemma 3.4 and Theorem 2.5.

3.2 Discussion of Kang and Yi’s PB(G) and its properties

After defining probabilistic zero forcing in [25], Kang and Yi define the probability
PB(G) as follows: Let ko be the first round in which it is possible to have a deter-
ministic zero forcing set colored blue, starting with exactly the vertices in B colored
blue. Define PB(G) to be the probability that a deterministic zero forcing set has
been colored blue in round ko.

A graph G together with an assignment of one of the colors blue and white to
each vertex of G is called a colored graph. We use GB to denote the colored graph
with underlying graph G and set of blue vertices B. For B ⊆ V (G), Sk

B denotes
the set of colored graphs that are possible (i.e., have positive probability) after the
kth round starting with GB; note that S0

B = {GB}. For Rk ⊆ Sk
B, P (k)(Rk) is the

probability that after round k the result is one of the colored graphs in Rk. Let T k
B =

{GZ ∈ Sk
B : Z is a (deterministic) zero forcing set for G}. Then PB(G) = P (k0)(T k0

B )
where k0 is the least k that T k

B �= ∅ [25] (and P∅(G) = 0).

In [25, page 13], Kang and Yi claim the following three properties are clear for
PB(G):

1. P∅(G) = 0.

2. If Z is a zero forcing set for G, then PZ(G) = 1.

3. If A ⊆ B ⊆ V (G), then PA(G) ≤ PB(G).
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The first of these properties is by definition (this was not explicit in the definition
in [25] but is clearly what is intended), and the second follows from the fact that
T 0
Z = {GZ} when Z is a zero forcing set, and thus P (0)(T 0

Z) = 1. However, the third
property, A ⊆ B ⇒ PA(G) ≤ PB(G), is not true, as shown in Example 3.7. We show
that �-round probability of B has the first and third properties desired by Kang and
Yi and a modified form of the second (see Proposition 3.8 below).

The problem with the third property for PB(G) is that the definition depends on
the round in which it is first possible to have a zero forcing set colored blue. With
a larger B, this may occur in an earlier round but with lower probability. This is
illustrated in the next example.

1 2 1 23

5

4

5

4

3

GA GB

Figure 3.1: Two colorings of a graph G with A ⊂ B and PA(G) > PB(G).

Example 3.7. Let G be the graph shown in Figure 3.1 with two colorings A = {1}
and B = {1, 3}. Any zero forcing set for G must contain at least one of 4 and 5, and
this is sufficient to guarantee a zero forcing set is blue given that vertex 1 is blue.

For GA, it takes at least three rounds to reach vertex 4 or 5 and it is possible to
color 4 or 5 blue in the third round. Thus PA(G) = P (3)(T 3

A) where T 3
A is the set of

all colored graphs attainable from GA in three rounds that have at least one of 4 or 5
blue. Vertex 2 is forced in the first round and vertex 3 is colored blue in the second
round, so T 3

A = {G{1,2,3,4}, G{1,2,3,5}, G{1,2,3,4,5}}. The probability 3 → 4 (or 3 → 5) in
the third round is 2

3
, so the probability of at least one of 4 and 5 being colored blue

is 1 −(1
3

)(
1
3

)
= 8

9
= P (3)(T 3

A) = PA(G).

For GB, it is possible to color at least one of 4 or 5 in round one. The probability
of 3 → 4 (or 3 → 5) is 1

3
, so the probability of at least one being forced in round one

is 1 −(2
3

)(
2
3

)
= 5

9
= P (1)(T 1

B) = PB(G).

Thus

PA(G) =
8

9
>

5

9
= PB(G).

Property (ii) of Proposition 3.8 has the added stipulation that � ≥ pt(G,Z),
which is necessary and seems reasonable given the definition of �-round probability.
In the definition of PB(G), the probability is measured after the first round in which a
zero forcing set can be colored blue, and this is incompatible with the third property.
Note a major difference between PB(G) and P

(�)
B (G) is that PB(G) requires only a

deterministic zero forcing set to be colored blue, while P
(�)
B (G) requires the whole

vertex set to be colored. We believe the definition of P
(�)
B (G) is more natural for the

application to rumor spreading, since the push model of randomized rumor spreading
also requires that the whole vertex set be colored [27].
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Proposition 3.8. Let G be a graph and � be a positive integer. Then

(i) P
(�)
∅ (G) = 0.

(ii) If Z is a zero forcing set for G and � ≥ pt(G,Z), then P
(�)
Z (G) = 1.

(iii) If A ⊆ B ⊆ V (G), then P
(�)
A (G) ≤ P

(�)
B (G).

Proof. (i): Since only blue vertices can force, P
(�)
∅ (G) = 0. For (ii), let Z be a zero

forcing set. Using only zero forcing will color the entire graph blue in pt(G,Z) time

steps (rounds). Since probabilistic zero forcing is not slower, P
(�)
Z (G) = 1. For (iii),

a long proof involving multidimensional rectangles was presented in [21]. However,
Lemma 2.2 of the later paper [14] used a much simpler coupling argument to prove
the same result (without relying on any results in [21]).

4 Confidence propagation time

In this section, we consider another perspective on probabilistic zero forcing to which
we can apply results on expected propagation time. For any connected graph G,
define ptpzf(G,Z, α) to be the least number of rounds t such that the probability that
all the vertices are blue after round t is greater than or equal to α, assuming that the
vertices in Z are colored blue initially. This can be thought of as the the time at which
you have alpha-confidence that the graph is all blue when starting with Z, and is
called the α-confidence propagation time. Define ptpzf(G,α) = min

v∈V (G)
ptpzf(G, {v}, α).

Confidence propagation time can be determined immediately from �-round prob-
ability when this is known, as for cycles and paths (Propositions 3.1 and 3.2). More
specifically, for each line of the following propositions with a number of rounds x and
a probability range p0 < α ≤ p1, the p0 values are obtained by using � = x − 1 in
Propositions 3.1 and 3.2, and the p1 values are obtained by using � = x.

Corollary 4.1. For a cycle of order n,

ptpzf(Cn, α) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n
2

if n is even and 0 < α ≤ 3
4
,

n
2

+ x if n is even and 1 − (1
4
)x < α ≤ 1 − (1

4
)x+1,

n−1
2

if n is odd and 0 < α ≤ 1
4
,

n−1
2

+ x if n is odd and 1 − 3
4
(1
4
)x−1 < α ≤ 1 − 3

4
(1
4
)x.

Corollary 4.2. For a path of order n,

ptpzf(Pn, α) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n
2

if n is even and 0 < α ≤ 1
2
,

n
2

+ x if n is even and 1 − 1
2
(1
4
)x−1 < α ≤ 1 − 1

2
(1
4
)x,

n−1
2

if n is odd and 0 < α ≤ 1
4
,

n−1
2

+ x if n is odd and 1 − 3
4
(1
4
)x−1 < α ≤ 1 − 3

4
(1
4
)x.

The next lemma is analogous to Lemma 3.3 in the last section.



J. GENESON AND L. HOGBEN/AUSTRALAS. J. COMBIN. 83 (3) (2022), 397–417 414

Lemma 4.3. If G is a connected graph, then ptpzf(G,α) ≤ ept(G)
1−α

.

Proof. By Markov’s inequality, the probability that G is not all blue by time T is at
most ept(G)

T
. When T = ept(G)

1−α
, this probability is at most 1 − α.

The upper bounds in the next corollary follow from Lemma 4.3 and results in
Section 2 (and in the case of (3), the stronger result that ept(Kn) = Θ(log logn)
established in [10, Theorem 3.1]) . The proofs for the two lower bounds use the same
method as in the proofs of Theorem 2.8 and Proposition 2.9.

Corollary 4.4. For every constant 0 < α < 1:

(1) ptpzf(G,α) = O(logn) for every graph G with a universal vertex.

(2) ptpzf(K1,n, α) = Θ(logn).

(3) ptpzf(Kn, α) = Θ(log log n).

(4) ptpzf(T, α) = O((logn)2) for every full k-ary tree T , where the constant in the
bound depends on k.

(5) rad(G) ≤ ptpzf(G,α) = O(rad(G)(logn)2) for every connected graph G.

(6) With high probability, ptpzf(G(n, p), α) = O((logn)2) for all fixed 0 < p < 1.

For spiders, we obtain a tighter bound than what is given by Lemma 4.3. This
follows from a proof very similar to Proposition 2.10, using Markov’s inequality on
the sum of the times for the first force to occur and for all neighbors of the body
vertex to be colored after the body vertex is colored.

Proposition 4.5. If G is a spider with k legs, then ptpzf(G,α) = rad(G) +O(log k),
where the constant in the O(log k) depends on α.

5 Concluding remarks

In [25] Kang and Yi provide key definitions for probabilistic zero forcing: the prob-
ability of a force (1) and the concept of a round. Here we use these definitions to
begin the study of expected propagation time, �-round probability, and confidence
propagation time. Many questions about these parameters remain. Here we list
some examples. Can one develop a reasonable approximation algorithm for ept(G)?
Which vertices v of G achieve ept(G)? Clearly any vertex achieves ept(G) in a
vertex-transitive graph, and we showed that a center vertex achieves ept(G) when
G is a path. However, it is not the case that a center vertex or (when it exists) a
universal vertex must realize ept(G); it was shown in [10] that the center vertex of
K1,3 (which is universal) does not achieve ept(G). What is the expected number of
vertices in G(n, p) that achieve ept(G)? The fact that many results from expected
propagation time can be applied to obtain results on �-round probability and confi-
dence propagation provides additional evidence that expected propagation time is a
parameter worthy of study.
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