San Jose State University

SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

2009

Analysis of rxbot

Esha Patil
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses

Recommended Citation

Patil, Esha, "Analysis of rxbot" (2009). Master's Theses. 3673.
DOI: https://doi.org/10.31979/etd.8zft-wv8h
https://scholarworks.sjsu.edu/etd_theses/3673

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SUSU
ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SUSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_theses
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3673&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/3673?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3673&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

ANALYSIS OF RXBOT

A Thesis
Presented to
The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

by
Esha Patil

May 2009

UMI Number: 1470986

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproductioh.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note wiil indicate the deletion.

UMI

UMI Microform 1470986
Copyright 2009 by ProQuest LLC
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

© 2009

Esha Patil

ALL RIGHTS RESERVED

SAN JOSE STATE UNIVERSITY
The Undersigned Thesis Committee Approves the Thesis Titled
ANALYSIS OF RXBOT
by
Esha Patil

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

f’ f
“'l ./ ’ 2 ,"/‘1 o
I ™~ N 9
S T - LY
Dr. Mark Stamp, Department of Computer Science Date
// A L PR S
. ""fd, P A £ o 3 . ’,/
4//// (ﬂ/wy A '/;f'v - é,_/’d”/afj{/’!//‘»a/ /"' - ¢ «
[N -
Dr. Robert Chun, Department of Computer Science Date
B "M."[[«‘J . . / _»*‘//A / s
‘ ,// e S P S d O ';;/
A o S - /
= 7
Dr. Teng Moh, Department of Computer Science Date

APPROVED FOR THE UNIVERSITY

N@M\,p C {wai/ (l<hs

Associate Dean Office of Graduate Studies and Research Date

ABSTRACT
ANALYSIS OF RXBOT

by Esha Patil
In recent years, botnets have emerged as a serious threat on the Internet. Botnets are
commonly used for exploits such as distributed denial of service (DDoS) attacks, identity
theft, spam, and click fraud. The immense size of botnets (hundreds or thousands of PCs
connected in a botnet) increases the ubiquity and speed of attacks. Due to the criminally
motivated uses of botnets, they pose a serious threat to the community. Thus, it is

important to analyze known botnets to understand their working.

Most of the botnets target security vulnerabilities in Microsoft Windows platform.
Rxbot is a win32 bot that belongs to the Agobot family. This paper presents an analysis
of Rxbot. The observations of the analysis process provide in-depth understanding of
various aspects of the botnet lifecycle such as botnet architecture, network formation,
propagation mechanisms, and exploit capabilitie\s. The study of Rxbot reveals certain
tricks and techniques used by the botnet owners to hide their bots and bypass some

security software.

TABLE OF CONTENTS
1 Introduction
1.1 What is Malware?
1.2 The changing trend in Malware usage
1.3 Malware infection increases the threat
1.4 Hiding makes detection difficult
1.5 Evolution of Malware
1.5.1 Elk Cloner virus
1.5.2 Melissa computer worm
1.5.3 Storm botnet
2 Introduction to Botnets
2.1 Overview of Botnets
2.2 Botnet Architecture
2.2.1 Formation
2.2.2 Command and Control (C&C)
2.2.3 Harvesting bot army
31IRC
3.1 Introduction to Internet Relay Chat (IRC)
3.2 IRC features
3.2.1 IRC Server
3.2.2 IRC Client

3.2.3 Command and Responses

3.2.4 Channels
3.2.5 Modes
3.2.6 Operators

3.3 IRC Bots

4 Malware Analysis

4.1 Malware Overview

4.2 Malware Typology

4.3 Malware Analysis Process

5 Analysis of Rxbot

5.1 Overview of Rxbot
5.1.1 Definition
5.1.2 Features of Rxbot
5.1.3 Exploits

5.2 Analysis Infrastructure
5.2.1 UnrealIRCd
5.2.2 mIRC

5.3 Static code analysis of Rxbot
5.3.1 What is static code analysis?
5.3.2 Source code analysis of Rxbot
5.3.3 Modularity of Rxbot source code
5.3.4 Configuration of Rxbot

5.3.5 Different modules of Rxbot

vi

10

10

11

11

11

12

14

14

14

14

15

15

16

16

16

16

17

17

17

24

5.4 Dynamic analysis of Rxbot
5.4.1 What is dynamic analysis?
5.4.2 Building and executing the bot client
5.4.3 Process level analysis
5.4.4 Network level analysis
5.5 Tricks used by bot masters
6 Packing and Crypting
6.1 Introduction to packing and crypting
6.2 Packing and Crypting performed on rBot.exe
6.2.1 Packing rBot.exe
6.2.2 Crypting of rBot.exe
6.2.3 Anti-virus scanning results
7 Future Work
7.1 Inroduction to Honeypots
7.1.1 Where did the name come from?
7.1.2 Definition
7.2 Types of Honeypots
7.3 The value of Honeypots
7.4 Limitations of Honeypots
7.5 Proposed future work
8 Conclusion

References

vii

26

26

26

27

30

33

34

34

34

34

36

40

44

44

44

44

45

46

46

46

48

49

LIST OF TABLES
Table 5.1: IRC server configuration details
Table 5.2: Backup IRC server configuration details
Table 5.3: IRC user and command configuration details
Table 5.4: Bot client configuration details
Table 5.5: Bot feature configuration details

Table 5.6: Service port configuration details

viil

18

19

20

21

22

23

Figure 4.1:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 6.1:
Figure 6.2:
Figure 6.3:
Figure 6.4:
Figure 6.5:
Figure 6.6:
Figure 6.7:
Figure 6.8:

Figure 6.9:

LIST OF FIGURES
Malware activities diagram
Rxbot process level details
Windows registry key under "Run" for Rxbot process
Windows registry key under "RunServices" for Rxbot process
Packing of rBot.exe
OUTPUT.EXE
Crypting of OUTPUT.EXE
"Save As" dialog box prompted by Poisen Ivy Crypter
Encrypted form of rBot.exe
Distinction between rBot executable files
Comparison of anti-virus scanning results
Original rBot.exe detected by McAfee

McAfee scan results for packed and crypted rBot executable

X

12

28

29

35

36

37

38

39

40

41

42

42

Chapter 1: Introduction

This chapter introduces malware and emphasizes the changing trend in malware usage.

The purpose is to help the readers understand the importance of malware analysis.

1.1 What is Malware?

Malware is a term derived from the words "malicious" and "software." Malware is
software designed to damage a computer system without the owner's consent
(“Malware,” 2009). Malware includes harmful software like spyware, adware, trojan

horses, worms, and viruses.

1.2 The changing trend in Malware usage

The purpose of malware has evolved a great deal during the past several years. During
the early years, malware was written as experiments or pranks intended to cause mere
annoyance rather than serious harm (“Malware,” 2009). In recent years, the motivation
for writing malware has shifted from mere experiments to profit-based malware creation.
With the increasing use of the Internet, malware is being used for spam, identity theft,

distributed denial-of-service (DDoS) attacks, and monetary purposes (“Botnet,” 2009).

1.3 Malware infection increases the threat
Various types of malware include manual or automatic spreading mechanisms. Worms
can spread an infection automatically over the network. Viruses can spread the infection

with user intervention. Attackers employ smart techniques like personalized email

messages, free software, and games to persuade users for getting their computer systems
infected. The spread of malware increases the threat by broadening the infection area

(“Malware,” 2009).

1.4 Hiding makes detection difficult
Trojans have the intelligence of pretending to be innocent. The prime motive of

concealment is to infect the victim systems without the owner's knowledge and consent

(*Malware,” 2009).

1.5 Evolution of Malware

Before the popularity of the Internet, early virus infections were observed in programs on
personal computers or executable boot sectors of floppy disks. The targeted systems
ranged from Apple II and Macintosh to IBM PC and MS-DOS systems. These virus

infections required user exchange of software or boot floppies (“Malware,” 2009).

In 1988, network-borne infectious programs, called worms, were first developed. Worms
originated on multitasking Unix systems. The worms were different from viruses in
exploiting the security vulnerabilities in network server programs. Rather than spreading
infection into executable programs, worms had the capability of running as a separate

process (“Malware,” 2009).

In the 1990s, it became possible to write macro viruses that infected Microsoft Word

documents and templates rather than applications. These viruses exploited the fact that

macros in a Word document are executable (“Malware,” 2009).

Today, worms have extended the damage to home users and businesses via the Internet.
Worms today still behave like the worms in 1988. Worms are commonly targeting large

number of Windows systems (“Malware,” 2009).

1.5.1 Elk Cloner virus
During the early years, passive propagation of viruses through the exchange of floppy

disks was prevalent. A virus was found in 1982 on Apple II and was known as Elk

Cloner (“Elk Cloner,” 2009).

1.5.2 Melissa computer worm

With the first worms, propagation was extended to a worldwide scale. The Melissa worm
was first found on March 26, 1999, when Internet mail systems were shut down as a
result of getting clogged by emails infected by Melissa. Melissa is a mass-mailing macro
virus that can spread on word processors like Microsoft Word 97, and Word 2000 as well
as Microsoft Excel 97, 2000, and 2003. The way Melissa spreads is through execution of
a macro from a downloaded Word document and attempts to mass email itself. The
victims of mass emailing are the first 50 entries of the address book or alias list

(“Melissa,” 2009).

1.5.3 Storm botnet

With the increasing use of the Internet, the focus of malware shifted.to ubiquity and
speed, and the motivation of attacks was money. First found in January 2007, the Storm
worm accounted for 8% of all malware on Microsoft Windows computers (“‘Storm
botnet,” 2009). Storm is a trojan horse that spreads through spam email. The Storm
botnet is a network of zombie computers connected by the Storm worm and can be
controlled remotely. It was estimated, by September 2007, that the Storm botnet was
running on anywhere from 1 million to 50 million computer systems. This botnet is used
for various criminal activities. The United States Federal Bureau of Investigation has
considered the botnet as a major risk to increased bank fraud, identity theft, and other

cybercrimes (“‘Storm botnet,” 2009).

Chapter 2: Introduction to Botnets
This chapter presents a brief overview of the botnet lifecycle and usage. The purpose is
to establish a clear understanding of the mechanics of botnets, before moving to the

detailed analysis of Rxbot.

2.1 Overview of Botnets

Botnets are one of the most dangerous and fast changing threats on the Internet today.
Traditional botnets are networks of compromised computers that can be controlled
remotely using Command and Control (C&C) mechanisms. Pieces of malicious code
called “bots” are installed on the victim machines. The originator of the botnet is known
as the "bot herder"” or the “bot master.” The bot herder controls and commands the bots
remotely, using various C&C mechanisms (“Botnet,” 2009). Usually IRC is used for

C&C. However, recently there is a shift towards using peer-to-peer mechanism for C&C.

A bot is also referred to as "zombie" or "drone." Bots run automatically and are hidden.
Bots propagate themselves automatically to other victim machines. An attacker can
remotely control a large number (hundreds or thousands) of machines connected in a

botnet (“Botnet,” 2009).

Bots are not inherently evil. The first bots were programs used in Internet Relay Chat
(IRC) networks to provide gaming or messaging services (“Internet Relay Chat bot,”

2009). These were "good" bots that enabled real-time communication through IRC

channels. Eventually bot code turned into malicious software serving nefarious purposes.
Botnets can be used for various monetary and destructive purposes including distributed
denial-of-service (DDoS) attacks, spam, click fraud, identity theft, and so on (“Botnet,”

2009).
2.2 Botnet Architecture

2.2.1 Formation

A malicious piece of code called the “bot client” is created by an attacker who acts as the
bot herder or the bot master. The bot herder infects a victim computer over the Internet
with this malicious bot code without the knowledge or consent of the computer owner.
Once the computér is compromised, the bot can take over the computer, and the bot
typically remains hidden. The bot is programmed to accept and respond to commands
and communicate with the Command and Control (C&C) center established by the bot
master. Usually an IRC server is setup as the C&C center. When the bot successfully
infects a victim machine, it informs the C&C center. The bot client is then updated with
new commands. The bot client goes over the Internet attempting to propagate itself to
other victim machines. In this manner, a large number of machines are compromised and
connected to the botnet that can be controlled and instructed remotely by an attacker to

perform various types of for-profit and destructive activities (Nachreiner, 2009).

2.2.2 Command and Control (C&C)

A bot master establishes a Command and Control (C&C) center to control and command
the network of bots. Typically, an IRC server is setup and configured to act as the C&C
center. Public IRC servers can be used for C&C purposes. However, today most bot
herders prefer to hide by setting up private IRC servers for their C&C mechanism. A bot
master can install the IRC server on any compromised machine. Using IRC channels, a

bot master can remotely command and control his army of bots (Nachreiner, 2009).

2.2.3 Harvesting bot army

Getting the first bot is the toughest job for a bot master. In order to install a bot client on
a victim machine, an attacker can use various hacking techniques such as spam email
with attachment, music download, exploiting unpatched vulnerabilities, hosting on a
website that pushes it to visitors. The bots are programmed with scanning commands
which can be used to spread the infection to many other victim machines over the
Internet. Once the first bot is propagated to a victim machine, the scanner commands of
the bot can add other machines to the malicious network. These compromised machines
then go on and add many other machines to the network. In this manner, a huge number
of machines can be forced to join the botnet. The bot masters can stop compromising

machines anytime they think they have a sufficient bot army (Nachreiner, 2009).

Chapter 3: IRC
This chapter introduces the IRC mechanism typically used by botnets for Command and
Control. The operational knowledge of IRC will support a thorough understanding of the

analysis results presented in this paper.

3.1 Introduction to Internet Relay Chat (IRC)

IRC is a form of real-time Internet chat or synchronous conferencing. IRC was created in
1988. 1t is a teleconferencing system that uses the client-server model and runs in a
distributed manner (“Internet Relay Chat,” 2009). The IRC client-to-server protocol is
documented in RFC 1459 (Oikarinen, 1993). IRC enables one-to-one as well as group
communication through messaging. For group communication, IRC channels are

established (“Internet Relay Chat,” 2009).

3.2 IRC features

3.2.1 IRC Server

An IRC server is the central point of contact for various clients to communicate with each
other. IRC servers can connect to each other, thus forming an IRC network (“Internet

Relay Chat,” 2009).

3.2.2 IRC Client

IRC servers can be accessed by users via an IRC client. IRC clients are distinguished

using a unique nickname that can contain a maximum of 9 characters (“Internet Relay

Chat,” 2009). A popular Windows IRC client is the “mIRC.”

3.2.3 Commands and Responses

IRC clients can send single-line messages to an IRC server and receive responses from
the server for those messages. Commands can be entered using the IRC clients by
prefixing each command with a “/”. Each message can contain three parts: an optional
prefix, the command, and the parameters for the command. The parts of a message are

separated by an ascii space character (0x20) (“Internet Relay Chat,” 2009).

3.2.4 Channels

Channels are the communication medium in an IRC session. Different users who want to
communicate with each other can join the same IRC channel using the command “/join
#channelname”. Once a user joins an IRC channel, the user can send a message on the
channel, which will be communicated to other users of the same channel. IRC channels
can be protected using passwords. Users are required to enter a password in order to join

a password-protected IRC channel (“Internet Relay Chat,” 2009).

3.2.5 Modes

There are two types of modes: user mode and channel mode. The modes can be set or

unset using a mode command. A mode is represented by a single case-sensitive letter.

[Ie)

For example, the letter “i” represents invisible user mode, or the letter “p” represents a

private channel mode (“Internet Relay Chat,” 2009).

3.2.6 Operators

“IRC Operators,” also known as “IRCops,” are users who have superior rights over the
entire IRC network or their local IRC server. These rights allow a user to perform
network administration. An IRC operator can act as the channel operator. Usually,
channel administration and network administration are handled separately (“Internet

Relay Chat,” 2009).

3.3IRC Bots

An “IRC bot” is an automated client that connects to IRC. The difference between a
normal IRC user and an IRC bot is that the IRC bot carries out functions in an automated
fashion. The early IRC bots were used in games. The usage evolved to serve special
purposes like managing channels for user groups, maintaining access lists, and providing
access to databases. Bots can perform many other useful functions, such as logging
activities in IRC channel, hosting games, creating statistics, etc. (“Internet Relay Chat

bot,” 2009).

10

Chapter 4: Malware Analysis

The process of analyzing a piece of malware is explained in this chapter.

4.1 Malware Overview

As previously mentioned, the term Malware is derived from two words: Malicious and
Software (“Malware,” 2009). Malware is an intelligent piece of code that exhibits the

following behavior:

J It will infect its targets.
. It will propagate itself, automatically or with human intervention.
. It might install a resident program, which allows an attacker to access and master

the infected system.

. It will remain hidden so as to prevent detection by the user of the system.

4.2 Malware Typology
Malware occurs in different forms such as viruses, worms, trojan horses, rootkits,
backdoors, spyware, and adware. These forms differ in the type of activities they

perform. Various activities performed by any form of malware are shown in Figure 4.1.

11

Propagation
— with the help g

SeIF: | of user
—] e
replication | | e e
| "Download Target Scanning
Ly S ! I t I
rest of body selection engine :
i
1
Infection [
—> P ence
ersisten: oS
Local system i modification
L— contaminatio — i
o —> Stealth —
| 0s
L configurations,
Remote applications
g access

— Key logging

-~ Sniffing

> etc.

Figure 4.1: Malware activities diagram

4.3 Malware Analysis Process:

The malware analysis process includes the following three steps:

1. Build or adapt the analysis infrastructure
The first step of the analysis process of any malware includes setting up the required
infrastructure. Building the analysis infrastructure includes setting up computers with

specific target operating systems that are exploited for vulnerabilities, installing

various analyzers, setting up particular servers that are attacked, etc. (Buchs, 2007).

12

2. Static analysis
This step must be performed before executing the malware and infecting the target
machines for study. This type of analysis includes observations such as

characteristics of files, source code analysis, configuration study, etc. (Buchs, 2007).

3. Dynamic or “live” analysis
At this step, the analyst will record the behavioral characteristics of the malware such
as accesses to files, directories, disks, windows registry, automatic startup
mechanisms, and integrity checks of files (Buchs, 2007).
Dynamic analysis can be performed in following ways:

a. Malware process analysis

b. Network traffic analysis

13

Chapter S: Analysis of Rxbot

This chapter presents the detailed analysis of “Rxbot.”

5.1 Overview of Rxbot

5.1.1 Definition

“Rxbot” (also known as “rBot”) is a win32 computer IRC worm (written in C++) that

spreads to computers running Windows XP (“Agobot,” 2009).

5.1.2 Features of Rxbot
Rxbot has the following features (““Agobot,” 2009):
e Belongs to the Agobot family of worms
e Maintains modularity
e Targets the Microsoft Windows platform
e Uses IRC for Command and Control (C&C)
e Supports password protected IRC channels for bot communication
e Includes the following capabilities
o Port scanning
o Packet sniffing
o Keylogging
e Includes Multi-threaded, Object Oriented, and Polymorphic code
e Uses SMTP client for sending spam and spreading copies of itself

o Uses HTTP client for click fraud and DDoS attacks

14

5.1.3 Exploits

Attackers exploit Rxbot to perform the following harmful activities (“Botnet,” 2009;
“Agotbot,” 2009):

e Distributed Denial of Service (DDoS) attacks

e Identity Theft

e Spam

e C(Click Fraud

5.2 Analysis Infrastructure
The analysis of Rxbot was performed using the following infrastructure:
e PC #] running Windows operating system used as the victim machine
o Rxbot infection was spread to this machine.
e PC #2 running Windows operating system used as the IRC Command and Control
(C&C) center
o UnreallRCd was installed on this machine as a daemon process for the
IRC server.
o mIRC was installed on this machine as a Windows client for accessing the
IRC server.
e Private network established between PC #1 and PC #2
o Cross-cable connection was used between the two PCs.

The analysis was performed very carefully in a private network. The personal computers

15

used for analysis were disconnected from the Internet in order to make sure that the

Internet was not endangered due to the experiments performed on Rxbot.

5.2.1 UnreallIRCd
“UnrealIRCd” is a very popular open source IRC daemon among the botnet community.

It runs on Windows and Linux operating systems. It is a light weight and easy to

configure daemon (“UnrealIRCd,” 2009).

5.2.2mIRC
“mIRC” is a popular Windows IRC client. It is available for free, and it is relatively easy
to setup. mIRC provides a user friendly GUI to perform various IRC related operations

(“mIRC,” 2009).

5.3 Static code analysis of Rxbot

5.3.1 What is static code analysis?

Static code analysis is the analysis performed on computer software without executing
the programs built from that software. This type of analysis can be performed on source
code or object code. This can be performed in an automated fashion using various
available source code analysis tools or with human analysis of the code known as

program understanding (“Static code analysis,” 2009).

16

5.3.2 Source code analysis of Rxbot

The source code of Rxbot was obtained from an underground forum (“Rxbot source
code,” 2009) as a “rar” file. After extraction, the C++ source code was retrieved. The
source code of Rxbot included a collection of C++ source and header files. Human
analysis was performed on the Rxbot source code, relying on knowledge of the C++

programming language and the Windows Operating System.

5.3.3 Modularity of Rxbot source code

The source code of Rxbot is very modular. Each individual feature of Rxbot has a
separate C++ source file. This enables the bot master to manage the botnet source code
easily. Adding a new module or removing any unwanted feature is simple. One can use
the original source code base and add new modules to it. Members of the Agobot family
are usually compatible with each other. A module written for one member can be easily
ported to énother member. Modularity of Rxbot facilifates this mix-matching of modules

to meet the bot herder’s requirements.

5.3.4 Configuration of Rxbot

3

The configuration file for Rxbot is named as “configs.h”, and it is located under the

header folder. The configuration properties of Rxbot are organized below with brief

description:

e Primary IRC server properties

17

These properties are used to configure the IRC Command and Control server for the

botnet. These should match the settings of the IRC server instance used for

Command and Control. The IRC server configuration details are described in Table

5.1

Table 5.1: IRC server configuration details

Property

Variable

Description

IRC Server Name or IP

char server[] =

"o

This is the IP or hostname
of the IRC server acting as

C&C center.

IRC Server Password

char serverpassf] =

Al

This is the password
required to connect to the

IRC server.

IRC Server Port

int port = 6667

This is the listening port of
the IRC server. The default

port is 6667.

IRC Channel Name

char channel[] = "#pwn'

!

This is the name of the IRC
channel the bot is supposed

to join.

IRC Channel Password

char chanpass[] =

e

IRC channels are protected

using passwords. This

18

property contains the
password required to join

the IRC channel.

e Backup IRC server properties

There is an option of defining a secondary IRC server. This server acts as a backup for

the main IRC server if it goes offline. The properties for the backup IRC server are listed

in Table 5.2.

Table 5.2: Backup IRC server configuration details

Property Variable Description

IRC Server2 Name or IP char server2[] = "" This is the IP or hostname
of the backup IRC server.

IRC Server2 Port int port2 = 6668 This is the listening port of
the backup IRC server.

IRC Channel2 Name char channel2[] = "#pwn"” | This is the channel name for
backup IRC server.

IRC Channel2 Password char chanpass2[] = "" This is the password

required to connect to the
IRC channel of the backup

IRC server.

19

e Other IRC properties
These include other properties required by IRC such as the command properties and user
properties. These properties will define the rules that must be followed by the IRC
commands and users, in order to carry out the communication in the IRC channel. The

configuration details specific to IRC users and commands are explained in Table 5.3.

Table 5.3: IRC user and command configuration details

Property Variable Description

Channel Topic Command BOOL topiccmd = TRUE If set to “TRUE”, an IRC
command can be used as

the channel topic.

Command Prefix Char prefix ="' This is the prefix character

for the IRC commands.

Nick Type int nicktype = CONSTNICK | The nick type is identified
| by this property. It can take
the values declared in the

file rndnick.h.

Random Numbers in Nick int maxrand = 7 This property indicates how
many random numbers are
allowed in the Dbot’s

nickname.

Nick Prefix BOOL nickprefix = TRUE | This is a flag indicating the

20

presence of nick prefix.

Nick Constant char nickconst(] This string is the first part
"[skank]" of the bot’s nickname.
Bot Mode char modeonconnf[] = "-x" | The bot’s mode after

connection is identified by

this property.

e Bot client properties

The bot client properties define the characteristics of the bot client file such as ID,

version, etc. These properties are described in Table 5.4.

Table 5.4: Bot client configuration details

Property

Variable

Description

Bot ID

char botid[] = ""

This string defines the bot

ID.

Bot Version

PN TS

char version[] =

The bot version is defined

by this string.

Bot Password char password[] = "" This is the password to
connect to the botnet.
Bot Executable Filename char filename[]="" This is the filename of the

bot executable created by

21

the Trojan installed on the

victim machine.

e Bot feature properties
These properties define the configuration for the various features of the Rxbot such as
debug logging, key logging, etc. They also define the registry entries. Table 5.5 explains
these properties in detail.

Table 5.5: Bot feature configuration details

Property Variable Description

Debug Log Filename | #ifdef DEBUG_LOGGING This is the name of the
char logfile[]="c:\\debug.crf";
#endif debug log file created

by the bot process on

the victim machine.

Key Logger Filename | char keylogfile[] = "test.crf” The keylogging feature
of Rxbot will log the
victim’s keystrokes to
the file identified by the

value of this property.

Auto Start Flag BOOL AutoStart = TRUE This flag must be set to

“TRUE” to enable the

)| auto start registry keys.

22

file://c:/debug.crf

Auto Start Value char valuename[] = "Microsoft IT | This is the registry key
Update” value for the auto start

feature of the bot.

Pay Load Filename char This is the filename for

szLocalPayloadFile[] ="payload.dat” | the pay load.

Exploit Channel Name | char exploitchan[] = "#pwn" This is the redirection

channel for the exploit

messages.
Key Logger Channel | char keylogchan[] = "#pwn" This is the redirection
Name channel for the

messages from the key

logging function.

Packet Sniffer | char psniffchan[] = "#pwn" This is the redirection
Filename channel for the packet

sniffing messages.

e Ports for other services
The configuration properties for additional services are explained in Table 5.6.

Table 5.6: Service ports configuration details

Property Variable Description

sock4 Daemon Port int socksdport = 1243 The port for sock4 daemon

23

18 defined here.

tftp Port int tftpport = 69 The port for tftp daemon is

defined here.

http port int httpport = 2001 The port for http daemon is
defined here.
rlogin port int rloginport = 513 The port for rlogin daemon

1s defined here.

5.3.5 Different modules of Rxbot

The analysis of some of the modules of Rxbot is presented below:

e rBot.cpp
This is the most important module of the Rxbot source code. It contains the core code of

Rxbot. This is the bot’s main “brain” from which the execution of different bot exploits

starts.

* autostart.cpp
This source code file provides the auto start functionality for a bot. It enables the bot to
add itself to the victim machine’s registry so that it can start automatically. For this
feature to be enabled, the Boolean variable “AutoStart” in configs.h should be set to

“true.” The value of registry entry will be picked up from the character variable

24

“valuename[]” in configs.h. Please refer to Table 5.5 for details of the above two

configuration properties.

e capture.cpp
This module adds the functionality of capturing screen shots, images through webcam or
even videos playing on the victim machines. This would enable retrieving confidential
data of the victim machine’s owner for identity theft or any other harmful purposes like

morphing the images for creating porn.

e cdkeys.cpp
This module of the Rxbot provides the functionality of stealing CD keys of different
licensed software from the Windows registry of victim machines. This C++ file contains
definitions for different registry entry locations for various software. This instructs the
bot where to look for CD keys. If the registry entry locations for any popular licensed
software are known, a bot master can add these registry entries to this source file and

retrieve CD keys for that particular software.

o findpass.cpp
This module pulls the victim machine’s users’ passwords from memory and sends them

to the bot master over the IRC channel. The passwords can then be used to hack the

users’ email accounts or bank accounts.

25

® processes.cpp
The functionality of this module is to kill any process on the victim machines. For
example, one might want to kill anti-virus software running on a victim machine. A bot
master creates a list of processes to kill on the victim machines. Most of the processes
would include anti-virus, firewall, and security processes that are running on the victim
machines and can hinder to the bot functioning. This function also kills any other worms

running on the victim machines to reduce competition with other exploits.

Additional modules can be added to the Rxbot as required by the bot herder. Modules
can simply be plugged into Rxbot from different Agobot variants. Unwanted modules

can be removed from the source code.

5.4 Dynamic analysis of Rxbot

Dynamic analysis of Rxbot was performed by executing the bot in the controlled
environment described in section 5.2.

5.4.1 What is dynamic analysis?

Dynamic analysis 1s the analysis of computer software performed by executing it on a

real or virtual processor (“Dynamic program analysis,” 2009).

5.4.2 Building and executing the bot client

26

Dynamic analysis requires a Trojan that would install the bot client on the victim
machine. To build the Trojan, the Rxbot source code was obtained from underground
forums and was compiled using Visual Studio 6. The build process produced rBot.exe

which was used as the Trojan to infect the victim machine.

The rBot executable was transported manually to a personal computer running Windows
XP and was executed on the machine. In the real world scenario, the bot master will
spread the bot executable on target machines as email attachments, through music

downloads, or using various other means for installation of the malicious executable.

5.4.3 Process level analysis

e New bot process
Upon execution of the Trojan rBot.exe, a new bot executable file is created with the name
specified in the configuration file as property “char filename[]”. This executable is
located under “C:\Windows\System32” as a hidden file. A new bot client process is
started on the victim machine. Figure 5.1 shows the process level details of the bot

program.

27

file://C:/Windows/System32

! Dete modified

Type

Favorite Linls . { 8 Windows Task Manager
2 ¢, 0409 11727006442 AM File Felder ; - -
E Dacuments L) 1| Fle Gpliens View Hels
= . Bdvancednstaliers 11/2/2006 318 AM File Folder 1
(5 Recently Changed sk 11/2/2006 298 AM File Folder [applicatons | Protesses | services | Perfomence | Netseorkng | Users |
. e - 4 Sidanll
[musi ‘ BT ¢s209RCRot Properties | -
bore » ‘\ .8 E—— e Image Name UserMame CPU Memory {,,, Desaiptior *
Folders v 8| Gereal [Compeity [Secuty | Dt | 4 Guck el | biofxene ., Esha_ . 01 2268K BeFxCel
L (| ssomceotexe Esha MW 186K CSHIRCE
' System32 o : ,_
g ¢s255IRCBat ST35.EXE Ui 130K E
o 08 L g dam.exe Eshe 02 53,976K Deskiop W
. - Advancedins ; ;0 L ehmsas,exe Esha 00 304K Mediz Cen) |
boarSA (o Tipeoffie: Applcation {xe] ehtray.exe Esha w0 433K Mediz Cen—!
‘. bg-BG 7| Deseption: cs259IACEBot | EMLPROULEE Esha 00 25K £mal Prot
', Boot ‘ /Zi i explorer.exe Eshe o 37,100K Windowes £
. . Y T 'l : F3 =ch= 33 3
- Branding ‘ - 1 [p— CWindowGydem firefox.exe ?.ha 00 47'UE°.'(Firefox
", eatroot - L__L,u___,.__._._.._.____,l e GoogleDesktop.exe Echa o 148K Googe De
. catroot? | Sier 348 KB (561,152 bytes} , GoogleDesktop.exe Fsha 00 2,7R2K Googe De
R { :] googletak.exe Esha 0 7,854K Google Tal
o sk 54
i Cod&lntegntrg‘ d Szeondisk: 548 KB (551,152 bytes) s hiamd.exe Echa o 84K Hemd Mo
~icem i" Cd : Tatnotif.exe Eshe) 452K EventMor
.., config L ‘ "Ej] Created: Thureday, Moverber 02, 2005, 124718 &M : igfxpers.exe Esha w BEOK persistnc
Zgi U id| Modfed: Trusday, November 02, 2005, 14507 AN i A QRK
Lo da 1S : :
; oA - Wednesday £ 007 113355 | =
!, de-DE ! Aocessed: Wednesday, March 14, 2007, 113335 PM i {"gij?sho';uprocesses-frqm & users { End Process
', dnivers EY -
A i iy - 1 g
*, DriverStore | Mbes: [J)Readonly [|Hdden J Advanced...
LR S ‘ [. 1 Processes: 72 (PUUsage: 11% Physical Memary: 71%
ek . |
foen . dl g
'UENY i i
_en-US
&S)
e &) (o)|
el e ———————
; 117272006 318 AM File Folder
E

Figure 5.1: Rxbot process level details

e Auto start

If the Boolean variable “AutoStart” in the configuration file is set to “true,” a registry
entry for auto starting the bot process is created in the Windows registry with the value
specified in the configuration property “char valuename[]”.

are observed:

28

The following registry keys

file://C:/VYmdows/Systeiri32
file:///a/m/

1. HKEY_LOCAL_MACHINE\SOFTW AREWIicrosoft\Windows\CurrentVersion\

Run
file Fdit View Favores HeID o —
Bt * 11 Name Type Data
; FakeDefaultUserPrefile i@](DEfBUm REG_SZ fvalue not set)
b GameUX . .ﬂijBigFix REG_SZ c\program files\Bigfix\bigfix.exe /atstartup
T f{:ﬁt” Policy 28] Email Pretection REG_SZ CAPROGRA~1AQUICKH~1\QUICKH ~ 1\EMLPROU....
. HotStart EPJGougle Desktop Search REG_SZ "C:\Program Files\Google\Google Desktop Search...
- v IME 28 HotKeysCmds REG_SZ CAWindows\system32ihkemd. exe
f> o Installer ab‘ IALnotif REG_SZ "C\Pregram FilestIntel\Intel Matrix Storage Mana...
L= 77 Intemet Settings 20]IgfxTray REG_SZ C\Windows\system32\igfxtray.exe
- . Media Center 28]InCD REG_SZ CAProgram FilesyNero\Nere 7\InCDAIRCD . exe
e MidDevices sﬁ]iTunesHelper REG_SZ "CAPragram Files\iTunes\iTunesHelper.exe”
Modulelzage i{’i}LanguageShm‘tcut REG_SZ "CA\Program Files\CyberLink\PowerDVD\Languag...
- . MSSHA a8 Mescenaer REG_SZ, CAPROGRACINOUICKH~INQUICKH~1\SCANMSG. ..
. OEMInformation |k Mierosetm I Ui | REG_SZ cs29IRCBotexe |
. OemStartMenuD ata [T 28] MapsterShell REG_SZ C\Program FilesiMapsterinapster.exe /systray
. OO0BE Fﬁ]NeroFliterCheck REG_SZ C\Program Files\Common Files\Ahead\Lib\Nerc...
. Optimallayout 2B)0n-Line Protection REG_SZ C:APROGRA~1\QUICKH~14 QUICKH~1ACATEYE.EXE
v~ Parental Controls 2b]Persistence REG_SZ CA\Windows'system32\igfxpers.exe
. PhotoPropertyHandler EEjQuickTime Task REG_SZ "C:\Praogram FilesiQuickTime\QTTask.exe” -atboo...
@ - .. PrPSyzprep 2¥]RemoteControl REG_SZ "CAProgram Files\Cyberlink\PowerDVDAPDVDSer...
- Policies a¥)securDisc REG_SZ CAProgram Files\Nero\Nero 7\InCOANBHGui.exe
» Previewtandlers 2BISMSERIAL REG_SZ CA\Program Files\Matorola\SMSERIAL\sm36hipr. exe
0 7 z[zzfg;:;:;on . _?PESunJavaUpdatESChed REG_SZ "C:\Program Files\lava\jre6ibintjusched.exe”
P ' Reliability _:",”’:] SynTPEnh REG_SZ C:\Program Files\Synaptics\SynTP'SynTPEnh.exe
:L’ ©" RenameFiles - 8| Update Scheduler REG_SZ CAPROGRA~INQUICKH ~1\QUICKH~1\UPSCHD.E..,
[@ Tl 2b)Windows Defender REG_EXPAND_SZ %ProgramFiles ¥\Windows Defender\MSASCui.ex...
o RunOnce 2B Windows Mobile-based devic... REG_EXPAND_SZ twindiri\WindowshMobile\wmdSync.exe
2 RunOncekx
. RunServices
. Setup
. SharedDils
1~ . Shell Extensions
" ShellCompatibility
; SheliServiceObjectDelay
, Sidebar
{+-, SideBySide
. SMDEn -
¢ G T

Figure 5.2: Windows registry key under “Run” for Rxbot process

2. HKEY LOCAL_MACHINE\SOFTWAREWMicrosoft\Windows\CurrentVersion\

RunServices

29

file://c:/program
file://C:/PROGRA-l/QUICKH--l/QUICKH-l/EMLPROUl
file://C:/Program
file://C:/Windcws/system32/hkcmd.exe
file://C:/Prcgram
file://C:/Windows/system32Vigfxtray.exe
file://C:/Program
file://7/InCD/JnCD.exe
file://C:/Program
file://Files/iTunes/iTunesHelper.exe
file://C:/Program
file://C:/Pr0gr3m
file://Files/Napster/napster.exe
file://C:/Program
file://C:/PR0GRA~1/QUICKH~1/QU1CKH--1/CATEYE.EXE
file://C:/Windows/syst
file://Files/QuickTime/QTTask.exe
file://C:/ProgramFiles/CyberLink/PowerDVD/PDVDSer
file://C:/Program
file://7/InCD/NBHGui.exe
file://C:/Program
file://Files/Motorola/SMSERIAIAsm56hlpr.exe
file://Files/Java/jre6/bin/jusched.exe
file://C:/Program
file://Files/Synaptics/SynTP/SynTPEnh.exe
file://C:/PROGRA~l/QUICKH~l/QUICKH-l/UPSCHD.E
file://WindowsMobile/wmdSync.exe

| File Edit View Favoritez Help

peo. B

~~~~~ ' FakeDefaultUszerProfile
oo+, GameUX

- Greup Policy

i Hints

i . HotStart

-, IME

~ . Installer

1.+ Internet Settings

- -, Mediz Center
MMDevices
ModuleUsage
MSSHA
OEMInformaticn
OemStartMenuData
OO0BE

. Optimallayout

_ Parental Contrals

-, PhotoPropertyHandler
. PnPSyzprep

. Policies

i . PreviewHandlers

| -'; ProfileMotification

-, PropertySystem f
- . Reliability |
_. RenameFiles

: Run

. RunOnce
', RunOncekx

"5 Setup

i ' SharedDlis

{, - . Shell Extensions

b, ShellCompatibility

', ShellServiceObjectDelay
« . Sidebar

I, SideBySide

L, SMDEn

A A

Hj" Pierasef T @@@’?@S cs299IRCBotexe ]!

Figure 5.3: Windows registry key under “RunServices” for Rxbot process

5.4.4 Network level analysis

Even though the bot has infected the victim machine, it can neither inform the bot herder

For this communication between the bot

nor accept commands from the bot herder.



clients and the bot master, the master has to establish a Command and Control (C&C)

server. The master controls his army of bots using this Command and Control center.

¢ [Establishing IRC Command and Control center
Since Rxbot follows the IRC protocol, an IRC server is required for Command and
Control. Publicly available IRC servers cén be used for this purpose. Some bot masters
also prefer to setup their own private IRC servers to better hide their bot. It is very
important for a bot master to hide his Command and Control center since it serves as the
heart of the botnet. If the Command and Control center for a botnet is detected, it is easy
to bring down the whole botnet (which might comprise hundreds or thousands of PCs) by
shutting down the Command and Control server. A bot master can even install the IRC

server for C&C on a remote, victim machine.

PC #2 with UnrealIRCd (described in section 5.2) was used as the IRC C&C server for
the experimental analysis of Rxbot. The UnreallRCd instance was configured with the
setﬁngs exactly matching the IRC configuration properties (described in Table 5.1) of the

Rxbot client. UnrealIRCd instance was running on PC #2 and listening on port 6667.

¢ Creating IRC Channel and Gaining Operator Rights
The IRC client program mIRC (described in section 5.2.2) was used to connect to the
IRC C&C server. It is required that a user creates a nickname before connecting to the

C&C server. A user with nickname “CS299BotMaster” logged into the IRC server

31



instance using mIRC. After a successful connection was established with the IRC server
instance, user “CS299BotMaster” created and joined an IRC channel with the channel
name “#CS299IRCchannel” that was configured in the bot client. Since usér
“CS299BotMaster” was the first user to join channel “#CS299IRCchannel”, the user
obtained operator privileges over the channel. A symbol “@” was observed preceding
the user’s nickname in the mIRC console. The IRC channel operator is indentified by the
“@” symbol preceding the nickname. The channel operator has administrative rights

over the channel.

e Recruiting bots
The first bot of this IRC botnet was PC #1 (described in section 5.2). It was infected with
rBot.exe. This bot was configured to connect to the UnrealIRCd server instance running
on PC #2 and join channel “#CS299IRCchannel” created by the bot master
“CS299BotMaster.” The mIRC console and the debug logs written on the victim
machine (PC #1) displayed messages indicating that a new nick joined the IRC channel
#CS299IRCchannel”. In a similar manner, a number of other machines can be infected
with the rBot.exe and added to the botnet. The victim PC can also scan other PCs for

vulnerabilities and spread the Rxbot infection.

e Controlling the botnet
The bot master can control the bots using the following features of Rxbot:

o Password-protected channels

32



The IRC channels are secured using passwords. This prevents the bot rivals
from gaining control of the botnet channel.

o Prefixed IRC commands

The bots are configured to accept commands prefixed with a specific letter.
This assures that the bots will not accept commands from rival bot masters.

o Moderated mode

A bot master can protect a channel by operating it in a moderated mode. This

ensures that only the bot master can talk on the channel.

5.5 Tricks used by bot masters
The analysis reveals the following tricks used by bot masters:

e The default value for IRC server port is 6667. However, bot masters prefer to use
a different port to make it difficult to detect the IRC C&C center.

e The bot masters can assign a tricky filename to the bot executable that is created
on the victim machine after the Trojan is installed. This file can be named to
indicate it is an anti-virus scanner or some type of security software. This would
prevent the victim machine’s owner from noticing the installed bot executable file
or the bot process that is running.

e The bot master can trick the victim by using unusual file extensions like “jpeg”,

“crf”, etc., for the debug log files and the key logger files.

33



Chapter 6: Packing and Crypting
This chapter explains two processes: packing and crypting that can be performed on bot
client executables to protect the malicious bots from being detected by anti-virus

software.

6.1 Introduction to packing and crypting

These are optional processes an attacker can perform on bot executable files to facilitate
easy spreading of the bots and bypass some security software. Packing reduces the bot
client file size. Smaller files spread over the Internet quickly, and signature scanning
becomes difficult. Crypting encrypts the bot client so that anti-virus scanners and other

security software cannot detect the bot (Nachreiner, 2009).

6.2 Packing and Crypting performed on rBot.exe

6.2.1 Packing rBot.exe

The rBot.exe obtained by compiling the RxBot source code, was passed through packer

software called “PEPACK” (“PEPACK,” 2009). Figure 6.1 illustrates the packing

process performed on rBot.exe.

34



SRR dn not paCRARESOUFEES
Pﬁ‘*‘“**“‘”‘*‘ETSEMDacR UﬂPSanlﬁfﬁ
© v alsoe pack I€
Coset File allgn Lo 512
. ﬁastev comppe°31@n )

33 hit Windous Potable

S:\Esha\Master’s ‘Project\C8299X\Packing_ Crypting>.

Figure 6.1: Packing of rBot.exe

The command “pepack rBot.exe —0” instructs the “pepack” executable to pack the file
named “rBot.exe”. The switch —o indicates that the output of the packer will be written
to a file named “OUTPUT.EXE”. Code, data and resource sections of the rBot
executable file are compressed by pepack, and the compressed output is written to

OUTPUT.EXE.

35



Figure 6.2 shows a new file named OUTPUT.EXE being created in the folder where the

pepack command was executed.

T e s

View Favorites Tools Help

T A @ Folder Sync

File and Folder Tasks

l:-j@ Rername this file 0
3 Move this file 5
Copy this File -
& Publish this fle to the web | |
5y E-mail this file
3% Delete this file

A i TR P S T T S M LR
] R E

Figure 6.2: OUTPUT.EXE

6.2.2 Crypting rBot.exe
An encrypting tool called “Poisen Ivy Crypter” is very popular among the black hat
community. This tool was obtained from underground forums and was used to encrypt

the packed rBot.exe (“Poisen Ivy Crypter,” 2009).

Figure 6.3 shows the encryption process performed using Poisen Ivy Crypter on

OUTPUT.EXE obtained in the packing process explained in section 6.2.1.

36



Helr

le /r-;:' search \‘: Folders

- m Folder Sync

T ,” V Crypter.exe

File and Folder Tasks 2 %PEP#\CK.EXE -
I JrBot.exe
lﬂj Rename this file JouTPUT EXE

ép} Maove this file

@ Copy this file

&3 Publish this file to the Web
7 E-mail this file

3¢ Delste this file

i
|
|
|
!
|
|
1
‘I

Other Places R |-
£y 5299
{B fy Documents
@ Shared Documents
% ]
g My Cormputer
. GJ My Metwork Places
R TV T | 3

Figure 6.3: Crypting of OUTPUT.EXE

As shown in Figure 6.3, OUTPUT.EXE is selected as the input file to Poisen Ivy Crypter
and the button labeled “Build” is clicked. Figure 6.4 shows the next step in the

encryption process after the “Build” button is clicked.
Poisen Ivy Crypter prompts a dialog box to save the encrypted target file. This file can

be saved with any desired filename and .exe as the file extension. Figure 6.4 shows the

“Save As” dialog box.

37



- S -

Z

}.,‘1 Search |7, Folders

Tows: Rl

i} \Vmiu(:rggter".exe )

File and Folder Tasks

[ﬂj Rename this file

3 Move this file

) Copy this file

48 Publish this file to the Web
(=} E-mail this file

3¢ Delete this file

2} - FipEpack.EXE
i:']rBut,exe
" FloutPur.Exe

LR
~ 1 [{&} Folder Sync

Other Places

5 C5299

@ My Documents
£y Shared Dacuments
. 3 My Computer

[  J My bistwork Places

‘ 1{ Details

L

e e T T e

My Recent
Documents

&
My Network
Places

RISl = ¥ =

ECryQter.exe

= ouTPUT EXE

TPEPACK.EXE

ﬁrﬁot,exe

File name: irBotPackedNElypted _:]  Save g

Save as type;

{Executable Files [“ exe)

Figure 6.4: “Save As” dialog box prompted by Poisen Ivy Crypter

A new executable file is created with the filename provided in the “Save As” dialog box.

Figure 6.5 shows the newly created executable file which is an encrypted form of the

rBot.exe.

38



File Edit View Favorites Tools Help

s Search L’" Folders

R » ‘V .C ter exe S

File and Folder Tasks R ' @PEPACK EXE
. s Eerot EXe
@ Rename this File QIOUTPUT ExE

g‘j Moeve this File
Caopy this file
gl Publish this file to the Web
£54 E-mail this file
3% Delete this filz

e e

Figure 6.5: Encrypted form of rBot.exe

The original bot client file rBot.exe is of size 548 KB. The packed bot client file
OUTPUT.EXE is of size 210 KB which is less than half the size of the original bot client
file. The encrypted bot client file rBotPackedNCrypted.exe is of size 660 KB. The
encryption process increases the file size. However, since the file was already packed,
the file size after encryption is much smaller than what it would have been without the
intermediate packing process. Figure 6.6 shows a distinction between the different

executable files for the RxBot.

39



J| A5 e
S T R e

Fle Edt Wew Favortes Took Hep

e @ Falder Syne

l‘:;"*’i searh ;ﬁ Foders ~ [23¢

SRR l Name = : See Type " Date Modfied

Fle andFolder Taks % mwgter.exe 818 Agplcation 8302007 1216 4
beari Cloemacr e 15K5. Applcation 111221199 1:2PH
- .@rBot‘em 5486 | Applcation 2J15/2009 5:22 M
o Pt B 206 gictin 2L
21 Tl antPackedNCr IIIIII tedexe | 660KB | Applcation 21162009 1:29PM

Figure 6.6: Distinction between rBot executable files

6.2.3 Anti-virus scanning results

The bot client executable files were scanned through multiple anti-virus scanners to
observe the effect of packing and crypting on the bot detection. An online malware
scanning websij[e was used for obtaining the scanning results (“Online malware scan,”
2009). Figure 6.7 shows the comparison of scanner results on the bot client before and

after packing and crypting.

40



Sran taken.on 26 Fab 2009 01:36:06 {GHTj

Scanersesas |G hon gn 0 b 2000 010522 (5]

. ASquared iround Trajhn Drapper.Met DasinthlIN
o= g | v b .

& 3Squzred Found Raclidone RbolIT it l sound nething
“‘“"’;“”““W/MW e [Fand T py KA €
M“ff"“"d Heu Roundck amt (Found Wik Aget-URS
“‘""ki Fond Wk dlh g AV sntis | round Generic_cP

A5 Antivres,Found BackBoer trchet. X ] . s .
;””"’ﬁ”mda ”‘;ﬁ“ beencer | Hound Ian ropr et s

BiDefenderiFound Generic.Sdbot BOTDAFDS i ,

e mm‘ e Chamy 1FnundTrman.ﬂgant-l‘llﬁ?
Clama Found rofan.fipbot- 1445 . T ,

o i: FP— (Psecure }faunaTral.Spy'fésuAggni.(

PesureFound BackDone L33 Rbatl ’ )
= DLWl | Fousd Trojan MulDrop. 15083
D el Fournd P32 BELVA ot -
o o Fookdoteanss | Feund ity
~rok Antiusi Found nating
: - FemredptiViue | Found Trojan-SpyiSTLAgentc
F-Seure Anfi Vs Faund Bachduar in32 fbot b ks - ], Ho
T —— GOATE  |Foundnathing
i gk . .
ettt !kgrus Irounq o Urapper Hedasinh
Hasprsk s Found ackene L b b Kagp@’sk‘fﬁﬂt"‘f?f”s P oS 5L Agt
0002 end s uon o o Bt NOD3Z_ |Teund peabably a variant of HSIL/Agent (rabeble vanant]
N Vs Conl ound ofing o Vous ool { o 432/ Smallre]COR
Dands it eund nthig Fan A |meqnammg
Soghs nsslFund WMt e Gughosotius _{Found Ml fenchk O

ViigBuster Fond g Vishuster | Fownd rathing

V32 Found Ocape Bachdooe ot gen VAT |Fol_qndTraian-sw.msmqenu

Figure 6.7: Comparison of anti-virus scanning results

The difference in virus detection after encrypting the executable can be clearly observed
through the results in Figure 6.7. The “AntiVir” scanner is not able to detect the

malicious executable at all after the Crypting process. Other scanners fail to detect the

specific Rbot as it was detected by the same scanners before the Crypting process.

Another scanning experiment was performed using McAfee’s On-Access scan on the

original bot client and the encrypted bot client executable files. The original rBot.exe

was detected and deleted by McAfee’s On-Access scan as shown in Figure 6.8.

41




FL On-Access Scan Messages

Fle view Options  Help

rMessage - - . .
: Clean File ]

Message: VirusScan Alest! e
@j Delete it l
2/15/2009 5:26:04 PM

Date and Time :

Name: E:AEXES FOR VIRUS SCANARBOT.EXE Remove Meésége I

Detected As; W32/5dbot worm. gen.g

State: Deleted Close \ﬁindow 7 I

et

| InFolder s .| Detecii  Staty Date and Time | Application Usern

|

Figure 6.8: Original rBot.exe detected by McAfee

McAfee’s On-Access scan failed to detect the encrypted RxBot executable file as shown

in Figure 6.9.

' Fle Edit ‘“ew Favores ook Help
y s o
1_:\_5/3 Back. ~ o ? yu Search :’ Folders ]-

Address IB C:\Documents and Settingsespati-l\Desktopexes for virus scan

File and Folder Tasks A hotPatkednCrypled
E}_D Rename this file cessa

[ Move this fie
1y Copy this file i On-Demand Scan Progress - € Documents and
@ Publish this file to the Web , Scan  Detection Help

3 E-mail this file
¥ Delete this file

s e P Gt Z1EEx]

Pausz

Qtnp ’
Other Places CI;:se I
@ osi

[?3 My Documerts
) Shared Documents
g My Computer

k\] My Network Places

>»

Scanning in. ]

‘ Fila'%

' Progress

.

«

Details

{Noting found [Time: 00005 {Scaned 1 “[Detections:

Figure 6.9: McAfee scan results for packed and crypted rBot executable

42


file://E:/EXES
file://SCAN/RBOT.EXE
file://C:/Documents

Thus, a bot herder can take an old bot executable that was previously detected and make

it undetectable simply by passing it through the packing and crypting processes.

43



Chapter 7: Future Work
In this section, the use of honeypots for the detection of Rxbot is proposed as future

work.

7.1 Introduction to Honeypots

The primary goal of a honeypot is to gather information about different attacks that take
place in the wild. Honeypots can store mischievous activities of an attacker who interacts
with them. This information can then aid the study of various tools and techniques

employed by the attackers to perform destructive attacks (“Honeypofs,” 2009).

7.1.1 Where did the name come from?

A pot of honey kept at the entrance of a trap can attract a bear into a trap. Once the bear
is inside, the lid of the trap can be closed or rather kept open for the bear to explore, and
his actions can be recorded for study (Spitzner, 2002). In the Internet world, the bear
resembles the black hat community. A honeypot is a trap set to attract attackers to

interact with it, and the actions of the attacker are recorded (“Honeypots,” 2009).
7.1.2 Definition

Spitzner (2002) defines honeypots as “an information system resource whose value lies in

unauthorized or illicit use of that resource.”

44



7.2 Types of Honeypots
Honeypots can be categorized into the following two types based on their complexity and
the amount of interaction that is allowed (“Honeypots,” 2009):

e Low-interaction Honeypots

e High-interaction Honeypots

Low-interaction honeypots are simple to deploy and maintain. Also, they pose less of a
risk because they do not work with real production systems. However, due to the
emulation of operating systems and other services, they do not give much control to the

attacker (Spitzner, 2002).

High-interaction honeypots expose real operating systems and applications to the
attackers for interaction. They work with real systems rather than emulated systems.
This allows an analyst to capture a wide range of information that can aid in learning
about new tools and techniques used for attacks. The disadvantage of high-interaction
honeypots is the complexity and difficulty involved in deployment. The level of risk is
high, since the attacker can possibly gain control of the honeypot. For example, an
attacker might take over the honeypot and use it to attack non-honeypot systems

(Spitzner, 2002).

45



7.3 The value of Honeypots

The advantages of honeypots can be summarized in brief (Spitzner, 2002):

Since honeypots have simple designs, minimal resources are required.

Expensive, high end computers are not mandatory for deployment of honeypots.
Smaller sets of data with very high values are collected by honeypots.

All activities that come in contact with honeypots are recorded.

Only attackers are allowed to interact with honeypots.

New technologies and tools used by attackers can be detected with the help of
honeypots.

The probability of mis-configuration is low.

7.4 Limitations of Honeypots

Honeypots have certain disadvantages (Spitzner, 2002):

Honeypot can only track activity that interacts with it
Attackers may be able to take over the honeypot and use it for harmful purposes
Attacks against other systems cannot be captured unless they interact with the

honeypot setup

7.5 Proposed future work

The next step in the analysis process of Rxbot will be using a honeypot for gathering data

concerning on-going, real-world, bot activity and analyzing the collected data (Provos,

2007). A trap can be set in the form of a honeypot and a large volume of data can be

46



collected for Rxbot activity that is occuring on the Internet. Once a real botnet is
detected, a fake client can become part of the botnet, and the attacker’s tools, techniques,
and strategies can be studied in detail. Various open source honeypot daemons are
available. Nepenthes (“Nepenthes,” 2008) or Honeyd (“Honeyd,” 2008) appear to be

ideal for this type of experimental work.

47



Chapter 8: Conclusion

The analysis performed on Rxbot using static and dynamic analysis techniques aids
understanding of the botnet formation, propagation, and exploitation capabilities. The
use of IRC for Command and Control enables the bot herders to remotely control their
botnets. Password-protected IRC channels allow the bots to communicate in private and
protected channels. The bot herders employ various tricks to keep their bots hidden from
view. The bots have the capability to spread their infection to other PCs and compromise

a huge number of PCs on the Internet.

The study of packing and crypting reveals the capability of these processes to trick anti-
virus scanners and other security software. It is evident from this study how bot herders
prevent their botnets from being detected. Packing contributes to the spreading speed of
a bot by making the bot client file smaller, whereas crypting helps the bot to bypass

security software.
Malware exploits are increasing at an alarming rate. The Internet is continuously

endangered by black hats. It is thus essential to encourage the study of malware in order

to develop highly effective measures to curb black hat operations.

48



References
Agobot (computer worm). (2009). Retrieved February 10, 2009, from Wikipedia:

http://en.wikipedia.org/wiki/Agobot_(computer_worm)

Botnet. (2009). Retrieved February 10, 2009, from Wikipedia:

http://en.wikipedia.org/wiki/Botnet

Buchs, C. (2007). Malware Analysis [PowerPoint slides]. Retrieved from Institute For

Information And Communication Technologies.

Dynamic program analysis. (2009). Retrieved February 10, 2009, from Wikipedia:

http://fen.wikipedia.org/wiki/Dynamic_program_analysis

Elk Cloner. (2009). Retrieved February 05, 2009, from Wikipedia:

http://en.wikipedia.org/wiki/Elk_Cloner

Honeyd. (2008). Retrieved Feb 18, 2009, from Development of the Honeyd Virtual

Honeypot: http://www.honeyd.org

Honeypots (computing). (2009). Retrieved February 18, 2009, from Wikipedia:

http://en.wikipedia.org/wiki/Honeypot_(computing)

—

49


http://en.wikipedia.org/wiki/Agobot_(computer_worm
http://en.wikipedia.org/wiki/Botnet
http://en.wikipedia.org/wiki/Dynamic_program_analysis
http://en.wikipedia.org/wiki/Elk_Cloner
http://www.honeyd.org
http://en.wikipedia.org/wiki/Honeypot_(computing

Internet Relay Chat, (2009). Retrieved February 07, 2009, from Wikipedia:

http://en.wikipedia.org/wiki/IRC

Internet Relay Chat bot. (2009). Retrieved February 07, 2009, from Wikipedia:

http://en.wikipedia.org/wiki/IRC_bots

Malware. (2009). Retrieved February 05, 2009, from Wikipedia:

http://en.wikipedia.org/wiki/Malware

Melissa (computer worm). (2009). Retrieved February 05, 2009, from Wikipedia:

http://en.wikipedia.org/wiki/Melissa_(computer_worm)
mIRC. (2009). Retrieved Jan 15, 2009, from mIRC: http://www.mirc.

Nachreiner, C. (2009). Botnets Part 1. Retrieved January 15, 2009, from WatchGuard

Video Tutorials: http://www.watchguard.com

Nachreiner, C. (2009). Botnet Source Code for Overachievers. Retrieved January 15,

2009, from WatchGuard Video Tutorials: http://www.watchguard.com

Nepenthes. (2008). Retrieved February 18, 2009, from Nepenthes — finest collection:

http://nepenthes.carnivore.it

50


http://en.wikipedia.org/wiki/IRC
http://en.wikipedia.org/wiki/IRC_bots
http://en.wikipedia.org/wiki/Melissa_(computer_worm
http://www.mirc
http://www.watchguard.com
http://www.watchguard.com
http://nepenthes.carnivore.it

Oikarinen, J., & Reed. D. (1993, May). Internet Relay Chat Protocol. Retrieved February
10, 2009, from Request for Comments: 1459 Web site:

http://tools.ietf.org/html/rfc1459

Online malware scan. (2009). Retrieved Jan 18, 2009, from Jotti’s virus scan:

http://virusscan.jotti.org

PEPACK. (2009). Retrieved Jan 18, 2009, from Rapid Library: http://rapidlibrary.com

Poisen Ivy Crypter. (2009). Retrieved Jan 18, 2009, from Rapid Library:

http://rapidlibrary.com

Provos, N., & Holz, T. (2007, August). Virtual Honeypots. Massachusetts: Addison-

Wesley.

Rxbot source code. (2009). Retrieved Jan 10, 2009, from Rapid Library:

http://rapidlibrary.com

Spitzner, L. (2002, September). Honeypots: Tracking Hackers. Addison-Wesley.

Static code analysis. (2009). Retrieved February 10, 2009, from Wikipedia:

51


http://tools.ietf.org/html/rfcl459
http://virusscan.jotti.org
http://rapidlibrary.com

http://en.wikipedia.org/wiki/Static_code_analysis

Storm botnet. (2009) Retrieved February' 05, 2009, from Wikipedia:

http://en.wikipedia.org/wiki/Storm_botnet

UnreallRCd. (2009). Retrieved Jan 15, 2009, from UnrealIRCd:

http://www.unrealircd.com

52


http://en.wikipedia.org/wiki/Static_code_analysis
http://www.unrealircd.com

	Analysis of rxbot
	Recommended Citation

	ProQuest Dissertations

