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ABSTRACT 

ECOLOGY OF FOOTHILL YELLOW-LEGGED FROGS IN  
UPPER COYOTE CREEK, SANTA CLARA COUNTY, CA 

 
by Thomas Earl Gonsolin Jr. 

 
Visual encounter surveys, mark-recapture technique, and telemetry were used 

investigate breeding, movement, growth, habitat preferences, and predators of foothill 

yellow-legged frogs on Coyote Creek in Santa Clara County, California, from March 

2004 to March 2006.  The main stem and tributaries were intermittent in summer in all 

three years.  Thermal conditions for breeding initiation were alike during 2004, 2005, and 

2006.  Breeding occurred in the main stem on descending limbs of the hydrograph.  No 

breeding occurred in the middle main stem reach, which is ephemeral.  Breeding 

occurred at less than an order of magnitude greater than base flows.  Typically, larger 

females bred earlier, and egg mass size decreased as the breeding season progressed 

during 2004 and 2005.  Males arrived earlier and remained in breeding areas longer.  

Resident tributary frogs moved greater distances than main stem frogs to breed.   Females 

tended to travel farther than males and occupied habitats farther from the breeding areas.  

Frogs on Coyote Creek showed faster growth during their first year than Sierra Nevada 

and north Coast Range populations.  Both sexes preferred pools and boulder-dominated 

habitat on both the main stem and tributary.  Santa Cruz garter snakes were the most 

frequently encountered predator in the study area.  However, all diurnal predators were 

scarce on the tributaries.  Perennial water is a limiting factor within the study area, as 

illustrated by the movement patterns and timing of breeding.   
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INTRODUCTION 

The foothill yellow-legged frog (Rana boylii) is one of four native, ranid species 

which reside in California (Stebbins 2003).  It is unique among these ranids in its 

exclusive association with running waters to complete its life cycle.  The current status 

and distribution of foothill yellow-legged frogs is not entirely known.  Populations have 

disappeared throughout their historic range, particularly on the west slope of the Sierra 

Nevada foothills and farther south.  Due to the declines and stream habitat requirements 

of foothill yellow-legged frog, these frogs have become a focal species in Federal Energy 

Regulatory Commission (FERC) hydropower relicensing projects (Lind et al. 2008).  

Potential causes of decline are numerous, including reservoir and road construction, 

reservoir operations, logging, water quality degradation, and non-native predators.  

Predation by introduced fish and bullfrogs (Rana catesbeiana) has been blamed for 

foothill yellow-legged frog declines (Moyle 1973; Jennings and Hayes 1988; Kupferberg 

1996a; Ashton et al.1998; Ashton and Nakamoto 2007).  Foothill yellow-legged frog 

declines have been part of a more general decline in amphibians in the western United 

States.  Studies have implicated solar UV-B for amphibian declines in the western United 

States (Blaustein 1994a).  Pesticide drift from the Sacramento and San Joaquin Valleys 

has been argued as a factor in ranid declines in the Sierra Nevada (Drost and Fellers 

1996; Davidson et al. 2002).  Large die-offs of amphibians from chytrid fungus have 

been documented in California (Fellers 2001), and other pathogenic fungi contribute to 

amphibian losses in the western United States (Blaustein et al. 1994b). 
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Although there is no evidence for a singular range-wide cause for foothill yellow-

legged frog declines, there are many studies that have associated the presence or absence 

of this species with physical habitat parameters of their streams and rivers, which include 

flows, substrate, and canopy coverage (Zweifel 1955; Hayes and Jennings 1988; Van 

Wagner 1996; Kupferberg 1996b; Yarnell 2000; Ibis Environmental Inc. 2002).  Effects 

of flow fluctuations on breeding habitat and egg survival were studied on the Trinity 

River (Lind et al. 1996).  Geomorphic and hydrologic factors on habitat suitability have 

been studied in the Sierra Nevada (Kupferberg 1996b; Yarnell 2000).  

However, some life history aspects of foothill yellow-legged frogs are not well 

understood.  There are no publications regarding movement and dispersal of foothill 

yellow-legged frogs during different life history stages (Jennings and Hayes 1994; 

Ashton 1998).  There have been no studies documenting winter habitat use.  No studies 

of any kind have been published on foothill yellow-legged frogs in the Coast Ranges 

south of San Francisco.  

To address the knowledge gaps on movements and habitat use by foothill yellow-

legged frogs, I investigated habitat preference of adults in a partially intermittent stream 

reach in the Diablo Range south of San Francisco Bay, within a poorly studied region 

within the species’ range in the central coast of California.  I collected data on breeding 

locations and timing in association with stream flow and water temperatures at two 

breeding sites.  This study may give insight to factors in declines of foothill yellow-

legged frogs at the watershed level, particularly on streams altered by water diversions or 

with natural low summer flows.  I also determined seasonal movement patterns and 
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habitat utilization that are distinctive to the central coast, which may also aid government 

agencies and land managers to enact measures for conservation of this species that are 

regionally relevant. 

Specific Aims 

My objectives for this study were to quantify: 

1. Timing of breeding, breeding habitat utilization, and physical environment associated 

with breeding. 

2. Timing, duration, and magnitude of seasonal movements using biotelemetry and 

tagging studies of foothill yellow-legged frogs in relation to stream flow fluctuation 

and water temperatures.  

3. Seasonal habitat use parameters, including mesohabitat type (i.e., pool, riffle run), 

mesohabitat maximum depth, cover complexity, substrate composition, and canopy 

closure. 

Literature Review 

Species Description. — The foothill yellow-legged frog is a medium sized frog, with 

adults ranging in length from 37-82 mm snout to vent (SVL) (Jennings and Hayes 1994).  

This species is sexually dimorphic at maturity, with females averaging 10-20 mm longer 

(SVL) (Zweifel 1955).  Adult males have darkened and swollen thumb bases and 

relatively muscular forearms.  Dorsal coloration of this species is variable, but is 

typically mottled light and dark brown, gray or olive, and sometimes with brick red to 

match the local substrate.  The ventral surface of the hind legs is yellow, usually 
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extending to the lower abdomen then fading to white (Jennings and Hayes 1994).  The 

dorsal surface of the hind legs of adults has dark colored bands.  Typically, there is dark 

brown mottling on the ventral surfaces where yellow pigment is absent.  Yellow and dark 

mottled ventral coloration is not present or is faint in juveniles.  They are also 

distinguished from other frogs and toads by horizontal pupils, fully webbed hind feet, 

weakly developed dorsal lateral folds, an obscure tympanum, and by a strong tendency to 

jump into flowing water to escape; they lack a black eye mask as in Pacific chorus frogs 

(Pseudacris regilla) and a dorsal stripe as in California red-legged frogs (Rana 

draytonii), (Stebbins 2003). 

Tadpoles are small and black when they hatch, and are difficult to distinguish from 

western toads (Bufo boreus) without magnification of mouth parts (Ashton 1998).  Their 

dorsal coloration transforms to olive with irregular brown mottling as they grow.  Ventral 

surfaces appear silvery and almost opaque with the viscera scarcely visible.  Tadpoles 

have a rather flattened body, downward oriented mouthparts, and a dorsal-ventrally 

reduced tail height compared with other ranids, which may be adaptations to flowing 

water (Zweifel 1955; Nussbaum 1983).  

Distribution and Status.—Historically, foothill yellow-legged frogs occupied most 

permanent streams in the Coast Ranges from southern Oregon to the San Gabriel 

Mountains and the foothills of the southern Cascades and Sierra Nevada to the Tehachapi 

Range (Jennings and Hayes 1988).  It was the most common amphibian encountered in 

the Rogue River Valley in the early 1900s (Fitch 1938).  Isolated populations were 

reported in San Pedro Matir in Baja California, Elizabeth Lake Canyon in Los Angeles 
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County and Sutter Buttes in Butte County, California (Stebbins 2003).  The elevation 

range of this frog extends from sea level to 1,400 m (4,500 ft) in the Sierra Nevada.  

Temperatures are likely too cold, and the growing season too short, to provide sufficient 

resources for embryos to reach metamorphosis before the onset of winter above 1,400 m 

(Placer County Water Agency 2008).  Currently, this frog is found from southern Oregon 

to the Salinas River watershed and coastal Big Sur and San Luis Obispo watersheds in 

the Coast Ranges and from the west slope of the Cascades in Oregon to the southern 

Sierra Nevada (Jennings and Hayes 1994).  Large populations appear only in the North 

Coast ranges from Oregon to Sonoma County, California.  Scattered remnant populations 

remain elsewhere within its historic distribution, but foothill yellow-legged frogs appear 

to be extirpated in the extreme southern portions of their historic range.  Foothill yellow-

legged frogs are no longer present in two thirds of their historic range in the Sierra 

Nevada and 45 percent of their historic range in California (Jennings and Hayes 1988).  

Jennings and Hayes (1988) reported these frogs were absent from some locations in the 

Sierra Nevada foothills where Moyle (1973) previously found them to be plentiful.  They 

were absent on all sites checked in the Yosemite area by Drost and Fellers (1996) where 

they were previously found by Storer (1925).  They were considered to be endangered by 

Jennings and Hayes (1994) in the central and southern parts of their range.  Accordingly, 

they are listed as a federal, USDA Forest Service and California species of concern and 

are fully protected by the state of California.  

Lind (2005) used univariate and multivariate analyses to explore the spatial 

relationship between the current presence and absence of foothill yellow-legged frogs at 
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historic sites compared to geographic characteristics (e.g., elevation and latitude), land 

use impacts, wind-borne toxins and pollutants, climatic factors, and proximity to dams of 

various sizes.  Climatic factors showed the strongest influence in the multivariate 

analyses.  Mean precipitation was positively correlated with presence.  Variability of 

precipitation and percent of dry years were negatively correlated with presence.  In 

addition, Lind (2005) found that the negative impacts of dams were intensified in areas 

with low mean annual precipitation. 

Reproduction and Life History.—Adult frogs aggregate in the cobble dominated areas 

of streams during spring (Storer 1925; Zweifel 1955).  Typically, breeding occurs from 

late March through May, and initiation of oviposition occurs as water temperatures 

increase to 12-15C, and as stream flows are decreasing near the end of the wet season 

(Zweifel 1955; Kupferberg 1996b; Fuller and Lind 1991; Seltenrich and Pool 2002).  

However, temperatures recorded on the Poe Reach of the Feather River during 2004 were 

close to 10°C during initiation of breeding (GANDA 2008).  Warmer and drier than usual 

conditions in 2007 were the likely cause of observed early water temperature increases 

and initiation of breeding by foothill yellow-legged frogs two to three weeks earlier than 

typical across northern California (Placer County Water Agency 2008).  Kupferberg et al. 

(2009) concluded that breeding initiation is cued by increasing water and air temperature 

rather than stream flow.  After seventeen years of monitoring on the South Fork of the 

Eel River, only a weak trend toward breeding later in the year during wet years was 

observed (Kupferberg 1996a).  In addition, availability of shallow, low velocity margin 
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areas did not cue breeding.  Oviposition may be postponed by rain once adults arrive in 

breeding areas.  

Length of breeding season is variable among populations (Storer 1925; Zweifel 

1955).  Breeding season length on Hurdygurdy Creek in Del Norte County, California 

varied between three to seven and a half weeks from 2002 to 2007 (Wheeler and Welsh 

2008).  Foothill yellow-legged frogs at Hurdygurdy Creek displayed prolonged rather 

than explosive breeding.  Wheeler and Welsh (2008) found that date within the breeding 

season and stream flow, rather than temperature, influenced breeding activity. They 

concluded initiation and length of the breeding season was strongly influenced by the 

natural hydrologic cycle.  

Mating calls from males generally occur underwater, but may be made above water 

(MacTeague and Northern 1993).  Calls above water may be heard up to 50 m away 

(Ashton and Lind 1998).  Females tend to select larger males for amplexus, as males in 

amplexus were larger than males never seen in amplexus (Wheeler and Welsh 2008).  

Males grasped onto females and were carried to the exact oviposition location of the 

females choosing.  These locations were often different from the calling locations of the 

males.   

Egg masses are usually found near sunny stream margins in shallow pools, protected 

edgewater areas, and pool tailouts, and are most often associated with cobble (75-300 

mm) or boulder (>300 mm) bars at flow velocities of 0.0-0.21 m/sec and in water depths 

less than 0.50 m (Zweifel 1955; Hayes and Jennings 1988; Van Wagner 1996; 

Kupferberg 1996b).  These sites are often at tributary confluences, backwater pools, or 
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pool tailouts with coarse substrates (Placer County Water Agency 2008).  However, egg 

masses may be deposited in atypical habitat such as deep slack waters near pool heads or 

deep backwater pools, when preferred breeding habitat is not available (Seltenrich and 

Pool 2006).  Selected areas provide the best available protection from high or fluctuating 

stream flows.  Egg masses have been documented to only withstand flow velocities at or 

less than 0.21 m/sec.  Egg masses have been reported to be lost during high flow events 

(Lind et al. 1996).  These high flow events may be the result of dam spills, dam releases, 

or intense late spring storms.  Egg masses are often attached to the lee side of cobbles, 

large gravel and boulders, but woody debris, and submerged vegetation may also be used 

(Fuller and Lind 1991).  Shallow waters with low velocities and large substrates represent 

the highest quality for breeding sites and larval rearing (Lind et al. 2009).   

Egg masses at oviposition are clear to blue, compact and gelatinous (Storer 1925). 

They soon absorb water, expand, lose blue coloration, and resemble a cluster of tiny 

grapes.  Egg masses are generally plum size (Storer 1925) to fist size (Stebbins 2003), 

but show a wide size range.  An individual egg with its three gelatinous envelopes is 

about 5.4 mm in diameter (Storer 1925).  Egg masses typically contain about 200 to 300 

eggs, but may vary between 100 to over 1,000.  

Eggs may hatch from 5 to over 30 days after oviposition (Zweifel 1955).  Researchers 

have found hatching to occur within 14 days in the north Coast Ranges in California 

(Zweifel 1955; Kupferberg 1996a) and Southern Oregon (Nussbaum et al. 1983), and 31 

days in the Sierra Nevada (Van Wagner 1996).  Slower development occurs with cooler 

temperatures (Ashton and Lind 1998).  In the absence of disturbance, newly hatched 
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tadpoles remain near egg masses for several days.  Generally, metamorphosis takes place 

within three to four months, and tadpoles do not overwinter.  Larval development and 

growth in many amphibians have been correlated with water temperatures and food 

availability (Duellman and Trueb 1986).  Maturation is achieved once foothill yellow-

legged frogs reach 40 mm SVL (Zweifel 1955).  Reproductive organs are active by their 

second summer, and frogs were found to reproduce as early as six months after 

metamorphosis in the Central Valley (Jennings and Hayes 1988).  However, breeding 

usually occurs when they are a full two years old (Zweifel 1955; Van Wagner 1996). 

The life span of foothill yellow-legged frogs is unknown, and little is known of 

amphibian life spans in the wild (Duellman and Trueb, 1986).  Females tend to live 

longer than males, and are often found to be three years or older (Zweifel 1955; Van 

Wagner 1996).  In contrast, males were rarely found to be older than two years.  

However, males at least three or four years old were recaptured during a study on the 

North Fork Feather River and were the same size as three year old males at recapture 

(Drennan, pers. comm. 2008).  Other species of ranids in the wild may live twelve or 

more years (Duellman and Trueb 1996).  

Food Habits.—Foothill yellow-legged frog tadpoles feed on algae and diatoms 

scraped from rocks and plants (Vollmar 2002).  Tadpoles appear to have faster growth 

rates feeding on epiphytic diatoms and preferentially feed on them (Jennings and Hayes 

1994).  Tadpoles may gather around other dead tadpoles, possibly to feed on dead tissue 

or algae and diatoms (Ashton 1998).  Feeding ceases during metamorphosis, as the 

digestive system transforms to handle animal tissue and the tail is re-absorbed (Duellman 
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and Trueb 1986).  Once metamorphosis is complete, foothill yellow-legged frogs feed 

mainly on terrestrial invertebrates (Zeiner et al. 1988).  Food includes ants, flies, hornets, 

grasshoppers, beetles, moths, snails, and water striders (Nussbaum 1983).  Van Wagner 

(1996) reported 90 percent of food eaten by these frogs was terrestrial arthropods, 

consisting of 87.5 percent insects and 12.6 percent arachnids.  Ninety-eight percent of 

frogs sampled on Cache Creek, a Clear Lake tributary, had terrestrial arthropods in their 

stomachs (Hothem et al. 2009).  Foothill yellow-legged frogs also eat aquatic 

invertebrates (Zeiner et al. 1988).  Twenty- eight percent of frogs sampled on Cache 

Creek had eaten aquatic arthropods (Hothem et al. 2009). 

Habitat.—Foothill yellow-legged frogs are found in small, ephemeral streams to 

large rivers and within many types of plant communities, including valley-foothill 

hardwood, coastal scrub, chaparral, valley-foothill riparian, hardwood-conifer, ponderosa 

pine, and wet meadow (Stebbins 2003).  Typically, they are found on cool, clear, 

shallow, slow-flowing, rocky streams dominated by cobble (75-300 mm) substrate (Fitch 

1938; Zweifel 1955).  They have been reported to use streams with scarce cobble 

substrate (Fitch 1938; Zweifel 1955), but this appears to be unusual (Jennings and Hayes 

1994).  Foothill yellow-legged frogs have been found in very atypical habitats, which 

include man-made tunnels, roadside culverts, and along the banks of reservoirs (Peek and 

Khandwala 2006).   

Foothill yellow-legged frogs prefer sunny banks with partial shading for basking 

(Jennings and Hayes 1994).  Adults are typically seen on sunny banks in cascade, pool or 

riffle habitats near the water's edge.  These frogs have been found using perennial pools 
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of otherwise ephemeral tributary streams (Moyle 1973).  However, they may be more 

susceptible to predation in these streams.  Soon after embryos hatch, rearing habitat is 

similar to breeding habitat, but tadpoles may move into shallow, warm, low velocity 

areas with fine-grained substrates (i.e., gravel/sand) later in the year (Jennings and Hayes 

1994). 

Foothill yellow-legged frogs were found more often in streams with between 20 and 

40 percent canopy cover, consisting of more than 40 percent riffle habitat, and having at 

least 40 percent cobble substrate (Yarnell 2000).  Kupferberg (1996b) found that large 

boulders that did not move at stream discharges below bankfull can slow and stabilize 

stream velocities.  Boulders are important for safe basking locations and predator 

avoidance (Jennings 1988).  In addition, foothill yellow-legged frogs typically occur on 

stream reaches with high width/depth ratios (low channel confinement), high 

meander/width ratios (high sinuosity), low to moderate gradients (<6.5 percent), and 

cross-sectional configurations that include side channels (Kupferberg 1996b; Ibis 

Environmental Inc. 2002).  

Yarnell (2000) found that seasonal habitat preferences of different age classes were 

related to channel shape and streambed surface texture.  Juveniles utilized relatively 

swift, narrow channels during fall low flows and then switched to wide, shallow channels 

with protected backwater areas during winter/spring high flows.  Adults were usually 

found in confined channels with deep, narrow pools year-round.  Adults occupied 

primarily the deeper pools with open canopies.  In addition, Kupferberg (1996b) found 

that the presence of foothill yellow-legged frogs was positively correlated with stream 



12 

reaches within 400 m (0.25 mile) of tributary confluences.  Adults used the tributaries for 

overwintering and used the main stem for breeding.  

Movement and Dispersal.—Diel and seasonal movements of foothill yellow-legged 

frogs and behavior of adults are poorly known (Jennings and Hayes 1994; Ibis 

Environmental, Inc. 2002).  They do not leave riparian areas during storms, do not utilize 

open areas at night, and are not seen on roads as are other ranids such as Rana pipiens or 

Rana aurora (Zweifel 1955).  During the non-breeding season, home ranges appeared to 

be quite small in adult foothill yellow-legged frogs, with average distance moved of 8 m 

(Van Wagner 1996).  Morey (2000) suggested home ranges were probably less than 10 

m.  Breeding movement initiation temperatures are as low as 10°C (Drennan et al. 2006).  

Van Wagner (1996) reported average distance moved by adults during the breeding 

season was 54 m, but maximum distance traveled was 413 m by females and 408 m by 

males.  These results suggest adults use a particular habitat for most of the year and move 

only in search of breeding areas.  After the breeding season, adults may be scarce in 

ephemeral reaches of these breeding streams, even in perennial pools, but they are 

plentiful in tributaries (Van Wagner 1996).  Alternatively, adults may move into 

vegetation or limit diurnal activity (Ashton 1998).  

Young of the year and yearling frogs seem to move both upstream and downstream to 

areas with surface flow as streams dry back in summer and fall (Van Wagner 1996).  

There was no significant difference in magnitude of movements of juveniles of both 

sexes between the breeding season and the remainder of the year (Van Wagner 1996).  

Juvenile movement was similar to adults during the breeding season, but was much 
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greater during the remainder of the year.  Van Wagner (1996) reported maximum 

distances moved during the non-breeding season were 555 m for a juvenile and 25 m for 

an adult female.  Van Wagner (1996) suggested juveniles move throughout the year in 

search of potential breeding habitat.  There are no studies of tadpole dispersal distances.   

Recent studies have revealed additional details of seasonal movements of adult 

foothill yellow-legged frogs.  Wheeler and Welsh (2008) found that male frogs 

congregated at breeding areas during the breeding season, but females arrived 

asynchronously.  On Red Bank Creek, a perennial tributary to the Trinity River in 

Tehama County, California, 60 adult frogs were followed using biotelemetry (Bourque 

2008).  Bourque found frogs seldom moved far from the wetted channel, and movement 

rates differed between the sexes with females traveling at higher rates during spring.  

Long distance seasonal movements to and from breeding areas were confined to the 

spring breeding season.  Another study tracked movements of 476 adult frogs on a 

regulated section of the North Fork Feather River (Drennan et al. 2006).  They found 

adult frogs showed high site fidelity within tributaries to the main stem of the river, 

which were home to adult frogs outside of the breeding season.  Movements toward the 

main stem breeding areas were triggered by day length.  Males initiated movements first 

and left the breeding areas later than females.  Females traveled at a much faster rate (up 

to 316.5 m/day) than males (up to 58.1 m/day).  Adults started breeding in the main stem 

once water temperatures increased to 10°C and flows were < 55 percent of summer base 

flow on a descending limb of the hydrograph. Female’s length of stay was affected by 

flows and sex ratio.  High flows or a scarcity of males delayed breeding and increased the 
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amount of time females spent at the breeding sites.  Males typically used breeding sites 

next to their home tributaries.  However, some males utilized breeding locations near 

other tributaries.   

Genetics.—Genetics studies for foothill yellow-legged frogs are limited.  Lind (2005) 

analyzed two fragments (Cytochrome B and ND2) of mitochondrial DNA (mtDNA).  

These analyses showed several supported geographical clades within foothill yellow-

legged frog that matched well with differences between clades in other taxa.  The 

geographic breaks between clades fit with hydrologic regions that are likely to be poor 

dispersal corridors for foothill yellow-legged frogs.  Genetic differentiation was generally 

low among populations within the largest clade.  However, frogs in several localities 

showed significant divergence.   

Another study analyzed both mtDNA and random amplified polymorphic DNA 

(RAPD) markers (Dever 2007).  Dever sampled seven tributaries along the relatively 

pristine reach of the Eel River in northern California.  The RAPD markers showed a 

positive correlation between genetic and geographic distance, and tributaries more than 

10 km from each other exhibited little gene flow.  The southern and northern tributaries 

were separated by cluster analysis.  However, little geographic structure was found when 

the mtDNA was analyzed.  Recent divergence, sex biased dispersal or the low number of 

loci used may explain the different results.  The relatively pristine study area, with a lack 

of pollution, dams, roads, and other manipulations, had a large population with a high 

level of genetic diversity.  A follow-up study within this reach of the Eel River sampled 

nine tributaries, utilized three RAPD markers, and sampled many more individual frogs 
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(Poch and Dever 2008).  They found high similarity among individuals of different 

tributaries, as evidence for significant genetic flow among the tributaries of the Eel River.   

Predation.—Foothill yellow-legged frogs are consumed by a wide variety of 

predators, including birds, mammals, insects, reptiles, and other amphibians (Duellman 

and Trueb 1986).  The primary native predators throughout the range of foothill yellow-

legged frogs are garter snakes (Thamnophis spp.).  Western aquatic garter snakes 

(Thamnophis couchi and Thamnophis atratus) are known to take a heavy toll on all life 

stages (Nussbaum 1983; Jennings and Hayes 1988; Lind and Welsh 1994).  Other species 

of garter snakes (Thamnophis spp.) prey primarily on postmetamorphic stages 

(Nussbaum 1983; Ashton et al. 1998).  Rough skinned newts (Taricha granulosa) have 

been reported to feed on egg masses of foothill yellow-legged frogs in Southwestern 

Oregon (Evendon 1948).  Foothill yellow-legged frog tadpoles are a component of the 

diet of Sacramento pikeminnow (Ptychocheilus grandis) (Brown 1982).  Egrets, herons, 

and passerine birds have been known to consume tadpoles and post-metamorphic frogs of 

various anuran species (Duellman and Trueb 1986).  Raccoons (Procyon lotor) may 

opportunistically prey on foothill yellow-legged frogs (Zweifel 1955). 

A principal non-native predator of foothill yellow-legged frogs is bullfrogs.  

Bullfrogs compete for the same resources as well as prey on native ranids throughout the 

West Coast (Hayes and Jennings 1986; Jennings and Hayes 1988; Kupferberg 1996b).  

Bullfrog predation on foothill yellow-legged frogs was observed during a study on Cache 

Creek, a Clear Lake tributary, but the amount of predation was not determined (Hothem 

et al. 2009).  Non-native Centrarchids (basses and sunfishes) prey heavily on both egg 
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masses and tadpoles (Hayes and Jennings 1986).  Tadpoles are particularly vulnerable to 

small, fast, maneuverable sunfish such as green sunfish (Lepomis cyanellus), because 

tadpoles have limited speed and stamina (Hayes and Jennings 1986).  Signal crayfish 

(Pacifasticus leniusculus) were captured on video feeding on egg masses on the North 

Fork Feather River and may contribute to egg mass detachment (Jackman et al. 2004).  In 

addition, observations of tadpoles during visual encounter surveys (VES) suggest that 

signal crayfish feed on tadpoles, based on tail injuries (Drennan et. al 2005).  Introduced 

signal crayfish are present in many watersheds with foothill yellow-legged frogs.  They 

may pose a serious threat, because foothill yellow-legged frogs lack evolutionary 

experience coping with crayfish predation (Drennan et. al 2005).  

Competition.—A study by Kupferberg (1996a) found that competition between 

foothill yellow-legged frogs, Pacific chorus frogs (Pseudocris regilla), and bullfrog 

tadpoles resulted in a 48 percent reduction in survivorship of foothill yellow-legged frog 

tadpoles, and a 16 percent reduction in size at metamorphosis.  Tadpoles competed for 

algae directly in this experiment.  Bullfrog tadpoles devoured most of the algae, due to 

their greater size.  Bullfrog tadpoles usually require more than one year to metamorphose 

and consume algal resources year-round (Kupferberg 1996b).  The foothill yellow-legged 

frog co-exists with red-legged frogs on some streams, but competition is minimized by 

resource and habitat partitioning (Hayes and Jennings 1988). 

Altered Stream Flow Regimes.—Flow alterations from impoundments are a great 

threat to foothill yellow-legged frog populations throughout their range (Hayes and 

Jennings 1988).  Impoundments may also result in habitat fragmentation and reduced 
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connectivity of meta-populations.  Reduced summer stream flows may concentrate frogs 

into perennial pools, increasing susceptibility to predation (Hayes and Jennings 1988).  

Habitat changes induced by altered flow regimes may create habitat preferred by 

bullfrogs, which are predators and competitors of foothill yellow-legged frogs (Hayes 

and Jennings 1988).  Bullfrogs thrive in reservoirs and dredge ponds where water may be 

warm and of poor quality.   

Wheeler and Welsh (2008) suggested that anthropogenic manipulation of stream 

flows during the breeding season may suppress reproductive behavior and output of egg 

masses.  The magnitude and timing of spring pulsed flows from reservoirs greatly 

influence whether embryos survive long enough to hatch (Kupferberg et al. 2009).  

Smaller pulsed flows later in the breeding season may cause higher egg mortality than 

early season high magnitude pulsed flows, because jelly cohesion among eggs, and 

adhesion to substrates are diminished in older egg masses.  Effects of egg mass scour 

from pulsed flows may not be detectable for two or three years.  A three-year lag time 

between recruitment conditions and adult population size was observed in comparisons 

made between two reaches on the North Fork Feather River (Kupferberg et al. 2009).  

Farther south, populations may have a two year lag time (S. Kupferberg Personal 

Communication).   

Impoundments may cause an artificial increase or decrease in water temperatures 

downstream (Catenazzi and Kupferberg 2009).  Lower than natural summer releases 

most often result in unnaturally high stream temperatures.  By contrast, cooler than 

normal water temperatures may result from releases from a reservoir’s hypolimnion (the 
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cold bottom layer of a lake).  Cooler releases can result in nearly doubling the amount of 

time eggs take to hatch or tadpoles take to complete metamorphosis and often result in 

smaller tadpole sizes at metamorphosis than tadpoles reared at warmer temperatures 

(Catenazzi and Kupferberg 2009).  However, warmer temperatures were associated with 

outbreaks of the copepod Lernaea cyprinacea in foothill yellow-legged frogs in 

experimental enclosures. Survival to metamorphosis was highest at intermediate 

temperatures.   

An extensive survey effort by Garcia and Associates (2002) on the North Fork 

Feather River failed to find foothill yellow-legged frogs in habitats which appeared 

suitable for this species.  The study areas were below impoundments operated by Pacific 

Gas & Electric for hydroelectric power generation.  A study on the Trinity River below 

Lewiston Dam, reported a 94 percent loss of potential breeding habitat after construction 

of the dam (Lind et al. 1996).  After Trinity River flood flows were reduced, there was 

encroachment by riparian vegetation and reduced cobble/gravel bar formation.  Flow 

releases had been reduced to 10–30 percent of pre-dam operation flows in both total 

volume and in periodic high flows (i.e., storm runoff) (Lind et al. 1996).  Egg masses 

have been scoured in several years by high late spring releases from Lewiston Dam (Lind 

et al. 1996).  Ellis and Cook (2004) reported half of known egg masses were scoured by 

five days of high flow releases on the Pit River in California.  They suggested duration of 

high flows and change in current direction (shearing) had a higher impact than overall 

magnitude.  Jackman et al. (2004) also found pulsed flows scoured half of the egg masses 
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on the North Fork Feather River, in only one day.  Egg masses may be left to desiccate if 

receding high flows are poorly timed (Lind et al. 1996; Ashton 1998).  

Laboratory and field experiments showed that higher velocities caused short term 

behavioral responses in tadpoles (Kupferberg et al. 2009).  Tadpoles sought refuge within 

interstitial spaces of substrate.  Velocities in which tadpoles could not swim or maintain 

position within substrate interstitial spaces varied with tadpole size, developmental stage, 

and population origin.  Long term consequences of tadpoles seeking high velocity refuge 

in substrates were at increased risk of predation and reduced growth rates in larger 

tadpoles.  Tadpole abundance dropped from the hundreds to a few at one site from a 

period of low flow to high flow and back to low flow during daily fluctuations for 

recreational whitewater rafting.   

Recent hydraulic modeling studies have documented the effects of altered flows for 

foothill yellow-legged frogs.  Lind and Yarnell (2008) used depth, velocity, and substrate 

as variables to develop a habitat suitability model/criteria for egg and tadpole stages, 

which are the most susceptible to pulsed flows from hydropower generation or  

whitewater rafting recreation releases.  They found that shallow, slow velocity waters 

with coarser-grained substrates had the highest suitability for egg and tadpoles.  A study 

employing a two-dimensional hydrodynamic model using an un-regulated and regulated 

stream accurately predicted suitable breeding locations throughout these study reaches 

(Lind et al. 2009).  Many pulsed flow scenarios were assessed to determine how habitat 

availability and suitability were affected.  Lower discharges during spring provided the 

greatest weighted usable area for breeding.  However, higher initial discharges resulted in 
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breeding within sites more resistant to later increases in velocity.  Only 20 to 30 percent 

of suitable tadpole habitat on the un-regulated stream and <5 percent for the regulated 

stream was available during a summer pulsed flow, regardless of the initial flow.  The 

observed differences in available habitat during the pulsed flows on the un-regulated and 

regulated stream were likely because of differences in channel morphology.   

Agrochemicals.—Agrochemicals have been implicated in the decline of amphibians 

worldwide.  Hayes et al. (2002) found hermaphroditism and other deformities in leopard 

frogs (Rana pipiens) exposed to commonly occurring levels of the widely used herbicide 

atrazine, both in the laboratory, and in the field.  Colborn and Clement (1992) attributed 

foothill yellow-legged frog population declines to endocrine mimicking chemicals that 

entered the ecosystem through pesticides and fungicides.  Pesticide drift from the Central 

Valley to the Sierra Nevada, and high pesticide levels in the bodies of Sierra Nevada 

amphibians, have been well documented in California by Davidson et al. (2002).  They 

found a strong positive association between declines of both California red-legged frogs 

and foothill yellow-legged frogs in areas downwind of agricultural land use.  Fellers et al. 

(2007) exposed tadpoles for long periods of time in a laboratory to environmentally 

realistic concentrations of pesticides still in use.  They concluded these pesticides are at 

sufficient concentration levels in the Sierra Nevada to cause a significant decrease in 

survival rates.  Compounds from the breakdown of chlorpyrifos, malathion, and diazinon 

were found to be 10 to 100 times more toxic than the parent compounds (Sparling and 

Fellers 2007).  Foothill yellow-legged frogs are far more susceptible to pesticides than 
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Pacific chorus frogs (Fellers and Kleeman 2009).  Chlorpyrifos was three times more 

toxic and Endosulfan was 40 times more toxic to foothill yellow-legged frogs.  

Pathogenic Fungi.—Pathogenic fungi have been documented to contribute to egg 

mass loss of several amphibians in the Pacific Northwest (Blaustein et al. 1994b).  

Amphibian declines in the United States and Panama have been linked to the introduced 

fungus Batrachochytrium dendrobatidis (Bd), which causes chitridiomycosis (Fellers 

2001).  This disease causes abnormalities in jaw sheaths and teeth rows of tadpoles, and 

is invariably fatal in populations of some species.  An 11 year study on Sierra Nevada 

yellow-legged frog (Rana sierrae) and southern mountain yellow-legged frog (Rana 

Muscosa) revealed the extirpation of over 100 populations since 1997, and after the 

introduction of Bd (Vredenburg et al. 2009).  The disease spread at approximately 1 km a 

year in an easterly direction.  Infections of frog populations reached 100 percent within 

weeks.  All populations were stable prior to the onset of Bd invasion.  Fellers (2001) 

sampled 25 counties in California and found chitridiomycosis in six species of 

amphibians including foothill yellow-legged frogs in 10 counties at 73 sites.  

Consequently, it appears chitridiomycosis affects a variety of taxa and is geographically 

widespread.  Johnson and Saulino (2007) found Bd in all anuran species, including 

foothill yellow-legged frogs, in and around Pinnacles National Monument, and at a few 

sites in the western foothills of the San Joaquin Valley.  Lowe (2007) found 10 of 12 sites 

in the Diablo Range within San Benito and Fresno counties were infected with Bd.  

However, most of post-metamorphic frogs were not infected.  All foothill yellow-legged 

frogs >40 mm were chytrid free.   
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UV-B Radiation.—A negative correlation was shown between hatching success and 

UV-B exposure in ranid species of the Pacific Northwest (Blaustein et al. 1994a).  

However, Davidson et al. (2002) found that patterns of amphibian declines in the Central 

Valley and Sierra Nevada in California were not consistent with the UV-B hypotheses.   
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METHODS 

Study Area 

 Coyote Creek drains a portion of the central Diablo Mountain range in southeast 

Santa Clara County, and flows into San Francisco Bay at Alviso Slough.  Anderson and 

Coyote reservoirs impound runoff in the downstream end of the foothills portion of 

Coyote Creek.  These reservoirs are operated for aquifer recharge in Santa Clara Valley 

by the Santa Clara Valley Water District.  There are no significant impoundments 

upstream of Coyote Reservoir.  Upstream of the reservoirs, the stream alternates between 

moderately confined channels, and narrow alluvial valleys.  Boulder, cobble, and bedrock 

are the dominant substrates in the moderately confined sections, and cobble, gravel, and 

boulder prevail in the channel within the alluvial valleys.  Steeper tributaries enter in the 

alluvial valley reaches.    

The study was conducted on upper Coyote Creek, upstream of Coyote Reservoir from 

the inundation zone to Gilroy Hot Springs (Figure 1).  The drainage area upstream of the 

study area encompasses over 176 square km (109 square miles).  The study reach on the 

main stem of Coyote Creek was approximately 7.8 km (4.8 miles) long.  Also included 

were Dexter Creek 3.0 km (1.9 miles) from confluence and an unnamed tributary below 

Sheep Ridge 3.5 km (2.2 miles) from confluence, which are tributaries containing foothill 

yellow-legged frogs.  A small population of California red-legged frogs is sympatric with 

foothill yellow-legged frogs throughout the watershed upstream of Coyote Reservoir. 
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The primary land use of the area adjacent to Coyote Creek upstream of Coyote Lake 

has been livestock grazing.  The Santa Clara County Open Space Authority now owns 

and manages almost the entire study area.  The upper 305 m (1,000 ft) of the study area is 

managed by California Department of Parks and Recreation as part of Henry Coe State 

Park, which contains the rest of the upper watershed.  Livestock grazing is allowed on 

Open Space land, but is managed to minimize effects on natural resources.  No grazing is 

allowed in Henry Coe State Park, but occurs frequently near the park boundaries.    

The upland plant communities adjacent to Coyote Creek and its tributaries are oak 

woodland, (where moister, steep slopes adjoin the stream), and grassland savanna (on 

drier, flatter habitat).  The oak woodland community is dominated by coastal live oaks 

(Quercus agrifolia) and California bay (Umbellularia californica).  Other tree species 

include blue oak (Quercus douglasii), California buckeye (Aesculus californica), and 

foothill pine (Pinus sabiniana).  Dominant riparian tree species along confined channels 

are white alder (Alnus rhombifolia), western sycamore (Platanus racemosa), willow 

(Salix spp.), and big leaf maple (Acer marcophyllum).  The dominant trees in the 

grassland savanna community are coastal live oak and California buckeye with a few 

valley oaks (Quercus lobata).  The dominant riparian species in the alluvial reaches are 

western sycamore, scattered willows (Salix spp.), and mule fat (Baccharis salicifolia).   

Habitat Mapping 

I conducted mesohabitat mapping during spring 2004 as high flows subsided and 

breeding had ceased. Mesohabitats were identified as pool, riffle, or run (Hawkins et al. 
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1993).  I used flagging to identify all mesohabitats.  I labeled flagging with habitat unit 

numbers, and I identified bottom or top of habitat units with distances in meters from the 

downstream ends of the study reaches.  I added additional flagging within large habitat 

units with distances in meters from the bottom of the respective unit, to facilitate 

pinpointing future frog capture/recapture locations.  Physical mesohabitat parameters 

included: mean depth; maximum depth; and mean width, which were measured with a 

stadia rod.  I measured mesohabitat lengths with a surveyor’s hip chain.  I determined 

Rosgen channel geomorphology types by measuring width to depth ratios of the bankfull 

channel (i.e., channel confinement), the ratio of bankfull channel width to flood prone 

width (width at twice bankfull depth [i.e., entrenchment]); and channel gradient (Rosgen, 

1996).  

I collected data on additional habitat parameters for the purpose of determining if 

these were good predictors of abundances of adult foothill yellow-legged frogs.  I 

identified and recorded instream escape cover types for each habitat.  Cover types 

included: woody debris; undercut bank; boulder/cobble; bedrock; terrestrial vegetation; 

depths; and water surface turbulence.  I measured the percentage riparian canopy closure 

using a spherical densitometer.  I visually estimated abundance of substrate types for 

each mesohabitat to the nearest 10 percent.  Substrate types included: silt/clay; sand; 

gravel (5–75 mm); cobble (75–300 mm); boulder (>300 mm); and bedrock.  In addition, I 

recorded other aquatic species observed in each mesohabitat.  I minimized potential 

impacts to foothill yellow-legged frog egg masses by identifying breeding locations prior 

to mapping.  In addition, I removed hip chain string as I proceeded.   
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Visual Encounter Surveys 

From 14 March 2004 to 16 November 2005 and 14 March to 10 April 2006, I 

conducted VES at least weekly for the entire study area, where suitable habitat (i.e., 

water) existed for the duration of the study using the USDA-FS protocols in Standard 

Operating Procedures for River and Creek Visual Encounter Surveys (Bury and Corn 

1991).  In addition, I conducted some night surveys on a monthly basis through all 

suitable habitats.  I conducted a total of 215 VES, and all sites were checked at least 60 

times.  I used binoculars to scout open and exposed areas for frogs (Seltenrich and Pool 

2002).  I proceeded slowly upstream, zigzagging from one bank to the other searching the 

banks and channel for egg masses, tadpoles, metamorphs, and adult foothill yellow-

legged frogs.  I used a dip net to flush frogs from bank vegetation and sweep undercut 

banks and emergent vegetation.  I bypassed dry areas and proceeded to the next suitable 

habitat.  I exercised caution to avoid stirring up sediment or dislodging egg masses of all 

stream breeding amphibians.   

I attempted to capture all frogs with a dip net or by hand.  Age class (adult, sub-adult, 

and metamorph), sex (Stebbins 2003), and SVL were determined and recorded before 

releasing frogs at the location of capture.  I recorded captured and observed frogs to the 

specific mesohabitat (habitat unit number) and measured distance from exact positions 

within it from the top or bottom of the habitat.  I characterized and recorded 

microhabitats utilized by frogs as isolated pool, connected side pool, scour pool, 

backwater pool, side-channels, boulder-sedge, edgewater, pool tailout, riffle, exposed 

bank, protected bank, or cobble/gravel bar (Seltenrich and Pool 2002; PacifiCorp 2002).  
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In addition, I recorded activities of captured and observed frogs as sitting in shade, 

basking, hiding under substrate, calling, swimming, foraging, amplexus, floating, or 

underwater (on bottom).  I hung flags as close to the capture or location of observation as 

possible to monitor any changes in distribution of recaptured frogs within or among 

mesohabitats (Ibis Environmental Services 2002).   

I surveyed for egg masses from early March to the end of the breeding season in both 

2004 and 2005. In 2006, I surveyed only during March in order to determine when egg 

laying was initiated on the lower site.  I determined specific mesohabitats used (habitat 

unit number) and exact locations (distance from top or bottom of the habitat) of egg 

masses or clusters of egg masses.  I determined egg mass diameter (mm), attached 

substrate diameter (mm), distance from shore, depth at egg mass attachment point, and 

condition of egg mass (intact, damaged, hatching, hatched).  However, egg mass 

diameters collected during 2004 had a high variability because I could not survey at 

regular intervals of every two days as in 2005.  I estimated numbers of tadpoles for each 

mesohabitat during each VES.  I determined and recorded the same in-channel 

microhabitat characteristics for tadpoles as for the adults and sub-adults.   

Mark and Recapture 

I conducted mark and recapture of frogs simultaneously with VES.  I marked 

121 adult (>40 mm SVL) and 61 juvenile frogs (young of the year and yearling) for mark 

and recapture to determine movement patterns from 18 July 2004, to 16 November 2005.  

Seventy-two frogs were marked in 2004.  These consisted of 32 adults (18 females and 

14 males) and 40 juveniles (mostly young of the year).  One hundred and ten frogs were 
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marked in 2005.  These consisted of 89 adults and 21 juveniles.  I targeted the larger 

young of the year that were near 40 mm during October and November 2004.  Males had 

developed their thumb pads by then.  This was also true of frogs > 40 mm in spring 2005. 

I marked frogs with soft, three digit numeric, color coded vi-alpha tags (Northwest 

Technologies, Inc.) which were injected subcutaneously in the dorsal thigh (Chelgren 

2003).  I massaged the tags to the ventral side of the thigh to avoid tag loss through the 

incision and to allow for tags to be viewed through transparent skin (Chelgren 2003).  I 

manually restrained captured frogs and kept the legs and arms stationary.  I recorded 

SVL and sex prior to release at the exact location of capture.  In addition, I determined 

and recorded the same meso and microhabitat data as the VES.   

Radiotelemetry 

I attached radio transmitters (Holohil Systems Ltd.; BD-2 transmitters) weighing 

0.90–1.20 g to five large adult foothill yellow-legged frogs weighing at least 15 g 

(Mathews and Pope 1999; Watson et al. 2003) between early June 2005 and mid October 

2005, after breeding frogs regained and stabilized their weight.  Initially, my goal was to 

fit transmitters to frogs in late winter before breeding in order to track them to the 

breeding area.  However, heavy rains and high flows prevented me from capturing frogs 

in winter.  I used a custom fitted bead chain (key chain) to attach transmitters (Mathews 

and Pope 1999; Ritson and Hayes 2000; Goldberg et al. 2002).  The combined weight of 

the transmitter was 1.5 g to satisfy the ten percent rule of transmitter to body weight, thus 

minimizing the effects of the transmitter on the frogs (Mathews and Pope 1999; Watson 

et al. 2003). 
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I captured five frogs (three females >30 g and two males >20 g) to be fitted with 

radio transmitters by hand or dip net, and restrained them by hand without anesthesia.  

Frogs were released as soon as they recovered after attachment of radio transmitters to 

the exact location of initial capture.  I recorded the same meso and microhabitat data for 

vi alpha marked frogs, determined sex, and measured SVL.  Frogs were tracked 

simultaneously with VES.  I tracked frogs at least twice weekly using a tectonics receiver 

with a hand held H-flex antenna (Ritson and Hayes 2000).  I recovered the radio 

transmitter apparatus from all frogs between mid-October 2005 and 16 November 2005.  

Battery life of these transmitters was 16 to 20 weeks.  I determined distances traveled 

from the last location by noting the exact mesohabitat with predetermined distances from 

a known landmark and measured locations from the top or bottom of the habitat.  

Tracked frogs were located twice daily, first in the morning and later in the late 

afternoon.   

Stream Flow  

Daily and hourly stream flow data were retrieved from U.S. Geological Survey 

(USGS) Station Number 111698800 on Coyote Creek upstream of Coyote Reservoir and 

downstream of Henry Coe State Park.  The gauge is about midway through the 

downstream reach and about 20 m downstream of the confluence of Dexter Creek and the 

main stem of Coyote Creek.  This station was inoperable during 2004.  As a 

consequence, I used data from a nearby watershed (Lower Llagas Creek) within the 

Gilroy, California city limits.  I retrieved these data from USGS station number 1153650 

to determine storm runoff. 
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Temperature 

Stream temperatures were recorded daily at one hour intervals from January 2005 to 

fall 2005, using Optic Stowaway temperature loggers in degrees Celsius (°C).  Loggers 

were housed in steel plumbing joints and chained to objects unlikely to move at high 

flows.  I installed loggers at four locations within the study area.  Two locations were at 

the upper and lower ends of the study area and two were located nearly evenly-spaced 

between them.  In addition, temperature loggers were installed in perennial pools on 

Dexter Creek and on the unnamed tributary below Sheep Ridge.  Both tributaries were 

occupied by adult foothill yellow-legged frogs throughout the year.  I used a hand held 

thermometer to take spot temperatures during the initiation of breeding in 2004 and 2006.  

I did not have access to temperature loggers during 2004 and 2006.  

Analyses 

I ran ANOVA and unpaired two sample t-tests for a comparison between 2004 and 

2005 for depth of egg mass deposition, distance from shore of breeding, and attachment 

substrate sizes.  MYSTAT 12, a student version of SYSTAT 12 and SYSTAT 13, was 

used to test assumptions of equal variances, sample means, and to calculate R² for linear 

regressions.  Comparisons of average maximum distances traveled by season were made 

between all frogs, all adults, adult males versus females, and adults versus juveniles.  

Unpaired two-tailed t-tests were employed in instances in which the null hypothesis was 

accepted for equal variances.  The Wilcoxon test for equal sample means was used in one 

instance where the null hypothesis for equal variances was rejected (adults versus 

juveniles).  The Von Bertalanffy Growth Equation (VBGE) was used to produce 
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predictive growth curves for small (17 mm) and large (22 mm) metamorphs, and was 

compared with metamorph growth  on the Feather River during 2004 (S. Kupferberg 

Personal Communication).  Condition factors were calculated for resident adult main 

stem and tributary frogs using the equation K=W*100/L³, where K is the condition 

factor, W is the weight in grams, and L is length in centimeters (Moyle and Cech 1996).  

I performed chi squared tests for goodness of fit for mesohabitat preference as well as 

mesohabitat substrate dominance use/preference of adult foothill yellow-legged frogs 

from the cessation of breeding to the summer dry back of the channel.  I used both t-tests 

and non-parametric tests of significance for adult foothill yellow-legged frog mean and 

maximum depths, mean canopy, and mean number of cover types (cover complexity).   
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RESULTS 

General Breeding Pattern 

The lower and upper breeding sites (upper and lower reaches) were separated from 

one another by 4 km (2.5 miles) of the middle reach (Figure 1), where no breeding was 

detected in 2004 and 2005.  A total of 72 egg masses were deposited for the two sites 

during 2004, with a combined density of 0.0149 masses/m (Table 1).  

Breeding increased at both sites in 2005, with 103 egg masses deposited and a density 

of 0.0214 mass/m.  Breeding started slightly later, and lasted much longer at both sites 

during the wetter 2005.  Start of breeding was checked only at the lower site in 2006 and 

was three days earlier in 2006 than in 2005 and two days later than 2004.  Breeding 

initiation in all three years occurred as temperatures were close to 12˚C and as flows 

declined to between 22-27 cms (72-88 cfs) during 2005 and 2006 on the lower reach.   

Hatching success (as egg mass survival) decreased on the lower reach from 100 

percent in 2004 to 73 percent in 2005 (Table 2).  This was due to scour of masses from a 

particularly intense storm during late March.  Egg mass survival at the upper reach was 

100 percent in both years.  The mean number of days for eggs to hatch was similar on the 

lower reach between 2004 (mean = 13) and 2005 (mean = 12), but the range in 2005, 

with the longer breeding season, was much higher (6-26 days versus 10-14 days; Table 

2).  The mean number of days to hatching on the upper reach in 2005 was slightly higher 

than at the lower reach (14 versus 12), and the range was narrower (8-19 versus 6-26).  

Average egg mass diameter was smaller in 2005 on both reaches.  Egg masses became 
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smaller as the breeding season progressed (Figures 2 and 3).  In 2005, mean clutch size 

for both reaches combined was 60 mm during the first third of the breeding season, 43 

mm during midseason and 29 mm during the last third of the season.  An ANOVA 

comparing three means showed these differences between early, mid- and late-season 

clutch sizes to be significant using (Levene’s Test; df = 2,100, α = 0.025, critical 

F = 3.83, calculated F = 4.871).  A regression for egg mass diameter by date, yielded R² 

values of 0.684 for the lower reach and 0.728 for the upper reach in 2005.   

The mean depth at which eggs were deposited was significantly deeper during 2005 

(0.237 m) than in 2004 (0.157 m) (unpaired two sample t-test; α = 0.025, df = 173, 

critical t = 1.974 and calculated t = -3.056).  Egg deposition was closer to the edge of the 

wetted channel in 2005 (2.201 m) than 2004 (2.636 m).  However, the distance was not 

significantly different because of wide variation in both years (unpaired two sample t-

test; α = 0.025, df = 173, critical t = 1.974 and calculated t = 2.166).  Egg attachment 

substrates were larger during 2005 (68 mm) than 2004 (59 mm), but were not statistically 

significant (unpaired two sample t-test; α = 0.025, df = 165, critical t = 1.974 and 

calculated t = -0.455). 

Stream Flow and Breeding 

Breeding initiation occurred within 10 days after the last significant storm on both 

reaches in 2004 (Figures 4 and 5).  All egg masses were deposited on the descending 

limbs of the hydrograph generated by the latest storm.  Stable spring base flows of 

approximately 2.44 cms (8 cfs) were reached by early April 2004 (Figure 6).  In contrast, 

in 2005  stable spring base flows gradually decreased through late April, but there was 
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also an early May storm of 53 cms  (174 cfs) (Figure 7).  Breeding was initiated on about 

21 March 2006 on the lower reach after a storm.  I spot-checked the water temperature, 

which was 11.5˚C at 10:30 AM.  There was a large storm with measured discharges as 

high as 500 cms (1700 cfs) in early April, 2006 that likely scoured egg masses, but an 

explosion of breeding occurred on the lower reach by April 10.  

Stream flows varied between 4.88 and 405 cms (16-1,330 cfs) during the breeding 

season in 2005.  However, the highest mean daily discharge recorded during a day that 

breeding occurred was 23.5 cms (77 cfs). Breeding initiation in 2005 occurred within a 

week by calendar date compared with 2004, despite the drastically different flows 

between the two years.  Nine of eleven early egg masses deposited at the lower site 

during 2005 were scoured by consecutive large storms that lasted about ten days in 

March.  Flows increased three more times during the breeding season, due to moderate-

sized storms that persisted into early May.  All egg masses on both reaches were 

deposited on descending limbs of the hydrograph during 2005.  No egg masses were 

deposited within the upper reach prior to the large storms in late March.   

Temperature and Breeding  

No temperature data were collected to calculate daily means, minimums, and 

maximums during the 2004 breeding season.  However, hand held thermometer readings 

were recorded when new egg masses were encountered, and temperatures were always 

greater than 12°C.  I measured 11.5˚C water temperature on the morning of 21 March 

2006, when I observed the first egg masses that were less than 2 days old.  Mean daily 

temperatures were likely over 12˚C.  The lowest daily mean water temperature recorded 
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on a day when breeding occurred was 11.3°C on 4 April 2005 on the upper reach.  Mean 

daily temperatures exceeded 12°C on the lower reach by 1 March 2005.  However, 

breeding was not initiated until 12 March 2005. The majority of egg masses (72 of 103) 

in both reaches, including early March on the lower reach, were deposited during days 

when daily mean water temperatures ranged between 13 and 17°C  (Figures 8 and 9). In 

2006, the first egg masses were deposited on 9 March on the lower reach, at a 

temperature of 12.2˚C.  No breeding occurred in 2004 or 2005 on days when daily mean 

temperatures exceeded 19.3°C. 

Physical and Habitat Parameters for Egg Masses 

Mesohabitat Use.—Breeding took place within seven pool habitats and one run 

during 2004 on the lower reach (Table 3).  Two different pools were utilized for breeding 

in 2005.  The new pools used in 2005 were immediately downstream of the downstream- 

most pool used in 2004.  All mesohabitats utilized for breeding during both years held 

water until at least August and were either perennial mesohabitats or were adjacent to 

one.  About half of the egg masses during both years (54 of 100) were deposited near the 

tail of breeding pools, most of the rest (41 of 45) were near the middle and one was 

deposited at the head of a pool (Table 4). Breeding took place in eight pool habitats 

during both years on the upper reach (Table 3), but three of the pools were different 

between years.  The new pools used in 2005 were adjacent to the pools used in 2004.  

Over three-quarters (24 of 31) of the egg masses in 2004 were deposited near the tail of 

breeding pools (Table 4).  In contrast, frogs predominately chose the middle of pools (33 
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of 44) over the tailouts for breeding during 2005.  All mesohabitats on the main stem that 

held water until at least August were used for breeding  

Microhabitat Use.—Submerged gravel bars were the most frequently-chosen areas of 

pools during both years at both sites.  However, there was a significant increase in use of 

cobble bars at the lower site during 2005 (Table 4).  At the upper site, cobble bar use 

declined in 2005, and some frogs (5%) used deeper slack water in 2005. 

All egg masses at the lower reach during 2004 were attached to stones (Table 5).  

However, five egg masses (8%) were attached to vegetation or roots in 2005.  The 

majority of egg masses deposited on stones during both years was deposited on gravel 

(5–75 mm) substrates.  In the upper reach, all egg masses during both years were attached 

to stones, with an increase in the use of cobbles (Table 5).  The majority (70-83%) of egg 

masses during both years were deposited on gravel substrates.  There was an increase in 

the use of cobble (17 to 30%) for attachment during 2005 when stream flows were 

higher.    

In the lower reach, oviposition occurred in deeper water and somewhat closer to 

shore in 2005, but egg masses had lower canopy closure in 2004 than 2005 (27 and 31 

percent; Table 6).  In the upper reach, oviposition occurred in deeper water (0.24 m 

versus 0.19 m) and somewhat closer to shore (2.59 m versus 3.18 m) and at locations 

with more open canopies in 2005 in comparison to 2004 (18 versus 32 percent; Table 6).  

Movement/Mark and Recapture 

General Characteristics.—A total of 181 frogs of all ages were marked during 2004–

2005.  This included 106 males, 67 females and eight undeterminable frogs, for a male-
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to-female ratio of 1.58.  A total of 106 frogs were recaptured at least once, and 65 

individual frogs were recaptured at least twice.  The observed male-to-female sex ratio 

during the 2005 breeding season was 1.48 on the lower reach and 1.85 on the upper 

reach.   

A total of 58 juvenile frogs were marked during 2004–2005.  All juveniles 

marked during 2004 were young of the year, and in 2005 all were yearling frogs that 

overwintered.  Four female and nine male juveniles first captured as juveniles were 

recaptured as adults (Table 7).  Snout to vent length (mm) and mass (g) ranges for both 

adult males and females were very similar between 2004 and 2005.  Maximum weight of 

females was nearly twice that of males throughout the study area during both years 

(Table 8).  Most (87 percent) lower reach adult females resided on Dexter Creek outside 

of the breeding season during both 2004 and 2005 (Table 9).  Nearly two-thirds of lower 

reach adult males captured during 2005 resided on Dexter Creek.  However, few males (n 

= 3) were captured in 2004 and only one was captured on Dexter Creek.  

The number of frogs observed and captured on the lower reach breeding site started 

to increase as temperatures reached about 10°C in mid-February and peaked starting in 

mid-march through mid-May 2005.  Observations of adult frogs on the lower reach 

declined soon after breeding ceased in mid-May, and few frogs were seen after mid-June 

(Figure 10).  The number of males observed outnumbered females during the majority of 

the time, especially prior to and after active breeding occurred (Figure 11).  

The upper reach has a perennial tributary (Long Canyon Creek) with resident foothill 

yellow-legged frogs, similar to Dexter Creek.  These frogs are likely to breed on the 
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upper reach and make significant movements to and from the main stem.  However, I did 

not include this tributary as part of my visual encounter surveys and mark and recapture 

because there were illegal marijuana gardens with armed guards throughout this study.   

Movement.—Patterns of movement among foothill yellow-legged frogs in the Coyote 

Creek watershed were highly seasonal and associated with breeding.  Over ninety percent 

of marked frog movements were either to the breeding area or away from it after 

breeding.  Few frogs stayed in one location during both the pre-breeding and breeding 

seasons spanning February through May (Figure 12).  In contrast, nearly half of the 

marked frogs did not move during the non-breeding season, June through January.  

Fourteen percent made very small movements to adjacent mesohabitats.  Movements to 

adjacent habitats were generally either between pools and riffles, or from one step pool to 

another.  All non-breeding season movements were made in response to either channel 

dry backs or rain events.  The maximum distance traveled by any frog was just under 

2,500 m during spring 2005 (Figure 13).  This frog was an adult female moving from the 

main stem breeding area to her residential habitat in an unnamed tributary below Sheep 

Ridge after breeding.  She was initially captured and marked on 10 April 2005, and last 

recaptured on 29 June 2005.  The maximum distance traveled by an adult male was more 

than 2,200 m.  This frog moved from its residential habitat on Dexter Creek to the 

breeding area during early spring 2005.  The maximum distance traveled by a juvenile 

frog was about 860 m during the pre-breeding/breeding season.  This frog moved from 

the main stem of Coyote Creek upstream into Dexter Creek.  Diurnal daily movements of 
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radio-tracked frogs during summer ranged between 0 to 4 m.  The average movement 

was less than 0.3 m.   

Maximum distances traveled by all frogs (total marked frogs recaptured) during the 

pre-breeding/breeding season were significantly greater than the non-spawning season 

(paired 2-tailed t-test; critical t = -4.619, calculated t = -4.205, p = 0.001).  Mean 

maximum distances traveled by all frogs during the pre-breeding season were 543 m and 

were 104 m during the non-breeding season.  Distances traveled by adults during the pre-

breeding/breeding season (593 m) were significantly greater than in the non-breeding 

season (107 m) (paired 2-tailed t-test; critical t = -4.727, calculated t = -4.029, p = 0.001).  

Wide individual variation in movement overwhelmed mean differences among groups.  

Maximum distances traveled by females (744 m) during the pre-breeding/breeding 

season were substantially greater than males (485 m), but the difference was not 

significant (paired 2-tailed t-test; critical t = -1.107, calculated t = -1.039, p = 0.277, α = 

0.05).  Mean maximum distances traveled by adults during the pre-breeding season were 

about twice that of juveniles (593 m versus 305 m), but the difference was not 

significantly different (non-parametric Kruskal-Wallis; critical t = 1.090, calculated t 

=1.593, p = 0.286, α = 0.05).  The magnitude of breeding season movements of female 

and male tributary residents was generally greater than main stem resident frogs 

(Figures 14-17).  Resident tributary females occupied habitats that were generally farther 

away from the main stem than resident tributary males during the non-breeding season.  

Most frogs of both sexes generally moved little or not at all on both the main stem and 

tributary during the non-breeding season.  However, movements were made during the 
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non-breeding season in response to dry backs and two rain events during the summer of 

2005 (Figures 14-17). 

Radiotracking Efficiency.—Individual marked frogs were repeatedly recaptured on 

Dexter Creek during radio-tracking surveys, with 37 captured during 117 surveys (Table 

10).  Detectability of marked, stationary non-radiotagged frogs varied between 12 and 67 

percent for individual frogs, and averaged 32 percent (Table 10).  Nearly all detected 

non-radiotagged frogs detected were basking (Figure 18).  In contrast, as a result of 100 

percent detectability, one-third of radiotagged frogs were found under substrate and one- 

quarter were underwater, where non-radiotagged frogs were rarely detected (Figure 18).   

Nearly three-quarters of both radiotagged and non-tagged frogs were observed on the 

bank (Figure 19).  Observed non-tagged frogs were primarily on cobble and gravel bars 

or on exposed cobbles and boulders on Coyote Creek (Figure 20).  In the steeper channel 

of Dexter Creek they were primarily on boulders (75 percent).  There was less use of 

cobble and gravel bars (5-10 percent).  Nearly 60 percent of radiotagged frogs in Dexter 

Creek were near the head of the pool (Figure 21).  However, the majority non-

radiotagged frogs were in the more visible habitat in the middle of the pool  (Figure 21), 

where more open basking habitat was present (Figure 18). 

Growth.—Predicted growth curves from the Von Bertalanffy Growth Equation 

(VBGE) produced by recaptured frogs showed frogs on Coyote Creek reached near 

minimum adult size (40 mm) by the end of their first year.  I repeatedly sampled six 

pools (with approximately 200 young of the year frogs) within both breeding sites during 

mid to late October 2004.  Observed daily growth rates varied widely, but were generally 
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higher than predicted daily growth rates (Figure 22).  Observed growth rates from 

selected adult females were most similar to smaller 17 mm transformation predicted 

growth curves (VBGE).  Males and females exhibited their highest growth rates as sub-

adults and small adults less than 50 mm (Figure 23).  Female foothill yellow-legged frog 

growth in length ceased after they reached about 70 mm on Coyote Creek.  Females 70 

mm SVL or larger needed at least three years to reach this length.  Females that were 

near or less than 40 mm during spring 2004 were on trajectory to finish their second year 

near 50 mm (Figure 24).  I captured a female that measured 36 mm SVL on 24 

September 2004 and recaptured her when she measured 51 mm on 15 July 2005.  Male 

foothill yellow-legged frog growth substantially slowed soon after they exceeded 50 mm; 

size topped out near 55 mm.  Males that started spring 2005 between 30 and 40 mm SVL 

could reach 50 mm by the end of the year (Figures 25 and 26).   

Condition factors for adult female tributary residents (mean = 11.7; n = 58) were 

significantly greater than those who resided on the main stem (mean = 11.2; n = 44) 

(calculated t = -2.539, critical t = 1.984, α = 0.05, p = 0.013).  However, condition factors 

were slightly less than significantly different between resident main stem and tributary 

resident frogs when all frogs were included (calculated t = -10854, critical t = 1.97, α = 

0.05, p = 0.065).   

Habitat Mapping 

Available Habitat.—A total of 8.56 km (28,013 ft; 5.3 mi) of habitat was typed on the 

main stem of Coyote Creek from the high water mark at the inlet to Coyote Reservoir to 

the last perennial pool associated with the upper reach breeding site below Gilroy Hot 
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Springs.  The lower and upper reaches represented two distinct breeding sites that 

comprised all habitats used for breeding and rearing within the study area.  The middle 

reach separated the lower and upper reaches, and contained no suitable breeding habitat 

for foothill yellow-legged frogs.  Surface flows were not observed anywhere on this 

reach after July during 2003–2006.  This reach was completely contained within a short, 

wide alluvial valley that separates the intermittent/perennial habitats of the lower and 

upper reaches.  In addition, 1.15 km (7,020 ft; 1.33 mi) of Dexter Creek an intermittent 

stream, was mapped from the confluence with the main stem of Coyote Creek to the 

farthest upstream perennial pool.   

Lower Reach.—The lower reach stretched 2.38 km (7,797 ft; 1.47 mi) from the high 

water mark of Coyote Reservoir upstream past the confluence with Dexter Creek to the 

downstream terminus of the alluvial valley.  The channel morphology was almost all 

Rosgen Level II C Channel, and was slightly entrenched, highly sinuous, with a moderate 

to high width/depth ratio (Rosgen 1996) (Figure 27).  There was a small section 

associated with the Dexter Creek confluence that was a B channel, and was moderately 

entrenched, moderately sinuous, with a moderate to high width/depth ratio.  Three-

quarters of the mesohabitat composition consisted of pools separated by riffles and 

flatwater (Figure 28).  Habitats in the reach had a mean width of 5.8 m (19 ft), with pools 

having the widest and deepest habitats.  Open canopies were typical on the lower reach 

with a mean of 20 percent canopy closure (Table 11).  Cobble and gravel were the usual 

dominant (41-43 percent) and sub-dominant (32-38 percent) substrates (Table 12).  

Substrate (98 percent) and aquatic vegetation (algae; 83 percent) were the most common 
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escape covers, but pools had a relatively high cover complexity, including depth (51 

percent), undercut banks (19 percent), rootwads (19 percent), and large wood (14 

percent) (Table 13).  

Middle Reach.—The middle reach stretched 3.7 km (12,149 ft; 2.3 mi) through a 

wide, short alluvial valley to the head of the valley.  The channel morphology throughout 

the reach was a Rosgen Level II C Channel (Figure 27), and was slightly entrenched, 

highly sinuous with a moderate to high width/depth ratio (Rosgen 1996).  Slightly more 

than half of the mesohabitat composition consisted of pools separated by long riffles 

(turbulent) and runs (flatwater) (Figure 28).  The reach had a mean width of 5.8 m (19 ft), 

with pools having the widest and deepest habitat.  Canopies were generally open on the 

middle reach with an average of 17 percent canopy (Table 11).  Gravel was the dominant 

(34-64 percent) and cobble the sub-dominant (20-35 percent) substrate, although boulder 

was also an important subdominant (33 percent) (Table 12).  Substrate (99 percent) and 

aquatic vegetation/algae (50 percent) were the most common escape covers, but pools 

had a relatively high cover complexity (variety of cover types), including depth (44 

percent), rootwads (44 percent), and large wood (15 percent).  However, the overall 

escape cover complexity of pools and overall reach total cover were lower than in the 

lower and upper reaches (Table 14). 

Upper Reach.—The upper reach stretched 2.47 km (8,067 ft; 1.5 mi) from the head of 

the alluvial valley to the last perennial pool associated with the upper breeding site below 

Gilroy Hot Springs.  The channel morphology was nearly two-thirds Rosgen Level II C 

Channel, and slightly entrenched, highly sinuous, with a moderate to high width/depth 
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ratio.  The rest was B channel, and moderately entrenched, moderately sinuous, with a 

moderate to high width/depth ratio (Figure 27).  Over three-quarters of the mesohabitat 

composition consisted of pools, separated by relatively short riffles (turbulent) and runs 

(flatwater) (Figure 28).  The reach had a mean width of 5.2 m (17 ft), with pools having 

the widest and deepest habitat.  Canopy coverage (46 percent) was over twice that of the 

lower and middle reaches (Table 11).  Gravel and cobble were the most common 

dominant (31-40 percent) and sub-dominant (23-46 percent) substrates, with sand a 

common dominant (28 percent), and boulders a common sub-dominant (28 percent) 

substrate (Table 12).  Substrate (100 percent), overhanging trees (64 percent), and 

overhanging grass/sedges (63 percent) were the most common escape covers.  Pools had 

a relatively high cover complexity, as in the lower reach (Table 13).   

Dexter Creek.—Dexter Creek was mapped 2.15 km (7,020 ft; 1.33 mi) from the 

confluence with the main stem on the lower reach to the farthest upstream perennial pool.  

The channel morphology was almost three-quarters Rosgen Level II B Channel, and 

moderately entrenched, moderately sinuous, with a moderate to high width/depth ratio 

(Rosgen 1996).  Almost one-fifth of the stream consisted of G channel, and was deeply 

entrenched, with a low width/depth ratio, sinuous, with a gullied appearance.  This 

channel type existed mostly near the confluence with the main stem.  The rest consisted 

of A Channel, and steep, deeply entrenched, with low sinuosity, and low width/depth 

ratio (Figure 27).  Over eighty percent of the mesohabitat composition consisted of 

turbulent (riffles and cascades) and flatwater (step runs) (Figure 28).  Less than one-fifth 

of the reach consisted of pool habitat.  The reach had a mean width of 2.2 m (7.2 ft), and 
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pools had the narrowest and deepest habitat.  Canopy was generally closed on Dexter 

Creek, with an average of 91 percent canopy (Table 11).  Boulder was the most common 

dominant (23-53 percent) and cobble the most common sub-dominant (38-48 percent) 

substrate, with gravel as a common dominant (24 percent) (Table12).  Substrate (99 

percent) and surface turbulence (73 percent) were the most common escape covers, with 

pools also providing cover as depth (87 percent), and undercut banks (16 percent).  

Dexter Creek habitats had lower cover complexity than the main stem reaches (Table 13). 

Mesohabitat Use and Preference 

Adult foothill yellow-legged frogs used mesohabitats on the main stem which were 

strongly associated with breeding habitats and mesohabitats on the tributary (Dexter 

Creek) that were in or near perennial pools.  I used data from both VES and mark and 

recapture to determine mesohabitat preferences for adult frogs.  The data used were 

collected from 2004 (20 April to 1 July) and 2005 (18 May to 25 July) between the 

cessation of breeding and loss of total aquatic connectivity due to dry backs.  

Mesohabitat use and preferences for juvenile frogs were not analyzed because young of 

the year frogs used only their natal habitat (Table 3) and the 2004 cohort measured over 

40 mm by the cessation of breeding in 2005 

Main Stem.—Adult frogs heavily used pools, compared to their availability, and 

under-utilized turbulent mesohabitats (Table 14).  Adult females used and preferred both 

pools (62 percent) and flatwater (20 percent) over turbulent habitats (chi square goodness 

of fit test; v= 2, α = 0.05, critical X² = 5.99, calculated X ²= 6.52).  Adult males preferred 

and used pools (72 percent) more than females, and did not prefer flatwater mesohabitats 
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(9 percent) in comparison to flatwater (11 percent) habitat availability (chi square 

goodness of fit test; v= 2, α = 0.05, critical X² = 5.99, calculated X² = 12.3).  Both males 

and females avoided mesohabitats dominated by sand, and preferred those that were 

dominated by boulders in comparison to availability (Table 15).  Adult females strongly 

preferred mesohabitats dominated by boulders (50 percent) (chi square goodness of fit 

test; v = 4, α = 0.05, critical X² = 9.48, calculated X² = 408).  Males used mesohabitats 

dominated by gravels and cobbles in proportion to their availability (Table 15), but used 

and showed a preference for boulder dominated mesohabitats (chi square goodness of fit 

test; v = 4, α = 0.05, critical X² = 9.48, calculated X² = 182).  Females (0.63 m; unpaired 

t-test; α = 0.05, p = 0.010) and males (0.68 m; unpaired t-test; α = 0.05, p = 0.140) used 

deeper mesohabitats compared to availability (0.45 m), but the difference was significant 

only for females (Table 17).  Adult females preferred mesohabitats a little shadier (43 

percent) than what was available (36 percent) (unpaired t-test; α = 0.05, p = 0.047), but 

males did not prefer shadier mesohabitats.  Males used mesohabitats with an average 

cover complexity about equal to that which was available on the main stem, but females 

strongly preferred mesohabitats with higher (4.3) cover complexity (Table 16) than males 

(3.4) in comparison to availability (unpaired t-test; α = 0.05, p = 0.001). 

Dexter Creek.—Adult foothill yellow-legged frogs used pools 97 percent of the time 

on Dexter Creek, although pools made up only 52 percent of available habitat (Table 14).  

Both females (chi square goodness of fit test; v = 2, α = 0.05, critical X² = 5.99, 

calculated X² = 106) and males (v = 2, α = 0.05, critical X² = 5.99, calculated X² = 188) 

strongly preferred pools (Table 14).  Adult females preferentially used mesohabitats 
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dominated by boulder substrate (70 percent) and used few dominated by cobble or gravel 

(v = 4, α = 0.05, critical X² = 9.49, calculated X² = 408).  Similarly, males preferentially 

used boulder dominated mesohabitats (63 percent), but also showed a preference for 

mesohabitats that were gravel dominated (34 percent) compared to availability (v = 4, α 

= 0.05, critical X² = 9.49, calculated X² = 182) (Table 15).  Adult females used pools that 

were deeper (0.46 m) than males (0.37 m), but both females and males preferred deeper 

mesohabitats (0.42 m) than those available (0.25 m) (unpaired t-test; p = <0.001) (Table 

16).  Adults of both sexes, used mesohabitats with significantly less canopy cover (85-87 

percent) than available (91 percent) (unpaired t-test; α = 0.05, p = <0.001).  Females and 

males used and preferred mesohabitats that had relatively more complex escape cover 

(3.75) than what was available (2.4) (unpaired t-test;  p = <0.001) (Table 16).   

Predators  

I recorded 516 observations of potential diurnal predators during 2004–2005 within the 

study area, which included all main stem reaches and Dexter Creek.  The overwhelming 

majority of diurnal predator observations (470) were recorded on the main stem.  Santa 

Cruz garter snakes (Thamnophis atratus atratus) made up the majority of observations, 

but birds and larger ranid species were also commonly observed on the main stem 

(Figure 29). Common mergansers (Mergus merganser) comprised over 80 percent of the 

potential avian predators observed on the main stem.  California red-legged frogs were 

overwhelmingly (93 percent) the most encountered potential predators on Dexter Creek.  

The only other predator observed on Dexter Creek was Santa Cruz garter snake, which 

was scarce.  Based on observations made prior to the study, American robins (Turdus 
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migratorius) were highly skilled at capturing foothill yellow-legged frog metamorphs, 

Pacific chorus frogs, and western toads (pers. observ.).   
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DISCUSSION 

Breeding  

Timing of breeding initiation was similar during 2004, 2005, and 2006, despite the 

vast difference in stream flows during 2004, 2005, and 2006.  This suggests that 

photoperiod could be a strong cue for breeding initiation.  However, breeding initiation 

on nearby Alameda Creek was 13 days later in 2005 than 2004 (Kupferberg et al. 2009).  

This difference may be due to lower water temperatures in 2005 than in 2004.  

Conditions in 2004 were drier than average in the Santa Clara Valley.  Four rain gauge 

stations had between 73 and 88 percent of average readings for the year.  In contrast, 

2005 and 2006 were very wet years, with ranges from 125 to 174 percent of average in 

2005, and 112 to 165 percent of average in 2006.  Stable spring base flows were not 

reached until late May in 2005 and 2006.  Populations may complete breeding within a 

two week period (Storer 1925; Zweifel 1955), suggesting foothill yellow-legged frogs 

can be explosive breeders.  However, this study and one conducted on Hurdygurdy Creek 

(Wheeler and Welsh 2008) had wide variability in length of breeding season among 

years.  This suggests foothill yellow-legged frogs may be prolonged breeders instead.  

Wheeler and Welsh concluded that initiation and length of the breeding season were 

strongly influenced by the natural hydrologic cycle, which may vary greatly among 

years.  This appears to be the case on Coyote Creek, where temperatures at the initiation 

of breeding were close to 12°C in all three years on Coyote Creek.  This is consistent 

with most other studies, but at the low end of the range compared to North Coast Range, 
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Sierra Nevada, and Cascade Range foothill streams (Zweifel 1955; Kupferberg 1996; 

Fuller and Lind 1991; Seltenrich and Pool 2002; Placer County Water Agency 2008).  In 

Coyote Creek, temperatures are higher than northern or mountain foothill streams at the 

time stream flows normally begin to decline. 

The loss of 16 early, large (50–85 mm) egg masses on the lower reach in 2005 was 

partially mitigated by a net gain of 19 egg masses during the extended breeding season at 

the lower site that year.  However, 11 of these late egg masses were less than 40 mm in 

diameter.  Therefore, there were fewer eggs surviving to hatching in 2005 than in 2004 

on the lower reach.  The upper reach had a net gain of 13 egg masses, and all masses 

deposited in the upper reach survived to hatching in 2005.  In Alameda Creek there also 

was a substantial gain in overall breeding output in both 2005 and 2006, in comparison to 

2004 (Kupferberg et al. 2009).  The higher stream flows and favorable temperature that 

allowed an extension in the breeding season compared to 2004, likely allowed for enough 

time for smaller yearling females to mature, and contribute to the 2005 cohort on Coyote 

Creek.  Fifteen egg masses deposited late during the breeding season were less than 30 

mm diameter in 2005, but the smallest egg mass deposited during 2004 was 38 mm.  Van 

Wagner (1996) recorded an egg mass size range of 35–70 mm on Clear Creek in Nevada 

County during 1992, 1993, and 1994, and all breeding frogs were at least two years old.  

The breeding season on Coyote Creek was much longer on both the lower and upper 

reaches in 2005 than in 2004.  The much wider range of breeding temperatures resulted 

in a wider range of the number of days it took for eggs to hatch at the lower reach in 

2005.    
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Stream Flow and Breeding.—All breeding occurred on descending limbs of the 

hydrograph and at flows less than an order of magnitude (25-30 cms [80-100 cfs]) higher 

than spring base flows (2.4-3.0 cms [8-10 cfs]).  There was one significant descending 

limb of the hydrograph in 2004 and four in 2005 because of late storms during breeding 

in 2005.  Peak stream flows were much higher in 2005 and 2006, but initiation of 

breeding took place within a week of each other in 2004, 2005, and 2006.  It appears that 

magnitude of flows during the breeding season had limited effect on initiation and 

breeding activity on Coyote Creek during 2004–2006.  Suitable breeding habitat is 

available at a range of stream flow levels.  Seventeen years of monitoring on the South 

Fork Eel River by Kupferberg et al. (2009) showed only a weak trend toward breeding 

later in the year during wet years.  They concluded timing of breeding was not associated 

with stage heights.  Decreasing flows from storm induced peaks (descending limbs) were 

strongly associated with breeding activity on Coyote Creek, but breeding activity 

temporarily ceased when flows increased due to storms within the breeding season.  Rain 

may suppress breeding activity once adult frogs reach the breeding locations (Kupferberg 

1996a).   

Large spring storms that create high magnitude stream flows have a potential to scour 

egg masses deposited early in the breeding season.  The large storms during late March 

and early April in 2005 created high flows (427 cms [1,400 cfs]) that scoured nearly all 

egg masses deposited in March.  A large late season storm that occurred in 2006 at the 

end of March, and lasted into the middle of the first week of April, generated peak flows 

as high as (518 cms [1,700 cfs]).  Although the fate of egg masses was not studied in 
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2006, most egg masses and newly hatched tadpoles present prior to the late storm were 

likely lost to scour.  The larger egg masses during the early part of the breeding season, 

indicates that early breeding by the largest females is a risky strategy during wet years 

such as 2005 and 2006.  Similar losses of egg masses from scouring flows due to intense 

late season storms and dam spillovers were documented on the Trinity River (Lind et al. 

1996) and on the South Fork Eel River due to storms during 2005 (Kupferberg et al. 

2009).  The advantage of early breeding is likely to be that in most years the flows are 

too low to scour egg masses, resulting in increased time, and probability for recruitment 

to adulthood compared with eggs deposited later in the season, especially in drier 

watersheds such as Coyote Creek.  Larger, older tadpoles likely out-compete smaller, 

younger tadpoles, especially during drier years. 

A plastic reproductive strategy has likely allowed this species to persist in the 

fluctuating climatic pattern of California, which alternates unpredictably between wet 

and very dry.  Between 1961 and 2006, there have been eight seasons in which high 

scouring flows (> 305 cms [1,000 cfs]) occurred after March 15.  These were mostly El 

Niño years such as 1963, 1964, 1965, 1982, 1998, 2005, and 2006.  The only exception 

was 1991, which was generally a very dry year, but with a large storm during late March.  

Large magnitude, late season storms tended to be spaced over the years.  The occasional 

risk to the largest, most fecund females for breeding early is relatively low over the 

lifetime of these individuals.  Smaller females tend to breed later when the hydrograph is 

more stable after mid-April in central California, but part of that may be due to growth to 

breeding size during prolonged breeding seasons.  All breeding habitats in Coyote Creek 
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were perennial or adjacent to perennial habitat during all years, including the driest of 

years.  If they successfully transform, young of the year frogs did not have to move far to 

find water when the habitat they were in dried.   

Temperature and Breeding.—There appears to be some geographic variation in the 

relationship between water temperature and breeding activity. Initiation of breeding in 

Coyote Creek occurred at temperatures very close to 12°C during the 2004–2006 

breeding seasons.  In addition, peak breeding activity occurred within a narrow range of 

temperatures (13–16°C).  Data collected during several years of monitoring on different 

watersheds in California suggested that increasing water and air temperatures likely cue 

breeding initiation (Kupferberg et al. 2009).  Most studies to date recorded breeding 

initiation temperatures that were close to 12°C, but initiation temperatures on the Feather 

River during 2004 and 2005 were at 10°C (GANDA 2008).  However, peak breeding in 

that study occurred between 12 and 15°C.  No studies have documented breeding above 

20°C, but Van Wagner (1996) recorded breeding activity up to 20°C.  Foothill yellow-

legged frogs may have physiological constraints that do not allow them to breed above 

20°C.  Metabolic rates above 20°C may prevent them from expending energy toward egg 

production. In addition, cooler temperatures on the upper reach of Coyote Creek likely 

explain why it took longer for egg masses to hatch in comparison to the lower reach. 

Physical and Habitat Parameters for Egg Masses.—Pools were used almost 

exclusively during the 2004 and 2005 breeding seasons.  There was a partial shift in 

specific pool use in response to higher flows in 2005.  In addition, there was a shift in the 

upper reach for the utilization of the middle of pools as opposed to pool tail outs, which 
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are more subject to scour.  Early-breeding frogs tended to make more use of submerged 

vegetation and roots as attachment substrates, possibly due to lower velocities at the 

edges of the channel.  Coarser substrates provided more of the attachment points during 

the higher flows during 2005 than in 2004.  Fuller and Lind (1991) found that larger 

substrate material represents the best attachment sites, but submerged vegetation may 

also be used.  In general, frogs deposited eggs in locations closer to shore or in deeper 

slack water areas in response to increased stream flows and velocities, resulting in a 

decrease in the amount of preferred breeding habitat available early in the breeding 

season.  However, the availability of shallow, low velocity margin areas is not a breeding 

cue (Kupferberg et al. 2009).   

Management Considerations for Breeding.—Foothill yellow-legged frogs exhibit 

some plasticity in breeding behavior.  However, management strategies that preserve or 

mimic the linkage of the natural hydrologic cycle and water temperatures have the best 

chances of allowing populations to persist through time.  These strategies should 

minimize scouring flows and provide preferred temperatures (12–17°C) during breeding.  

Hydrologic and temperature regimes on central and South Coast Range watersheds are 

very different from Cascade, Sierra Nevada and North Coast Range streams.  Runoff 

originates from rainfall rather than snow melt.  Runoff varies drastically form year to 

year on South Coast Range streams, and air and water temperatures are warmer during 

winter and spring.  These factors should be taken into consideration during planning for 

monitoring breeding and/or when evaluating management actions that alter stream flows.   
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Movement/Mark and Recapture 

General Characteristics.—Maximum SVL and weights of adult foothill yellow-

legged frogs of both sexes at Coyote Creek were greater than those recorded by Van 

Wagner (1996) for Clear Creek in the Sierra Nevada foothills, but less than those 

recorded by GANDA (2008) for the Feather River.  Sex ratios recorded on both reaches 

in 2005 were within the range of those recorded by Van Wagner (1996) during his three-

year study.  Adult foothill yellow-legged frogs have been observed utilizing tributaries to 

breeding streams as resident habitat (PCWA 2008; Bourque 2008).  In contrast to the 

substantial summer dry back on upper Coyote Creek, these Sierra Nevada and North 

Coast Range streams were perennial.  Despite the perennial nature of these breeding 

streams, some adult frogs elected to use intermittent tributaries as their resident habitat 

instead.  Partially intermittent tributaries are even more crucial for adult frogs as resident 

habitat on upper Coyote Creek because surface water is scarce and unreliable, 

particularly during summer and fall, from year to year on the main stem.  Some 

tributaries apparently offer some perennial habitat even during dry years.  Most adult 

female frogs and two-thirds of males in 2005, preferred to use tributaries outside the 

breeding season.  However, two-thirds of adult males observed in 2004 on the lower 

reach used the main stem after the breeding season.  Adult males tend to stay in the 

breeding areas longer than females, as suggested by the heavily male biased operational 

daily male/female sex ratios recorded during this and other studies (Van Wagner 1996; 

GANDA 2007; Wheeler and Welsh 2008).  Early dry backs in lower tributary reaches in 

the Coyote Creek watershed during a dry year such as 2004 may have prevented some 
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males from ascending the tributaries following active breeding.  The high proportion of 

adult females residing in summer on Dexter Creek was nearly identical during both years 

because females bred and moved back up tributaries shortly after breeding, at a time 

when the tributaries were flowing at and near their confluences with the main stem.  

Harassment by adult males may influence post-breeding females to move away from 

breeding areas sooner than they would otherwise.  I captured and tagged a large adult 

post-breeding female near the Dexter Creek confluence area and promptly released her.  I 

observed a male and female about five minutes later locked in amplexus.  The female 

turned out to be the female frog I had just marked.  Daily diurnal summer movements 

were always within a single mesohabitat.  Large adult frogs alternated between basking 

locations and other positions within their home pools to forage or hide.   

Movement.—The spatial separation between adult resident and breeding habitat for 

the majority of adult frogs requires breeding frogs to travel long distances on the lower 

reach during the pre-breeding/breeding season.  Only a small portion of the population 

(less than ten percent of adult frogs) did not make long distance movements during the 

pre-breeding/breeding season because their resident habitats were in or near the breeding 

habitats.  Resident main stem females were shorter and weighed less compared to 

tributary residents.  Nearly sixty percent of frogs did not make significant movements 

during the non-breeding season because the resident habitat was perennial and of 

relatively high quality.  Summer dry backs made it necessary for some frogs to travel 

significant distances to perennial habitats.  Searches for less-crowded and/or higher-

quality habitats and food resources likely caused adult frogs to make long distance 
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movements over dry streambed during rain events to these habitats.  The maximum 

distances recorded during 2005 were much greater than those recorded by Van Wagner 

(1996), but much shorter than those recorded by Bourque (2008) for Tahama County 

frogs.  The frogs in Van Wagner’s study were primarily main stem residents that did not 

need to travel far for suitable breeding habitat.  By contrast, the study area of Bourque 

(2008) consisted of many intermittent tributaries with preferred resident habitat separated 

by great distances from the main stem of Red Bank Creek, which provided the breeding 

habitat for that population.  

Movement patterns appear to be adaptive to local physical conditions that determine 

distribution and connectivity of habitats over the course of these frogs’ complex life 

cycle.  All Coyote Creek frogs had the option of making long distance movements to and 

from breeding sites or for other purposes from December 2004 to early July 2005 

because there was connectivity (flowing water) throughout the study area.  Long distance 

movements were restricted once channel drying started.  Females moved greater 

distances during the pre-breeding/breeding season because they tended to move earlier to 

establish residence in perennial habitats farther away from the breeding areas.  Males 

tended to make smaller incremental movements later in the year as stream flows were 

decreasing and flow continuity was broken.  The highest quality habitats were already 

occupied by large adult females by the time most males began to move from the breeding 

areas.  Males had to utilize habitats closer to the breeding areas that were largely by-

passed by adult females.  In contrast, Van Wagner (1996) did not detect a significant 

difference in the average maximum movements between adult females and males.  This is 
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likely because there was little or no spatial separation between breeding sites and quality 

resident habitat throughout the year.  The study area of Van Wagner had reliable 

perennial habitat that possessed all the requirements necessary for foothill yellow-legged 

frogs to complete their life cycles and no tributaries existed nearby.  Coyote Creek adults 

traveled much farther on average than juveniles during the pre-breeding/breeding season, 

but variation was high and detected juvenile movements were fewer. Juvenile frogs on 

Coyote Creek also made significant movements during the pre-breeding/breeding season 

both upstream and downstream (including ascending tributaries), presumably to seek out 

higher quality rearing habitat away from predators and to reduce competition for 

resources.  I could not detect an upstream or downstream pattern of movements for all 

frogs between fall 2004 and subsequent recapture in 2005, because frogs moved in all 

directions once continuous flow was re-established.  This was perhaps a density 

dependant dispersal behavior, with frogs crowded into scarce perennial habitat during 

summer and fall 2004, and dispersing to suddenly available  habitat throughout the study 

area once surface flows were re-established during early December, 2005.   

Female Movement.—Examining movement histories of individual frogs reinforces 

conclusions about positive trends relating body size to distance moved and the observed 

patterns.  Large adult females (K99, L02, K37, and L12) clearly traveled farther to 

resident habitat after breeding (Figures 14 and 16).  Smaller adult females (K27, K37, 

K87 and K98) did not travel as far away as large adult females to resident habitat from 

the breeding areas.  A plot of distance between established residence and nearest 

breeding sites shows a trend of larger individuals occupying habitats farther away from 
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the breeding area (Figure 30). The relationship between food availability and energy 

expenditure is probably more favorable on the tributaries.  One small female (K91) was 

initially captured over one mile upstream of the confluence on Dexter Creek early during 

the breeding season.  She subsequently moved down to the breeding area, likely bred late 

during the breeding season, then moved back up Dexter Creek to the closest perennial 

habitat from the confluence.  This frog was a near minimum size for an adult (43 mm) at 

initial capture, and grew to (54 mm) by the end of summer.  The longer rainy season and 

extended higher flows in 2005 perhaps made this possible. 

Male Movement.—Similarly, there was a positive relationship between body size and 

distance moved for adult males. Three of four large adult males (K81, K84, and K95) 

traveled greater distances than smaller adult males (K86, L18, and K69) (Figures 16 and 

18).  In addition, their travels away from the breeding areas were made earlier than those 

of smaller males.  This is likely because larger males bred earlier, which allowed them to 

travel to and to occupy higher-quality perennial habitat that was farther upstream on 

Dexter Creek.  The individual movement histories clearly show males maintained 

positions close to the breeding areas for longer periods of time than females.  All resident 

tributary males made significant movements away from the main stem, but they did not 

attempt to occupy habitat farther upstream that large females were able to get to first.  

Resident main stem males typically moved little in comparison to resident tributary frogs 

during any season.  Distance between established residence and nearest breeding sites 

showed a trend of larger individuals occupying habitats farther away from the breeding 

area (Figure 31).  July and August 2005 on Dexter Creek was approximately 5°C cooler 
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than the nearby main stem (Figure 32), which meant that resident frogs on Dexter Creek 

needed about half the food to maintain body weight as did main stem residents.  This 

suggests that the tributaries may offer physical conditions that favor the attainment of 

larger body masses and better condition factors.  These frogs would have higher 

fecundity and could make the longer trips to and from the breeding areas.   

Radiotracking Efficiency.—Radiotracking frogs yielded far more accurate activity 

and microhabitat use data than standard VES or mark and recapture.  My activity results 

were similar to those recorded by Garcia & Associates 2008.  My activity category 

“under substrate” was largely equivalent to the GANDA activity category “hiding”.  I 

would not have been able to detect frogs that were taking position under substrate using 

standard VES or mark and recapture surveys unless I searched under cobbles and 

boulders.  Biotelemetry enabled me to find many more frogs under water or in the 

channel but above the surface on substrate or wood than if I used standard VES.  Frogs 

under water may be under leaf litter, turbulence, or in the shadows and consequently very 

hard to detect employing VES.  Frogs utilizing rootwad or boulder microhabitats are 

especially difficult to detect in comparison to other microhabitat categories.  Frogs 

basking on gravel or cobble bars were far easier to detect using VES, because they were 

out in the open and were in contrast to the uniform substrate.  Frogs were considerably 

more difficult to see when positioned at the head of pools in comparison to the middle or 

tail gravel and cobble bars.  Pool heads were primarily composed of boulders and 

cobbles, which break up the silhouette of a frog body.  Scanning the heads of pools with 

binoculars with high quality optics before disturbing the frogs aided in detection, but 
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many (or even most) frogs were probably missed.  Spending proportionally more time 

closely inspecting these areas might help mitigate detection deficiencies employing 

standard VES surveys, but still would miss many frogs.   

Biotelemetry would have yielded much more precise and accurate movement data 

during the pre-breeding/breeding season than standard mark and recapture methods.  

Biotelemetry would have enabled me to collect data that could be used to calculate 

movement rates, precisely compare initial movements to the breeding sites with physical 

parameters such as temperature, and stream flows.  Accurate data pertaining to 

movement and habitat use during late winter and early spring would have been feasible 

using biotelemetry.  Monitoring movements from resident habitat to the breeding sites 

would have been possible during a very wet late winter and early spring such as 2005.   

Growth.—The size and growth patterns observed in this study of coastal frogs seem 

to agree generally with those observed for a Sierra Nevada foothill population studied by 

Van Wagner (1996).  Females exhibited greater growth rates and reached much larger 

sizes than males.  However, Coyote Creek young of the year growth showed less 

variability than that observed by Van Wagner (1996).  Most of the rearing habitats for 

foothill yellow-legged frogs on Coyote Creek had canopy coverage of less than 60 

percent.  Many portions of Van Wagner’s study area had canopy coverage of greater than 

90 percent.  As a consequence of shading and reduced primary productivity and insect 

availability as food, one would expect longer and more variable development times for 

tadpoles to reach metamorphosis.  In contrast, Coyote Creek frogs exhibited higher 

growth rates, and they reached maturity more rapidly than frogs on the Feather River 
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(Figure 33).  The Feather River is a higher elevation Sierra Nevada stream that has snow- 

dominated runoff and cooler air temperatures during spring, which is typical of Sierra 

Nevada streams.   

Precipitation varied between 2004, a dry year with a short breeding season, and 2005 

a very wet year with a long breeding season.  All tadpoles transformed prior to July 1 

within the Coyote Creek study area during both 2004 and 2005.  This means that the 

latest eggs deposited during 2005 were fully transformed within 45 days.  Young of the 

year frogs on Coyote Creek had much more time to grow after metamorphosis before the 

onset of cooler late fall temperatures than later breeding populations in the Sierra Nevada 

and North Coast Ranges.  Foothill yellow-legged frogs typically transform during late 

summer and early fall in populations farther north and at higher elevations.  Foothill 

yellow-legged frogs in some years can reach reproductive size as yearlings on upper 

Coyote Creek.  Egg mass size, timing of breeding, and smaller observed sizes of frogs at 

the breeding area late during the 2005 breeding season suggests yearling frogs 

contributed to breeding.    

Low recruitment to adulthood, due to very high spring flows and resulting egg mass 

scour and/or tadpole mortality should be detectable two years later.  I did not collect data 

on young of the year during 2005, but I observed no foothill yellow-legged frog tadpoles 

after July 1.  Growth was likely to be similar to 2004, despite the significant differences 

in the magnitudes of stream flow between 2004 and 2005.  Water temperatures exceeded 

18°C by mid-May during 2005, and relatively warm water temperatures and high food 

availability earlier in the year for rearing tadpoles and transformed young of the year 
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frogs likely explain the observed growth differences between this population and the 

more extensively studied populations of the Sierra Nevada and North Coast Ranges 

(Kupferberg 2008).  Foothill yellow-legged frogs in watersheds farther south, with 

breeding populations that experience relatively warm water temperatures and high food 

availability earlier in the year, likely exhibit similar growth characteristics as those in 

Coyote Creek.  For example, I observed hundreds of juvenile frogs on approximately a 1 

km stretch of Clear Creek near the confluence with the San Benito River in San Benito 

County during September 2005 that were clearly close to 40 mm SVL.  Clear Creek is 

perennial but un-shaded and very warm (up to 26°C) in spring through fall.  Food 

availability is likely to be relatively high for a relatively longer period of the year in this 

watershed.   

Mesohabitat Preference 

In general, females established themselves in resident habitat sooner after breeding 

than males.  As a consequence, they chose the best quality habitat available (deeper, 

more complex pools).  Competitive interactions between adult females and males likely 

favored larger females and may have allowed for females to maintain residence within 

the highest quality habitats after the arrival of males from the breeding sites.  This may 

explain why males tended to use mesohabitats that possessed less complex escape cover.  

This highlights the importance of habitat heterogeneity to maintain populations.  Overall, 

the use by many larger frogs of the tributary over the main stem may be due in part to 

energetic factors.  Daily mean air temperatures were significantly lower on Dexter Creek 

than on the lower reach on the main stem (Figure 32).  Future studies that investigate 
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microhabitat use and preference may give a better understanding of mesohabitat use and 

preference.  For example, investigating when and where sunlight hits particular parts of 

mesohabitats, escape cover, substrate, food availability, and their utilization by frogs 

would be useful.  Biotelemetry would be the most effective mode of investigation of 

specific microhabitat use and preferences as well as frog activity patterns.  

Predators 

Moyle (1973) suggested predation would take a higher toll on fragmented foothill 

yellow-legged frog populations that remain on tributaries of Sierra Nevada watersheds.  

In many of these tributaries reside non-native, highly predacious and aggressive green 

sunfish.  By contrast, tributaries within the upper Coyote Creek study area had no 

introduced predators and relatively few native diurnal predators in comparison with the 

main stem of Coyote Creek.  There were far fewer snakes and no predatory birds 

observed on Dexter Creek.  In addition, the only potential ranid predators observed were 

California red-legged frogs, which consisted mainly of young of the year frogs (i.e., 

current years reproductive output) that presumably migrated downstream from breeding 

sites (primarily livestock ponds) farther upstream on the watershed.  The few adult 

California red-legged frogs that resided within the tributaries may not pose a substantial 

threat to adult mature adult foothill yellow-legged frogs due to the largely nocturnal 

behavior of California red-legged frogs.  In addition, mature adult female foothill yellow-

legged frogs may have been too large for most California red-legged frogs to ingest.  I 

observed a large female adult foothill yellow-legged frog and a large California red-

legged frog basking less than 0.6 m away from each other on several occasions.  In short, 
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the lack of diurnal predators on the tributaries within the study area apparently 

contributes to their value as a summer habitat for adult foothill yellow-legged frogs.   

Observed potential diurnal predators on the main stem of Coyote Creek outnumbered 

those observed on Dexter Creek by greater than an order of magnitude.  The principal 

non-native predators observed on the main stem were bullfrogs.  A small number of 

Centrarchids (largemouth bass, bluegill, and green sunfish) were observed during spring 

2005.  The majority of these fish were juveniles less than 100 mm long that presented 

little predation threat, except possibly to tadpoles.  These were likely washed down with 

high flows from local livestock ponds.  The ephemeral nature of most of the upper 

Coyote Creek watershed does not favor the establishment of largemouth bass or bluegill 

populations.  Their limited numbers and unfavorable physical habitat conditions on the 

upper Coyote Creek watershed greatly diminish their impact as predators.  Some adult 

bullfrogs seemed to be seasonal spring migrants from Coyote Reservoir, as they were 

observed with greater frequency during spring 2004 and 2005 closer to the reservoir.  

However, adult bullfrogs were seldom seen after Coyote Creek dried back in early 

summer and as tadpoles transformed and adults migrated back to their resident habitats.  

A small number of bullfrog tadpoles were washed down from livestock ponds from the 

heavy rains and high flows of winter-spring 2005.  Few of these bullfrog tadpoles 

transformed into frogs.  Most of the habitats in which they were trapped dried up before 

they could transform.  In addition, perennial habitats had adult California red-legged 

frogs that may have taken a heavy toll on tadpoles and juveniles.  No foothill yellow-

legged frogs were found in any of the several bullfrog stomachs I checked on the lower 
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reach over the course of the study.  However, adult bullfrogs often had adult breeding 

Pacific chorus frogs, California roach (Lavinia symmetricus) and juvenile Sacramento 

suckers (Catostomus occidentalis) in their stomachs.  On one occasion, I found a 

hatchling western pond turtle (Emys marmotorata) in an adult bullfrog stomach on the 

lower reach during May 2005.   

The small numbers of bullfrogs and Centrarchid fish, to which foothill yellow-legged 

frogs are not adapted, potentially impact foothill yellow-legged frogs, even though I 

could not detect an effect during my study.  These potential impacts may be more 

substantial when tadpole and adult recruitment is low due to severe late season storms or 

prolonged droughts  

Santa Cruz aquatic garter snakes were by far the most detectable native predator.  

They were distributed throughout the main stem and active at all seasons that foothill 

yellow-legged frogs were.  Many previous studies have recorded aquatic garters as the 

most commonly encountered predator where foothill yellow-legged frogs reside 

(Nussbaum 1983; Jennings and Hayes 1988; Lind and Welsh 1994).  Common 

mergansers accounted for one-fifth of the predator sightings.  However, their relative 

impact as predators was likely quite high in habitats they hunted.  I found that tadpoles 

had been decimated in specific amphibian breeding habitats, mostly in the middle reach, 

by a female common merganser and her six chicks.  Surveys conducted on habitats prior 

to their detection yielded observations of thousands of western toad, Pacific chorus frog 

and foothill yellow-legged frog tadpoles.  Tadpole numbers were reduced to near zero 

after these birds foraged these habitats for a week or so.  Their metabolic needs as 
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endotherms, greatly increase the amount of potential prey consumed relative to the much 

more common Santa Cruz garter snake.    

Illegal Marijuana Cultivation 

Illegal marijuana cultivation is a current threat to the foothill yellow-legged frog 

population on upper Coyote Creek, and likely a threat to all aquatic species, including 

western pond turtles and California red-legged frogs, within the watershed.  There were 

marijuana plantations on four tributaries that flow into the main stem within the study 

area.  I observed foothill yellow-legged frogs on three of these tributaries during the 

study.  The marijuana cultivators constructed small impoundments and lined them with 

impervious sheets of plastic to minimize water flowing past the impoundments, and used 

irrigation pipes to transport water directly to the plants.  The cultivators often poured 

chemical fertilizers directly into the water of the impoundments.  The cultivators denuded 

the terrestrial habitat adjacent to the streams and terraced the slopes.  I observed 

containers of herbicides and pesticides which would presumably be used to protect the 

marijuana plants from competitors and pests.  All of the activities associated with 

marijuana cultivation on these headwater streams have a strong potential to harm either 

the physical habitat or the frogs directly.   

The tributary below Sheep Ridge had both frogs and marijuana gardens on it during 

2004 and 2005.  I consistently encountered 6 to 13 adult frogs during the VES surveys 

conducted during the summer of 2004.  There was one impoundment and two gardens 

that year.  The operations expanded during 2005 to three impoundments and seven 

gardens with about 6,500 plants.  The maximum number of frogs I observed on this 
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tributary during 2005 VES survey was four; the frogs had less water available to them in 

2005, even though 2005 was a wetter year.  However, more adult males were able to 

move into the adjacent tributary, Dexter Creek, during 2005.  Marijuana cultivation on 

the Sheep Ridge tributary likely caused a decline in observed frogs.  Dexter Creek did not 

have marijuana gardens during the study, but other tributaries utilized for illegal 

marijuana gardens on this watershed are likely to exhibit the same effect on foothill 

yellow-legged frog abundance.  The number of breeding female frogs (based upon egg 

masses) in the lower reach was only 6 in 2010 (J. Smith, personal communication).  This 

is compared with 41 in 2004 and 59 in 2005, with the drastic decline possibly due to 

effects of the 2007 drought and/or to expansion of marijuana operations to Dexter Creek 

watershed during 2006-2009.  However, no evidence of marijuana cultivation in the 

tributary was seen in 2010. The upper site had 13 egg masses in two pools that were 

checked versus 31 and 44 in eight pools checked in 2004 and 2005.  It does not appear 

there has been a population collapse on the upper site as has happened for the lower site. 

There has been an explosive increase in illegal marijuana growing in California in the 

past fifteen years.  Drug trafficking organizations from Mexico are primarily responsible 

for this trend.  They utilize tributaries and headwaters which are occupied by remnant 

populations of sensitive aquatic species such as foothill yellow-legged frogs or those with 

the potential to support these animals.  Small, isolated foothill yellow-legged frog 

populations are likely to be susceptible to these illegal marijuana gardens. 
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Management Implications 

The results of this study may aid resource managers within the southern part of the 

distribution of the foothill yellow-legged frog.  Many watersheds in the Diablo Range 

and farther south have a mixture of perennial, intermittent, and ephemeral reaches and 

have not been studied.  Almost all of these streams lack snow runoff, and instead receive 

flashy runoff from rain.  These conditions are in contrast to the streams of the Sierra 

Nevada and North Coast Range, which have been studied relatively extensively.  As a 

result, the ecology of foothill yellow-legged frogs in the southern part of their range 

differs in breeding, movement, habitat use/ preference, and growth.  This study was 

conducted during one moderate and two relatively wet years in central California.  

Studies should be conducted in this region during dry years to determine population 

responses to less water,   shorter duration of it's availability, and pattern of population 

recovery after drought. Water availability is a limiting factor on upper Coyote Creek 

from at least mid-summer to late fall, even during wet years.  All water diversions, 

whether legal or illegal, are likely to be the most serious threat to the continued 

persistence of this species on Coyote Creek and other similar watersheds.  In addition, 

construction of impoundments on these streams is sure to have impacts on breeding 

success, encroachment by non-native predators, and habitat degradation as has been 

demonstrated on studied watersheds in the central and northern parts of the foothill 

yellow-legged frogs' range.   
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FIGURE 1.—Map of study area.  Data collection occurred on upper Coyote Creek 
between the high water mark of the reservoir and Gilroy Hot Springs. 
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FIGURE 2.—Egg mass diameter through the breeding season on the lower reach of 
Coyote Creek in 2005.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 3.—Egg mass diameter through the breeding season on the upper reach of 
Coyote Creek in 2005.  
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FIGURE 4.—Stream flow in association with daily oviposition on the lower reach of 
Coyote Creek in 2004.  Numbers indicate the number of new egg masses observed during 
surveys. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 5.—Stream flow in association with daily oviposition on the upper reach of 
Coyote Creek in 2004.  Numbers indicate the number of new egg masses observed during 
surveys. 
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FIGURE 6.—Stream flow in association with daily oviposition on the lower reach of 
Coyote Creek in 2005.  Numbers indicate the number of new egg masses observed during 
surveys. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 7.—Stream flow in association with daily oviposition on the upper reach of 
Coyote Creek in 2005.  Numbers indicate the number of new egg masses observed during 
surveys.
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FIGURE 8.—Water temperature in association with daily oviposition on the lower reach 
of Coyote Creek in 2005. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 9.—Water temperature in association with daily oviposition on the upper reach 
of Coyote Creek in 2005.
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FIGURE 10.—Number of frogs observed during lower reach main stem site surveys and 
recorded daily mean water temperatures during the pre-breeding/breeding season in 
2005. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 11.—Number of female and male frogs observed during surveys and recorded 
mean daily water temperatures during the pre-breeding/breeding season in 2005.
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FIGURE 12.—Purpose for maximum movement of recaptured frogs during different 
seasons. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 13.—Maximum distances traveled for individual frogs during the pre-
breeding/breeding and non-breeding seasons.
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FIGURE 14.—Movement histories of individual females that resided in Dexter Creek 
during the non-breeding season. Negative y axis movements were distances traveled on 
the main stem from the confluence with Dexter Creek. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 15.—Movement histories of individual males that resided in Dexter Creek during 
the non-breeding season. Negative y axis movements were distances traveled on the main 
stem from the confluence with Dexter Creek.
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FIGURE 16.—Movement histories of individual main stem resident females on Coyote 
Creek. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 17.—Movement histories of individual main stem resident males on Coyote 
Creek.
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FIGURE 18.—Observed activities of radiotagged versus non-radiotagged frogs on Dexter 
Creek in 2005. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 19.—Location of radiotagged versus non-radiotagged frogs in relation to the 
active channel on Dexter Creek.
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FIGURE 20.—Microhabitat use by observed non-radiotagged foothill yellow-legged frogs 
on Coyote and Dexter Creeks. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 21.—Position in pools for radiotagged versus non-radiotagged foothill yellow-
legged frogs on Dexter Creek.
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FIGURE 22.—Daily observed and predicted adult female growth rates. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 23.—Observed individual female growth rates versus growth curves for small 
metamorphs.
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FIGURE 24.—Growth curves for selected female foothill yellow-legged frogs during 
2004-2005. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 25.—Growth curves for selected male frogs during 2004-2005. 
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FIGURE 26.—Growth curves for selected male frogs during 2004-2005.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 27.—Rosgen Level II Channel morphology composition by reach for the Coyote 
Creek study area.
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FIGURE 28.—Mesohabitat composition for the Coyote Creek study area. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 29.—Observed diurnal predator composition on the main stem of upper Coyote 
Creek during 2004-2005.
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FIGURE 30.—Female body mass of resident frogs versus distance from the breeding area. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 31.—Male body mass of resident frogs versus distance from the breeding area.
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FIGURE 32.—Comparison of monthly daily mean air temperatures during summer 2005, 
between the lower reach of Coyote Creek and Dexter Creek. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 33.—Comparison of growth rate predicted by VBGE for Coyote Creek and 
Feather River setting metamorphosis at 22 mm.
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TABLE 1.—Foothill yellow-legged frog 2004 and 2005 breeding season summary on 
Coyote Creek upstream of Coyote Reservoir in Santa Clara County, CA. 

  Start Date Finish Date   Breeding Season  Total Egg Mass Egg Mass 
  of Breeding of Breeding Length (Days Number Density (mass/m) 

2004      
Lower Reach 3/7/2004 3/31/2004 24 41 0.0172 
Upper Reach 3/24/2004 4/20/2004 27 31 0.0126 

Total n/a n/a 44 72 0.0149 
2005      

Lower Reach 3/12/2005 5/14/2005 63 59 0.0248 
Upper Reach 4/4/2005 5/16/2005 42 44 0.0179 

Total n/a n/a 65 103 0.0214 
2006      

Lower Reach 3/9/2006 n/a n/a n/a n/a 
Upper Reach n/a n/a n/a n/a n/a 

 
 
 
TABLE 2.—Hatching success (egg mass survival) of egg masses on Coyote Creek 2004–
2005. 

  
Number of Egg 

Masses 

    Mean Number 
of Days to 

Hatch 

  

  Scoured/Missing Hatching Success Range 

2004      
Lower Reach 41 0 100% 13 10-14 
Upper Reach 31 0 100% no data no data 

Total 72 0 100%   

2005      
Lower Reach 59 16 73% 12 6-26 
Upper Reach 44 0 100% 14 8-19 

Total 103 16 85%     
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TABLE 3.—Mesohabitat use percentages for 176 foothill yellow-legged frog egg masses 
laid within the study area on Coyote Creek in 2004–2005. 

  
Proportion of Egg 
Masses in Pools 

Proportion of Egg  
Masses in 
Flatwater 

Number of 
Mesohabitats 

Utilized 

Percentage of 
same 

Mesohabitats used  
       in 2005 from 2004 

2004 
Lower Reach 97.5% 2.5% 8 n/a 
Upper Reach 100% 0% 8 n/a 

2005     
Lower Reach 95% 5% 9 70% 
Upper Reach 100% 100% 8 60% 

 
 
 
TABLE 4.—Microhabitat parameter utilization  for egg masses deposited within the study 
area on Coyote Creek in 2004–2005. 

Position in  Pool Head Middle Tail    

2004       
Lower Reach 5% 40% 55%    
Upper Reach 0% 23% 77%    

2005       
Lower Reach 4% 43% 53%    
Upper Reach 2% 75% 23%    

 
Microhabitat 

Submerged 
Gravel Bar 

Submerged 
Cobble Bar Edgewater Glide 

Deep 
Water Thalweg 

       

2004       
Lower Reach 76% 2% 22% 0% 0% 0% 
Upper Reach 81% 19% 0% 0% 0% 0% 

2005       
Lower Reach 53% 20% 24% 3% 0% 0% 
Upper Reach 70% 0% 0% 23% 5% 2% 
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TABLE 5.—Attachment substrate of egg masses on Coyote Creek in 2004-2005. 

  
Stone 

Use (%) 
Vegetation/Roots 

Use (%) 
Av. Diameter of 

Stone (mm) 
Gravel 

Use (%) 
Cobble 
Use (%) 

2004    83% 17% 
Lower Reach 100% 0% 73   
Upper Reach 100% 0% 43   

2005    70% 30% 
Lower Reach 92% 8% 71   
Upper Reach 100% 0% 52     
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TABLE 6.—Breeding habitat parameter values measured at egg mass locations along 
Coyote Creek in 2004-2005. 

  Mean/Total (n) SE Range 

2004    

Lower Reach     

Distance from shore (m) 2.23 (41) 0.212 0.610-6.08 

Water Temperature (˚C) no data no data no data 

Canopy coverage (%) 27% (41) 3.666 2%-96% 

Egg mass diameter (mm) 57 (5) 5.418 38-70 

Water depth at egg mass (m) 0.131 (41) 0.009 0.60-0.320 

Upper Reach    

Distance from shore (m) 3.178 (31) 0.16 0.78-4.53 

Water Temperature (˚C) no data no data no data 

Canopy coverage (%) 32% (31) 3.586 5%-85% 

Egg mass diameter (mm) 51.4 (29) 2.441 38-79 

Water depth at egg mass (m) 0.191 (31) 0.013 0.08-0.46 

2005    

Lower Reach     

Distance from shore (m) 1.91 (59) 0.178 0.100-6.52 

Water Temperature (˚C) 14.9 (59) 0.215 12.5-19.3 

Canopy coverage (%) 31% (59) 3.011 2%-96% 

Egg mass diameter (mm) 43 (59) 2.046 16-83 

Water depth at egg mass (m) 0.237 (59) 0.027 0.06-1.14 

Upper Reach    

Distance from shore (m) 2.59 (44) 0.182 0.27-5.61 

Water Temperature (˚C) 14.3 (44) 0.297 11.3-19.1 

Canopy coverage (%) 18% (44) 1.41 6%-48% 

Egg mass diameter (mm) 46 (44) 2.196 19-76 

Water depth at egg mass (m) 0.238 (44) 0.035 0.10-1.66 
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TABLE 7.—Juvenile frogs marked and recaptured from 2004 to 2005. 

  
Number 
Marked 

Recaptured 
Once (%) 

Recaptured 
Two or More 

Times (%) 

Number 
Recaptured as 
Adult Females 

Number 
Recaptured as 
Adult Males 

 
2004      

Lower 14 29 14 2 1 
Middle  0 0 0 0 0 
Upper 25 32 12 0 3 

Dexter Creek 0 0 0 0 0 
Sheep Ridge 

Creek 0 0 0 0 0 
Total 39 31 13 2 1 
2005      

Lower 11 73 36 1 3 
Middle  0 0 0 0 0 
Upper 2 100 50 0 2 

Dexter Creek 4 75 50 1 0 
Sheep Ridge 

Creek 2 50 0 0 0 
Total 19 74 37 2 5 

 
 
 
TABLE 8.—Size ranges of adult foothill yellow-legged frogs captured within the study 
area during 2004-2005. 

    Females     Males   

2004 N Weight (g) SVL (mm) N Weight (g) SVL (mm) 
Lower 1 7.5 42 2 9.8-11.0 41-47 
Middle  1 7.5 40 0 n/a n/a 
Upper 9 9.0-37.0 45-71 11 6.5-16.3 40-55 

Dexter Creek 7 11.2-45.0 41-72 1 20.5 57 
Sheep Ridge Creek 0 n/a n/a 0 n/a n/a 

Total 18 7.5-45.0 40-72 14 6.5-20.5 40-57 

2005       
Lower 4 7.5-43.5 41-71 20 8.0-26.0 40-58 
Middle  0 n/a n/a 0 n/a n/a 
Upper 7 8.5-32.5 42-63 9 8.5-18.0 41-54 

Dexter Creek 20 7.5-48 40-74 25 9.0-25.0 41-59 
Sheep Ridge Creek 2 11.0-28.5 46-57 1 8.5 42 

Total 33 7.5-48.0 40-74 55 8.0-26.0 41-59 
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TABLE 9.—Number of males and females captured and sex ratios at the lower and upper 
reaches in 2005 and summer residence locations between lower main stem and Dexter 
Creek in 2004 and 2005. 

 2005 Lower Reach Upper Reach 

Males 40 13 

Females 27 7 

Ratio (males/females) 1.48 1.85 
   
 
Residence locations for adults in the lower reach.   

 Mainstem (Lower Reach) Dexter Creek 

 (n) % (n) % 

Males   
2004 (2) 66% (1) 33% 
2005 (16) 36% (26) 64% 

Females   
2004 (1) 13% (7) 87% 
2005 (3) 13% (20) 87% 

 
 
 
TABLE 10.—Detectability of non-radiotagged stationary adult foothill yellow-legged 
frogs on Dexter Creek concurrent with radiotracking. 

Frog I.D Sex 
Number of 

radiotracking surveys Number of detections Detectability 

K84 Male 18 3 17% 

K91 Female 7 4 57% 

L44 Female 12 8 67% 

L48 Female 26 3 12% 

L49 Male 15 7 47% 

L57 Male 19 4 21% 

L64 Male 12 5 42% 

L73 Male 8 3 38% 

Total/Mean   117 37 32% 
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TABLE 11.—Mesohabitat physical parameter values by reach for the Coyote Creek study area. 

Physical Habitat Parameters Length (m) Mean Width (m) Mean Depth (m) Mean Maximum Depth (m) Mean Canopy (%) 
Mainstem Lower Reach      

Pool 1788 7.01 0.27 0.76 17 
Turbulent 374 4.88 0.08 0.14 24 
Flatwater 216 3.05 0.11 0.21 21 

Total Reach 2377 5.79 0.18 0.46 20 
Mainstem Middle Reach      

Pool 2150 7.62 0.40 0.95 15 
Turbulent 973 4.57 0.08 0.15 20 
Flatwater 636 3.96 0.10 0.21 16 

Total Reach 3704 5.79 0.22 0.51 17 
Mainstem Upper Reach      

Pool 1991 5.79 0.34 0.67 41 
Turbulent 273 4.27 0.08 0.15 55 
Flatwater 195 4.27 0.11 0.22 44 

Total Reach 2459 5.18 0.22 0.44 46 
Dexter Creek      

Pool 1057 2.04 0.23 0.41 91 
Turbulent 754 2.44 0.09 0.16 91 
Flatwater 329 2.13 0.08 0.18 91 

Total Reach 2140 2.20 0.16 0.29 91 
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TABLE 12.—Dominant and sub-dominant substrate by reach for the Coyote Creek study 
area. 

  Sand Gravel Cobble Boulder 

Lower Reach     
Dominant 9% 41% 43% 7% 

Sub-Dominant 12% 38% 32% 18% 

Middle Reach     
Dominant 1% 34% 64% 1% 

Sub-Dominant 12% 35% 20% 33% 

Upper Reach     
Dominant 28% 40% 31% 1% 

Sub-Dominant 3% 23% 46% 28% 

Dexter Creek     
Dominant 0% 24% 23% 53% 

Sub-Dominant 1% 13% 48% 38% 
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TABLE 13.—Escape cover availability by reach for adult foothill yellow-legged frogs in the Coyote Creek study area. 

  

Av. number 
of Cover 

Types Substrate 
Surface 

Turbulence Depth 
Undercut 

Banks Rootwad Wood Trees 
 

Grass/Sedge 
Aquatic 

Vegetation 
Lower Reach           
All Habitats 3.4 98% 45% 26% 10% 10% 7% 60% 5% 83% 

Flatwater 2.75 100% 25% 0% 0% 0% 0% 75% 0% 75% 
Pool 3.71 95% 5% 52% 19% 19% 14% 76% 5% 86% 

Turbulent 3.18 100% 100% 0% 0% 0% 0% 35% 6% 82% 
Middle Reach           
All Habitats 2.6 99% 38% 20% 3% 24% 7% 13% 1% 50% 

Flatwater 1.9 100% 21% 0% 0% 7% 0% 14% 0% 50% 
Pool 2.9 97% 0% 44% 6% 44% 15% 24% 3% 56% 

Turbulent 2.43 100% 93% 0% 0% 7% 0% 0% 0% 43% 
Upper Reach           
All Habitats 3.4 100% 45% 23% 3% 0% 2% 64% 63% 24% 

Flatwater 2.9 100% 50% 0% 0% 0% 0% 5% 4% 2% 
Pool 3.8 100% 47% 44% 6% 0% 3% 94% 97% 94% 

Turbulent 3.1 100% 100% 0% 0% 0% 0% 64% 50% 18% 
Dexter Creek           
All Habitats 2.4 99% 73% 47% 9% 2% 1% 5% 0% 0% 

Flatwater 1.8 100% 73% 3% 0% 0% 0% 0% 0% 0% 
Pool 2.8 99% 59% 87% 16% 4% 2% 8% 0% 1% 

Turbulent 2.04 100% 94% 6% 1% 0% 1% 2% 0% 0% 
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TABLE 14.—Adult foothill yellow-legged frog mesohabitat availability and use during 
summer/fall in the Coyote Creek study area. Total observations includes, frogs not 
captured and sexed. 

  Pool Turbulent Flatwater Totals 

Mainstem Coyote Creek     

Males (n=74) 72% 19% 9% 74 

Females (n=34) 62% 18% 20% 34 

Total Observations (n=303)  72% 18% 10% 303 

Available 52% 37% 11% 106 

     

Dexter Creek     

Males (n=194) 98% 2% 0% 194 

Females (n=236) 97% 2% 1% 236 

Total Observations (n=613) 97% 2% 1% 613 

Available 52% 38% 10% 317 

 
 
 
TABLE 15.—Dominant substrate mesohabitat availability and use by adult foothill 
yellow-legged frogs, in the Coyote Creek study area.   

  Sand Gravel Cobble Boulder Bedrock 

Mainstem Coyote Creek      

Males (n=74) 0% 43% 31% 26% 0% 

Females (n=34) 0% 31% 19% 50% 0% 

Total Observations (n=303) 2% 38% 27% 32% 0% 

Available 20% 40% 36% 4% 0% 

      

Dexter Creek      

Males (n=194) 0% 34% 3% 63% 0% 

Females (n=236) 0% 24% 6% 70% 0% 

Total Observations  (n=613) 0% 29% 6% 65% 0% 

Available 0% 24% 23% 53% 0% 
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TABLE 16.—Depth, canopy and cover complexity of mesohabitats available and used by 
adult foothill yellow-legged frogs in the Coyote Creek study area. 

 
Mean Maximum 

Depth (m) 
Mean Canopy Coverage 

% 
Mean Number of Cover 

Types 
Mainstem Coyote 

Creek    
Males (n=74) 0.68 33% 3.4 

Females (n=34) 0.63 43% 4.3 
Total Observations 

(n=303)  0.75 41% 3.5 
Available 0.45 36% 3.4 

Dexter Creek       
Males (n=194) 0.37 87% 3.7 

Females (n=236) 0.46 85% 3.8 
Total Observations 

(n=613) 0.40 85% 3.6 
Available 0.25 91% 2.4 
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APPENDIX A – PROJECT PHOTOS 
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PHOTO 1.—A large two day old egg mass deposited in shallow, slow water and attached 
to small cobble substrate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PHOTO 2.—This ten day old egg mass was in advanced development and covered with a 
film of silt and algae. 
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PHOTO 3.—Tadpoles started to hatch less than twenty four hours prior to this photo, and 
some are still un-hatched. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PHOTO 4.—A typical foothill yellow-legged frog breeding habitat that is wide, shallow 
and with slow water and gravel/cobble substrate.  Note the cobble bar on the bank at left. 
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PHOTO 5.—A typical pool on the lower reach with a wide, shallow and glide-like tail of 
pool with an open canopy.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PHOTO 6.—A cobble and boulder-dominated riffle on the lower reach with an open 
canopy. 
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PHOTO 7.—A typical large pool on the middle reach that is gravel and cobble dominated 
and with almost no canopy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PHOTO 8.—A typical open-canopied riffle on the middle reach that is mostly dry in late 
spring, 2004. 
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PHOTO 9.—The most prolific breeding habitat on the upper reach (upper breeding site) 
that has open canopy, gravel/cobble dominated substrate, and reliable water through early 
summer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PHOTO 10.—Perennial run habitat on the upper reach with an abundance of instream 
escape cover and with moderate canopy cover. 
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PHOTO 11.—A small boulder-dominated perennial pool on the upper reach with moderate 
canopy and reliable escape cover from predators. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PHOTO 12.—Remnants of a pool on the upper reach that provided rearing habitat for 
young of the year frogs during fall, 2004. 
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PHOTO 13.—A typical small plunge pool habitat alternated with short cascades and riffles 
on Dexter Creek. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PHOTO 14.—A relatively large perennial pool on Dexter Creek near its confluence with 
main stem Coyote Creek. 
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PHOTO 15.—An intermittent step run sequence on Dexter Creek. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PHOTO 16.—A very large female foothill yellow-legged frog that had its transmitter 
removed prior to this photo. 
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PHOTO 17.—A basking radiotagged frog on Dexter Creek.  The frog is utilizing a sun 
fleck at the head of a plunge pool.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PHOTO 18.—Using a trash bag and an ultraviolet light lamp to read the elastomer alpha 
numeric tag on a recaptured frog. 
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PHOTO 19.—A late summer aggregation of juvenile frogs during extremely high 
temperatures.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PHOTO 20.—A large female California red-legged frog that occupied the same habitat as 
foothill yellow-legged frogs. 
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PHOTO 21.—The Santa Cruz aquatic garter snake was the most common predator within 
the study area. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PHOTO 22.—The common merganser was an efficient predator on amphibian larvae. 
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PHOTO 23.—Marijuana plants planted on terraces next to the tributary below Sheep 
Ridge.  Note the terraced slopes, cut trees and cleared ground.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PHOTO 24.—Diversion dam that was constructed in a small perennial plunge pool on the 
tributary below Sheep Ridge.  Irrigation lines brought water to the gardens downstream. 
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