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ABSTRACT 

ABSENCE OF KERATIN 8 IS ASSOCIATED WITH MARKED COLON MAST CELL 
INFILTRATION 

 
by Diana E. Nasser 

 
 

Patients with inflammatory bowel disease (IBD) have increased numbers of 

numbers of intestinal mast cells (MCs).  Chymases and tryptases are mast-cell-specific 

proteases (MCPs) that are reliable indicators of MC degranulation.  The role of MCs in 

the pathophysiology of IBD is poorly understood, and it is unclear whether MCs play a 

role in patients or in experimental models of IBD.  Furthermore, MCs have been 

characterized only in chemically induced models of colitis.  In this study, we characterize 

MCs in inflamed colons of keratin 8 knock-out mice (K8-/-), a spontaneous model of 

colitis with primarily an epithelial cell defect.  We used histologic, quantitative PCR 

(qPCR) and western blot analysis to quantify the increase in MCs and MCPs.  Using 

chloroacetate esterase (CAE) tissue staining, we showed a statistically significant 

increase (p<0.05) in MCs in the colon of K8-/- mice as compared to their wildtype 

littermates, 2,4-dinitrofluorobenzene (DNFB)-treated, and dextran sodium sulfate (DSS)-

treated mice colons.  K8-/- colons showed an increase in all MCPs tested (MCP-1, -2, -4, 

-5, -6, and -7).  In addition, at the protein level, both chymase and tryptase were over-

expressed in K8-/- colons.  In conclusion, absence of K8 was associated with a chronic 

colitis and with marked MC infiltration.  Consistent with the increase in MCs, increased 

expression of MCPs were noted at the mRNA and protein levels.  K8-deficient mice 

provide a model for studying the role of MCs in IBD. 
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Introduction 
 

Mast cells (MCs) are versatile cells that contain numerous secretory granules in 

the cytoplasm [1].  They are derived from hematopoietic progenitor cells in the bone 

marrow, where they initiate their maturation process [2].  MCs do not ordinarily circulate 

in mature form.  They undergo maturation and differentiation after migrating to virtually 

all vascularized tissues [3].  MCs are abundant in organs highly exposed to exogenous 

and foreign molecules like the skin, gastrointestinal (GI) tract, and respiratory organs [4].  

MCs are particularly plentiful around blood vessels and nerve endings in all of these 

different tissue types [5] and are known as key players in type I hypersensitivity reactions 

[6].  On the other hand, MCs have been shown to be involved in a wide range of non-IgE-

mediated inflammatory or non-allergic diseases including rheumatoid arthritis and 

cardiovascular diseases [7].  The activation of MCs leads to degranulation and the release 

of preformed inflammatory mediators such as cytokines, histamine, serglycin 

proteoglycans, and several MC-specific proteases such as tryptase, chymase and 

carboxypeptidase A (CPA) [8].  Upon activation, MCs can release their mediators to 

fulfill their biological functions.  

The classification of rodent MC subtypes has been based on phenotypical 

differences between connective tissue MCs (CTMC) and mucosal MCs (MMC) [9].  

CTMCs are found particularly in the skin, peritoneal cavity, and intestinal submucosa, 

whereas MMCs are found in the intestinal lamina propria [9].  As summarized in Table 1, 

MMCs mainly express two chymases, mouse MC protease-1 (mMCP-1) and mMCP-2 

[10], but do not express tryptase or MC-CPA.  However, CTMCs express three 
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chymases, mMCP-4, mMCP-5 [11, 12] and mMCP-9 [13] and two tryptases, mMCP-6 

and mMCP-7 [11,12]. Each mMCP exhibits a tissue-specific distribution.  For example, 

the mMCP-6 gene is highly expressed in connective tissue mast cells but not in mucosal 

mast cells [12], whereas mMCP-1 and -2 are restricted to mucosal mast cells [14, 15]. 

MMC and CTMC appear to differ in morphology and histochemical characteristics as 

well as many other aspects pertaining to natural history, function, and biochemistry [16, 

17].  The most attractive marker for MC subpopulations is the cytoplasmic granule 

protease content or “phenotype” [9], and the evidence for the presence of MCs is based 

on finding distinct protease patterns in MCs in different tissues [18].  Chymases and 

tryptases provide important insights into the unique functions of mast cells because these 

granule-associated neutral proteases are restricted to MCs [19].  Based on these MCPs, 

we characterized the presence of colonic MCs in the K8-/- colitis model using chymase 

and tryptase antibodies.  

 

 

 

Inflammatory bowel disease (IBD) is an idiopathic disease characterized by 

intestinal inflammation [20].  The exact etiology of IBD remains unknown but is thought 
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to be a complex interaction of genetic, environmental (e.g., luminal microflora), and 

immunological factors [20, 21].  IBD can be subdivided into two major diseases: Crohn’s 

disease (CD) and ulcerative colitis (UC).  Although sometimes the two diseases are hard 

to distinguish when the disease involves the colon, inflammation can occur anywhere 

along the gastrointestinal tract in CD but is limited to the colon in UC.  In addition, there 

are key histopathologic features that can be used to distinguish between the two forms of 

IBD.  

Several animal models of IBD have been described mostly via genetic targeting of 

the immune system or via application of chemical injuries [21, 22].  Other models, such 

as the keratin 8 (K8) model of colitis, have a primary epithelial cell rather than cytokine 

or leukocyte defect [23, 24, 25].  Whether mast cells (MCs) play a role in the 

pathogenesis of IBD is not clear.  Moreover, MCs remain poorly characterized in IBD 

patients and experimental models of colitis [8]. Rijnierse and co-workers [28] propose 

that MCs play a crucial role in the development of colonic hypersensitivity reaction in the 

2,4- dinitrofluorobenzene (DNFB)-induced murine model of IBD.  In contrast, MCs are 

thought not to play a role in the dextran sodium sulfate (DSS)-induced colitis model [26].  

Since MCs are likely to play a role in allergic or drug-mediated responses, in this study 

we characterized MCs in the non-chemical-induced spontaneous K8 model of colitis. 
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Materials and Methods 

 

Mice 

K8-/- mice in FVB/n background were kindly provided by Robert Oshima (The 

Burnham Insitute, La Jolla, California, USA) and Helene Baribault (Amgen, South San 

Francisco, California, USA).  K8-/- mice and their wild-type littermates were generated 

by interbreeding of K8+/- mice under specific pathogen-free environment.  Mice were 

genotyped using tail DNA and PCR [23].  Twelve to sixteen week old gender matched 

K8 mice were studied.  The study was approved by the institutional animal care and use 

committees. 

Immunoblotting analysis 

  For immunoblotting, tissues were homogenized using a Teflon homogenizer in a 

buffer containing 0.187 M Tris-HCL, 3% SDS, and 5mM EDTA, and the protein 

concentration was measured using the BCA protein assay (Pierce Chemical, Rockford, 

Illnois, USA) [27].  SDS-PAGE was done using 10% acrylamide gels. Equal amounts of 

proteins were separated by SDS-polyacrylamide gel electrophoresis, transferred to 

polyvinylidene difluoride membranes, followed by blocking with 5% nonfat dry milk.  

The membranes were next incubated with antibodies, washed with PBS/Tween, 

incubated with peroxidase-conjugated goat anti-mouse, anti-rabbit, or anti-rat 

immunoglobulins.  Immune-reactive bands were visualized using enhanced 

chemiluminescence (PerkinElmer Life and Analytical Sciences, Boston, Massachusetts, 

USA). 
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Antibodies 

The following primary antibodies (Abs) were used in the study: mouse anti-

tryptase (Abcam, Cambridge, Massachusetts, USA), mouse anti-chymase (Abcam, 

Cambridge, Massachusetts, USA), rat anti-K8 (Troma-1; Developmental Studies 

Hybridoma Bank; Iowa City, Iowa, USA) and mouse anti-actin (NeoMarkers, Fremont, 

California, USA).  Secondary anti-mouse and anti-rat peroxidase Abs were from Sigma-

Aldrich, St. Louis, Missouri, USA. 

Histology 

  Freshly isolated colons from K8+/+ and K8-/- mice were embedded in optimum 

cutting temperature (OCT) compound and frozen at -80 C.  Serial sections of 6µm were 

cut using a microtome (Leica) and stained for Hematoxylin and eosin (H&E).  A 

chloroacetate esterase staining kit (CAE; Sigma-Aldrich) was used to detect mast cells as 

per manufacturer guidelines as described [28].  

Induction of colitis 

Colonic hypersensitivity was induced as described previously [28].  Briefly, mice 

were sensitized on day 0 by application of 50 µl of either DNFB (0.6% in acetone:olive 

oil, 4:1) or vehicle (acetone:olive oil, 4:1) epicutaneously on the shaved abdomen, and 50 

µl divided over 4 paws.  On day 1, the mice were given a boost of 50 µl DNFB or vehicle 

only on the abdomen.  On day 5, all the animals were challenged intrarectally with 50 µl 

dinitrobenzene sulfonic acid (0.6% DNS) dissolved in 10% ethanol.  The sensitization, 
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boost and challenge took place under light inhalation anesthesia (isoflurane).  At day 8, 

all mice were sacrificed by CO2 inhalation.  Colitis was induced in another group of mice 

by adding 5 g of dextran sodium sulfate (DSS) to 100 ml of its drinking water.  Control 

mice were given access to water without DSS.  Mice were sacrificed on day 8. 

Quantitative RT-PCR 

  Total colon RNA was isolated using an RNeasy midi kit and converted into 

cDNA using a Superscript II reverse transcriptase kit as recommended by the 

manufacturer (Invitrogen, Carlsbad, California).  Quantitative PCR was performed with 

an ABI Prism 7900 Sequence Detection System (Applied Biosystems, Foster City, 

California) as described in Tao, et al. [29].  Target genes were amplified using specific 

primers (Table 2) and SYBR Green PCR Master Mix (Applied Biosystems).  Gene 

expression levels were normalized to the housekeeping gene GAPDH.  

 Statistical analysis 

Student’s t-test was used to determine statistical significance and a P value of less 

than 0.05 was considered significant.  Values are expressed as mean + s.e.m.  Results 

shown are from at least 3 independent experiments. 
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Results 

Absence of K8 is associated with increased number of MCs in the colon 

Since MCs were shown to increase in number and play a role in DNFB-induced 

colitis [28], but not in DSS-induced colitis [26], we used both chemically-induced colitis 

models as reference comparisons for the K8-/- model of colitis.  As expected, induction 

of colitis with DNFB and 5% DSS led to significant weight loss (Figure 1A&B) and 

histologic evidence of colitis (Figure 2).  As reported previously, K8-/- mice did not lose 

weight as compared to K8+/+ littermates [25].   

 

 

 

Figure 1 A 
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Figure 1. Balb/c mice with chemically induced colitis lose weight over time.  The body 

weight of 5% DSS-treated control mice (A) and DNFB-sensitized and control mice (B) 

was monitored, and the % weight loss was calculated.  Data shown are mean + s.e.m. for 

5 mice per group. *p<0.05  

 

Figure 1 B 
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 Figure 2. Hematoxylin and eosin (H&E) staining of colitis and control mouse colons.  

Sections (6 um in thickness) of OCT-embedded colon tissue from K8+/+ and K8-/- mice 

(A), 5% DSS treated and control mice (B: a and b) and DNFB and vehicle-sensitized 

animals (B: c and d) were stained with H&E.  The staining shows increased areas of 

inflammation in colitic mouse colons (arrows). 
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To investigate differences in MC numbers between the colitis models, we used a 

chloroacetate esterase (CAE) staining protocol described by Rijnierse and co-workers 

(2006) to identify MCs in colons of DNFB-sensitized mice.  Consistent with this group’s 

findings, there was a modest increase in CAE+ cells in the colon of DNFB-sensitized 

mice as compared to vehicle-sensitized controls (Figure 3B, c and d).  Interestingly, a 

marked increase in MCs was noted in K8-/- as compared to DNFB-sensitized and K8+/+ 

colons (Figure 3A).  The increase in MCs was more prominent in proximal colons of K8-

/- mice (Figure 3A, b and d).  As expected, no increase in MC number was noted in DSS-

induced colitis as compared to non-DSS treated mice (Figure 3B, a and b).  
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.   

Figure 3A.  Mast cell (MC) identification using CAE staining.  OCT-embedded colon 

sections harvested from K8-/- and K8+/+ mice (A, above), DNFB- and DSS-treated and 

control mice (B, next page) were stained with CAE as described in the methods section.  

Note markedly increased CAE+ cells (arrows) in proximal and distal colons of K8-/- (A: 

b and d) as compared to K8 +/+ (A: a and c) mouse colons.  
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Figure 3B.  Mast cell (MC) identification using CAE staining.  OCT-embedded colon 

sections harvested from K8-/- and K8+/+ mice (A, previous page), DNFB- and DSS-

treated and control mice (B, above) were stained with CAE as described in the methods 

section.   
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K8-null mice have higher expression of colon MC proteases 

In mice, several neutral mMCPs have been defined based on mRNA sequences.  

mMCP-1, -2, -4, -5, and -9 are chymases, and mMCP-6 and -7 are tryptases [12, 32, 13].  

To assess mRNA expression of mMCPs in K8-/- and K8+/+ colons, we used RT-PCR 

using mMCP specific primers (Table 2).  Consistent with the increase in MC number in 

K8-/- colons (Figure 3A), K8-/- as opposed to K8+/+ colons had increased mMCP 

mRNA regardless of the mMCP type tested (Figure 4).  mMCP-7 was most up-regulated 

compared to the other mMCP tested.  

 

Figure 4.  RT-PRC analysis of mast cell proteases (mMCP) in K8+/+ (white bars) and 

K8-/- (black bars) mice colons.  Note up-regulation of mMCP 1,2,4,5,6, and 7 in the K8-

/- as compared to K8+/+ colon.  The data are presented as mean relative to GAPDH 

expression ± s.e.m. (n=3).  * p<0.05 when comparing K8+/+ with K8-/-. 
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Chymases and tryptases are mast cell specific proteases that have long been used 

as reliable markers of MC degranulation [8].  To confirm the mRNA results above and to 

examine the expression of MC chymases and tryptases, western blot analysis was 

conducted in the three groups of mice: K8-null mice, DNFB and DSS-treated mice, and 

their control counterparts.  As shown in Figure 5, K8-null mice had the highest 

expression of both chymase and tryptase as compared to their wildtype controls and the 

two chemically induced colitis model colons.  In contrast to colons from DSS-treated 

mice, DNFB-sensitized mice had significant increase in chymase and tryptase.  Absence 

or presence of K8 was confirmed using K8 antibody, and an actin antibody was used to 

confirm equal loading (Figure 5).  
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Figure 5.  Colon expression of chymase and tryptase level between the different colitis 

models.  Equal amounts of total colon lysates were separated by SDS page and then 

immunoblotted with anti-chymase, -tryptase, -keratin 8, and -actin antibodies.  Note that 

K8 -/- mice colons overexpress chymase and tryptase.  Mice treated with DNFB (+) also 

had significantly increased chymase and tryptase expression as compared to colons from 

DSS-treated mice. 
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Discussion 

Mast cells have been long thought to have potential harmful effects because of 

their well defined role in atopic diseases, and because they cause many of the symptoms 

associated with allergic as well as immediate hypersensitivity reactions [33].  However, 

recent studies support a role for MCs in the sensitization to allergens as shown by the 

ability of early released MC tryptase to break down IgE, the key maker of allergic 

inflammation [7, 34].  Mast cells also contribute to the innate immune defense against 

bacterial and parasitic infections [34], and even enhance survival during venom poisoning 

[35].  In addition, MCs via the release of IL-10 can limit contact dermatitis and UV-

irradiation mediated inflammation and tissue injury [34].  On the other hand, MCs are 

thought to contribute to disease pathogenesis in chronic inflammatory and autoimmune 

diseases such as rheumatoid arthritis, multiple sclerosis and cardiovascular disease [7].  

However, whether MCs play an important role in IBD remains poorly defined. 

MCs are reported to be increased in colons of patients with IBD [36].  Not only 

does the number of MCs change, but the content of these cells can vary as well [37].  The 

role of MCs in IBD has been studied in chemically induced colitis models.  However, it is 

uncertain whether MCs play a role in the trinitrobenzene sulfonic acid (TNBS) colitis 

model, because there is no difference in colonic disease between MC-deficient rats and 

wildtype controls exposed to TNBS [38].  On the other hand, in a more recent study, 

Rijnierse et al. (2006) reported an increase in MCs and a role for MCs in the 

dinitrofluorobenzene (DNFB)-induced model of colitis. Minocha and co-workers (1995) 

did not find a role for MCs in DSS colitis.  Thus, in this study, we compared the number 
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and characteristics of MCs in a non-chemically induced model of colitis, the K8-/- 

chronic spontaneous model of colitis with a primary epithelial cell defect.  K8-/- colons 

have a remarkable MC infiltration even in comparison to the defined DNFB-treated 

colons.  MCs are tissue-resident cells originating from bone marrow. They migrate into 

tissues as immature committed progenitors where they complete their differentiation 

under the influence of microenvironmental factors [39].  Mature MCs can be very long 

lived and can retain their ability to proliferate particularly in the setting of inflammation 

[8].  Thus, the increase in MCs in K8-/- colons could be from increased recruitment 

and/or proliferation, although this hypothesis awaits further investigation.  

When mast cells mature, they acquire numerous electron dense cytoplasmic 

granules.  Once activated following an appropriate stimulus, mast cells degranulate and 

release their mediators.  In this process, many preformed inflammatory mediators are 

released, including preformed cytokines such as TNFα, histamine, proteoglycans, and 

several MCPs: also called chymases, tryptases, and carboxypeptidase A [40].  Tryptases 

and chymases belong to the serine protease class, and the designation of the specific 

MCP as chymases and tryptases relates to their substrate specificities.  Tryptases are 

trypsin-like enzymes, while chymases are chymotrypsin-like enzymes [41].  We found an 

over-expression of MCPs in K8-/- colons by RT-PCR, which corresponded with 

increased chymase and tryptase protein levels.  Such increase was higher in the K8-/- as 

compared to DNFB-treated colons, and is likely related to the increase in MC number. 

Rijnierse’s group [42] argued the conflicting MC results in the TNBS-colitis model as 

opposed to their DNFB-mediated model may be from the higher concentration (50%) of 



19 

 

ethanol used as vehicle in the TNBS-colitis model that can induce inflammation in a MC-

independent manner, and mask the TNBS/hapten-specific induced response.  Our results 

in DSS-treated colons are consistent with those reported previously [26].  Mucosal breach 

with 5% DSS over 7-8 days may not be a sufficient stimulus to mediate MC-dependent 

immune response.  

In conclusion, absence of K8 is associated with a chronic colitis with marked 

MCs infiltration.  Consistent with the increase in MCs, increased expression of MCPs are 

noted at the mRNA and protein levels.  Presence of MCPs are good predictors of MC 

degranulation, and whether there is enhanced secretion of MC mediators in the K8-/- 

colitis model remains to be tested.  In addition, whether MCs play a role in disease 

pathogenesis in this model will also need further investigation. 
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