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ABSTRACT 

 

SURFACTANT-ASSISTED HYDROTHERMAL SYNTHESIS OF TITANIA 

NANOROD THIN FILMS 

by Benjamin M. Petersen 

 

 Titania (TiO2) nanorods have shown promise for applicability in dye-sensitized 

solar cells (DSSC) and may present a cost-effective solution for the fabrication of 

efficient and affordable solar power generation.  In contrast to traditional silicon solar cell 

fabrication, the fabrication of DSSCs does not require expensive high energy, vacuum, 

and temperature processes.  Titania nanorods have the potential to increase the electron 

transport rate in DSSCs by forming a direct electrical pathway, thus improving the 

performance.  This study set out to investigate ways in which titania nanorod 

hydrothermal growth could be enhanced and made more reliable through (1) 

experimentation with procedures to control temperature and pressure to hydrothermally 

grow titania nanotubes in a more reproducible way, and (2) experimentation with 

different additives to study their effect on nanorod growth.  Optimum nanorod growth 

occurred when the temperature and pressure were kept constant.  Use of multiple 

molecular weights of polyethylene gyclol (PEG) as an additive was shown to 

significantly enhance nanorod growth.   
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Background 

As the population of the world and worldwide development increase, so does the 

demand for energy.  Between 1980 and 2000, energy consumption worldwide increased 

by 40%.  Worldwide energy consumption is predicted to increase another 70% by 2030 

[1].  This growing demand for energy combined with the limitations on traditional fuels 

(coal, oil, and natural gas) and the increase in global warming have necessitated the 

development of sustainable, environmentally friendly energy sources.  Many renewable 

energy technologies have been developed, including hydroelectric, wind, solar, tidal, and 

biofuels.  Of all of the renewable energy technologies, photovoltaic (PV) solar cells are 

considered to show the most potential [2].  One main reason for this is the abundance of 

energy that reaches earth from the sun: 3x10
24

 J a year, 10,000 times the amount of 

energy presently consumed per year [3].  Currently, the main disadvantage of PV 

electricity is its high cost.  However, as manufacturing technology improves solar power 

is becoming more cost-effective.  By way of example, in 1954 PV-generated power cost 

roughly $300 per watt, while today it costs less than $5 per watt [1].   

There are several different types of PV cells currently being researched, including 

single crystal silicon, amorphous silicon, polycrystalline silicon, ribbon silicon, thin film 

silicon, copper indium diselenide, silicon gallium, cadmium telluride, titanium dioxide 

nano-crystalline dye-sensitized, and molecular and polymer organics [4-7].  One PV type, 

using aligned single crystal wide bandgap semiconductor nanorods, has recently drawn
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considerable attention.  These nanorods could improve the performance of PV cells by 

increasing the electron transport rate because they form a direct electrical pathway [8].  

Based on the performance of titania nanoparticles as n-type material in dye-sensitized 

solar cells (DSSC), titanium dioxide (TiO2 or titania) has been shown to have great 

potential as the material for nanorods in PV cells [9]. 

 

1.2 Applications 

PV cells have a wide range of applications.  They have been used to power 

satellites [2] and small electronics.  They have also been used on a limited scale to power 

residential and commercial grids, for example the 14-megawatt Nellis solar power station 

in Nevada [1].  As the technology improves and correspondingly becomes more cost-

effective, PV cells can be used more widely to power homes and businesses.  

 

1.3 How a Photovoltaic Cell Works 

PV cells work because of the photovoltaic effect, which was first described by 

Bequerel in 1839 [10].  The photovoltaic effect is defined as “the emergence of an 

electric voltage between two electrodes attached to a solid or liquid system upon shining 

light onto this system” [4].  Most PV devices use semiconductor p-n junctions made of 

solid-state silicon to create the photovoltage.  When a p-n junction is formed, the 

concentration difference in the charge carriers results in the diffusion of electrons from 

the n-type material to the p-type material and therefore results in holes from the p-type 

material to the n-type material.  This removal of the majority carriers results in the 
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production of an electric field by the ionized donors of the n-type material and the 

ionized acceptors of the p-type material.  This electric field then drives the net diffusion 

of holes and electrons to zero.  The region of exposed donors and acceptors (shown in 

Figure 1), called the depletion zone, is effectively depleted of electrons and holes.  The 

potential difference caused by the formation of the junction is called the built-in voltage 

[11].  The built-in voltage makes the photoelectric effect possible. 

 

 

Figure 1.  A p-n junction showing depletion zone and ionized donors and acceptors. 

 

Using silicon p-n junctions as an example, photons are absorbed by exciting 

electrons in the p-type silicon from the valence band to the conduction band.  These 

excited electrons flow first from the p-type to the n-type silicon and then to the contacts, 

while the newly created holes in the valence band flow away from the p-n interface.  The 

movement of the holes and electrons is caused by the built-in voltage of the p-n junction.  

In general terms, the energy absorbed from a photon excites an electron into a high-

energy state, which allows the high-energy state electron to be transported to a contact.  

The empty lower-energy, or ground, state must then be refilled by another electron from 
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the lower-energy contact.  It is important that the high-energy electron contact does not 

supply electrons to the ground state and that the high-energy electrons do not reach the 

low-energy contact [12].  Figure 2 shows the requirements for PV. 

 

Figure 2.  Essential requirements for photovoltaics.  Reprinted from Physica E, Vol. 14, 

M.A. Green, Photovoltaic principles, 15, copyright 2002, with permission from Elsevier.  

 

1.4 Dye-Sensitized Solar Cells 

DSSC and other departures from the solid-state silicon solar cell are receiving 

attention because of several attractive features [3].  DSSCs are attractive, in part, because 

of a relatively low fabrication cost.  They can be fabricated without the high vacuum, 

high energy, and high temperature processes used in traditional silicon solar cell 

fabrication.  DSSCs consist of a semiconductor material and an electrolyte sandwiched 

between electrodes.  The semiconductor is coated with a photon-sensitive dye, and the 

electrolyte contains a redox reaction mediator.  Figure 3 shows a schematic of an 

operating DSSC.   
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Figure 3.  Schematic showing the operation of a dye-sensitized solar cell.  Reprinted by 

permission from Macmillan Publishers Ltd: Nature, M. Grätzel, “Photoelectrochemical 

cells,” Nature, 414, 338-344 (2001).  

 

 

 DSSC also works because of the photovoltaic effect, whereby photons with 

energy hν excite electrons to the S* state.  This excitation of electrons takes place in a 

photosensitive dye.  As shown in Figure 3, the electrons flow into the semiconductor 

anode, oxidizing the dye.  The dye oxidizes the mediator in the electrolyte and the 

mediator is reduced at the cathode.  The electrons then flow from the semiconductor 

anode to the cathode through an external circuit.  
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1.5 Photovoltaic Efficiency Evaluation 

One factor contributing to the high cost of PV cells is low conversion efficiency.  

Conversion efficiency, shown in Equation 1, is a measure of the ratio of useable output 

compared to input, where η is the efficiency, Pout is the usable energy output and Pin is the 

energy input.   

   Equation 1   

The 1954 Bell Laboratory PV cell, the first PV cell developed, had an efficiency of 

around 6% [13].  Current conversion efficiencies range from 15% to 20% [2]. 

Some important electrical characteristics of PV cells can be determined by 

generating a current-voltage (I-V) curve.  I-V curves are generated by exposing a PV cell 

to constant light, varying the load resistance, and measuring the resulting current.  Figure 

4 shows an I-V curve for a silicon solar cell and the properties that can be measured.   

 

Figure 4.  Current-voltage characteristics of a silicon solar cell.  

in

out

P

P
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The measurable properties include short-circuit current (ISC), open-circuit voltage (VOC), 

maximum power point (PMAX), and fill factor (FF).  The short-circuit current is the 

maximum current produced when the voltage is zero.  The open-circuit voltage is the 

maximum voltage produced when the current is zero.  The maximum power point is the 

point where the power, the product of the current and the voltage, is the highest.  The fill 

factor, shown in Equation 2, is used to characterize the maximum power point, and 

measures the squareness of the I-V curve by comparing the rectangle defined by ISC and 

VOC with the rectangle defined by IMP and VMP (the voltage and current at PMAX).  

   Equation 2   

 

1.6 Project Objectives 

The primary objectives of this project were: (1) to develop a surfactant-assisted 

hydrothermal solution fabrication method for controlled growth of single-crystal titania-

nanorod thin films; (2) to characterize titania nanorod thin films hydrothermally grown 

with several different surfactants; and (3) to test in greater depth the effects of one 

promising additive.   

 

OCSC

MPMP

VI

VI
FF 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

In this chapter, several titanium dioxide nanorod thin film fabrication techniques 

are presented and low temperature hydrothermal solution synthesis is discussed in detail.  

The hydrothermal synthesis section includes a discussion of surfactants that are known to 

or may affect the growth of titanium dioxide (TiO2 or titania) nanorods.  Several methods 

of film characterization are also covered. 

 

2.2 Titania Nanorod Thin Film Deposition 

There are several established methods for depositing titanium dioxide nanorod 

thin films.  These methods vary with respect to technique, cost, and difficulty.  Park et al. 

studied the technique of titania nanostructure fabrication using cylindrical nanopore 

arrays [14].  In this study, they developed a nanoporous template with controllable 

diameter, vertically aligned, cylindrical pores that can be used to fabricate nanostructures 

of numerous materials including titanium dioxide.  The template is made from an organic 

polymer that is patterned through oxygen plasma etching.  Park et al. reported nanoposts 

of titania with an aspect ratio of four and a height of about 100nm. 

Wu et al. studied the technique of rutile and anatase aligned titania nanorod 

deposition by metalorganic chemical vapor deposition (MOCVD) [15].  This method 

deposited aligned nanorods without needing a template or catalyst.  They proposed that 

well-aligned growth occurs because of differing growth rates of the facets of the 
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tetragonal titania nanocrystal.  They also proposed that the anatase crystal facets have a 

relative growth rate of      121011110 RRR  .  It was reported that rutile and anatase crystal 

structures were deposited at different temperatures, 630 °C and 560 °C, respectively.  

Xi et al. studied the deposition of oxide nanorods by oblique-angle electron beam 

deposition [16, 17].  In these experiments, silicon dioxide and titanium dioxide nanorods 

were deposited at different angles depending on the angle of incidence of the vapor flux.  

Oblique angle deposition results in nanorods because of a self-shadowing effect.  The 

initial, random nucleation on the substrate creates a shadow region that the incident flux 

cannot reach, thereby creating oriented nanorods.  Figure 5 shows SEMs image of 

oriented silicon dioxide nanorods deposited by oblique angle deposition.  

 

Figure 5.  SEM images of silicon dioxide nanorods deposited by oblique angle 

deposition.  Reprinted with permission from J. Xi, J.K. Kim, E.F. Schubert, D. Ye, T. Lu 

and S. Lin, “Very low-refractive-index optical thin films consisting of an array of SiO2 

nanorods,” Opt. Lett., 31(5), 601-603 (2006). Copyright 2006 Optical Society of 

America. 
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Zhoa et al. showed that glancing angle deposition (GLAD) can also produce 

various nanostructures including vertically aligned nanorods [18].  GLAD combines 

oblique-angle deposition and controlled substrate motion.  In Zhoa et al.’s experiment, 

GLAD was used to deposit vertically aligned nanorods by continually rotating the 

substrate.  Figure 6 shows vertically aligned nanorods that were deposited by GLAD.  

 

 

Figure 6.  SEM cross-section of vertically aligned silicon dioxide nanorods deposited 

with GLAD.  Reprinted with permission from Y.P. Zhao, D.X. Ye, G.C. Wang and T.M. 

Lu, “Novel nano-column and nano-flower arrays by glancing angle deposition,” Nano 

Lett., 2(4), 351-354 (2002).  Copyright 2002 American Chemical Society. 

 

2.3 Hydrothermal Synthesis 

Hydrothermal solution synthesis has shown promise as a method for more 

economical mass production than the deposition methods discussed above.  

Hydrothermal synthesis of a material involves dissolving and recrystallizing in a high-

temperature, high-pressure aqueous solution [19].  Often hydrothermal synthesis is done 

with materials that are relatively insoluble at ambient temperature and pressure.  The 
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process takes place inside of an autoclave pressure vessel with a solution containing a 

precursor for the material and an aqueous growth mixture.   

A good deal of research has gone into understanding hydrothermal synthesis of 

oxides including titanium dioxide.  For example, Li et al. studied the growth of aligned 

single crystal titania nanorod arrays by hydrothermal solution [20].  In their experiments, 

nanorod arrays were grown on prepared glass substrates in a hydrothermal autoclave, at 

160 °C for three hours.  The resulting titania nanorods were rutile, single crystal with an 

average width of around 20nm and an average length of around 400nm.  

The research has shown that there are several parameters affecting film growth [8, 

20-23].  Some of the factors that determine how a titania nanorod film grows 

hydrothermally include the solution mixture, titanium precursor, substrate, baking 

temperature, baking time, and additives. 

 

2.3.1 Solution Mixture 

Several different solution mixtures have been shown to facilitate the growth of 

titania nanorod arrays.  Table 1 lists the solutions used by several groups that have 

investigated the hydrothermal growth of titanium dioxide nanorod arrays.  Of note, Li et 

al. used an aqueous solution that was saturated with sodium chloride [20].  Liu et al. used 

deionized (DI) water and concentrated hydrochloric acid [8] and reported nanorods of up 

to 4μm long.  Feng et al. used a 10:1 toluene hydrochloric acid mixture [21] and reported 

nanorods of up to 5μm long.  Pavasupree et al. used a distilled water and aqueous 

ammonia solution at 28% [22] and reported nanorods of 200nm. 
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Liu et al. studied the effect of the relative amounts of DI water and hydrochloric 

acid in the solution on the nanorod growth [8].  In Liu et al.’s experiment, the solution 

was varied from 100% DI water to 100% concentrated hydrochloric acid.  They found 

that a one-to-one DI water and concentrated hydrochloric acid mixture was most 

favorable.  When there was little or no hydrochloric acid, the titanium precursor 

precipitated out and no growth was shown.  They also found that there was no growth 

when the hydrochloric acid concentration was high.  They hypothesized that this was 

because the hydrolysis of the titanium precursor occurred too quickly. 

 

Table 1.  The hydrothermal solutions and titanium precursors used by several research 

groups. 

Group Hydrothermal solution Titanium precursor 

Li et al. [20] 
NaCl saturated aqueous 

solution 
Titanium trichloride 

Liu et al. [8] 1:1 DI H2O and conc. HCl Titanium butoxide 

Feng et al. [21] 
10:1 toluene and conc. 

HCl 

Tetrabutyl titanate and 

titanium tetrachloride 

Pavasupree et al. [22] 
4:3 distilled H2O and 28% 

aqueous NH3 
Titanium butoxide 

 

2.3.2 Titanium Precursor 

Several different titanium precursors have been used to provide the titanium for 

the titania nanorods.  The titanium precursors used by several groups are also shown in 

Table 1.  



 

 13 

Liu et al. studied the effect that the amount of titanium precursor had on nanorod 

growth [8].  In their experiment, nanorods were grown in solutions containing increasing 

amounts of titanium butoxide, ranging from 0.83% to above 1.7%.  They reported that as 

the concentration of precursor increased, the density of the nanorods increased (as shown 

in Figure 7) until the concentration reached 1.7% and the precursor began to precipitate 

out.  

 

Figure 7.  FESEM images of TiO2 nanorods grown in 30 mL DI water and 30 mL 

concentrated hydrochloric acid with (a) 0.5 mL, (b) 0.75 mL, (c) 0.85 mL, and (d) 1 mL 

of titanium butoxide.  Reprinted with permission from B. Liu and E.S. Aydil, “Growth of 

oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for 

dye-sensitized solar cells,” J. Am. Chem. Soc., 131, 3985-3990 (2009).  Copyright 2009 

American Chemical Society.   

 

2.3.3 Substrate 

The selection of a substrate can affect film growth properties, cost, and the ability 

to integrate the film into applications.  Kakiuchi et al. grew titanium dioxide nanorods 

onto glass substrates using a hydrothermal synthesis in which a titanium trichloride 
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solution was baked at various temperatures for various times [23].  They proposed that 

the growth was a result of heterogeneous nucleation and presented results that on a glass 

substrate the vertical alignment of titania nanorods was not very uniform (Figure 8). 

 

Figure 8.  FESEM image of TiO2 nanorods on glass grown at 80 °C for 168 hrs.  

Reprinted from Journal of Cryatal Growth, vol. 293, K. Kakiuchi, E. Hosono, H. Imai, T. 

Kimura and S. Fujihar, {1 1 1}-faceting of low-temperature processed rutile TiO2 rods, 

543, Copyright 2006, with permission from Elsevier.  

 

 

Li et al. investigated the effects that coating the glass with a flat titanium dioxide 

seed layer had on the hydrothermally grown titania nanorods [20].  In their experiment, 

each glass substrate was coated twice with spun on layers of a tetrabutyl titanate mixture 

that were dried and then annealed at 700 °C for 30 minutes.  With the addition of the seed 

layer, and especially the annealed seed layer, the nanorods became much more aligned.  

Figure 9 shows the effects of adding a seed layer and of heat treating the seed layer. 
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Figure 9.  FESEM images of titania nanorods grown on (a) glass, (b) glass coated with a 

flat TiO2 dried seed layer, and (c) glass coated with a flat TiO2 dried and annealed seed 

layer.  Reprinted from Materials Research Bulletin, vol. 44, Y. Li, M. Guo, M. Zhang and 

X. Wang, Hydrothermal synthesis and characterization of TiO2 nanorod arrays on glass 

substrates, 1233-1235, Copyright 2009, with permission from Elsevier. 

 

Feng et al. grew titania nanorod arrays on glass coated with transparent 

conducting oxide (TCO) [21] and incorporated them into dye-sensitized solar cells.  They 

hypothesized that the TCO substrate could greatly enhance the performance of titania 

nanorods for PV cell applications because the TCO would be the electrical contact.  In 

their experiments, titania nanorods were grown on glass substrates coated with a TCO of 

fluorine-doped tin oxide (FTO).  They reported that DSSC using 2-3 μm long nanorod 

arrays have an efficiency of 5.02%. 

 

2.3.4 Baking Time and Temperature 

Time and temperature are the easiest parameters to vary and must be studied to 

optimize results.  Liu et al. investigated the effects of both hydrothermal baking time and 
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temperature [8]. They observed that initially there was no growth, but that after a certain 

time the nanorods began to grow and continued growing at a decreasing rate until the 

titania nanorod film began to peel off.  They proposed that the peeling off occured when 

the reaction reached equilibrium and that peeling off can be prevented if the reaction is 

stopped prior to equilibrium.  No growth took place at temperatures lower than 100 °C, 

and higher temperatures increased the growth rate.  For example, it took 24 hours for 

peel-off to occur at 150 °C, while at 200 °C it only took six hours. 

 

2.3.5 Additives 

Surface interactions play an important role in film growth.  Additives, such as 

surfactants, can alter the surface energy of the film and change growth properties.  

Yang et al. grew titanium dioxide nanorods with a surfactant-assisted 

hydrothermal process [24].  In their experiment, the surfactant EO5PO68EO5 was added to 

the hydrothermal solution.  They reported DSSC having an efficiency of 6.03%.  

Liu et al. investigated the effects of several hydrothermal solution additives 

including EDA, EDTA, SDS, CTAB, PVP and NaCl [8].  They observed that with the 

exception of NaCl, the salts and surfactants had minimal effect on the titania nanorod 

morphology (distribution, diameter, and length).  When NaCl was added to the 

hydrothermal solution, the density and diameter of the nanorods decreased.  Liu et al. 

proposed three alternative explanations for this: (1) the NaCl increases the ionic strength 

of the solution, which favors smaller crystals; (2) ions next to the nanorods form a 
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diffusion barrier and inhibit surface access, slowing growth; (3) lastly, chlorine ions may 

adsorb to the nanorod surface and slow growth. 

Several other surfactants have been shown to affect or interact with titanium 

dioxide or other nanoscale material fabrication.  These surfactants include oleic acid, 

tetradecylphosphonic acid (TDPA), polyethylenimine (PEI), high molecular weight 

polyethylene glycol (PEG), and sodium dodecyl sulfate (NaDDS).  Manera et al. used 

oleic acid in a low-temperature titania nanostructure hydrolytic synthesis method and 

showed that TDPA also interacted with the titania structures by adhering to titania 

nanocrystals [25].  Tang et al. studied the adsorption behavior of PEI on nano-sized 

titania particles during dispersion and electrophoretic deposition [26].  Kajihara et al. 

fabricated macroporous titania films using high molecular weight PEG through a sol-gel 

dip-coating method and reported that the shape and distribution of the macropores was 

controlled by the amount and molecular weight of the PEG [27].   

PEGs of differing molecular weight are referred to by the molecular weight, for 

example PEG with a molecular weight of 400 is PEG 400.  If the molecular weight is 

greater than 20,000, the polymer is called a polyethylene oxide (PEO) rather than PEG.  

Kajihara et al. found that lower molecular weights of PEG had higher compatibility with 

water and that increasing the PEG amount increases the solution viscosity.  Yu et al. used 

PEG 6000 in both sol-gel and hydrothermal synthesis [28].  Yu et al. found that the ether 

oxygens in PEG interact with metal ions and affect the crystallization of titania.  Liao et 

al. used NaDDS as a surfactant to decrease the van der Waals force between carbon 

nanotubes in an aluminum matrix composite fabrication process [29].  By decreasing the 
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van der Waals force, Liao et al. increased the dispersion carbon nanotubes in the 

aluminum matrix. 

 

2.4 Characterization 

Several different characterization techniques can be used to characterize the 

titania nanorod thin films.  The properties of interest include distribution, length, 

diameter, crystal structure, microstructure, and electrical properties. 

 

2.4.1 Scanning Electron Microscopy 

Nearly all of the research groups noted above used a scanning electron 

microscope (SEM) or a field emission scanning electron microscope (FESEM) to 

investigate the length, diameter and density of the titanium dioxide nanorods [8-9, 14-

24].  Figures 4-9 are all examples of how SEM can be used to characterize nanorod thin 

films.   

 

2.4.2 Transmission Electron Microscopy 

Peng et al. used a high-resolution transmission electron microscope (TEM) to 

investigate the microstructure of a single nanorod [30].  Figure 10 shows further 

structural detail of a single nanorod.  They observed, from the TEM images, that this 

nanorod appears to consist of smaller rodlike crystals and measured the (110) and (001) 

planes with respective d spacing of 0.320nm and 0.295nm. 
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Figure 10.  TEM images of a TiO2 nanorod structure.  Reprinted from Journal of Solid 

State Chemistry, vol. 182, P. Peng, X. Liu, C. Sun, J. Ma and W. Zheng, Facile 

fabrication of rutile monolayer films consisting of well crystalline nanorods by following 

an IL-assisted hydrothermal route, 1005, Copyright 2009, with permission from Elsevier.   

 

Wu et al. used TEM to investigate the titania nanorods and to characterize the 

crystal structure based on the electron diffraction pattern [15].  Figure 11 shows the TEM 

image of a nanorod and the corresponding electron diffraction pattern.  Based on the 

electron diffraction pattern, they reported that the nanorod in Figure 11 has the anatase 

crystal structure.  

 

Figure 11.  TEM image and corresponding electron diffraction pattern of an anatase 

titania nanorod.  Reprinted with permission from J. Wu and C. Yu, “Aligned TiO2 

nanorods and nanowalls,” J. Phys. Chem. B, 108(11), 3377-3379 (2004).  Copyright 

2004 American Chemical Society.   
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2.4.3 X-ray Diffraction 

Xu et al. used x-ray diffraction (XRD) to determine the crystal structure of 

different hydrothermally grown titania nanomaterials [31].  In their experiment, the pH of 

the hydrothermal solution was varied.  Based on the XRD data from the grown nanorods, 

they concluded that for their solution the anatase crystal structure was formed when the 

pH was 7 and 2.  The rutile crystal structure formed when the pH was 0; the lower pH 

prevented a dehydration reaction and allowed the rutile structure to form.   
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CHAPTER THREE 

OBJECTIVES 

 

The primary objective of this research was to develop a controlled growth method 

for surfactant-assisted hydrothermal synthesis of single-crystal titania-nanorod thin films.  

Controlled growth allows for tailoring of film properties, including aspect ratio and 

nanorod distribution, by varying hydrothermal synthesis parameters.  Additionally, the 

films created by surfactant-assisted hydrothermal synthesis were characterized, and the 

additive with the most profound effect on morphology was investigated in-depth.   

Hydrothermal solution synthesis assisted by either oleic acid, 

tetradecylphosphonic acid, lithium chloride, potassium chloride, calcium chloride, 

sodium dodecyl sulfate, polyethylenimine, or one of several molecular weights of 

polyethylene glycol (PEG), was investigated.  Scanning Electron Microscope (SEM) was 

used to characterize the resulting titania nanorod thin films to determine their height, 

width, and nanorod array density.  The surfactant that produced the nanorods with the 

highest aspect ratio and highest surface area, PEG, was then studied in more detail.    
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CHAPTER FOUR 

EXPERIMENTAL METHODS 

4.1 Introduction 

The objective of this project was to control the growth of titanium dioxide thin 

films.  All research was conducted at the IBM Almaden research facility in San Jose, 

California, where all of the needed materials and equipment were available.  Several 

process parameters, including hydrothermal solution mixture, concentration of titanium 

precursor, substrate preparation, baking time, baking temperature, and the addition of 

certain additives, had previously been investigated [8, 19-24].  This study examined 

hydrothermal fabrication of titania nanorods assisted by several different surfactants: 

oleic acid, tetradecylphosphonic acid (TDPA), polyethylenimine (PEI), several molecular 

weights of polyethylene glycol (PEG), sodium dodecyl sulfate (NaDDS), lithium chloride 

(LiCl), potassium chloride (KCl), and calcium chloride (CaCl2).   

These surfactants were added to the hydrothermal solution and titania nanorod 

films were grown.  These films were then characterized by SEM to determine their 

morphology and microstructure.  After preliminary results, this study further investigated 

the effects of PEG.   

 

4.2 Substrate Preparation 

4.2.1 Cleaning 

The substrates needed to be cleaned before they could be used.  Glass substrates 

coated on one side with FTO were swabbed with a mild soap solution and then rinsed 
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with deionized water.  Once dry, the substrates were loaded with the FTO side facing up 

into a UV-ozone cleaner to remove organics.  Then the UV-ozone cleaner was run for 20 

minutes.  Following this, the substrates were loaded into a carrier, placed into a 

crystallizing dish with liquid detergent and deionized water, and placed into the sonicator 

(with sonicating tip placed in the water).  After running the sonicator for 30 minutes, the 

substrates were rinsed and dried. 

 

4.2.2 Flat Titania 

Each cleaned substrate was loaded individually into a spin coater and received 

two drops of a titanium precursor (30 weight percent one-to-one tyzor to acetylacetane in 

propylene glycol propyl ether (PGPE)).  The substrates were spun at 2000 rpms for 45 

seconds and then two opposite edges of each substrate were wiped with ethyl alcohol.  

The substrates were then flash heated at 450 ºC for five minutes.  After heating, the 

substrates were cooled and then cleaned in a UV-ozone cleaner for one minute.  This spin 

process through the flash heating step (not including cleaning), was repeated.  

Afterwards, the substrates were placed into a furnace and heated to 450 ºC at 5 ºC per 

minute and held at 450 ºC for two hours.  

 

4.2.3 Evaporating SiO2 

Substrates were rinsed with deionized water and put in a deionized spray bar for 5 

minutes, then soaked in a circulating deionized water bath for 20 minutes.  After the bath, 

the substrates were put into an isopropyl alcohol de-greaser for 5 minutes.  Then they 
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were dried in a nitrogen bath for approximately one minute (until dry).  Substrates were 

loaded FTO side down into a mask that covers a strip parallel to the opposite wiped 

regions down the middle of the substrate.  The mask was then loaded into a vented 

evaporator.  A silicon monoxide source was loaded into the evaporator, and the 

evaporator was closed and the pump-down process was started.  When the pressure had 

reached at least 5 x 10
-6

 Torr or below (at around 45 minutes), the current was turned on 

and ramped up until the deposition rate reached between 1.6 Å/s and 2.2 Å/s.  The 

oxygen tank was then opened until the pressure in the evaporator reached 3 x 10
-4

 Torr 

and the current was adjusted to stabilize the deposition rate back to the previous range 

(between 1.6 and 2.2 Å/s).  The gate was then opened and silicon dioxide was deposited 

onto the substrates to a thickness of 2500 Å.  During the evaporation, the deposition rate 

was kept between 1.6 Å/s and 2.2 Å/s, and the film thickness was calculated based on the 

deposition rate.  After deposition was complete, the evaporator was vented and the mask 

removed.  Each substrate was removed, wiped gently with a cloth, and replaced in the 

mask.  The evaporation process was repeated and another 2500 Å was deposited on each 

substrate (to 5000 Å total).   

 

4.3 Solution Preparation 

 To make the non-additive solution for the hydrothermal process, high 

performance liquid chromatography (HPLC) water and concentrated hydrochloric acid 

(HCl) were mixed one-to-one in a 100 ml jar and set to stir until they reached room 

temperature.  Titanium butoxide (Ti(OBu)4) was then added at one volume percent of the 
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water-HCl solution.  After the Ti(OBu)4 was added, the solution was stirred for five 

minutes or until clear.     

To make the additive solution for the hydrothermal process, the desired amount of 

additive was added to a one-to-one solution of HPLC water, and concentrated HCl.  This 

solution was either (1) shaken for an hour with the wrist shaker machine, or (2) heated 

and stirred on a hot plate at 80 ºC, until dissolved.   

 

4.4 Autoclave Bomb Assembly 

A substrate and fifteen milliliters of either an additive or non-additive 

hydrothermal solution were placed inside of a Teflon-lined steel autoclave.  The parts of 

an autoclave bomb are shown in Figure 12.  The substrate and solution were placed in the 

Teflon autoclave liner and capped with a Teflon lid.  The liner was then inserted into the 

stainless steel pressure vessel.  The corrosion disc and rupture disc were placed on top of 

the liner, followed by the lower pressure plate, spring, and upper pressure plate.  The 

screw cap was put on and tightened by hand, then further tightened with a hook spanner.  

The assembly process was then repeated for each bomb in the batch.  Each bomb within a 

batch could contain a different hydrothermal solution.   



 

 26 

 

Figure 12.  Parts of the steel autoclave bomb used in the hydrothermal synthesis.  

 

4.5 Heating 

The autoclave bombs in each batch were heated either in a furnace or a well-

circulated silicone oil bath.  The number of bombs per batch could range from one to six 

in the furnace, or up to five in the oil bath.  If the furnace method was used, the autoclave 

bombs were placed in a pre-heated furnace that was held at 130 ºC for the desired amount 

of time.  If the silicone oil bath heating method was used, the bombs were placed in a pre-

heated bath at 130 ºC; once the temperature of the bath returned to 130 ºC, the bombs 

were baked for the desired amount of time.  After baking, the bombs were cooled in 

circulating deionized water until cool.  The autoclave bombs were then disassembled and 

the substrates removed.  Finally the substrates were rinsed in deionized water and dried. 
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4.6 Actual Titania Growth Processes 

Several batches of titania nanorods were hydrothermally grown to test some 

process parameters and the effects that several additives had on nanorod growth.  The 

initial process parameters that were used for these experiments were chosen based on 

published research [8, 19-23].  Table 2 summarizes these initial hydrothermal parameters.      

Table 2.  Initial process parameters for hydrothermal synthesis of titania nanorods. 

Process Parameter Process Parameter 

Solution composition 1:1 DI H2O and conc. HCl 

Ti precursor and concentration 1% Titanium butoxide 

Substrate preparation TiO2 seed layer annealed at 450ºC 

Baking time 17 hrs 

Oil temperature 130 ºC 

 

Figure 13 shows a flow chart of the standard nanorod thin film fabrication process steps 

used in these experiments. 

 

Figure 13.  Flow chart of the titania nanorod thin film fabrication process. 

Clean FTO-coated substrate 

Spin on and anneal TiO2 seed layer 

Evaporate on patterned SiO2 

Heat in autoclave bomb 

Characterize nanorod thin film with SEM 

 

Prepare hydrothermal solution  
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This research tested: the effect of hand tightening versus hook spanner tightening, 

furnace versus silicone oil bath baking, and several additives including multiple 

concentrations and molecular weights of PEG.  The batches, experiments, and numbers 

of bombs are broken down in Table 3.   

Table 3.  Summary of the experiments, batches, and number of bombs per batch. 

Batch Experiment Number of Bombs 
B-1 Tightening Method 6 

B-2 Tightening Method 5 

B-3 Tightening and Heating Method 6 

B-4 Tightening and Heating Method 6 

B-5 Heating Method 4 

B-6 Heating Method 4 

B-7 Additives 5 

B-8 Additives 4 

B-9 Additives 2 

B-10 Additives 4 

B-11 PEG 2 

B-12 PEG 5 

B-13 PEG 4 

B-14 PEG 4 

B-15 PEG 4 

B-16 PEG 4 

B-17 PEG 4 

 

4.6.1 Using the Hook Spanner 

 Initially, the hook spanner tool was not used to tighten the autoclave bombs.  Four 

batches of nanorods (B-1 through B-4) were grown without additives in the furnace ; all 

four of these batches were baked for 17 hours.  B-1 and B-2 were heated in autoclave 

bombs that were tightened only by hand, and B-3 and B-4 were heated in autoclave 

bombs tightened using the hook spanner tool.   
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4.6.2 Silicone Oil Bath Versus Furnace 

 Two batches of nanorods (B-5 and B-6) were grown without additives in the 

silicone oil bath to compare to B-3 and B-4 (which were grown in the furnace).  All four 

batches were baked for 17 hours at 130 ºC by their respective heating methods. 

 

4.6.3 Additives 

 Several batches were grown with various additives, each batch consisting of 

multiple bombs.  Most additives were chosen based on their known interaction with 

titania.  The salts (LiCl, KCl, and CaCl2) were chosen based on the known effects of 

NaCl discussed in the literature review [8] to see if other salts had a similar effect.  Batch 

B-7 had one bomb of each: (1) 1.37 wt% Oleic acid, (2) 1.31 wt% NaDDS, (3) 1.26 wt% 

TDPA, (4) 3.93 wt% PEI, and (5) without additive.  Batch B-8 contained one bomb of 

each: (1) 6.05 wt% LiCL, (2) 2.71 wt% KCl, (3) 6.84 wt% CaCL2, and (4) without 

additive.  Finally, batch B-9 had one bomb with 20.4 wt% PEG400, and one bomb 

without additive.  All batches were baked for 17 hours. 

 

4.6.4 PEG Bake Time 

 Nanorod growth was enhanced by addition of PEG 400, so a shorter bake time 

was needed to obtain a titania nanorod thin film in which the nanorods had not fused 

together and peeled off from the substrate.  In batch B-10, all four bombs had 13.6 wt% 

PEG 400.  The bombs in B-10 were removed from the oil bath after 4, 5.5, 7, and 8 

hours. 
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4.6.5 PEG Bake Temperature 

 Because of the enhanced growth observed with the addition of PEG 400, lower 

bake temperatures were also tried.  In batch B-11, two bombs at 20.4 wt% PEG 400 were 

baked at 90 ºC for 17 hours. 

 

4.6.6 PEG Concentration 

 Batch B-12 contained five bombs with varying concentrations of PEG 400: (1) 

3.39 wt%; (2) 6.78 wt%; (3) 10.16 wt%; (4) 13.53 wt %; and (5) 20.26 wt%.  Batch B-13 

was comprised of four bombs containing the following concentrations of PEG 400: (1) 

13.53 wt%; (2) 20.26 wt%; (3) 26.96 wt%; and (4) 33.64 wt%.  Batch B-14 contained 

four bombs with PEG 2000 added at the following concentrations: (1) 6.34 wt%; (2) 

12.02 wt%; (3) 16.88 wt%; and (4) 21.46 wt%.  Batch B-15 contained four bombs with 

PEO 1,000,000 added at the following concentrations: (1) 3.22 wt%; (2) 7.00 wt%; (3) 

11.17 wt%; and (4) 21.42 wt%.  

 

4.6.7 PEG Molecular Weight 

 Batch B-16 contained four bombs with different molecular weights of the PEG (or 

PEO) additive: (1) PEG 400 at 11.84 wt%; (2) PEG 1500 at 12.02 wt%; (3) PEG 8000 at 

12.01 wt%; and (4) PEO 100,000 at 12.04 wt%.  
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4.6.8 Different PEG Bottles 

 Batch B-17 contained four bombs, two with PEG 400 from a bottle labeled 

Sigma-Aldrich batch MKBD5053, and two with PEG 400 from a bottle labeled Sigma-

Aldrich batch 05818JJ.  All four bombs contained the respective PEG 400 chemical at 

13.5 wt%. 

 

4.7 Film Characterization 

The films grown were characterized by SEM.  Multiple images at different 

magnifications (images of all samples were taken at 25k and 60k magnification, images 

of some samples were also taken at other magnifications) and different regions of the 

films were gathered from each sample from every batch.  All samples were imaged from 

the top down, and if significant growth occurred, the samples were cut so cross-sectional 

images could be taken.  From these images the height, thickness, and array density of the 

nanorod films were determined using the image analysis program Image J.   
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CHAPTER FIVE 

RESULTS AND DISCUSION 

5.1 Controlling Pressure and Temperature 

5.1.1 Tightening Autoclave Bombs with the Hook Spanner 

Tightening the bombs with the hook spanner increased the uniformity of the 

nanorod arrays grown within a batch and from batch to batch.  Table 4 summarizes the 

results of batches B-1 through B-4.   

Table 4.  Summary of the results of the tightening method experiment batches.   

Batch Number of 

Bombs 

Tightening 

Method 

Results 

B-1 6 Only by hand Inconsistent nanorod length and distribution 

B-2 5 Only by hand Inconsistent nanorod length and distribution 

B-3 4 Hand and hook 

spanner 

Consistent nanorod length and distribution 

between batches, furnace position affects 

length and distribution 

B-4 4 Hand and hook 

spanner 

Consistent nanorod length and distribution 

between batches, furnace position affects 

length and distribution 

 

Figures 14 and 15 show SEM images and oven placement of batches of titania 

nanorods grown without any additives in bombs only tightened by hand and not with the 

hook spanner (batches B-1 and B-2).   
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Figure 14.  60K magnification SEM images of titania nanorods, from batch B-1, 

hydrothermally grown in autoclave bombs not tightened with the hook spanner.   

 

 

 

Figure 15.  60K magnification SEM images of titania nanorods, from batch B-2, 

hydrothermally grown in autoclave bombs not tightened with the hook spanner.   
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The titania nanorods in Figures 14 and 15 did not have a consistent length or density.  

Their properties varied randomly from the batch to batch and by distance from the oven 

door.  Figures 16 and 17 show SEM images and oven placement of batches B-3 and B-4, 

which were titania nanorods grown without any additives in bombs tightened by hand 

and additionally with the hook spanner. 

 

 

Figure 16.  60K magnification SEM images of titania nanorods in batch B-3 

hydrothermally grown in autoclave bombs tightened with the hook spanner.   
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Figure 17.  60K magnification SEM images of titania nanorods in batch B-4 

hydrothermally grown in autoclave bombs tightened with the hook spanner.   

 

The titania nanorods in Figures 16 and 17 were more consistent in length and density.  

The same trend occured in both batch B-3 (shown in Figure 16) and batch B-4 (shown in 

Figure 17).  The nanorod length and density increased the further the bombs were from 

the oven door.    

 The increased uniformity of nanorod length and density between batches when 

the hook spanner was used to tighten the autoclave bombs confirms that the hook spanner 

was required to fully seal the bombs.  Tightening only by hand led to an inconsistent seal 

and thus did not allow for consistent pressure between bombs or predictable internal 

bomb pressure.  Lower pressure prevented the internal conditions from facilitating the 

desired crystallization rate.   
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5.1.2 Heating in a Silicone Oil Bath 

The trend shown in Figures 16 and 17, where the nanorod length and density 

increased the further the bombs were from the furnace door, indicated that bomb position 

in the furnace had an effect on the conditions the bomb experienced.  The most likely 

varying condition inside of the furnace that would lead to the observed length and density 

increase is temperature [8].  A temperature gradient inside of the furnace likely caused 

this trend.   

Using a well-circulated silicone oil bath instead of the furnace increased the 

reproducibility and consistency of all of the bombs in each batch and between batches.  

Figures 18 and 19 show SEM images of two batches (B-5 and B-6) of titania nanorods 

grown without additives in autoclave bombs heated in the silicone oil bath.   

 

Figure 18.  60K magnification SEM images of titania nanorod batch B-5, hydrothermally 

grown in autoclave bombs heated in silicone oil bath.   
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Figure 19.  60K magnification SEM images of titania nanorod batch B-6, hydrothermally 

grown in autoclave bombs heated in silicone oil bath.   

 

The density of the nanorod arrays grown when the bombs were heated in the 

silicone oil bath, shown in Figures 18 and 19, allowed for greater consistency between 

the bombs in a batch and from batch to batch compared to those in Figures 16 and 17.  

The nanorod array density was much more reproducible when the bombs were heated in 

the oil bath than in the furnace.  Figure 20 shows cross-sectional view SEM images from 

batches B-5 and B-6.  Both batches produced nanorods that range in length from around 

1.1 µm to 1.35 µm; the average nanorod length in Figure 18 was about 100 nm longer.  
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Figure 20.  25k magnification cross-sectional view SEM images of titania nanorods 

grown hydrothermally in autoclave bombs heated in a silicone oil bath.  [Images a and b 

are of batch B-5.  Images c and d are of batch B-6.]   

  

5.2 Reproducibility Without Additives 

A comparison of the titania nanorods grown without surfactant assistance shows 

that there was some variability in the nanorod characteristics between the different 

batches.  Table 5 shows each batch, and the range of thickness, length, and aspect ratio 

for several of the titania nanorod arrays grown without surfactant assistance.  Appendix A 

contains SEM images of the nanorods grown without surfactant assistance that are 

summarized in Table 5.  This variability between the shape and size of the nanorods 

despite consistent procedure suggests that there is some level of variability to be expected 

from batch to batch.   

 

 

a b 

c d 
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Table 5.  Comparison of titania nanorods that were grown hydrothermally, without 

surfactant assistance.   

Batch Thickness (nm) Length (nm) Aspect Ratio 

B-7 35-60 1200 20-35 

B-8 50-75 950-1200 12-24 

B-9 50-70 1200 17-24 

 

5.3 Additives 

The different surfactants examined had various effects on the growth of the titania 

nanorods.  The effects varied between: none, preventing growth, slowing growth, 

speeding growth, and altering the size and shape of the nanorods.  Table 6 summarizes 

the effect each surfactant had on the titania nanorod synthesis.  Appendix B contains the 

SEM images of the nanorods grown with the surfactants in listed Table 6.   

 

Table 6.  The effects of different surfactants on the hydrothermal growth of titania 

nanorods.   

Surfactant Batch Concentration 

(wt%) 

Effect on Titania Nanorod 

Growth 
Oleic acid B-7 1.37 None 

NaDDS B-7 1.31 Slowed growth rate 

TDPA B-7 1.26 Prevented growth 

PEI B-7 3.93 Increased growth rate 

LiCl B-8 6.05 Slowed growth rate, decreased aspect 

ratio 

KCl B-8 2.71 Slowed growth rate 

CaCl2 B-8 6.84 Slowed growth rate 

PEG 400 B-9 20.4 Greatly increased growth rate 
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5.4 Effects of Polyethylene Glycol 

The growth rate of titania nanorods was greatly increased when PEG 400 was 

added to the reaction solution.  Figure 21 shows SEM images of the titania nanorods 

grown with 20.5 wt% PEG 400 in batch B-9.  The nanorods fused together and the titania 

layer was around 5.5 µm thick.   

 

Figure 21.  SEM images of PEG 400 assisted hydrothermally grown titania nanorods.   

(a) 35 times, (b) 400 times, (c) 1k times, and (d) 5k times magnification. 

 

The 17 hour bake time was too long since peel-off had begun.  The accelerated growth 

rate could have been caused by the interaction of the ether oxygens in the PEG with the 

a 

c 

b 

d 
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titanium butoxide precursor [28].  This acceleration of the growth rate makes PEG a 

possible additive for titania nanorod fabrication at shorter times and lower temperatures.  

Better understanding of how and why PEG affects the titania growth rate was gained by 

investigating the effects of different concentrations and molecular weights of PEG.   

 

5.4.1 PEG 400 Time Experiment 

The length and thickness of the titania nanorods increased, as expected, as the 

hydrothermal bake time increased.  Figure 22 shows SEM images of the batch B-10 

titania nanorods grown, with 13.6 wt% PEG 400 present in the hydrothermal solution, for 

different periods of time.  Table 7 shows the dimensions of the grown nanorods.  

Appendix C contains the other SEM images used to measure the dimensions in Table 7.  

The aspect ratio remains roughly the same, between 10 and 20, for all four lengths of 

time.  The constant aspect ratio result differed from the results of the varied time 

experiment conducted by Liu et al., which was conducted without an additive [8].  Liu et 

al. reported that the nanorod diameter remained constant once it reached 90 nm.  Thus, in 

Liu et al.’s research, the aspect ratio was changing as the nanorods grew longer, but did 

not grow in diameter.  Here, both the length and diameter continued to grow, maintaining 

a constant aspect ratio.     
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Figure 22.  25k magnification SEM images of PEG 400 assisted hydrothermally grown 

titania nanorods, from batch B-10, grown for (a) 4, (b) 5.5, (c) 7, and (d) 8 hours. 

 

Table 7.  Dimensions of titania nanorods grown for different times by PEG 400 assisted 

hydrothermal process in batch B-10. 

Time (hours) Thickness  

(nm) 

Height  

(nm) 

AR 

4 60-85 800-900 10-15 

5.5 75-125 1200 10-15 

7 100-200 2100 10-21 

8 100-200 2000 10-20 

 

5.4.2 Lower Temperature Titania Nanorod Growth 

The PEG 400 assisted hydrothermal process at 90 °C did not produce significant 

nanorod growth.  This is most likely because the internal conditions inside of the 

a 

d c 

b 
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autoclave bomb were not sufficient to dissolve and recrystallize enough of the titanium 

precursor.  The nanorods that were grown were short and sparse, even after 17 hours.  

Figure 23 shows SEM images of these substrates, which had minimal titania growth. 

 

 

Figure 23.  60k magnification SEM images of PEG 400 assisted hydrothermally grown 

titania nanorods grown at 90 °C. 

 

5.4.3 Effect of Additive Concentration on Nanorod Growth 

The amount of PEG in the hydrothermal solution affected the growth rate of the 

titania nanorods.  Figures 24 and 25 show SEM images of titania nanorods grown in two 

batches with different concentrations of PEG 400.  In both Figures, the size of the 

nanorods increased as the PEG 400 concentration increased.  When the concentration was 

high enough, for example 33.64 wt% (Figure 26d), the nanorods formed a near-solid 

layer in less than half the time than at 13.6 wt% (Figure 23), where the nanorod layer was 

less dense after 8 hours.   
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Figure 24.  60k magnification SEM images of titania nanorods grown with different 

concentrations of PEG 400; (a) 3.39, (b) 6.78, (c) 10.16, (d) 13.53, and (e) 20.26 wt%. 

 

 

 

Figure 25.  60k magnification SEM images of titania nanorods grown with different 

concentrations of PEG 400; (a) 13.53, (b) 20.26, (c) 26.96, and (d) 33.64 wt%. 

 

This effect of PEG concentration on nanorod growth also occurred at higher 

molecular weights of PEG.  Figures 26 and 27 show SEM images of titania nanorods 

e d 

c b a 

d c 

a b 
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grown with different concentrations of PEO 1,000,000 and PEG 2000, respectively.  As 

with PEG 400, the size (diameter and length) of the nanorods increased as the 

concentration of the additive increased.   

 
Figure 26.  60k magnification SEM images of titania nanorods grown with different 

concentrations of PEO 1,000,000; (a) 3.32, (b) 7.00, (c) 10.17, and (d) 21.42 wt%. 

 

 
Figure 27.  60k magnification SEM images of titania nanorods grown with different 

concentrations of PEG 2000; (a) 6.34, (b) 12.02, (c) 16.88, and (d) 21.46 wt%. 

d c 

b a 

d 

b 

c 

a 
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5.4.4 Different Molecular Weights of Polyethylene Glycol 

Different molecular weights of PEG also affected the growth of the titania 

nanorods.  SEM images of nanorods grown with around 12 wt% of different molecular 

weights of PEG and  PEO are shown in Figure 28.  PEG 400 and PEO 100,000 

accelerated the growth of the titania nanorods while PEG 1500 and 8000 prevented the 

growth of titania.  PEG 2000 and PEO 1,000,000, shown in Figures 27 and 26 

respectively, also accelerated hydrothermal titania nanorod growth.   

 

Figure 28.  60k magnification SEM images of titania nanorods grown with different 

molecular weights of polyethylene glycol; (a) 11.84 wt% PEG 400, (b) 12.02 wt% PEG 

1500, (c) 12.01 wt% PEG 8000, and (d) 12.04 wt% PEO 100,000.   

 

a b 

c d 
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5.4.5 Different Chemical Bottles 

The particular bottle of the PEG 400 also affected the growth of the titania 

nanorods.  The SEM images in Figure 29 show nanorods grown in four hours with 13.5 

wt% PEG 400 from two different bottles, both from Sigma-Aldrich.  The PEG 400 from 

the different bottles had very different effects.  The PEG from the bottle labeled 05818JJ 

accelerated nanorod growth, while the PEG from the bottle labeled MKBD5053 slowed 

nanorod growth.  The different bottles were opened at different times and had been stored 

for different lengths of time, which may have in part caused the differences.  Also, the 

different bottles could have undergone different processing, including coming from 

different processing facilities or being manufactured with different catalysts or 

stabilizers; this could also account for the differences observed.    

 

Figure 29.  60k magnification SEM images of titania nanorods grown with PEG 400 from 

different bottles.  Images a and b show nanorods grown with PEG 400 from the bottle 

labeled batch 05818JJ.  Images c and d show nanorods grown with PEG 400 from the 

bottle labeled batch MKBD5058.    

a b 

c d 
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CHAPTER SIX 

CONCLUSIONS 

Metal oxides, such as titanium dioxide, have shown potential as semiconductors 

in solar cells.  This study first examined a method for consistently growing titania 

nanorods, and found that temperature and pressure are important for obtaining 

reproducible hydrothermally grown titania nanorods.   

This study then examined additives to determine their effect on the nanorods’ 

growth properties.  Most additives examined appeared to inhibit or have little effect on 

growth: oleic acid, NaDDS, TDPA, PEI, LiCl, KCl, and CaCl2.  PEG, which showed 

promise to enhance growth, was examined in more detail, at multiple different molecular 

weights and concentrations.  Use of PEG 400, 2000, PEO 100,000 and PEO 1,000,000 as 

additives enhanced growth.   

A couple of challenges also arose with the addition of PEG: different chemical 

bottles of PEG 400 inexplicably produced different results.  PEG 1500 and PEG 8000 

inhibited growth, while the other molecular weights of PEG compounds had the opposite 

effect, enhancing growth.  It is unclear whether different bottles of these molecular 

weight compounds would have produced different results.  It is possible that different 

bottles contain polymers that underwent different processing.  The different processing 

may lead to varied results even when using the same molecular weight of polyethylene 

glycol.  This phenomenon may also explain why increasing the molecular weight of the 

PEG additive had non-linear and erratic effects on nanorod growth.   
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CHAPTER SEVEN 

FUTURE WORK 

First, DSSC should be fabricated using the PEG-assisted hydrothermally grown 

titania nanorods to test their efficiency and workability in this application.  The enhanced 

growth of titania nanorods with the PEG compounds is promising for the future 

feasibility of nanorod use in solar cells.  However, more research needs to be done.  

Further investigation into the reasons for the variation in results between different bottles 

of the same additive compound is also needed.  Additionally, more study into the reason 

for the aspect ratio for PEG 400 remaining constant instead of the nanorod diameter 

remaining constant is also required.  Finally, TEM and XRD analysis of the nanorods 

resulting from growth in the PEG additive should be performed to confirm the nanorods’ 

crystal structure.   
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APPENDIX A  

SEM IMAGES OF THE NANORODS GROWN WITHOUT ADDITIVES 

 

 
Figure 30.  Top view, 60k magnification, SEM image of the titania nanorods grown 

without additives in batch B-7.  

 

  
Figure 31.  Cross-sectional view, 25k magnification, SEM image of the titania nanorods 

grown without additives in batch B-7.  
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Figure 32.  Top view, 60k magnification, SEM image of the titania nanorods grown 

without additives in batch B-8.  

 

 

 
Figure 33.  Cross-sectional view, 25k magnification, SEM image of the titania nanorods 

grown without additives in batch B-8.  
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Figure 34.  Top view, 60k magnification, SEM image of the titania nanorods grown 

without additives in batch B-9.  

 

 

 
Figure 35.  Cross-sectional view, 25k magnification, SEM image of the titania nanorods 

grown without additives in batch B-9. 
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APPENDIX B 

SEM IMAGES OF THE NANORODS GROWN WITH ADDITIVES IN BATCHES  

B-7, B-8, AND B-9 

 

 
Figure 36.  Top view, 60k magnification, SEM image of the titania nanorods grown with 

oleic acid in batch B-7. 

 
Figure 37.  Cross-sectional view, 25k magnification, SEM image of the titania nanorods 

grown with oleic acid in batch B-7. 
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Figure 38.  Top view, 60k magnification, SEM image of the titania nanorods grown with 

NaDDS in batch B-7. 

 

 

 
Figure 39.  Cross-sectional view, 25k magnification, SEM image of the titania nanorods 

grown with NaDDS in batch B-7. 
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Figure 40.  Top view, 25k magnification, SEM image of the titania nanorods grown with 

TDPA in batch B-7. 

 

 

 
Figure 41.  Top view, 60k magnification, SEM image of the titania nanorods grown with 

PEI in batch B-7. 
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Figure 42.  Cross-sectional view, 25k magnification, SEM image of the titania nanorods 

grown with PEI in batch B-7. 

 

 

 
Figure 43.  Top view, 60k magnification, SEM image of the titania nanorods grown with 

LiCl in batch B-8. 
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Figure 44.  Cross-sectional view, 25k magnification, SEM image of the titania nanorods 

grown with LiCl in batch B-8. 

 

 

 
Figure 45.  Top view, 60k magnification, SEM image of the titania nanorods grown with 

KCl in batch B-8. 
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Figure 46.  Cross-sectional view, 25k magnification, SEM image of the titania nanorods 

grown with KCl in batch B-8. 

 

 

 
Figure 47.  Top view, 60k magnification, SEM image of the titania nanorods grown with 

CaCl2 in batch B-8. 
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Figure 48.  Cross-sectional view, 25k magnification, SEM image of the titania nanorods 

grown with CaCl2 in batch B-8. 

 

 

 
Figure 49.  Top view, 35 magnification, SEM image of the titania nanorods grown with 

PEG 400 in batch B-9. 
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Figure 50.  Top view, 1k magnification, SEM image of the titania nanorods grown with 

PEG 400 in batch B-9. 

 

 

 
Figure 51.  Top view, 5k magnification, SEM image of the titania nanorods grown with 

PEG 400 in batch B-9. 
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APPENDIX C 

SEM IMAGES OF THE NANORODS GROWN WITH PEG 400 FOR 4, 5.5, 7, AND 8 

HOURS IN BATCH B-10 

 

 
Figure 52.  Top view, 25k magnification, SEM image of the titania nanorods grown with 

PEG 400 for 4 hours in batch B-10. 

 
Figure 53.  Cross-sectional view, 25k magnification, SEM image of the titania nanorods 

grown PEG 400 for 4 hours in batch B-10. 
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Figure 54.  Top view, 25k magnification, SEM image of the titania nanorods grown with 

PEG 400 for 5.5 hours in batch B-10. 

 

 

 
Figure 55.  Cross-sectional view, 25k magnification, SEM image of the titania nanorods 

grown PEG 400 for 5.5 hours in batch B-10. 
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Figure 56.  Top view, 25k magnification, SEM image of the titania nanorods grown with 

PEG 400 for 7 hours in batch B-10. 

 

 

 
Figure 57.  Cross-sectional view, 25k magnification, SEM image of the titania nanorods 

grown PEG 400 for 7 hours in batch B-10. 

 



 

 67 

 
Figure 58.  Top view, 25k magnification, SEM image of the titania nanorods grown with 

PEG 400 for 8 hours in batch B-10. 

 

 

 
Figure 59.  Cross-sectional view, 25k magnification, SEM image of the titania nanorods 

grown PEG 400 for 8 hours in batch B-10. 
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