
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

Fall 2010

Denoising of Natural Images Using the Wavelet Transform Denoising of Natural Images Using the Wavelet Transform

Manish Kumar Singh
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Singh, Manish Kumar, "Denoising of Natural Images Using the Wavelet Transform" (2010). Master's
Theses. 3895.
DOI: https://doi.org/10.31979/etd.gafh-5ser
https://scholarworks.sjsu.edu/etd_theses/3895

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU
ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_theses
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3895&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3895&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/3895?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3895&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

DENOISING OF NATURAL IMAGES USING THE WAVELET TRANSFORM

A Thesis

Presented to

The Faculty of the Department of Electrical Engineering

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Manish Kumar Singh

December 2010

© 2010

Manish Kumar Singh

ALL RIGHTS RESERVED

The Designated Thesis Committee Approves the Thesis Titled

DENOISING OF NATURAL IMAGES USING THE WAVELET TRANSFORM

by

Manish Kumar Singh

APPROVED FOR THE DEPARTMENT OF ELECTRICAL ENGINEERING

SAN JOŚE STATE UNIVERSITY

December 2010

Dr. Essam Marouf Department of Electrical Engineering

Dr. Chang Choo Department of Electrical Engineering

Dr. Mallika Keralapura Department of Electrical Engineering

ABSTRACT

DENOISING OF NATURAL IMAGES USING THE WAVELET TRANSFORM

by Manish Kumar Singh

A new denoising algorithm based on the Haar wavelet transform is proposed. The

methodology is based on an algorithm initially developed for image compression using

the Tetrolet transform. The Tetrolet transform is an adaptive Haar wavelet transform

whose support is tetrominoes, that is, shapes made by connecting four equal sized squares.

The proposed algorithm improves denoising performance measured in peak

signal-to-noise ratio (PSNR) by 1-2.5 dB over the Haar wavelet transform for images

corrupted by additive white Gaussian noise (AWGN) assuminguniversal hard

thresholding. The algorithm is local and works independently on each 4x4 block of the

image. It performs equally well when compared with other published Haar wavelet

transform-based methods (achieves up to 2 dB better PSNR). The local nature of the

algorithm and the simplicity of the Haar wavelet transform computations make the

proposed algorithm well suited for efficient hardware implementation.

ACKNOWLEDGEMENTS

I would like to express my gratitude to Dr. Essam Marouf, Department of Electrical

Engineering, San José State University, for his generous guidance, encouragement,

direction, and support in completing this thesis. He encouraged and helped me in

understanding the subject, without which I would not be ableto finish this thesis.

I would also like to express my gratitude to Dr. Chang Choo andDr. Mallika

Keralapura, Department of Electrical Engineering, San José State University, for their

generous guidance and support in completing this thesis.

I would also like to extend my special thanks to my wife Kirti and my lovely daughter

Sanskriti. Without their support and love this thesis wouldnot have been completed.

Last but not least, my thanks to everyone who participated inthe subjective image

denoising blind test through the web poll.

v

Table of Contents

1 Introduction 1

1.1 Image Denoising versus Image Enhancement. 2

1.2 Noise Sources. 3

1.3 Denoising Artifacts. 4

1.4 The Wavelet Transform in Image Denoising. 5

1.5 Introduction to the Wavelet Transform. 6

2 Survey of Literature 13

2.1 Thresholding Methods. 14

2.1.1 Hard Thresholding Method. 15

2.1.2 Soft Thresholding Method. 15

2.1.3 VisuShrink . 15

2.1.4 SUREShrink . 16

2.1.5 BayesShrink. 16

2.2 Shrinkage Methods. 17

2.2.1 Linear MMSE Estimator. 17

2.2.2 Bivariate Shrinkage using Level Dependency. 18

2.3 Other Approaches. 20

2.3.1 Gaussian Scale Mixtures. 20

2.3.2 Non-Local Mean Algorithm. 22

2.3.3 Image Denoising using Derotated Complex Wavelet Coefficients . . 24

3 Wavelets in Action 25

vi

3.1 1D signal Denoising Example. 25

3.1.1 Effect of the Wavelet Basis. 25

3.2 Natural Image Denoising Example. 27

3.2.1 Effect of the Wavelet Basis. 27

4 Tetrolet Transform Based Denoising 33

4.1 Haar Wavelet Transform. 34

4.2 Example of the Tetrolet Transform. 35

4.3 Histogram Comparison. 41

4.4 Tetrolet Transform Based Denoising Algorithm. 41

5 Performance 47

5.1 Performance Criteria. 48

5.2 Comparison with Haar Wavelet Transform and Universal Thresholding. . . 48

5.3 Visual Comparison. 54

5.4 Lena Image Example. 55

5.5 The Boat Image Example. 59

5.6 The House Image Example. 63

5.7 Barbara Image Example. 67

5.8 Tetrolet Transform Denoising Performance versus Threshold 71

5.9 Performance Tables. 73

5.10 Residuals Analysis. 81

6 Summary and Conclusions 84

Bibliography 87

Appendices

vii

A Tetrominoe Shapes 91

B Matlab Code 96

B.1 Functions . 96

B.2 Code used to Generate the Thesis Figures. 180

C Acronyms 209

viii

List of Figures

1.1 Illustration of Noise in the Image. 2

1.2 Basic Blocks of a Digital Camera and Possible Sources of Noise 4

1.3 Histogram of the Wavelet Coefficients of Natural Images -I 7

1.4 Histogram of the Wavelet Coefficients of Natural Images -II 8

1.5 Sine Wave versus the Daubechies Db10 Wavelet. 9

1.6 Multiresolution Analysis (MRA). 12

2.1 Denoising using Wavelet Transform Filtering. 14

3.1 Denoising Example 1D Signal (Errors are in dB). 26

3.2 Effect of Different Wavelet Bases on 1D Signal DenoisingI 28

3.3 Effect of Different Wavelet Bases on 1D Signal DenoisingII 29

3.4 Denoising Example 2-D Image. 30

3.5 Effect of Different Wavelet Bases on Natural Image Denoising 32

4.1 Illustration of the Haar Wavelet Transform. 35

4.2 Illustration of the Tetrolet Transform Concept (1). 36

4.3 Illustration of the Tetrolet Transform Concept (2). 37

4.4 Haar versus the Tetrolet Transform Direct (1). 38

4.5 Haar versus the Tetrolet Transform Direct (2). 39

4.6 Haar versus the Tetrolet Transform Direct (3). 40

4.7 Histogram of the Tetrolet Coefficients of Natural Images(1) 42

4.8 Histogram of the Tetrolet Coefficients of Natural Images(2) 43

5.1 PSNR versus Number of Tetrominoes Partitions being Averaged (1) 50

ix

5.2 PSNR versus Number of Tetrominoes Partitions being Averaged (2) 51

5.3 PSNR versus Number of Tetrominoes Partitions being Averaged (3) 52

5.4 Duplicate Haar Coefficients in Two Different TetrominoeTilings 53

5.5 Mean Value versus Number of Samples being Averaged. 53

5.6 Subjective Assessment - People’s Votes. 55

5.7 Lena Image Denoised I. 57

5.8 Lena Image Denoised II. 58

5.9 Lena Image Denoised III. 59

5.10 Boat Image Denoised I. 61

5.11 Boat Image Denoised II. 62

5.12 Boat Image Denoised III. 63

5.13 House Image Denoised I. 65

5.14 House Image Denoised II. 66

5.15 House Image Denoised III. 67

5.16 Barbara Image Denoised I. 69

5.17 Barbara Image Denoised II. 70

5.18 Barbara Image Denoised III. 71

5.19 Tetrom Method’s Denoising Performance versus Threshold 72

5.20 Performance Comparison with Different Methods - Lena Image. 77

5.21 Performance Comparison with Different Methods - Barbara Image 78

5.22 Performance Comparison with Different Methods - Boat Image. 79

5.23 Performance Comparison with Different Methods - HouseImage 80

5.24 Lena Image Residuals Assessment I. 82

5.25 Lena Image Residuals Assessment II. 83

A.1 Shapes of Free Tetrominoes. 91

x

A.2 22 Different Basic Ways of Tetrolet Paritions for a 4x4 Block 92

A.3 117 Different Ways of Tetrolet Partitions for a 4x4 Block(1 to 29) 93

A.4 117 Different Ways of Tetrolet Partitions for a 4x4 Block(30 to 94). 94

A.5 117 Different Ways of Tetrolet Partitions for a 4x4 Block(95 to 117) 95

xi

List of Tables

5.1 PSNR Performance Table - 1. 74

5.2 PSNR Performance Table - 2. 75

xii

Chapter 1

Introduction

Images are often corrupted with noise during acquisition, transmission, and retrieval

from storage media. Many dots can be spotted in a Photograph taken with a digital

camera under low lighting conditions. Figure1.1is an example of such a Photograph.

Appereance of dots is due to the real signals getting corrupted by noise (unwanted

signals). On loss of reception, random black and white snow-like patterns can be seen on

television screens, examples of noise picked up by the television. Noise corrupts both

images and videos. The purpose of the denoising algorithm isto remove such noise.

Image denoising is needed because a noisy image is not pleasant to view. In addition,

some fine details in the image may be confused with the noise orvice-versa. Many

image-processing algorithms such as pattern recognition need a clean image to work

effectively. Random and uncorrelated noise samples are notcompressible. Such

concerns underline the importance of denoising in image andvideo processing.

Images are affected by different types of noise, as discussed in subsection1.2. The

work presented herein focuses on a zero mean additive white Gaussian noise (AWGN).

Zero mean does not lose generality, as a non-zero mean can be subtracted to get to a zero

mean model. In the case of noise being correlated with the signal, it can be de-correlated

prior to using this method to mitigate it. The problem of denoising can be mathematically

presented as follows,

Y = X +N

where Y is the observed noisy image, X is the original image and N is the AWGN

noise with varianceσ2.

The objective is to estimate X given Y. A best estimate can be written as the

1

Clean boat image

(a) Clean Boat Image

noisy boat image

(b) Noisy Boat Image

Figure 1.1. Illustration of Noise in the Image

conditional meanX̂ = E[X | Y]. The difficulty lies in determining the probability

density functionρ(x | y). The purpose of an image-denoising algorithm is to find a best

estimate of X. Though many denoising algorithms have been published, there is scope for

improvement.

1.1 Image Denoising versus Image Enhancement

Image denoising is different from image enhancement. As Gonzalez and Woods [1]

explain, image enhancement is an objective process, whereas image denoising is a

subjective process. Image denoising is a restoration process, where attempts are made to

recover an image that has been degraded by using prior knowledge of the degradation

process. Image enhancement, on the other hand, involves manipulation of the image

characteristics to make it more appealing to the human eye. There is some overlap

between the two processes.

2

1.2 Noise Sources

The block diagram of a digital camera is shown in Figure1.2. A lens focuses the light

from regions of interest onto a sensor. The sensor measures the color and light intensity.

An analog-to-digital converter (ADC) converts the image tothe digital signal. An

image-processing block enhances the image and compensatesfor some of the deficiencies

of the other camera blocks. Memory is present to store the image, while a display may be

used to preview it. Some blocks exist for the purpose of user control. Noise is added to

the image in the lens, sensor, and ADC as well as in the image processing block itself.

The sensor is made of millions of tiny light-sensitive components. They differ in their

physical, electrical, and optical properties, which adds asignal-independent noise (termed

as dark current shot noise) to the acquired image. Another component of shot noise is the

photon shot noise. This occurs because the number of photonsdetected varies across

different parts of the sensor. Amplification of sensor signals adds amplification noise,

which is Gaussian in nature. The ADC adds thermal as well as quantization noise in the

digitization process. The image-processing block amplifies part of the noise and adds its

own rounding noise. Rounding noise occurs because there areonly a finite number of bits

to represent the intermediate floating point results duringcomputations [2].

Most denoising algorithms assume zero mean additive white Gaussian noise (AWGN)

because it is symmetric, continuous, and has a smooth density distribution. However,

many other types of noise exist in practice. Correlated noise with a Guassian distribution

is an example. Noise can also have different distributions such as Poisson, Laplacian, or

non-additive Salt-and-Pepper noise. Salt-and-Pepper noise is caused by bit errors in

image transmission and retrieval as well as in analog-to-digital converters. A scratch in a

picture is also a type of noise. Noise can be signal dependentor signal independent. For

example, the process of quantization (dividing a continuous signal into discrete levels)

3

Figure 1.2. Basic Blocks of a Digital Camera and Possible Sources of Noise

adds signal-dependent noise. In digital image processing,a little bit of random noise is

deliberately introduced to avoid false contouring or posterization. This is termed

dithering. Discretizing a continuously varying shade may make it look isolated, resulting

in posterization. The above facts suggest that it is not easyto model all types of practical

noise into one model [1]-[2].

This work is also focused on zero mean additive white Gaussian noise (AWGN) due to

its generic and simple nature. For correlated noise with a non-zero mean, the zero mean

white model can be derived by subtracting the mean after de-correlating the samples.

1.3 Denoising Artifacts

Denoising often adds its own noise to an image. Some of the noise artifacts created

by denoising are as follows:

• Blur: attenuation of high spatial frequencies may result in smoothe edges in the

image.

4

• Ringing/Gibbs Phenomenon: truncation of high frequency transform coefficients

may lead to oscillations along the edges or ringing distortions in the image.

• Staircase Effect: aliasing of high frequency components may lead to stair-like

structures in the image.

• Checkerboard Effect: denoised images may sometimes carrycheckerboard

structures.

• Wavelet Outliers: these are distinct repeated wavelet-like structures visible in the

denoised image and occur in algorithms that work in the wavelet domain.

1.4 The Wavelet Transform in Image Denoising

The goal of image denoising is to remove noise by differentiating it from the signal.

The wavelet transform’s energy compactness helps greatly in denoising. Energy

compactness refers to the fact that most of the signal energyis contained in a few large

wavelet coefficients, whereas a small portion of the energy is spread across a large number

of small wavelet coefficients. These coefficients representdetails as well as high

frequency noise in the image. By appropriately thresholding these wavelet coefficients,

image denoising is achieved while preserving fine structures in the image.

The other properties of the wavelet transform that help in the image denoising are

sparseness, clustering, and correlation between neighboring wavelet coefficients [3]. The

wavelet coefficients of natural images are sparse. The histogram of the wavelet

coefficients of natural images tends to peak at zero. As they move away from zero, the

graph falls sharply. The histogram also shows long tails. Figures1.3and1.4show

examples of such histograms. Wavelet coefficients also tendto occur in clusters. They

have very high correlation with the neighboring coefficients across scale and orientation.

5

All these properties help in differentiating the noise fromthe signal and enabling its

optimal removal.

As Burrus and others [4] have concluded, “The size of the wavelet expansion

coefficientsaj,k or dj,k drop off rapidly with j and k for a large class of signals. This

property is called being an unconditional basis and it is whywavelets are so effective in

signal and image compression, denoising, and detection. Hereaj,k are average

coefficients,dj,k are detailed coefficients, j are scale indices, and k are translation indices.”

Donoho [5]-[6] shows that wavelets are near optimal for compression, denoising, and

detection of a wide class of signals.

1.5 Introduction to the Wavelet Transform

A wave is usually defined as an oscillating function in time orspace. Sinusoids are an

example. Fourier analysis is a wave analysis. A wavelet is a “small wave” that has its

energy concentrated in time and frequency. It provides a tool for the analysis of transient,

non-stationary, and time-varying phenomena. It allows simultaneous time and frequency

analysis with a flexible mathematical foundation while retaining the oscillating wave-like

characteristic. Figure1.5shows the difference between a sine wave and a wavelet.

A simple high level introduction to wavelets can be found in the articles by

Daubechies et al. [7]-[8].

A signal or a function f(t) can often be better analyzed if it is expanded as

f(t) =
∑

k cj0,kφj0,k(t) +
∑

k

∑

j>j0 dj,kΨj,k(t)

where both j and k are integer indices.Ψj,k(t) represents the wavelet expansion

functions, andφj,k(t) represents the scaling functions. They usually form an orthogonal

basis. This expansion is termed as wavelet expansion. The term related to the scaling

coefficients captures the average or coarse representationof the signal at the scale j0. The

6

Image lena

−40 −20 0 20 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
LH1 coefficients histogram

Coefficient Value

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

−40 −20 0 20 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
HL1 coefficients histogram

Coefficient Value

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

−20 −10 0 10 20
0

0.2

0.4

0.6

0.8
HH1 coefficients histogram

Coefficient Value

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

(a) Lena Image

Image boat

−40 −20 0 20 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
LH1 coefficients histogram

Coefficient Value

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

−100 −50 0 50 100
0

0.1

0.2

0.3

0.4
HL1 coefficients histogram

Coefficient Value

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

−20 −10 0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
HH1 coefficients histogram

Coefficient Value

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

(b) Boat Image

Figure 1.3. Histogram of the Wavelet Coefficients of NaturalImages - I

7

Image barbara

−50 0 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
LH1 coefficients histogram

Coefficient Value

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

−100 −50 0 50 100
0

0.1

0.2

0.3

0.4

0.5
HL1 coefficients histogram

Coefficient Value

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

−40 −20 0 20 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
HH1 coefficients histogram

Coefficient Value

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

(a) Barbara Image

Image mandrill

−100 −50 0 50 100
0

0.05

0.1

0.15

0.2

0.25
LH1 coefficients histogram

Coefficient Value

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

−40 −20 0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
HL1 coefficients histogram

Coefficient Value

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

−40 −20 0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
HH1 coefficients histogram

Coefficient Value

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

(b) Mandrill Image

Figure 1.4. Histogram of the Wavelet Coefficients of NaturalImages - II

8

0 200 400 600 800 1000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Sine wave

0 200 400 600 800
−1.5

−1

−0.5

0

0.5

1
Db10 Wavelet

Figure 1.5. Sine Wave versus the Daubechies Db10 Wavelet

9

term related to the wavelet coefficients captures the details in the signal from scale j0

onwards.

The set of expansion coefficients (cj0,k anddj,k) is called the discrete wavelet

transform (DWT) of f(t). The above expansion is termed as theinverse transform.

Multi resolution analysis (MRA) and Quadrature mirror filters (QMF) are also

important for evaluating the wavelet decomposition. In multi resolution formulation, a

single event is decomposed into fine details [9]. A quadrature mirror filter consists of two

filters. One gives the average (low pass filter), while the other gives details (high pass

filter). These filters are related to each other in such a way asto be able to perfectly

reconstruct a signal from the decomposed components [4]. Three levels of multi

resolution analysis and synthesis are shown in Figure1.6. QMF filters achieve perfect

reconstruction of the original signal. Decimation operations are not shown in Figure1.6.

Decimation operations when removed, result in more data samples in multi resolution

domain. This redundancy helps in denoising.

The two dimensional (2D) wavelet transform is an extension of the one dimensional

(1D) wavelet transform. To obtain a 2D transform, the 1D transform is first applied

across all the rows and then across all the columns at each decomposition level. Four sets

of coefficients are generated at each decomposition level: LL as the average, LH as the

details across the horizontal direction, HL as the details across the vertical direction and

HH as the details across the diagonal direction.

There are other flavors of the wavelet transform such as translation invariant, complex

wavelet transform etc., which give better denoising results. The translation invariant

wavelet transform (TIWT) performs multi resolution analysis by filtering the shifted

coefficients as well as the original ones at each decomposition level. TIWT is shift

invariant (also known as time invariant). This approach produces additional wavelet

coefficients (possessing different properties) from the same source. This redundancy

10

improves the denoising performance.

Complex wavelet transforms (CWTs) are a comparatively recent addition to the field

of wavelets. A complex number includes some properties thatcan not be represented by a

real number. These properties provide better shift-invariant feature and directional

selectivity. However, CWTs with perfect reconstruction and good filter properties are

difficult to develop. Dual tree complex wavelets (DT CWTs) were proposed by

Kingsbury [10]. DT CWTs have some good properties such as reduced shift sensitivity,

good directionality, perfect reconstruction using linearphase filters, explicit phase

information, fixed redundancy and effective computation inO(N).

Multi wavelets are wavelets generated by more than one scaling function, while scalar

wavelets use only one scaling function. Multi wavelets alsoimprove denoising

performance as compared to the scalar wavelet [11].

Wavelet transforms which generate more wavelet coefficients than the size of the input

data are termed redundant or over complete. This added redundancy improves the

denoising performance.

11

(a) Analysis

(b) Synthesis

Figure 1.6. Multiresolution Analysis (MRA)

12

Chapter 2

Survey of Literature

There are many different kinds of image denoising algorithms. They can be broadly

classified into two classes:

• Spatial domain filtering

• Transform domain filtering

As evident from the names, spatial domain filtering refers tofiltering in the spatial

domain, while transform domain filtering refers to filteringin the transform domain.

Image denoising algorithms which use wavelet transforms fall into transform domain

filtering.

Spatial domain filtering can be further divided on the basis of the type of filter used:

• Linear filters

• Non-Linear filters

An example of a linear filter is the Wiener filter in the spatialdomain. An example of

a non-linear filter is the median filter. Median filtering is quite useful in getting rid of Salt

and Pepper type noise. Spatial filters tend to cause blurringin the denoised image.

Transform domain filters tend to cause Gibbs oscillations inthe denoised image.

Transform domain filtering can be further divided into threebroad classes based on the

type of transform used:

• Fourier transform filters

• Wavelet transform filters

13

Figure 2.1. Denoising using Wavelet Transform Filtering

• Miscellaneous transform filters such as curvelets, ridgelets etc.

This work is focused on the wavelet transform filtering method. This method is

chosen because of all the benefits mentioned in Section1.4. All wavelet transform

denoising algorithms involve the following three steps in general (as shown in Figure2.1):

• Forward Wavelet Transform: Wavelet coefficients are obtained by applying the

wavelet transform.

• Estimation: Clean coefficients are estimated from the noisy ones.

• Inverse Wavelet Transform: A clean image is obtained by applying the inverse

wavelet transform.

There are many ways to perform the estimation step. Broadly,they can be classified

as:

• Thresholding methods

• Shrinkage methods

• Other approaches

2.1 Thresholding Methods

These methods use a threshold and determine the clean wavelet coefficients based on

this threshold. There are two main ways of thresholding the wavelet coefficients, namely

14

the hard thresholding method and the soft thresholding method.

2.1.1 Hard Thresholding Method

If the absolute value of a coefficient is less than a threshold, then it is assumed to be 0,

otherwise it is unchanged. Mathematically it is

X̂ = sign(Y)(Y. ∗ (abs(Y) > λ)),

where Y represents the noisy coefficients,λ is the threshold,̂X represents the

estimated coefficients.

2.1.2 Soft Thresholding Method

Hard thresholding is discontinuous. This causes ringing / Gibbs effect in the denoised

image. To overcome this, Donoho [5] introduced the soft thresholding method.

If the absolute value of a coefficient is less than a thresholdλ, then is assumed to be 0,

otherwise its value is shrunk byλ. Mathematically it is

X̂ = sign(Y). ∗ ((abs(Y) > λ). ∗ (abs(Y) − λ))

This removes the discontinuity, but degrades all the other coefficients which tends to

blur the image.

A summary of various thresholding methods used for denoising is given below.

2.1.3 VisuShrink

This is also called as the universal threshold method. A threshold is given by

T = σ
√

2log(M) [5]

whereσ2 is the noise variance and M is the number of samples.

This asymptotically yields a mean square error (MSE) estimate as M tends to infinity.

As M increases, we get bigger and bigger threshold, which tends to oversmoothen the

image.

15

2.1.4 SUREShrink

This SUREShrink threshold was developed by Donoho and Johnstone [3]. For each

sub-band, the threshold is determined by minimizing Stein’s Unbiased Risk Estimate

(SURE) for those coefficients. SURE is a method for estimating the loss‖ (µ̂− µ)2 ‖ in

an unbiased fashion, wherêµ is the estimated mean andµ is the real mean.

The threshold is calculated as follows:

= arg min[σ2 − 2.σ2

n
#{k : abs(yj,k) < λ} + 1

n

∑

(min(abs(yj,k), λ)2)]

where n is the number of samples,σ2 is the nosie variance,yj,k are the noisy samples,

λ is the threshold and#{k : abs(yj,k) < λ} indicates the number of samples whose value

is less thanλ. arg min[f(λ)] indicates the selection of a value for lambda which

minimizes the function f [12].

Donoho and Johnstone [3] pointed out that SUREShrink is automatically smoothness

adaptive. This implies that the reconstruction is smooth wherever the function is smooth

and it jumps wherever there is a jump or discontinuity in the function. This method can

generate very sparse wavelet coefficients resulting in an inadequate threshold. So, it is

suggested that a hybrid approach be used as an alternative.

2.1.5 BayesShrink

This method is based on the Bayesian mathematical framework. The wavelet

coefficients of a natural image are modeled by a Generalized Gaussian Distribution

(GGD). This is used to calculate the threshold using a Bayesian framework. S. Grace

Chang et al. [13] suggest an approximation and simple formula for the threshold:.

T = (σn)2/σs if σs is non-zero. Otherwise it is set to some predetermined maximum

value.

σs =
√

max((σy)2 − (σn)2, 0)

16

σy = 1
N

(
∑

(W 2
n))

The noise varianceσn is estimated from the HH band as Median(|Wn |)/0.6745,

whereWn represents the wavelet coefficients after subtracting the mean.

2.2 Shrinkage Methods

These methods shrink the wavelet coefficients as followsx̂ = γ. ∗ Y where

0 <= γ <= 1 is the shrinkage factor.

The following methods belong to this category:

2.2.1 Linear MMSE Estimator

Michak et al. [14] proposed the linear Minimum Mean Square Estimation (MMSE)

method using a locally estimated variance. Under the assumption of AWGN, an optimal

predictor for the clean wavelet coefficient at location k is given by

x̂k = yk ∗ (σ2
x,k)/(σ

2
x,k + σ2)

whereσx,k is the signal variance estimated at location k andσ is the noise variance,yk

represents the noisy coefficients andx̂k represents the estimated coefficients.

Two methods were presented for the estimation of the local varianceσx,k. The first

one uses an approximate maximum likelihood (ML) estimator as follows:

σ2
x,k = arg max

∏

P (yj | σ2
x,k)

= max(0, 1
M

(
∑

(y2
j − σ2)))

The second approach uses the maximum a posteriori (MAP) estimator as follows:

σ2
x,k = arg max(

∏

(P (yj | σ2
x,k)), p(σ

2
x,k))

= max(0, M
4λ

(−1 +
√

(1 + 8.λ
M2).

∑

(y2
j)) − σ2)

whereP (σ2
x,k) = λ. exp(−λσ2) is empirically chosen.

Michak et al. [14] showed that the MAP estimator produces better results compared

17

to the ML estimator. However, in the MAP method, an additional parameter (λ) needs to

be estimated. It is suggested that it can be set to the inverseof the standard deviation of

the wavelet coefficients that were initially denoised usingthe ML estimator.

The first method is referred as Michak1 and the second method is referred as Michak2

in the remainder of this text.

2.2.2 Bivariate Shrinkage using Level Dependency

All the above algorithms use a marginal probabilistic modelfor the wavelet

coefficients. However, the wavelet coefficients of natural images exhibit high dependency

across scale. For example, there exists a high probability of a large child coefficient if the

parent coefficient is large.

Sunder and Selesnick in [15] proposed a bivariate shrinkage function using the MAP

estimator and the statistical dependency between a waveletcoefficient and its parent. If

w2 is the parent coefficient of w1 (at the same position as w1 but at the next coarser

scale), then,

y1 = w1 + n1

y2 = w2 + n2

y1 andy2 are the noisy observations ofw1 andw2. n1 andn2 are the AWGN noise

samples.

They can be written as

Y = W +N whereY = (y1, y2),W = (w1, w2), N = (n1, n2)

The standard MAP estimator for W given Y is

Ŵ = arg max ρw|y(w | y)

Ŵ = arg max(ρy|w(y | w).Pw(w)) after applying the Bayesian probability formula.

= arg max(ρn(y − w).ρw(w))

Since noise is assumed i.i.d. Gaussian

18

ρn(y − w) = (1/(2πσ2
n)).exp(−(n2

1 + n2
2)/(2.σ

2
n))

The next step involves the determination ofρw(w). Sunder and Selesnick proposed

four empirical models, each with its own advantages and disadvantages.

MODEL 1:

Pw(w) = (3
2
πσ2).exp(−(

√
3/σ).

√
w12 + w22)

The estimated coefficients arêw1 =
(
√

y12+y22−
√

3σ
2
n

σ
)+√

y12+y22
.y1

MODEL 2:

ρw(W) = K.exp(−(α
√
w2 + w22 + b(| w1 | + | w2 |)))

Here K is the normalization constant.

The estimated coefficients are

ŵ1 = (R−σ2
n.a)+

R
.soft(y1, σ2

n.b)

R =
√

soft(y1, σ2
n.b)

2 + soft(y2, σ2
n.b)

2

soft(g, t) = sign(g).(| g | −t)+

MODEL 3: In practice, the variance of the wavelet coefficients of natural images are

quite different from scale to scale. So, the first model is generalized to include marginal

variances.

ρ(w) = 3
3πσ1σ2

.exp(−
√

3.
√

(w1
σ1

)2 + (w2
σ2

)2)

The estimated coefficients are

ŵ1.(1 +
√

3σ2
n

σ2
1
r

) = y1

ŵ2.(1 +
√

3σ2
n

σ2
2
r

) = y2

where

r =

√

(ŵ1
σ1

)2 + (ŵ2
σ2

)2

These two equations don’t have a simple closed form solution, but numerical solutions

do exist.

MODEL 4: In practice, the variance of the wavelet coefficients of natural images are

quite different from scale to scale. So, the second model is generalized to include

19

marginal variances.

ρ(w) = K.exp(−(
√

c1.w2
1 + c2.w2

2 + c3. | w1 | +c4. | w4 |))

where K is the normalization constant.

The estimated coefficients are

ŵ1.(1 + c1.σ2
n

r
) = soft(y1, c3σ2

n)

ŵ2.(1 + c2.σ2
n

r
) = soft(y2, c4σ2

n)

where,

r =
√

c1.ŵ1
2 + c2.ŵ2

2

These two equations don’t have a simple closed form solution, but numerical solutions

do exist.

2.3 Other Approaches

2.3.1 Gaussian Scale Mixtures

Portilla et al. [16] proposed a method for removing noise from digital images based

on a statistical model of the coefficients of an over-complete multi-scale oriented basis.

Neighborhoods of coefficients at adjacent positions and scales are modeled as the product

of two independent random variables: a Gaussian vector and ahidden positive scaler

multiplier. The latter modulates the local variance of the coefficients in the

neighborhood, and is able to account for the empirically observed correlation between the

coefficient amplitudes.

Mathematically, the denoising problem can be written as

Y =
√
zU +W

Where U is the zero mean Gaussian random variable, z is the positive scaler multiplier,

W is the AWGN and Y refers to the observed coefficients in the neighborhood.

The algorithm can be summarized as follows:

20

• The image is decomposed into sub-bands (A specialized variant of the steerable

pyramid decomposition is used. The representation consists of oriented bandpass

bands at 8 orientations and 5 scales, 8 oriented high pass residual sub-bands, and 1

low pass residual sub-band for a total of 49 sub-bands.)

• The following steps (reproduced from [16] for subject completeness) are performed

for each sub-band (except for low pass residual):

– Compute neighborhood noise covariance,Cw, from the image-domain noise

covariance.

– Estimate the noisy neighborhood covariance,Cy.

– EstimateCu fromCw andCy using

Cu = Cy − Cw

– Compute∧ and M

Cw = SST and let Q,∧ be the eigenvector/eigenvalue expansion of the matrix

S−1CuS
−T .

M = S.Q

– For each neighborhood:

* For each value z in the integration range, computeE{xc | y, z} and

p(y | z) as follows:

E{xc | y, z} =
∑ zmcnλnvn

zλn+1

wheremij represents an element (ith row, jth column) of the matrix M,λn

are the diagonal element of∧, vn the elements ofv = M−1y.

ρ(y | z) =
exp(− 1

2

∑

v
2
n

zλn+1
)√

(2π)N |Cw|
∏

(zλn+1)

* Computeρ(z | y) with ρz(z) = 1
z

ρ(z | y) = ρ(y|z)ρz(z)
∫ ∞
1

ρ(y|α)ρz(α) dα

21

* ComputeExc | y numerically by

E{xc | y} =
∫ ∞
1 ρ(z | y)E{xc | y, z} dz

• The denoised image is reconstructed from the processed sub-bands and the low pass

residual.

2.3.2 Non-Local Mean Algorithm

Natural images often have a particular repeated pattern. Baudes et al. [17] used the

self-similarities of image structures for denoising. As per their algorithm, a reconstructed

pixel is the weighted average of all the pixels in a search window. The search window

can be as large as the whole image or even span multiple imagesin a video sequence.

Weights are assigned to pixels on the basis of their similarity with the pixel being

reconstructed. While assessing the similarity, the concerned pixel, as well as its

neighborhood are taken into consideration. Mathematically, it can be expressed as:

NL[u](x) = 1
C(x)

∫

exp− (Ga∗|u(x+.)−u(y+.)|2)(0)
h2 u(y) dy

The integration is carried out over all the pixels in the search window.

C(x) =
∫

exp− (Ga∗|u(x+.)−u(y+.)|2)(0)
h2 dz is a normalizing constant.Ga is a Gaussian

kernel, and h acts as a filtering parameter.

The pseudocode for this algorithm is as follows:

For each pixel x

• We take a window centered in x and size 2t+1 x 2t+1, A(x,t).

• We take a window centered in x and size 2f+1 x 2f+1, W(x,f).

• wmax=0;

• For each pixel y in A(x,t) and y different from x

22

– We compute the difference between W(x,f) and W(y,f), d(x,y).

– We compute the weight from the distance d(x,y), w(x,y) = exp(- d(x,y) / h);

– If w(x,y) is bigger than wmax then wmax = w(x,y);

– We compute the average, average + = w(x,y) * u(y);

– We carry the sum of the weights, totalweight + = w(x, y);

• We give to x the maximum of the other weights, average += wmax* u(x);

totalweight + = wmax;

• We compute the restored value, rest(x) = average / totalweight;

The distance is calculated as follows:

function distance(x,y,f) {

distancetotal = 0 ;

distance = (u(x) - u(y))ˆ2;

for k= 1 until f {

for each i=(i1,i2)

pair of integer

numbers such that

max(|i1|,|i2|) = k {

distance + =

(u(x+i) - u(y+i))ˆ2;

}

aux = distance / (2 * k + 1)ˆ 2;

distancetotal + = aux;

}

23

distancetotal / = f;

}

This algorithm is computationally intensive. A faster implementation with improved

computation performance was later presented by Wang et al. [18].

2.3.3 Image Denoising using Derotated Complex Wavelet Coefficients

Miller and Kingsbury [19] proposed a denoising method based on statistical modeling

of the coefficients of a redundant, oriented, complex multi-scale transform, called the dual

tree complex wavelet transform (DT-CWT). They used two models, one for the structural

features of the image and the other for the rest of the image. Derotated wavelet

coefficients were used to model the structural features, whereas Gaussian Scale Mixture

(GSM) models were used for texture and other parts of the image. Both of these models

were combined under the Bayesian framework for estimation of the denoised coefficients.

Model 1: x =
√
zu (to model areas of texture)

Model 2: x = A.w =
√
z.A.q (to model structural features),

where z is the hidden or GSM multiplier and u is a neighborhoodof Gaussian

variables with zero mean and covarianceCu, q is a vector of Gaussian distributed random

variables with covarianceCq and A is a unitary spatially varying inverse derotation matrix

which converts a set of derotated coefficients q to the corresponding DT-CWT (Discrete

Time Complex Wavelet Transform) coefficients using the phase of the interpolated parent

coefficients.

24

Chapter 3

Wavelets in Action

The denoising of a one dimensional signal using a moving average filter, a Wiener

filter and a simple wavelet thresholding is brought out in Section 3.1. The denoising of

the standard “Lena” image using a moving average filter, a Wiener2 filter [20] and two

wavelet methods is discussed in Section3.2. The wavelet approach turns out to be a

winner, both visually as well as quantitatively. The effectof different wavelet bases is

studied. It is also noted that different wavelets produce slightly different results.

3.1 1D signal Denoising Example

Wavelets do a good job of considerably reducing the noise while preserving the edges,

as shown in Figure3.1. It works well in the smooth areas of the signal, as well as also

preserves the edges or structures of the signal. In this section, the average filter, the

Wiener filter and the wavelet method are compared. The optimal solution for each

method is found by doing multiple iterations. The wavelet method performs very well,

both visually as well as quantitatively. It must be noted that the simplest method to

threshold wavelet coefficients is used. The denoising performance can be further

improved by thresholding the wavelet coefficients using advanced methods.

3.1.1 Effect of the Wavelet Basis

The denoising performance of wavelet transform methods is affected by the following:

• Wavelet basis

• Number of decompositions

25

0 200 400 600 800 1000 1200
−20

−10

0

10

20

30

40

50
Original clean signal

(a) Clean Piece Wise Regular Signal

100 200 300 400 500 600 700 800 900 1000

−20

−10

0

10

20

30

40

Noisy signal with abs. err. = 33.9919 mse = 13.259 psnr = 22.261

(b) Noisy Signal

0 5 10 15
5

10

15

20

25

30

35
Error vs averaging window

Window size

M
S

E
 in

 d
b

(c) MSE versus Window Size for Averag-
ing Method

100 200 300 400 500 600 700 800 900 1000

−20

−10

0

10

20

30

40

Denoised signal with running average of window 3abs. err. = 36.8366mse = 7.2989 psnr = 24.1314

(d) Denoised Signal using the Averaging
Filter

100 200 300 400 500 600 700 800 900 1000

−20

−10

0

10

20

30

40

Denoised signal with wiener filtering, andabs. err. = −209.1834 mse = 3.1603 psnr = 27.7667

(e) MSE versus Threshold for the Wavelet
Denoising

100 200 300 400 500 600 700 800 900 1000

−20

−10

0

10

20

30

40

Denoised signal with db4wavelet (L=6) abs. err. = 33.5604 mse = 3.1521 psnr = 28.0378

(f) Denoised Signal with the Wavelet
Method

Figure 3.1. Denoising Example 1D Signal (Errors are in dB)

26

• Transform type (orthogonal, redundant, translation invariant, etc)

• Thresholding method (algorithm to modify or estimate the wavelet coefficients)

Some wavelet bases are better suited for certain signals when compared to others.

Wavelet basis with more number of vanishing moments work better on the smooth parts of

the signal. This is due to the fact that a polynomial of order Nwill not have any detailed

coefficients (at all levels of decomposition) if it is decomposed with a wavelet having N or

more vanishing moments. So, in this case, all the detailed coefficients will be from the

noise, and can be killed. Figures3.2and3.3show the effect of wavelet bases on

denoising performance.

3.2 Natural Image Denoising Example

Results from three different denoising methods - running average, Wiener2 filter [20]

and wavelet methods - are compared in Figure3.4. The performance of the wavelet

approach is good, and comparable with that of the Wiener2 filter. The Daubechies

wavelet with 10 vanishing moments is used with 2 levels of decomposition. Despite the

adoption of the simplest global wavelet thresholding method, the moving average method

is outperformed. Improved denoising results can be achieved by using better ways to

threshold or estimate the wavelet coefficients. Example result (f) in Figure3.4shows that

the Portilla method [16] can perform more than 1 dB better. The image also looks much

cleaner and sharper. Thus, the wavelet approach does a better job of denoising while not

blurring the image.

3.2.1 Effect of the Wavelet Basis

The wavelet basis also plays a role in denoising performanceas shown in Figure3.5,

similar to the 1D case. The effect of the wavelet basis on denoising performance in case

27

100 200 300 400 500 600 700 800 900 1000

−10

0

10

20

30

40

Original clean signal

(a) Clean Piece Wise Regular Signal

100 200 300 400 500 600 700 800 900 1000

−20

−10

0

10

20

30

40

Noisy signal with err. = 13.259

(b) Noisy Signal

100 200 300 400 500 600 700 800 900 1000

−20

−10

0

10

20

30

40

Denoised signal with db1wavelet, MSE = 4.531

(c) Denoised Signal with db1

100 200 300 400 500 600 700 800 900 1000

−20

−10

0

10

20

30

40

Denoised signal with db2wavelet, MSE = 3.6289

(d) Denoised Signal with db2

100 200 300 400 500 600 700 800 900 1000

−20

−10

0

10

20

30

40

Denoised signal with db3wavelet, MSE = 2.8978

(e) Denoised Signal with db3

100 200 300 400 500 600 700 800 900 1000

−20

−10

0

10

20

30

40

Denoised signal with db4wavelet, MSE = 3.1521

(f) Denoised Signal with db4

100 200 300 400 500 600 700 800 900 1000

−20

−10

0

10

20

30

40

Denoised signal with db9wavelet, MSE = 4.8142

(g) Denoised Signal with db9

Figure 3.2. Effect of Different Wavelet Bases on 1D Signal Denoising I

28

100 200 300 400 500 600 700 800 900 1000

−20

−10

0

10

20

30

40

Denoised signal with sym2wavelet, MSE = 3.6289

(a) Denoised Signal with sym2

100 200 300 400 500 600 700 800 900 1000

−20

−10

0

10

20

30

40

Denoised signal with sym3wavelet, MSE = 2.8978

(b) Denoised Signal with sym3

100 200 300 400 500 600 700 800 900 1000

−20

−10

0

10

20

30

40

Denoised signal with sym4wavelet, MSE = 3.4175

(c) Denoised Signal with sym4

100 200 300 400 500 600 700 800 900 1000

−20

−10

0

10

20

30

40

Denoised signal with sym8wavelet, MSE = 3.4344

(d) Denoised Signal with sym8

100 200 300 400 500 600 700 800 900 1000

−20

−10

0

10

20

30

40

Denoised signal with coif1wavelet, MSE = 3.1964

(e) Denoises Signal with coif1

100 200 300 400 500 600 700 800 900 1000

−20

−10

0

10

20

30

40

Denoised signal with coif4wavelet, MSE = 3.3542

(f) Denoised Signal with Coif4

100 200 300 400 500 600 700 800 900 1000

−20

−10

0

10

20

30

40

Denoised signal with coif5wavelet, MSE = 3.885

(g) Denoised Signal with Coif5

Figure 3.3. Effect of Different Wavelet Bases on 1D Signal Denoising II

29

Original Image

(a) Original Image

Noisy Image, psnr = 20.6665db

(b) Noisy Image

Running average of window 7 psnr = 24.6684 db

(c) Denoised Image by Averaging Filter

Wiener2 psnr = 28.819 db

(d) Denoised Image by Wiener2 Filter

db10wavelet (L=2) psnr = 27.7681 db

(e) Denoised Image by Wavelet Thresh-
olding

BLS GSM with PSNR = 30.1372

(f) Denoised Image by BLS-GSM
(Wavelet Method by Portilla et al.)

Figure 3.4. Denoising Example 2-D Image

30

of natural images is small.

31

db1 psnr = 27.3061 db

(a) db1

db4 psnr = 28.2621 db

(b) db4

db9 psnr = 28.4525 db

(c) db9
db13 psnr = 28.231 db

(d) db13

sym2 psnr = 28.8218 db

(e) sym2

sym4 psnr = 28.5463 db

(f) sym4
sym8 psnr = 28.6031 db

(g) sym8

coif1 psnr = 28.8799 db

(h) coif1

coif4 psnr = 28.4781 db

(i) coif4
coif5 psnr = 28.4606 db

(j) coif5

bior4.4 psnr = 28.6976 db

(k) bior4.4

dmey psnr = 28.2433 db

(l) dmey

Figure 3.5. Effect of Different Wavelet Bases on Natural Image Denoising

32

Chapter 4

Tetrolet Transform Based Denoising

Jens Krommweh [21] proposed a new method for image compression using an

adaptive Haar like transform. He called it the Tetrolet transform. It is a simple concept,

but quite effective in compression. In the 2D Haar transform, images are divided into 2x2

blocks and the Haar wavelet transform is applied to generateone average and three

detailed coefficients. These coefficients capture the detailed information along the

horizontal, vertical and diagonal direction. In the Tetrolet transform approach, images are

sub-divided into 4x4 blocks. Each 4x4 block is partitioned using tetrominoes. Following

this, the Haar transform is applied to generate 4 average coefficients and 12 detailed

coefficients. Tetrominoes are the shapes formed by joining four squares such that they

connect with each other at least on one edge. See AppendixA for more details about

tetrominoes.

The Haar transform is a subset of the Tetrolet transform, with a partition of four 2x2

squares. The Tetrolet transform coefficients are the coefficients generated from the

partition that generates the minimum sum of absolute valuesof all detailed coefficients.

In order to recover the image from a Tetrolet transform, it isnecessary to store information

about the selected partition in each 4x4 block. This additional information offsets some

of the advantage achieved by having effective coefficients.However, better compression

can be achieved overall when compared with existing compression algorithms which use

Haar wavelets.

A new denoising algorithm based on the above concept is proposed. The features of

this algorithm are as follows:

• Simplicity: The algorithm is very simple. It does not require complex

33

computations. All computations can be done using adders andshift registers,

which are very cost effective for hardware implementations.

• Less Storage: Each 4x4 block is independently denoised. There is no necessity to

store the full image or a large piece of the image, as requiredby other algorithms

such as the non-local mean [17]. This makes it well suited for high performance

real time applications.

• Redundant Coefficients: It is similar to denoising based onthe translation invariant

wavelet transform. However, the proposed approach has a higher degree of

redundancy. This redundancy helps in achieving better denoising.

• Better Edge Preservation: It is observed that edges are well preserved.

• Scalability: Another variation of the algorithm is possible where the coarsest

denoised image is generated using the Haar transform. A finerdenoised image is

produced when other tetromino partitions are picked and theaverage of such

denoised images is taken.

4.1 Haar Wavelet Transform

The Haar wavelet transform is one of the most simple wavelet transforms. The

scaling and wavelet functions for the Haar wavelet transform are defined as follows:φ(t)

= 1 for 0 < t < 1; 0 otherwiseψ(t) = 1 for 0 < t < 0.5; -1 for 0.5 < t < 1; 0 otherwise

Figure4.1shows the scaling and wavelet functions at different scalesand translation

indices. A function can be decomposed into the translated and scaled wavelet function

ψj,k(t). The scaling functionφj0,k(t) captures the average of the function at scale j0.

34

Figure 4.1. Illustration of the Haar Wavelet Transform

4.2 Example of the Tetrolet Transform

To understand the Tetrolet transform, consider the following example compared with

the Haar transform to bring out the differences.

Figure4.2shows an example of a 4x4 block with a black dot in the center and a white

background. Pixel values are from 0 to 255, with 0 being complete black and 255 being

complete white. The Tetrolet coefficients are [480 40 0 0; 480480 0 0; 0 0 0 0; 0 0 0 0]

and the Haar coefficients are [370 370 110 -110; 370 370 110 -110; 110 110 -110 110;

-110 -110 110 -110]. It can be seen that energy is highly concentrated in the case of the

Tetrolet coefficients, while it is spread over all coefficients in the case of the Haar. This

energy compactness property is helpful in denoising and compression.

In order to continue further testing, some noise is added. The transform, coefficient

35

Figure 4.2. Illustration of the Tetrolet Transform Concept(1)

36

Figure 4.3. Illustration of the Tetrolet Transform Concept(2)

thresholding and inverse transform are performed again. For this example, a threshold of

30 is used. The noisy samples after adding white noise with a variance of 15 are [233 222

244 231; 215 37 22 272; 241 37 17 237; 244 239 250 241]. Samples recovered by the

Haar method are the same as the noisy samples. Since energy isequally distributed

among all coefficients, no denoising results from the thresholding of the coefficients.

Samples recovered by Tetrolet method are [227 227 246 246; 227 28 28 246; 227 28 28

246; 243 243 243 243]. Peak signal to noise ratio (PSNR), calculated as

PSNR(x, y) = 10 ∗ log10max(max(x), max(y))
2/(| x− y |)2

for the Haar method is 26.2 dB, while the PSNR from the Tetrolet method is 29.4 dB.

More importantly, the features of the block are preserved.

It is found that the direct thresholding of the Tetrolet coefficients does not produce

good results for denoising of natural images. An innovativesolution which produces

good results is proposed. Figures4.4, 4.5and4.6show the “Lena” image denoised using

the Tetrolet transform as compared to the Haar transform. Different thresholding

methods are used, as indicated. The improvement obtained isinsignificant.

37

db1 Universal thresholding (hard) with PSNR = 29.0758

(a) Universal Hard Thresholding (Haar)

tetr Universal thresholding (hard) with PSNR = 28.2077

(b) Universal Hard Thresholding (Tetrom)

db1 Universal thresholding (soft) with PSNR = 30.1441

(c) Universal Soft Thresholding (Haar)

tetr Universal thresholding (soft) with PSNR = 30.2527

(d) Universal Soft Thresholding (Tetrom)

Figure 4.4. Haar versus the Tetrolet Transform Direct (1)

38

db1 SURE thresholding with PSNR = 29.4871

(a) Sure Thresholding (Haar)

tetr SURE thresholding with PSNR = 28.7737

(b) Sure Thresholding (Tetrom)

db1 Bayes thresholding with PSNR = 30.2476

(c) Bayes Thresholding (Haar)

tetr Bayes thresholding with PSNR = 30.1615

(d) Bayes Thresholding (Tetrom)

Figure 4.5. Haar versus the Tetrolet Transform Direct (2)

39

db1 Michak Shrinkage michak1 with PSNR = 30.4804

(a) Michak1 method (Haar)

tetr Michak Shrinkage michak1 with PSNR = 30.2744

(b) Michak1 method (Tetrom)

db1 Michak Shrinkage michak2 with PSNR = 30.8287

(c) Michak2 method (Haar)

tetr Michak Shrinkage michak2 with PSNR = 30.8519

(d) Michak2 method (Tetrom)

Figure 4.6. Haar versus the Tetrolet Transform Direct (3)

40

4.3 Histogram Comparison

The effectiveness of the Tetrolet transform in compressionis illustrated by the

histogram of the coefficients of natural images. Figures4.7and4.8clearly show that the

Tetrolet coefficients produce larger number of zeros. In Figures4.7and4.8, the X axis

represents the magnitude of the coefficients, while the Y axis shows the normalized value

of the number of coefficients. There are two curves in each histogram. The curve with

the higher peak at X=0 corresponds to the Tetrolet transform. This indicates that the

Tetrolet transform can be good for image compression.

4.4 Tetrolet Transform Based Denoising Algorithm

Direct thresholding of the Tetrolet coefficients does not produce good results. The

Tetrolet coefficients are thresholded using different methods in the images in Figures4.4,

4.5, and4.6. None of them seem to produce good results. There are 117 different ways

to cover a 4x4 block using tetrominoe shapes. This produces alarge number of

coefficients and the redundancy is exploited in the newly proposed denoising algorithm

described below.

The image is extended if its height and width are not multiples of 4. After denoising,

the image is cropped to get the original size. The extended image is divided into 4x4

blocks, and the following steps are performed for each of theblocks:

1. A tetrom configuration which can completely cover the block is picked. There are

117 possible configurations as described in AppendixA. The Haar partition is

initially chosen, but it is not necessary to always start with it.

2. The samples of the low pass filter are arranged to minimize their Hamming distance

from the corresponding Haar partition. This step is required to remove arbitrary

41

20 40 60 80 100 120

20

40

60

80

100

120

−80 −60 −40 −20 0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
LH1 coefficients histogram

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
HL1 coefficients histogram

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
HH1 coefficients histogram

(a) Lena

20 40 60 80 100 120

20

40

60

80

100

120

−50 0 50
0

0.1

0.2

0.3

0.4

0.5
LH1 coefficients histogram

−30 −20 −10 0 10 20 30
0

0.1

0.2

0.3

0.4

0.5
HL1 coefficients histogram

−50 0 50
0

0.1

0.2

0.3

0.4

0.5
HH1 coefficients histogram

(b) Barbara

Figure 4.7. Histogram of the Tetrolet Coefficients of Natural Images (1)

42

20 40 60 80 100 120

20

40

60

80

100

120

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
LH1 coefficients histogram

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
HL1 coefficients histogram

−40 −30 −20 −10 0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
HH1 coefficients histogram

(a) House

20 40 60 80 100 120

20

40

60

80

100

120

−60 −40 −20 0 20 40 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
LH1 coefficients histogram

−60 −40 −20 0 20 40 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
HL1 coefficients histogram

−60 −40 −20 0 20 40 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
HH1 coefficients histogram

(b) Boat

Figure 4.8. Histogram of the Tetrolet Coefficients of Natural Images (2)

43

arrangement of samples and prepare average coefficients forthe next level of

decomposition. Squares of Haar partitions are labeled as 0,1, 2 and 3. The

Hamming distances between the squares of the Haar partitionand the 24 different

arrangements of the squares of a given tetrominoe partitionare computed. The

particular arrangement of squares which gives the minimum Hamming distance is

chosen, as described by Jens Krommweh [21].

3. The Haar transform of the arranged samples is calculated.

4. The Haar coefficients generated in the above step are thresholded. A scaled version

of the universal threshold obtained by the formulaT = σ
√

2log(M) ∗ 0.68 [5] is

used for thresholding. By experiments it is found that the scaled version produces

good results. The scale factor is another parameter that canbe tuned. Variations

are possible here. Any type of thresholding (including softand hard thresholding

methods) can be used. The effect of threshold on denoising performance is

discussed in the performance section5.

5. An inverse Tetrolet transform from the thresholded coefficients is done to get a

sample of the recovered pixels.

6. Steps 2 through 5 are iterated after picking another way topartition the 4x4 block.

There are 117 possible ways to partition (see AppendixA).

7. The average of all the collected samples is taken.

8. Pixels produced by the above method are the denoised version of the noisy pixels.

The algorithm can be summarized by the following pseudo code

44

// Extend the image so that the width and length of the image

// are multiples of 4. Divide the image into 4x4 blocks.

for each 4x4 block of the image

I4x4_hat = 0; %

for partition=1 to 117 % all possible ways to fill 4x4

% region from tetrominoe shapes

I4x4_coeff = Haar Transform with selected partition (I4x4) ;

% Hard thresholding method is shown here,

% Other variations are possible like soft thresholding etc.

I4x4_coeff_thresholded = I4x4_coeff. * (abs(I4x4_coeff > T));

% T is the threshold value

I4x4_hat += Inverse Transform (I4x4_coeff_thresholded);

end

I4x4_hat = I4x4_hat/117; % I4x4_hat is the recovered block

% optional wavelet filtering with higher smooth wavelet

% to smooth out the picture. In the proposed algorithm,

% one level of wavelet decomposition with db3 and Hard

% thresholding has been used to denoise final image with

% 1/8th of original threshold.

45

end

The final division operation can be implemented using shiftsif the number of

partitions is a power of two. It is shown in the performance section that the later

iterations do not improve the image quality by much. Dropping them from consideration

improves the speed with very little or no cost to the image quality.

46

Chapter 5

Performance

Four standard test images (Lena, Barbara, House, and Boat) are corrupted with white

noise and then denoised using various methods, including the one proposed by us. The

result is compared based on the performance criteria listedin Section5.1. The random

noise added to the image is varied in steps of 5 with the standard deviation ranging from

10 to 30. Smaller images of size 128x128 are used for faster run times in the calculation

of the PSNR performance table and Figures5.1, 5.2, and5.3. The performance table is

generated from an average of 10 random runs. Bigger images ofsize 512x512 are used

for visual comparison. In all the experiments, the startingrandom seed is fixed at 1001 in

order to ensure that results can be replicated. Fixing the seed does not affect the overall

behavior or the result. The following methods are compared.

• Universal Hard Thresholding Method by Donoho (referred asVisuHard)

• Universal Soft Thresholding Method by Donoho [5] (referred as VisuSoft)

• SURE Shrink Method by Donoho and Johnstone [3] (referred as Sure)

• Bayes Shrink Method by Chang et al. [13] (referred as Bayes)

• Linear MMSE Estimator Method 1 by Michak et al. [14] (referred as Michak1)

• Linear MMSE Estimator Method 2 by Michak et al. [14] (referred as Michak2)

• Gaussian Scale Mixture Method by Portilla et al. [16] (referred as BLS-GSM)

• Redundant Haar Transform Method [22] (referred as Redundant Haar)

• Method proposed by us (referred to as Tetrom)

47

We have not included the Non Local mean algorithm by Buades etal. [17]. Though

this is one of the latest algorithms and has good performance, it is very intensive in terms

of computational complexity as well as memory requirement.This is due to its non-local

nature. Further, the algorithm is not wavelet based. Because of these reasons, this

algorithm is not in the same category as the others that are being compared above.

5.1 Performance Criteria

Different algorithms are compared based on the following criteria:

• Quantitative comparison - Different algorithms are compared based on the PSNR of

the denoised image. The PSNR is calculated as

PSNR(x, y) = 10 ∗ log10max(max(x), max(y))
2/(| x− y |)2,

where x and y are the clean and estimated samples respectively. Higher PSNR

indicates better denoising performance.

• Visual comparison and subjective analysis - Denoised images were subject to a poll

where people were asked to pick the three least noisy images,and rank them as first,

second and third choice.

• Residual analysis - The noise obtained after subtracting the denoised image from

the noisy image is visually inspected for features from the original image. Ideally

this should be white noise with no visible image features.

5.2 Comparison with Haar Wavelet Transform and Universal Thresholding

The PSNR values of the denoised image are plotted against thenumber of tetrominoe

partitions being averaged in Graphs5.1, 5.2, and5.3. The PSNR values are plotted along

the Y-axis and the number of partitions that are being averaged are plotted along the

48

X-axis. X=1 corresponds to the Haar wavelet transform and universal thresholding

method.

It can be seen that redundancy improves the denoising performance by a factor of

thousand. Denoising performance improves as more and more tetrominoe partitions are

averaged. Performance improves rapidly at the start and saturates around a mean after a

while. There are two reasons for this:

• Duplication in the generated coefficients is the primary reason. Figure5.4shows

the duplication in the coefficients generated by selecting different tetrominoe

partitions.

• The nature of the problem also contributes to this observation, as explained below.

In the tetrolet transform based denoising, a 4x4 block is tiled with tetrominoes

followed by the application of the Haar wavelet transform. The Haar wavelet

coefficients obtained are thresholded. Samples are obtained via an inverse wavelet

transform. This way, many samples are obtained for a pixel value. The assumption

is that these samples would be distributed around the true value and, by taking the

average of all values, denoising would result. If samples randomly drawn from a

normal distribution are averaged, then, the average would rapidly approach the

mean. The convergence towards the mean would slow down, as can be seen in

Figure5.5. It shows the average values of samples which are normally distributed

around a mean value of 65. The average is plotted on the Y-axisand the number of

samples that are being averaged is plotted on the X-axis. It can be seen that the

result quickly converges to about 65 by just adding a few samples. Later samples

do not add much value.

49

0 20 40 60 80 100 120
32.5

33

33.5

34

34.5

35

35.5

36

36.5

37

lena
barbara
boat
house

(a) Sigma = 5

0 20 40 60 80 100 120
27

28

29

30

31

32

33

lena
barbara
boat
house

(b) Sigma = 10

Figure 5.1. PSNR versus Number of Tetrominoes Partitions being Averaged (1)

50

0 20 40 60 80 100 120
24

25

26

27

28

29

30

31

lena
barbara
boat
house

(a) Sigma = 15

0 20 40 60 80 100 120
23

23.5

24

24.5

25

25.5

26

26.5

27

27.5

28

lena
barbara
boat
house

(b) Sigma = 20

Figure 5.2. PSNR versus Number of Tetrominoes Partitions being Averaged (2)

51

0 20 40 60 80 100 120
22.5

23

23.5

24

24.5

25

25.5

26

26.5

27

lena
barbara
boat
house

(a) Sigma = 25

0 20 40 60 80 100 120
21.5

22

22.5

23

23.5

24

24.5

25

25.5

lena
barbara
boat
house

(b) Sigma = 30

Figure 5.3. PSNR versus Number of Tetrominoes Partitions being Averaged (3)

52

Figure 5.4. Duplicate Haar Coefficients in Two Different Tetrominoe Tilings

0 20 40 60 80 100 120 140
35

40

45

50

55

60

65

70

Number of Samples Averaged

M
ea

n
V

al
ue

Mean Value vs Number of Samples Averaged with mean = 65

Figure 5.5. Mean Value versus Number of Samples being Averaged

53

5.3 Visual Comparison

Four well-known test images (Lena, Boat, House, and Barbara) of size 512x512 were

corrupted with white noise having a variance of 30. The noisyimages as well as the

denoised ones (processed using various methods) are presented in this section for visual

inspection.

A web based form [23] was created to do a subjective blind test in which the quality of

a denoised image was assessed by votes from the audience. People were asked to choose

the three least noisy images in their opinion and rank them astheir first, second and third

choice. The latest results of the poll can be found at the URL in [24]. Figure5.6is a

snapshot of the results at the time of writing this report.

The method presented in this thesis came up as the second bestafter the method from

Portilla et al. [16]. Due to the simplicity and non-local nature of the presented algorithm,

it has advantages over Portilla’s method in real-time hardware implementations.

54

Figure 5.6. Subjective Assessment - People’s Votes

5.4 Lena Image Example

Figure5.7shows:

(a) Clean Lena image of size 512x512

(b) Noisy Lena image, noise of variance = 30 is added to image (a)

(c) Lena image denoised by universal hard thresholding

(d) Lena image denoised by universal soft thresholding

Denoised Images (c) and (d) in Figure5.7are up to 4 dB better compared to the noisy

one, but the visual appearance is still noisy. Further optimization is possible if we

decompose the image further. Since the new method developedin this thesis uses only

55

one level of decomposition, all compared methods have been kept to one level of

decomposition for fairness.

Figure5.8shows:

(a) Lena image denoised by SURE thresholding by Donoho and Johnstone [3]

(b) Lena image denoised by Bayes Shrink method by Chang et al. [13]

(c) Lena image denoised by Linear MMSE estimator method 1 by Michak et al. [14]

(d) Lena image denoised by Linear MMSE estimator method 2 by Michak et al. [14]

Figure5.9shows:

(a) Lena image denoised by Gaussian scale mixture method of Portilla et al. [16]

(b) Lena image denoised by the method proposed in this thesis

It can be seen that the best image is produced by the Gaussian scale mixture method.

The second best picture is produced by the method proposed inthis thesis, which exceeds

other methods by up to 2 dB. The denoised image also looks lessnoisy compared to other

methods.

56

Original Image lena

(a) Clean Image

Noisy Image (sigma = 30 PSNR = 20.6665

(b) Noisy Image

db1 Universal thresholding (hard) with PSNR = 24.7417

(c) VisuShrink Hard thresholding

db1 Universal thresholding (soft) with PSNR = 23.61

(d) VisuShrink Soft thresholding

Figure 5.7. Lena Image Denoised I

57

db1 SURE thresholding with PSNR = 23.2095

(a) SURE thresholding

db1 Bayes thresholding with PSNR = 24.0779

(b) Bayes thresholding

db1 Michak Shrinkage michak1 with PSNR = 24.3296

(c) MMSE shrinkage Michak Method 1

db1 Michak Shrinkage michak2 with PSNR = 24.2415

(d) MMSE shrinkage Michak Method 2

Figure 5.8. Lena Image Denoised II

58

BLS GSM with PSNR = 28.4265

(a) BLS-GSM

db1 Tetrom thresholding with PSNR = 27.0531 error 1 = 26.3517

(b) Tetrom

Figure 5.9. Lena Image Denoised III

5.5 The Boat Image Example

Figure5.10shows:

(a) Clean image of the boat of size 512x512

(b) Noisy image of the boat, noise of variance = 30 is added to image (a)

(c) Image of the boat denoised by universal hard thresholding

(d) Image of the boat denoised by universal soft thresholding

Denoised Images (c) and (d) are up to 3 dB better compared to the noisy one, but the

visual appearance is still noisy. Further optimization is possible if we decompose the

image further. Since the new method developed in this thesisuses only one level of

decomposition, all compared methods have been kept to one level of decomposition for

fairness.

Figure5.11shows:

59

(a) The boat image denoised by SURE thresholding method of Donoho and Johnstone [3]

(b) The boat image denoised by Bayes Shrink method of Chang et al.[13]

(c) The boat image denoised by Linear MMSE estimator method 1 of Michak et al. [14]

(d) The boat image denoised by Linear MMSE estimator method 2 of Michak et al. [14]

Figure5.12shows:

(a) Image of the boat denoised by Gaussian scale mixture method of Portilla et al. [16]

(b) Image of the boat denoised by the new method proposed in this thesis

It can be seen that the best image is produced by the Gaussian scale mixture method.

The second best picture is produced by the method proposed inthis thesis, which exceeds

other methods by up to 2 dB. The denoised image also looks lessnoisy compared to other

methods. Another advantage of the proposed method is the fact that there is no noticeable

blurring of the fine details in the original image.

60

Original Image boat

(a) Clean Image

Noisy Image (sigma = 30 PSNR = 21.1242

(b) Noisy Image

db1 Universal thresholding (hard) with PSNR = 24.0646

(c) VisuShrink Hard thresholding

db1 Universal thresholding (soft) with PSNR = 23.7084

(d) VisuShrink Soft thresholding

Figure 5.10. Boat Image Denoised I

61

db1 SURE thresholding with PSNR = 23.4334

(a) SURE thresholding

db1 Bayes thresholding with PSNR = 23.6292

(b) Bayes thresholding

db1 Michak Shrinkage michak1 with PSNR = 24.065

(c) MMSE shrinkage Michak Method 1

db1 Michak Shrinkage michak2 with PSNR = 24.0268

(d) MMSE shrinkage Michak Method 2

Figure 5.11. Boat Image Denoised II

62

BLS GSM with PSNR = 28.0756

(a) BLS-GSM

db1 Tetrom thresholding with PSNR = 26.9336 error 1 = 26.5027

(b) Tetrom

Figure 5.12. Boat Image Denoised III

5.6 The House Image Example

Figure5.13shows:

(a) Clean image of the house of size 512x512

(b) Noisy image of the house, noise of variance = 30 is added to image (a)

(c) The house image denoised by universal hard thresholding

(d) The house image denoised by universal soft thresholding

Denoised Images (c) and (d) are up to 4 dB better compared to the noisy one, but the

visual appearance is still noisy. Further optimization is possible if we decompose the

image further. Since the new method developed in this thesisuses only one level of

decomposition, all compared methods have been kept to one level of decomposition for

fairness.

Figure5.14shows:

63

(a) The house image denoised by SURE thresholding of Donoho and Johnstone [3]

(b) The house image denoised by Bayes Shrink method of Chang et al. [13]

(c) The house image denoised by Linear MMSE estimator method 1 ofMichak et al.

[14]

(d) The house image denoised by Linear MMSE estimator method 2 ofMichak et al.

[14]

Figure5.15shows:

(a) Image of the house denoised by Gaussian scale mixture methodof Portilla et al. [16]

(b) Image of the house denoised by new method developed in this thesis

The results for the House image are similar to the ones obtained for the Lena and Boat

images. The best image is obtained by the Gaussian scale mixture method, which shows

a 9 dB improvement. The second best image is produced by the method proposed in this

thesis, with a 6 dB improvement. The proposed method bettersother methods by

performing upto 3 dB better.

64

Original Image house

(a) Clean Image

Noisy Image (sigma = 30 PSNR = 21.3659

(b) Noisy Image

db1 Universal thresholding (hard) with PSNR = 25.3576

(c) VisuShrink Hard thresholding

db1 Universal thresholding (soft) with PSNR = 24.3756

(d) VisuShrink Soft thresholding

Figure 5.13. House Image Denoised I

65

db1 SURE thresholding with PSNR = 23.9853

(a) SURE thresholding

db1 Bayes thresholding with PSNR = 25.2014

(b) Bayes thresholding

db1 Michak Shrinkage michak1 with PSNR = 25.1391

(c) MMSE shrinkage Michak Method 1

db1 Michak Shrinkage michak2 with PSNR = 24.5483

(d) MMSE shrinkage Michak Method 2

Figure 5.14. House Image Denoised II

66

BLS GSM with PSNR = 30.2244

(a) BLS-GSM

db1 Tetrom thresholding with PSNR = 28.2562 error 1 = 27.2522

(b) Tetrom

Figure 5.15. House Image Denoised III

5.7 Barbara Image Example

Figure5.16shows:

(a) Clean Barbara image of size 512x512

(b) Noisy Barbara image, noise of variance = 30 is added to image (a)

(c) Barbara image denoised by universal hard thresholding

(d) Barbara image denoised by universal soft thresholding

Denoised Images (c) and (d) are up to 3 dB better compared to the noisy one, but the

visual appearance is still noisy. Further optimization is possible if we decompose the

image further. Since the new method developed in this thesisuses only one level of

decomposition, all compared methods have been kept to one level of decomposition for

fairness.

Figure5.17shows:

67

(a) Barbara image denoised by SURE thresholding of Donoho and Johnstone [3]

(b) Barbara image denoised by Bayes Shrink method of Chang et al.[13]

(c) Barbara image denoised by Linear MMSE estimator method 1 of Michak et al. [14]

(d) Barbara image denoised by Linear MMSE estimator method 2 of Michak et al. [14]

Figure5.18shows:

(a) Denoised Barbara image by Gaussian scale mixture method by Portilla et al. [16]

(b) Denoised Barbara image by new method developed in this thesis

The results for the Barbara image are similar to the ones obtained for the Lena, Boat

and House images. The best image is obtained by the Gaussian scale mixture method,

which shows a 6 dB improvement. The second best image is produced by the method

proposed in this thesis, with a 4 dB improvement. The proposed method betters other

methods by performing upto 2 dB better. The performance of the proposed method is

consistent across different natural images, even though they contain different natural

objects with different features.

68

Original Image barbara

(a) Clean Image

Noisy Image (sigma = 30 PSNR = 20.9536

(b) Noisy Image

db1 Universal thresholding (hard) with PSNR = 23.2798

(c) VisuShrink Hard thresholding

db1 Universal thresholding (soft) with PSNR = 23.5487

(d) VisuShrink Soft thresholding

Figure 5.16. Barbara Image Denoised I

69

db1 SURE thresholding with PSNR = 23.2988

(a) SURE thresholding

db1 Bayes thresholding with PSNR = 23.4972

(b) Bayes thresholding

db1 Michak Shrinkage michak1 with PSNR = 23.687

(c) MMSE shrinkage Michak Method 1

db1 Michak Shrinkage michak2 with PSNR = 23.8693

(d) MMSE shrinkage Michak Method 2

Figure 5.17. Barbara Image Denoised II

70

BLS GSM with PSNR = 26.8439

(a) BLS-GSM

db1 Tetrom thresholding with PSNR = 25.1127 error 1 = 25.1521

(b) Tetrom

Figure 5.18. Barbara Image Denoised III

5.8 Tetrolet Transform Denoising Performance versus Threshold

A scaled universal threshold, as obtained by formulaT = S ∗ σ
√

2log(M), where M

is the number of pixels in the image and S is the scaling factor, is used. To obtain the

scaling factor, the PSNR of the denoised image is plotted against the threshold value. The

results are shown in Figure5.19. A scaling factor of 0.68 produces optimal results on

these images with different noise variance. In real systems, the scaling factor can be

obtained by training on known images.

71

0 0.5 1 1.5
25

26

27

28

29

30

31

32

33

Threshold (T/T0) where T0 is universal threshold

P
sn

r
in

 d
b

Tetrolet performance vs threshold with sigma = 10 T0 = 44.0546

lena
barbara
boat
house

(a) Tetrom performance vs threshold at Sigma 10

0 0.5 1 1.5
22

23

24

25

26

27

28

Threshold (T/T0) where T0 is universal threshold

P
sn

r
in

 d
b

Tetrolet performance vs threshold with sigma = 20 T0 = 88.1093

lena
barbara
boat
house

(b) Tetrom performance vs threshold at Sigma 20

Figure 5.19. Tetrom Method’s Denoising Performance versusThreshold

72

5.9 Performance Tables

The four test images (Lena, Barbara, Boat and House) were corrupted with white

noise, and denoised using different methods. The variance of the white noise is varied

from 10 to 30 in steps of 5. The results are the PSNR values averaged over 10 runs with

different random seeds. They are presented in Tables5.1and5.2and also in the

Figures5.20, 5.21, 5.22and5.23. Table5.1compares the proposed algorithm with other

algorithms such as VisuHard, VisuSoft, Sure, Bayes, Michak1, and Michak2. Table5.2

compares the proposed algorithm with the redundant Haar method and the Gaussian scale

mixture method. The following observations can be drawn from these results:

• The Tetrom method performs, on an average, up to 3.63 dB better when compared

with the VisuHard, VisuSoft, Sure, Bayes, Michak1, and Michak2 methods. It

performs up to 1.9 dB better compared to the best of the above methods.

• BLS-GSM method performs up to 1.77 dB better than Tetrom, but the local nature

and simplicity of the Tetrom algorithm are better suited forhardware

implementation.

• The redundant Haar transform method and Tetrom method havesimilar

performance. In some cases, the redundant Haar transform performs up to 0.49 dB

better than the Tetrom method; However, in some cases, the Tetrom method

performs up to 0.45 dB better than the redundant Haar transform. In visual

analysis, the newly proposed method scores above the redundant Haar method.

Despite having similar performance, these algorithms are not the same and do not

generate the same coefficients. As seen in the visual comparison section, the

Tetrom method outperforms the redundant Haar transform method.

73

PSNR (in dB) Comparison

Table 5.1. PSNR Performance Table - 1

Image VisuHard VisuSoft Sure Bayes Michak1 Michak2 Tetrom

lena(σ=10) 28.15 29.44 28.72 29.40 29.13 29.92 30.44

lena(σ=15) 26.08 26.70 26.72 26.78 26.45 27.18 27.89

lena(σ=20) 24.64 25.05 24.96 25.12 24.79 25.46 26.39

lena(σ=25) 23.18 23.57 23.19 23.65 23.42 24.07 25.12

lena(σ=30) 22.42 22.45 21.79 22.53 22.58 22.95 23.99

barabara(σ=10) 27.09 28.94 27.81 29.07 28.80 29.44 29.46

barabara(σ=15) 24.90 26.36 26.25 26.39 26.22 26.80 26.80

barabara(σ=20) 23.32 24.64 24.64 24.62 24.32 24.94 25.24

barabara(σ=25) 22.40 23.28 23.08 23.21 23.15 23.59 23.83

barabara(σ=30) 21.65 22.31 21.83 22.20 22.17 22.50 23.01

boat(σ=10) 27.92 29.27 28.40 29.24 29.02 29.55 29.85

boat(σ=15) 25.59 26.56 26.51 26.59 26.34 26.93 27.40

boat(σ=20) 24.11 24.73 24.67 24.80 24.62 25.11 25.85

boat(σ=25) 22.78 23.34 23.07 23.31 23.25 23.71 24.82

boat(σ=30) 22.21 22.42 21.83 22.37 22.42 22.77 23.77

house(σ=10) 30.50 30.52 30.46 30.53 30.68 31.18 32.31

house(σ=15) 28.31 27.78 27.98 28.19 27.97 28.48 29.75

house(σ=20) 26.03 25.59 25.44 26.07 26.12 26.46 28.06

house(σ=25) 24.92 24.40 23.87 24.74 24.88 25.18 27.05

house(σ=30) 23.69 22.92 22.10 23.21 23.60 23.83 25.73

74

Table 5.2. PSNR Performance Table - 2

Image BLS-GSM Redundant Haar Tetrom

lena(σ=10) 31.48 30.77 30.44

lena(σ=15) 29.07 28.33 27.89

lena(σ=20) 27.58 26.67 26.39

lena(σ=25) 26.42 25.03 25.12

lena(σ=30) 25.46 23.71 23.99

barabara(σ=10) 30.32 29.89 29.46

barabara(σ=15) 27.98 27.23 26.80

barabara(σ=20) 26.41 25.42 25.24

barabara(σ=25) 25.20 23.60 23.83

barabara(σ=30) 24.24 22.56 23.01

boat(σ=10) 30.52 30.13 29.85

boat(σ=15) 28.21 27.66 27.40

boat(σ=20) 26.75 25.91 25.85

boat(σ=25) 25.46 24.64 24.82

boat(σ=30) 24.70 23.35 23.77

house(σ=10) 33.51 32.80 32.31

house(σ=15) 31.43 30.21 29.75

house(σ=20) 29.83 28.21 28.06

house(σ=25) 28.62 26.74 27.05

house(σ=30) 27.48 25.34 25.73

75

The performance graphs in Figures5.20, 5.21, 5.22, and5.23have two graphs each.

Graph (a) compares our method with others where our performance is better. Graph (b)

compares our method with the Gaussian scale mixture and the redundant Haar method.

The performance of our method is less than the redundant Haarwhen the amount of noise

is small, but surpasses it in higher noise scenarios. This isdue to the higher degree of

redundancy in our method.

76

10 12 14 16 18 20 22 24 26 28 30
21

22

23

24

25

26

27

28

29

30

31

noise variance sigma

ps
nr

 in
 d

b

Lena Image

VisuHard
VisuSoft
Sure
Bayes
Michak1
Michak2
Tetrom

(a) Performance comparison with Lena image - 1

10 12 14 16 18 20 22 24 26 28 30
23

24

25

26

27

28

29

30

31

32

noise variance sigma

ps
nr

 in
 d

b

Lena Image

BLSGSM
TI Transform
Tetrom

(b) Performance comparison with Lena image - 2

Figure 5.20. Performance Comparison with Different Methods - Lena Image

77

10 12 14 16 18 20 22 24 26 28 30
21

22

23

24

25

26

27

28

29

30

noise variance sigma

ps
nr

 in
 d

b

Barbara Image

VisuHard
VisuSoft
Sure
Bayes
Michak1
Michak2
Tetrom

(a) Performance comparison with Barbara image - 1

10 12 14 16 18 20 22 24 26 28 30
22

23

24

25

26

27

28

29

30

31

noise variance sigma

ps
nr

 in
 d

b

Barbara Image

BLSGSM
TI Transform
Tetrom

(b) Performance comparison with Barbara image - 2

Figure 5.21. Performance Comparison with Different Methods - Barbara Image

78

10 12 14 16 18 20 22 24 26 28 30
21

22

23

24

25

26

27

28

29

30

noise variance sigma

ps
nr

 in
 d

b

Boat Image

VisuHard
VisuSoft
Sure
Bayes
Michak1
Michak2
Tetrom

(a) Performance comparison with Boat image - 1

10 12 14 16 18 20 22 24 26 28 30
23

24

25

26

27

28

29

30

31

noise variance sigma

ps
nr

 in
 d

b

Boat Image

BLSGSM
TI Transform
Tetrom

(b) Performance comparison with Boat image - 2

Figure 5.22. Performance Comparison with Different Methods - Boat Image

79

10 12 14 16 18 20 22 24 26 28 30
22

24

26

28

30

32

34

noise variance sigma

ps
nr

 in
 d

b

House Image

VisuHard
VisuSoft
Sure
Bayes
Michak1
Michak2
Tetrom

(a) Performance comparison with House image - 1

10 12 14 16 18 20 22 24 26 28 30
25

26

27

28

29

30

31

32

33

34

noise variance sigma

ps
nr

 in
 d

b

House Image

BLSGSM
TI Transform
Tetrom

(b) Performance comparison with House image - 2

Figure 5.23. Performance Comparison with Different Methods - House Image

80

5.10 Residuals Analysis

Buades et al. in [17] define a method called “noise” to compare the effectivenessof

different denoising algorithms. The method is defined as follows:

v = Dh(v) + n(Dh, v)

Here v is the noisy image and h is the filtering parameter whichusually depends upon

the standard deviation of noise. Dh(v) is the filtered image which is ideally smoother than

v. n(Dh,v) is the realization of noise. The more this noise looks like white noise, the

better is the result of the algorithm. If structures are visible in this noise, it implies that

the filtering has removed some real fine structures of the image.

The residuals are calculated by taking the difference between the noisy and the

denoised image. They are analyzed for visible image structures. It is noted that one can

see image structures in the noise in our method, as well as in others. This means that

these algorithms do remove fine structures in the image to some extent. Only the results

for the Lena image are plotted here, but the results were similar across all the test images.

Pixels are scaled and only the right top section of size 256x256 is plotted for better

visibility in Figures5.24, and5.25. The original image size was 512x512 pixels.

The residuals in Figure5.25(d) shows that our method removes some details in the

image. Even with this disadvantage, it outperforms other methods in terms of PSNR as

well as subjective blind tests. This indicates that the algorithm has potential to achieve

better results with the help of some improvements.

81

Lena residue; Visu hard method

(a) VisuShrink Hard thresholding

Lena residue; Visu soft method

(b) VisuShrink Soft thresholding

Lena residue; sure method

(c) Sure thresholding

Lena residue; Bayes method

(d) Bayes thresholding

Figure 5.24. Lena Image Residuals Assessment I

82

Lena residue; michak1 method

(a) MMSE shriknage Michak method 1

Lena residue; michak2 method

(b) MMSE shrinkage Michak method 2

Lena residue; BLS−GSM method

(c) BLS-GSM method

Lena residue; Tetrom method

(d) Tetrom Method

Figure 5.25. Lena Image Residuals Assessment II

83

Chapter 6

Summary and Conclusions

In this thesis, several well known algorithms for denoisingnatural images were

investigated and their performance was comparatively assessed. A new algorithm based

on the so called Tetrolet transform (a descendant of the Haarwavelet transform) was

developed. Its performance was shown to be competitive withor exceeding the

performance of other algorithms. In addition, it has been shown to enjoy the advantage of

implementation simplicity.

There are different types of noises that may corrupt a natural image in real life, such as

shot noise, amplification noise, quantization noise etc. However, only zero-mean additive

white Gaussian noise was considered because of it’s simplicity.

A major part of the thesis was devoted to the review, implementation and performance

assessment of published image denoising algorithms based on various techniques

including the Wavelet transform. The Wavelet transform andits characteristics were

studied. Multi resolution analysis (MRA) and Quadrature mirror filters (QMF) were

examined to understand their relation with the the Wavelet transform. Denoising

examples with 1D and 2D signals were presented. A one dimensional piece wise regular

signal, corrupted with white noise, was denoised by moving average, Wiener and Wavelet

methods, and their results were investigated. Similarly, the well known Lena image

corrupted with AWGN was denoised using the moving average, Wiener2 filter and

Wavelet methods. It was seen that the Wavelet methods yielded good results when

denoising both 1D and 2D signals. Effects of different Wavelet bases on the denoising

performance were examined. We also computed the histogram of the wavelet coefficients

of four natural images as examples. The obtained histogramsprovided valuable

84

information on the reasons for wavelets being a better choice for denoising natural images.

Different non-wavelet denoising algorithms such as Wienerfiltering, moving average,

median filtering and the non-local mean algorithm by Buades et al. [17] were studied.

Different wavelet based denoising algorithms such as universal hard and soft thresholding

methods, Sure Shrink method by Donoho and Johnstone [3], Bayes Shrink method by

Chang et al. [13], Linear MMSE estimator methods by Michak et al. [14] and the

Gaussian Scale Mixture method by Portilla et al. [16] were studied, implemented and

their performance comparatively assessed.

Wavelets have proved to be good for denoising of natural images because of their

energy compactness, sparseness and correlation properties. However, simple thresholding

methods are limited in their denoising performance. Advanced wavelet methods such as

the algorithm proposed by Portilla et al. [16] are too complex to be implemented in

hardware for real time applications. Non local averaging methods such as the one

proposed by Buades et al. [17] are very computationally intensive, and require large

on-chip storage.

We proposed a new approach to the denoising problem based on the Tetrolet transform

proposed by Jens Krommweh [21] for image compression. It is based on the Haar

wavelet transform, but adapts to image characteristics automatically. Inspired by this

idea, we came up with a simple Haar transform based denoisingalgorithm that works on

each 4x4 sub-block of an image independently. The proposed approach requires only

adders and shift registers. These properties make it a better choice for hardware

implementations. Matlab simulations show up to 2 dB better performance compared to

algorithms of similar complexity. Visual analysis also shows promising results. We

asked people to vote for the least noisy image among a group ofimages denoised using

several algorithms and collected statistics. Our method came in as second best after the

method by Portilla et al. [16]. Given the simplicity and non local nature of our

85

algorithm, it is better suited for real time hardware implementations.

In the proposed algorithm, we consider all the tetromino partitions. Determining the

criteria to select the best or few best tetromino partitionsamong all the possible candidates

can be the subject of future work. This way, the algorithm canbecome adaptive and adapt

itself to any given image. The Non-Local-Mean algorithm [17] concept can be applied to

select the best partition. While selecting the best partition for any given 4x4 block,

information from other denoised blocks can be used. One possibility is that we can add

weights to different tetromino partitions. We start with equal weights, but, as we progress

through the picture, we change these weights. We increase the weights for tetromino

partitions which we think are more probable. The simplest possibility is to increase the

weight of those partitions which are being picked up for the current 4x4 block. This way,

as we progress through the image, we give priority to the partitions which have already

occurred. The underlying concept behind this idea is the presence of repeatability in the

natural images. Taking the average of these repeated pixelsor patches will result in

denoising.

86

Bibliography

[1] Rafael C. Gonzalez and Richard E. Woods.Digital Image Processing. India: Dorling

Kindersley Pvt. Ltd., licensee of Pearson Education in South Asia, 2008, pp. 156, 311,

316-317.

[2] Wikipedia, “Image noise,” Internet: http://en.wikipedia.org/wiki/Imagenoise [Jan.

18, 2009].

[3] David L. Donoho and Iain M. Johnstone. “Adapting to Unknown Smoothness via

Wavelet Shrinkage.”Journal of the American Statistical Association, Vol. 90, No.

432, pp. 1200-1224, Dec. 1995.

[4] C. Sidney Burrus, Ramesh A. Gopinath, and Haitao Guo.Introduction to Wavelets

and Wavelet Transforms A Primer. New Jersey: Prentice-Hall Pub., 1998, p. 6.

[5] David L. Donoho. “De-noising by soft-thresholding.”IEEE Trans. on Information

Theory, Vol 41, No. 3, May 1995.

[6] David L. Donoho. “Unconditional bases are optimal basesfor data compression and

for statistical estimation.”Applied and Computational Harmonic Analysis, Vol. 1,

No. 1, pp. 100-115, Dec. 1993.

[7] Dane Mackenzie. “WAVELETS: Seeing The Forest and the Trees,” Internet:

http://www.beyonddiscovery.org/content/view.page.asp?I=1959, 2001 [May 6, 2010].

[8] Anonymous. “The Portal to Science, Engineering and Technology. Resonance

Publications, Inc.,” Internet: http://www.resonancepub.com/wavelets.htm [May 06,

2010].

87

[9] Stephane G. Mallat. “A Theory for Multiresolution Signal Decomposition: The

Wavelet Representation.”IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 11, No. 7, Jul. 1989.

[10] N. G. Kingsbury. “Complex wavelets for shift invariantanalysis and filtering of

signals.” Journal of Applied and Computational Harmonic Analysis, Vol. 10, No. 3,

pp. 234-253, May 2001.

[11] Dongwook Cho.Image Denoising Using Wavelet Transforms. Germany: VDM

Verlag Dr. Muller Aktiengesellschaft Co. 2008. p. 13.

[12] V. Balakrishnan, Nash Borges, and Luke Parchment. “Wavelet Denoising and Speech

Enhancement.” Research paper, Johns Hopkins University, Baltimore, MD, 2001

[13] S. Grace Chang, Bin YU, and Martin Vetterli. “Adaptive Wavelet Thresholding for

Image Denoising and Compression.”IEEE Transactions on Image Processing, Vol. 9,

No. 9, pp. 1532-1546, Sep. 2000.

[14] M. K. Michak, Igor Kozintsev, Kannan Ramchandran, and Pierre Moulin.

“Low-Complexity Image Denoising Based on Statistical Modeling of Wavelet

Coefficients.” IEEE Signal Processing Letters, Vol. 6, No. 12, pp. 300-302, Dec.

1999.

[15] Levent Sundur, and Ivan W. Selesnick. “Bivariate Shrinkage Functions for

Wavelet-Based Denoising Exploiting Interscale Dependency.” IEEE Transactions on

Signal Processing, Vol. 50, No. 11, pp. 2744-2756, Nov. 2002.

[16] Javier Portilla, Vasily Strela, Martin J. Wainwright,and Eero P. Simoncelli. “Image

Denoising Using Scale Mixtures of Gaussian in the Wavelet Domain.” IEEE

Transactions on Image Processing, Vol. 12, No. 11, pp. 1338-1351, Nov. 2003.

88

[17] A. Buades, B. Coll, and J. M. Morel. “A review of image denoising algorithms, with

a new one.”Multiscale Model. Simul., Vol. 4, No. 2, pp. 490-530, Jul. 2005.

[18] Jin Wang, Yanwen Guo, Yiting Ying, Yanli Liu, and Qunsheng Peng. “Fast

non-local Algorithm for Image Denoising.”IEEE International conference on Image

Processing, pp. 1429-1432, Oct. 2006.

[19] Mark Miller, and Nick Kingsbury. “Image Denoising Using Derotated Complex

Wavelet Coefficients.”IEEE Transactions on Image Processing, Vol. 17, No. 9, pp.

1500-1511, Sep. 2008.

[20] Anil K. Jain.Fundamentals of Digital Image Processing. India: Dorling Kindersley

Pvt. Ltd., licensees of Pearson Education in Sour Asia, 2008, pp. 298-314.

[21] Jens Krommweh. “Tetrolet Transform: A New Adaptive Haar Wavelet Algorithm

for Sparse Image Representation.” Research paper, Department of Mathematics,

University of Duisburg-Essen, Germany, 2009.

[22] “Matlab Pyre Tool Box,” Internet: http://www.cns.nyu.edu/∼eero/software.html

[Nov. 15, 2008].

[23] “Web form for denoising poll,” Internet:

http://spreadsheets.google.com/embeddedform?

formkey=dFdWQzNqQXJqVzF3UDd5QlJFRWlmdmc6MA [Feb. 23, 2010].

[24] “Web Poll Results,” Internet:

http://spreadsheets.google.com/oimg?key=0Ag6dOcwtG-

xRdFdWQzNqQXJqVzF3UDd5QlJFRWlmdmc&oid=6&v=1267473608612 [Mar. 30,

2010].

89

[25] “Portilla BLS-GSM matlab software,” Internet:

http://decsai.ugr.es/∼javier/denoise/software/index.htm [Mar. 15, 2009].

[26] “Rice Wavelet Tool Box,” Internet: http://www.dsp.rice.edu/software/rwt.shtml

[Nov. 15, 2008].

90

Appendix A

Tetrominoe Shapes

Tetrominoes are shapes joined by 4 equal sized squares such that they connect with

each other on at least one side. As shown in FigureA.1, there are five different shapes

called free tetrominoes. These are the shapes in the popularcomputer game “Tetris”.

There are 22 basic tiling methods to cover a 4x4 region with the free tetrominoes, as

shown in FigureA.2. Considering rotations and reflections there are totally 117 ways in

which a 4x4 region can be covered with tetrominoes. These areshown in

FiguresA.3, A.4, andA.5.

Figure A.1. Shapes of Free Tetrominoes

91

Figure A.2. 22 Different Basic Ways of Tetrolet Paritions for a 4x4 Block

92

Figure A.3. 117 Different Ways of Tetrolet Partitions for a 4x4 Block (1 to 29)

93

Figure A.4. 117 Different Ways of Tetrolet Partitions for a 4x4 Block (30 to 94)

94

Figure A.5. 117 Different Ways of Tetrolet Partitions for a 4x4 Block (95 to 117)

95

Appendix B

Matlab Code

B.1 Functions

1 function denoise_image = denoise_image(imn, options, ...

2 sigma, errtype, plot, im, printfname, dna)

3 %

4 % This program uses following third party programms.

5 % (1) Portilla BLS-GSM matlab software,

6 % http://decsai.ugr.es/ ¬javier/denoise/software/index.htm

7 %

8 % imn = noisy image

9 % options - structure array with fields 'name' & 'params'

10 % - 'name' field is the name of the method.

11 % - 'params' field is another structure with parameters

12 % related to method.

13 % Supported methods -

14 % visu : Do thresholding of wavelet coefficients based on uni versal

15 % threshold.

16 % (Reference: Unconditional bases are optimal bases for dat a

17 % compression and for statistical estimation ...

18 % by David L. Donoho,

19 % Applied and Computational Harmonic Analysis,

20 % 1(1):100-115, December 1993

21 % De-noising by soft-thresholding by David L. Donoho,

22 % IEEE Transactions on Information Theory,

23 % Vol. 41, No. 3, May 1995)

96

24 % : params:

25 % incd = [0|1] (1 means threshold LL band, default 0)

26 % type = [Hard|Soft] (default Soft)

27 % wnam = name of the wavelet (default db8)

28 % decl = number of decomposition levels (default 4)

29 %

30 % sure : Do thresholding of wavelet coefficients based on SUR E

31 % method.

32 % (Reference: Adapting to Unknown Smoothness via Wavelet

33 % Shrinkage by

34 % David L. Donoho and Iain M. Johnstone,

35 % Journal of the American Statistical Association,

36 % Vol. 90, No. 432 (Dec., 1995), pp. 1200-1224)

37 % : params:

38 % incd = [0|1] (1 means threshold LL band, default 0)

39 % wnam = name of the wavelet (default db8)

40 % decl = number of decomposition levels (default 4)

41 %

42 % bayes : Do thresholding of wavelet coefficients based on Ba yes

43 % method.

44 % (Reference:

45 % Adaptive Wavelet Thresholding for Image Denoising

46 % and Compression, by S. Grace Chang, Student Member,

47 % IEEE, Bin YU, Senior Member, IEEE,

48 % and Martin Vetterli, Fellow, IEEE,

49 % IEEE Transactions on Image Processing,

50 % Vol. 9, No. 9, September 2000)

51 % : params:

52 % incd = [0|1] (1 means threshold LL band, default 0)

53 % wnam = name of the wavelet (default db8)

54 % decl = number of decomposition levels (default 4)

97

55 %

56 % michak1 : Miachak Method 1

57 % (Reference: Low-Complexity Image Denoising Based on Stat istical

58 % Modeling of Wavelet Coefficients M. K, Michak,

59 % Igor Kozintsev, Kannan Ramchandran, Member, IEEE,

60 % and Pierre Moulin, Senior Member, IEEE

61 % [IEEE SIGNAL PROCESSING LETTERS, VOL. 6,

62 % NO. 12, DECEMBER 1999])

63 % : params:

64 % incd = [0|1] (1 means threshold LL band, default 0)

65 % wnam = name of the wavelet (default db8)

66 % decl = number of decomposition levels (default 4)

67 % wind = window size (2 * l+1) for neigboring pixels to

68 % consider (default 3)

69 %

70 % michak2 : Miachak Method 2

71 % (Reference: Low-Complexity Image Denoising Based on Stat istical

72 % Modeling of Wavelet Coefficients M. K, Michak,

73 % Igor Kozintsev, Kannan Ramchandran, Member, IEEE,

74 % and Pierre Moulin, Senior Member, IEEE

75 % [IEEE SIGNAL PROCESSING LETTERS, VOL. 6,

76 % NO. 12, DECEMBER 1999])

77 % : params:

78 % incd = [0|1] (1 means threshold LL band, default 0)

79 % wnam = name of the wavelet (default db8)

80 % decl = number of decomposition levels (default 4)

81 % wind = window size (2 * l+1) for neigboring pixels to

82 % consider (default 1)

83 %

84 % BlsGsm : Bayesian Least square method using Gaussian Scale Mixture

85 % (Reference: Image Denosing Using Scale Mixtures of Gaussi ans in

98

86 % the Wavelet Domain, Javier Portilla, Vasily Strela,

87 % Martin J. Wainwright, and Eero P. Simoncelli,

88 % IEEE Transactions on Image Processing, Vol. 12,

89 % No. 11, November 2003)

90 % : params:

91 % Nor = number of orientations (default 3, for X-Y separable

92 % wavelets it can be only be 3)

93 % repres1 = Type of pyramid (default 'uw' See help on

94 % "denoi_BLS_GSM" for possible choices)

95 % repres2 = Type of wavelet (default 'daub1', see help on

96 % "denoi_BLS_GSM" for posible choices)

97 % blkSize = nxn coefficient neighborhood of spatial neigbor s

98 % within the same subband, n must be odd)

99 % (default 3x3)

100 % parent = [1|0] 1 means include parent (default 0)

101 % boundary = [1|0] 1 means boundary mirror extension

102 % (default 1)

103 % covariance = [1|0] Full covariance matrix (1) or only

104 % diagonal elements (0) (default 1)

105 % optim = [1|0] Bayes Least Squares solution (1), or

106 % MAP-Wiener solution in two steps (0)

107 % Tetrom: Proposed tetrom based method

108 % Works good among algoritm that are not non-local mean type, in

109 % other words which are local to a particular region instead o f

110 % looking at whole picture.

111 % Other advantages are - eaiser to implement, adaptive and

112 % scalable in nature, Does not look beyond 4x4 region at a

113 % time so easily fits in other encoding/decoding algorithms .

114 % : params:

115 % T0 = Threshold value (default is universal threshold *

116 % 3/4)

99

117 % MaxC = Maximum Number of Tetrom Paritions that are consider ed

118 % decl = number of decomposition levels (default 1)

119 %

120 %

121 %

122 % Nlm : Non-Local mean algorithm (TBD)

123 %

124 % (Reference: A non-local algorithm for image denoising Bua des, A;

125 % Coll,B.; Morel,J-M.; [Computer Vision and Pattern Recogn ition,

126 % 2005. CVPR 2005, IEEE Computer Society Conference on,

127 % Volume 2, 20-25, June 2005, Pages: 60-65]

128 %

129 %

130 %

131 % optional parameters:

132 %

133 % errtype = 'a' -> determine absolute error

134 % = 'm' -> determine mean square error (default)

135 % = 's' -> determine SNR

136 % = 'p' -> determine PSNR

137 %

138 % plot = [1|0] : 1 plot, 0 no plot (default 0)

139 %

140 % sigma = noise variance, if null then derive from HH

141 % band using median

142 %

143 % im = original image required for error calculation

144 % if not given, them we will calculate the enerey

145 % in the difference (noisy - recovered)

146 % with referene to noise energy (sigma).

147 %

100

148 % Copyright (c) 2009 Manish K. Singh

149 %

150

151 if nargin < 2

152 display('imn and options argument are necessary, Please see help');

153 end

154

155 if nargin < 3

156 sigma = find_sigma(imn);

157 end

158

159 if nargin < 4

160 errtype = 'm' ;

161 plot = 0;

162 im = 'null' ;

163 end

164

165 if nargin < 7

166 printfname = 'null'

167 end

168

169 if nargin < 8

170 dna = 0;

171 end

172

173 type = 'null' ;

174

175 switch errtype

176 case 'm' , errname = 'MSE' ;

177 case 'p' , errname = 'PSNR' ;

178 case 'a' , errname = 'ABS' ;

101

179 case 's' , errname = 'SNR' ;

180 otherwise , display('Unknown method, see help');

181 end

182

183

184 % function returns list of errors for each method

185 denoise_image = [];

186

187 %% Find out how many methods

188 [t,NumMethods] = size(options);

189

190 % Plot coordinates

191 switch NumMethods

192 case 1, px = 1; py = 1;

193 case 2, px = 1; py = 1;

194 otherwise , px = 1; py = 1;

195 end

196

197 % Iterate through all the methods

198 wnam_old = 'null' ;

199 decl_old = 0;

200 figcnt = 0;

201

202 for method = 1:NumMethods

203 if (plot)

204 figcnt = figcnt + 1;

205 if (figcnt > 1)

206 figure;

207 figcnt = 1;

208 end

209 end

102

210

211 params = options(method).params;

212 switch lower(options(method).name)

213

214 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

215 %% Universal Threshold method

216 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

217 case 'visu'

218 % Parse the parameters

219 if (¬isfield(params, 'incd')), incd = 0;

220 else incd = params.incd; end

221 if (¬isfield(params, 'type')), type = 'soft' ;

222 else type = params.type; end

223 if (¬isfield(params, 'wnam')), wnam = 'db8' ;

224 else wnam = params.wnam; end

225 if (¬isfield(params, 'decl')), decl = 4;

226 else decl = params.decl; end

227

228 % decompose the image if necessary

229 if (¬strcmp(wnam_old,wnam) || decl_old 6= decl)

230 if (strcmp(wnam, 'tetr'))

231 [C,L,B] = tetrom2(imn,decl);

232 else

233 [C,L] = wavedec2(imn,decl,wnam);

234 end

235 wnam_old = wnam;

236 decl_old = decl;

237 end

238

239 % Wavelet thresholding

240 if (type == 'hard')

103

241 opt.type = 'visu_hard' ;

242 else

243 opt.type = 'visu_soft' ;

244 end

245 opt.incd = incd;

246 opt.sigma = sigma;

247 CT = perform_wavelet_thresholding(C,L,opt);

248 clear opt;

249

250 % Reconstruct the image

251 if (strcmp(wnam, 'tetr'))

252 im_hat = invtetrom2(CT,L,B);

253 else

254 im_hat = waverec2(CT,L,wnam);

255 end

256

257 % calculate error if original image is given

258 if (¬strcmp(im, 'null'))

259 err = calculate_error(im,im_hat,errtype);

260 end

261 denoise_image = [denoise_image; ...

262 collect_image_statistics(im,im_hat)];

263

264 % Plot the image

265 fname = strcat(printfname, '_' , ...

266 lower(options(method).name), '_' ,type);

267 if (plot)

268 subplot(px,py,figcnt); image(im_hat); ...

269 axis image; axis off; colormap gray(256);

270 title([wnam, ' Universal thresholding (' , type, ...

271 ') with ' ,errname, ' = ' num2str(err)]);

104

272 print('-deps' ,fname)

273 end

274

275 if (dna)

276 t = strcat(fname, ' method_noise');

277 t

278 method_noise(im, im_hat, t);

279 end

280

281

282

283 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

284 %% sure Threshold method

285 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

286 case 'sure'

287 % Parse the parameters

288 if (¬isfield(params, 'incd')), incd = 0;

289 else incd = params.incd; end

290 if (¬isfield(params, 'wnam')), wnam = 'db8' ;

291 else wnam = params.wnam; end

292 if (¬isfield(params, 'decl')), decl = 4;

293 else decl = params.decl; end

294

295 % decompose the image if necessary

296 if (¬strcmp(wnam_old,wnam) || decl_old 6= decl)

297 if (strcmp(wnam, 'tetr'))

298 [C,L,B] = tetrom2(imn,decl);

299 else

300 [C,L] = wavedec2(imn,decl,wnam);

301 end

302 wnam_old = wnam;

105

303 decl_old = decl;

304 end

305

306 % Wavelet thresholding

307 opt.type = 'sure' ;

308 opt.incd = incd;

309 opt.sigma = sigma;

310 CT = perform_wavelet_thresholding(C,L,opt);

311 clear opt;

312

313 % Reconstruct the image

314 if (strcmp(wnam, 'tetr'))

315 im_hat = invtetrom2(CT,L,B);

316 else

317 im_hat = waverec2(CT,L,wnam);

318 end

319

320 % calculate error if original image is given

321 if (¬strcmp(im, 'null'))

322 err = calculate_error(im,im_hat,errtype);

323 end

324 denoise_image = [denoise_image; ...

325 collect_image_statistics(im,im_hat)];

326

327 % Plot the image

328 fname = strcat(printfname, '_' , ...

329 lower(options(method).name), ...

330 '_' ,type);

331 if (plot)

332 subplot(px,py,figcnt); image(im_hat);

333 axis image; axis off; colormap gray(256);

106

334 title([wnam, ' SURE thresholding with ' , ...

335 errname, ' = ' num2str(err)]);

336 print('-deps' ,fname)

337 end

338

339 if (dna)

340 t = strcat(fname, 'method_noise');

341 method_noise(im, im_hat, t);

342 end

343

344

345 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

346 %% Bayes Threshold method

347 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

348 case 'bayes'

349 % Parse the parameters

350 if (¬isfield(params, 'incd')), incd = 0;

351 else incd = params.incd; end

352 if (¬isfield(params, 'wnam')), wnam = 'db8' ;

353 else wnam = params.wnam; end

354 if (¬isfield(params, 'decl')), decl = 4;

355 else decl = params.decl; end

356

357 % decompose the image if necessary

358 if (¬strcmp(wnam_old,wnam) || decl_old 6= decl)

359 if (strcmp(wnam, 'tetr'))

360 [C,L,B] = tetrom2(imn,decl);

361 else

362 [C,L] = wavedec2(imn,decl,wnam);

363 end

364 wnam_old = wnam;

107

365 decl_old = decl;

366 end

367

368 % Wavelet thresholding

369 opt.type = 'bayes' ;

370 opt.incd = incd;

371 opt.sigma = sigma;

372 CT = perform_wavelet_thresholding(C,L,opt);

373 clear opt;

374

375 % Reconstruct the image

376 if (strcmp(wnam, 'tetr'))

377 im_hat = invtetrom2(CT,L,B);

378 else

379 im_hat = waverec2(CT,L,wnam);

380 end

381

382 % calculate error if original image is given

383 if (¬strcmp(im, 'null'))

384 err = calculate_error(im,im_hat,errtype);

385 end

386 denoise_image = [denoise_image; ...

387 collect_image_statistics(im,im_hat)];

388

389 % Plot the image

390 fname = strcat(printfname, '_' , ...

391 lower(options(method).name), ...

392 '_' ,type);

393

394 if (plot)

395 subplot(px,py,figcnt); image(im_hat);

108

396 axis image; axis off; colormap gray(256);

397 title([wnam, ' Bayes thresholding with ' , ...

398 errname, ' = ' num2str(err)]);

399 print('-deps' ,fname)

400 end

401

402 if (dna)

403 t = strcat(fname, 'method_noise');

404 method_noise(im, im_hat, t);

405 end

406

407 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

408 %% michak1 method

409 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

410 case 'michak1'

411 % Parse the parameters

412 if (¬isfield(params, 'incd')), incd = 0;

413 else incd = params.incd; end

414 if (¬isfield(params, 'wnam')), wnam = 'db8' ;

415 else wnam = params.wnam; end

416 if (¬isfield(params, 'decl')), decl = 4;

417 else decl = params.decl; end

418 if (¬isfield(params, 'wind')), wind = 3;

419 else wind = params.wind; end

420

421 % decompose the image if necessary

422 if (¬strcmp(wnam_old,wnam) || decl_old 6= decl)

423 if (strcmp(wnam, 'tetr'))

424 [C,L,B] = tetrom2(imn,decl);

425 else

426 [C,L] = wavedec2(imn,decl,wnam);

109

427 end

428 wnam_old = wnam;

429 decl_old = decl;

430 end

431

432 % miachak1 shrinkage

433 opt.type = 'michak_mmse_1' ;

434 opt.l = wind;

435 opt.sigma = sigma;

436 CT = perform_wavelet_shrinkage(C,L,opt);

437 clear opt;

438

439 % Reconstruct the image

440 if (strcmp(wnam, 'tetr'))

441 im_hat = invtetrom2(CT,L,B);

442 else

443 im_hat = waverec2(CT,L,wnam);

444 end

445

446 % calculate error if original image is given

447 if (¬strcmp(im, 'null'))

448 err = calculate_error(im,im_hat,errtype);

449 end

450 denoise_image = [denoise_image; ...

451 collect_image_statistics(im,im_hat)];

452

453 % Plot the image

454 fname = strcat(printfname, '_' , ...

455 lower(options(method).name), ...

456 '_' ,type);

457

110

458 if (plot)

459 subplot(px,py,figcnt); image(im_hat);

460 axis image; axis off; colormap gray(256);

461 title([wnam, ' Michak Shrinkage ' , ...

462 lower(options(method).name), ...

463 ' with ' ,errname, ' = ' num2str(err)]);

464 print('-deps' ,fname)

465 end

466

467 if (dna)

468 t = strcat(fname, 'method_noise');

469 method_noise(im, im_hat, t);

470 end

471

472 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

473 case 'michak2'

474 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

475 % Parse the parameters

476 if (¬isfield(params, 'incd')), incd = 0;

477 else incd = params.incd; end

478 if (¬isfield(params, 'wnam')), wnam = 'db8' ;

479 else wnam = params.wnam; end

480 if (¬isfield(params, 'decl')), decl = 4;

481 else decl = params.decl; end

482 if (¬isfield(params, 'wind')), wind = 1;

483 else wind = params.wind; end

484

485 % decompose the image if necessary

486 if (¬strcmp(wnam_old,wnam) || decl_old 6= decl)

487 if (strcmp(wnam, 'tetr'))

488 [C,L,B] = tetrom2(imn,decl);

111

489 else

490 [C,L] = wavedec2(imn,decl,wnam);

491 end

492 wnam_old = wnam;

493 decl_old = decl;

494 end

495

496 % miachak1 shrinkage

497 opt.type = 'michak_mmse_1' ;

498 opt.l = wind;

499 opt.sigma = sigma;

500 CT = perform_wavelet_shrinkage(C,L,opt);

501 clear opt;

502

503 % Reconstruct the image

504 if (strcmp(wnam, 'tetr'))

505 im_hat = invtetrom2(CT,L,B);

506 else

507 im_hat = waverec2(CT,L,wnam);

508 end

509

510 % calculate error if original image is given

511 if (¬strcmp(im, 'null'))

512 err = calculate_error(im,im_hat,errtype);

513 end

514 denoise_image = [denoise_image; ...

515 collect_image_statistics(im,im_hat)];

516

517 % Plot the image

518 fname = strcat(printfname, '_' , ...

519 lower(options(method).name), '_' ...

112

520 ,type);

521

522 if (plot)

523 subplot(px,py,figcnt); image(im_hat);

524 axis image; axis off; colormap gray(256);

525 title([wnam, ' Michak Shrinkage ' ,lower(options(method).name), ...

526 ' with ' ,errname, ' = ' num2str(err)]);

527 print('-deps' ,fname)

528 end

529

530 if (dna)

531 t = strcat(fname, 'method_noise');

532 method_noise(im, im_hat, t);

533 end

534

535 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

536 %% Tetrom

537 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

538 case 'tetrom'

539 [m,n] = size(imn);

540 % Parse the parameters

541 if (¬isfield(params, 'T0')),

542 T0 = sqrt(2 * log(m * n)) * sigma * 0.68;

543 else

544 T0 = params.T0;

545 end

546 if (¬isfield(params, 'MaxC')),

547 MaxC = 117;

548 else

549 MaxC = params.MaxC;

550 end

113

551 if (¬isfield(params, 'decl')),

552 dec = 1;

553 else

554 decl = params.decl;

555 end

556 if (¬isfield(params, 'wnam')),

557 wnam = 'haar' ;

558 else

559 wnam = params.wnam;

560 end

561

562 % Form option for perform_tetrom_denoising function

563 opt.L = decl;

564 opt.PrintStatistics = 0;

565 opt.PrintStatFname = 'none' ;

566 opt.sigma = sigma;

567 opt.T = T0;

568

569 %% Now do tetrom based denoising

570 i_hat_sum = zeros(n);

571 for j=1:117

572 % opt.TilingGroup = j;

573 opt.Tiling = j;

574 % call the denoise function (tetrom)

575 [f c_tetrom] = perform_tetrom_denoising(imn,opt,im);

576 i_hat_sum = i_hat_sum+f;

577 end

578 im_hat = i_hat_sum./j;

579 clear i_hat_sum;

580 err_0 = calculate_error(im,im_hat,errtype);

581

114

582 clear opt;

583 [C,L] = wavedec2(im_hat,1, 'db3');

584 opt.sigma = sigma;

585 thr = sqrt(2 * log(length(C))) * sigma * 1/8;

586 CT = C.* (abs(C) > thr);

587 clear opt;

588 im_hat = waverec2(CT,L, 'db3');

589

590 % calculate error if original image is given

591 if (¬strcmp(im, 'null'))

592 err = calculate_error(im,im_hat,errtype);

593 end

594 denoise_image = [denoise_image; ...

595 collect_image_statistics(im,im_hat)];

596

597 % Plot the image

598 fname = strcat(printfname, '_' , ...

599 lower(options(method).name), ...

600 '_' ,type);

601

602 if (plot)

603 subplot(px,py,figcnt); image(im_hat);

604 axis image; axis off; colormap gray(256);

605 title([wnam, ' Tetrom thresholding with ' ,errname, ...

606 ' = ' num2str(err), ' error 1 = ' , num2str(err_0)]);

607 print('-deps' ,fname)

608 end

609

610 if (dna)

611 t = strcat(fname, 'method_noise');

612 method_noise(im, im_hat, t);

115

613 end

614

615

616

617 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

618 %% Redundant using Pyre software

619 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

620 case 'redun'

621 [m,n] = size(imn);

622 if (¬isfield(params, 'wnam')), wnam = 'haar' ;

623 else wnam = params.wnam; end

624 if (¬isfield(params, 'decl')), decl = 4;

625 else decl = params.decl; end

626 if (¬isfield(params, 'vm')), vm = 1;

627 else vm = params.vm ; end

628 if (¬isfield(params, 'T0')),T0 = sqrt(2 * log(m * n)) * sigma * 0.68;

629 else T0 = params.T0; end

630

631 opt.wavelet_type = wnam;

632 opt.wavelet_vm = vm;

633 Jmin = log2(m)-decl;

634 opt.ti = 1;

635

636 y = perform_wavelet_transform(imn,Jmin,+1,opt);

637 y = y. * (abs(y) > T0);

638 im_hat = perform_wavelet_transform(y,Jmin,-1,opt);

639 clear y;

640

641 % calculate error if original image is given

642 if (¬strcmp(im, 'null'))

643 err = calculate_error(im,im_hat,errtype);

116

644 end

645 denoise_image = [denoise_image; ...

646 collect_image_statistics(im,im_hat)];

647

648 % Plot the image

649 fname = strcat(printfname, '_' , ...

650 lower(options(method).name), ...

651 '_' ,type);

652

653 if (plot)

654 subplot(px,py,figcnt); image(im_hat);

655 axis image; axis off; colormap gray(256);

656 title([wnam, ' Redundant thresholding with ' ,errname, ' = ' ...

657 num2str(err)]);

658 print('-deps' ,fname)

659 end

660

661 if (dna)

662 t = strcat(fname, 'method_noise');

663 method_noise(im, im_hat, t);

664 end

665

666

667 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

668 %% BlsGsm

669 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

670 case 'blsgsm'

671 % Parse the parameters

672 if (¬isfield(params, 'Nor')), Nor = 3;

673 else Nor = params.Nor; end

674 if (¬isfield(params, 'repres1')), repres1 = 'uw' ;

117

675 else repres1 = params.repres1; end

676 if (¬isfield(params, 'repres2')), repres2 = 'daub1' ;

677 else repres2 = params.repres2; end

678 if (¬isfield(params, 'blkSize')), blkSize = [3 3];

679 else blkSize = params.blkSize; end

680 if (¬isfield(params, 'parent')), parent = 0;

681 else parent = params.parent; end

682 if (¬isfield(params, 'boundary')), boundary = 1;

683 else boundary = params.boundary; end

684 if (¬isfield(params, 'covariance')), covariance = 1;

685 else covariance = params.covariance; end

686 if (¬isfield(params, 'optim')), optim = 0;

687 else optim = params.optim; end

688

689 % Use of software from portilla

690 [Ny,Nx] = size(imn);

691 PS = ones(size(imn));

692 if (¬isfield(params, 'Nsc')), Nsc = 1;

693 else Nsc = params.Nsc; end

694 seed = 0;

695

696 tic; im_hat = denoi_BLS_GSM(imn, sigma, PS, blkSize, paren t, ...

697 boundary, Nsc, Nor, covariance, ...

698 optim, repres1, repres2, seed); toc

699 % calculate error if original image is given

700 if (¬strcmp(im, 'null'))

701 err = calculate_error(im,im_hat,errtype);

702 end

703 denoise_image = [denoise_image; ...

704 collect_image_statistics(im,im_hat)];

705

118

706 % Plot the image

707 fname = strcat(printfname, '_' , ...

708 lower(options(method).name));

709 if (plot)

710 subplot(px,py,figcnt); image(im_hat);

711 axis image; axis off; colormap gray(256);

712 title(['BLS GSM with ' ,errname, ' = ' num2str(err)]);

713 print('-deps' ,fname)

714 end

715

716 if (dna)

717 t = strcat(fname, '_method_noise');

718 method_noise(im, im_hat, t);

719 end

720

721 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

722 otherwise , display('Unknown method, see help');

723 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

724 end

725 end

1 function CT = perform_wavelet_thresholding(C,L,options)

2 %

3 % perform_wavelet_thresholding ->

4 % Do thresholding of wavelet coefficients.

5 %

6 % CT = perform_wavelet_thresholding(C,L,options);

7 %

8 % C,L is the result of wavedec2 function in matlab.

119

9 % CT (result) can be directly used in waverec2 function in mat lab.

10 %

11 % options.type :

12 % visu_hard : universal hard thresholding (default)

13 % visu_soft : universal soft thresholding

14 % sure : Sure thresholding method

15 % bayes : Bayes thresolding method

16 %

17 % options.incd :

18 % 0 : Don't threshold average coefficients (default)

19 % 1 : Threhold average ceofficients

20 % options.sigma :

21 % v : noise variance (default is 1)

22 %

23 % Copyright (c) 2009 Manish K. Singh

24

25

26 %%% Parse options structure

27 options.null = 0;

28

29 if isfield(options, 'type')

30 type = options.type;

31 else

32 type = 'visu_hard' ;

33 end

34

35 if isfield(options, 'incd')

36 incd = options.incd;

37 else

38 incd = 0;

39 end

120

40

41 if isfield(options, 'sigma')

42 sigma = options.sigma;

43 else

44 sigma = 1;

45 end

46

47

48 switch lower(type)

49

50 case 'visu_hard'

51 CT = visu_threshold(C,L,incd, 'Hard' ,sigma);

52 case 'visu_soft'

53 CT = visu_threshold(C,L,incd, 'Soft' ,sigma);

54 case 'sure'

55 CT = sure_threshold(C,L,incd,sigma);

56 case 'bayes'

57 CT = bayes_threshold(C,L,incd,sigma);

58 otherwise

59 error(['Unknown option type = ' ,type]);

60 end

1 function CT = perform_wavelet_shrinkage(C,L,options)

2 %

3 % perform_wavelet_shrinkage ->

4 % X = y.C where y is the shrinkage factor.

5 %

6 % Usage:

7 % CT = perform_wavelet_shrinkage(C,L,options);

121

8 %

9 % C,L is the result of wavedec2 function in matlab.

10 % CT (result) can be directly used in waverec2 function in mat lab.

11 %

12 % options.type :

13 % michak_mmse_1 : Michak method 1 (relevant arguments: opti ons.l)

14 % : (default method)

15 % michak_mmse_2 : Michak method 2 (relevant arguments: opti ons.l)

16 %

17 % (Reference: Low-Complexity Image Denoising Based on

18 % Statistical Modeling of Wavelet Coefficients M. K,

19 % Michak, Igor Kozintsev, Kannan Ramchandran, Member,

20 % IEEE, and Pierre Moulin, Senior Member,

21 % IEEE [IEEE SIGNAL PROCESSING LETTERS, VOL. 6, NO. 12, DECEMBER 1999]

22 %

23 % options.l: window size to estimate local parameters

24 % (default 1 = 2 * l+1)

25 % options.sigma :

26 % v : noise variance (default is 1)

27 % options.incd : 0 (don't include average coefficients, def ault)

28 % 1 (include average coefficients)

29 %

30 % Copyright (c) 2009 Manish K. Singh

31

32

33 %%% Parse options structure

34 options.null = 0;

35

36 if isfield(options, 'type')

37 type = options.type;

38 else

122

39 type = 'michak_mmse_1' ;

40 end

41

42 if isfield(options, 'sigma')

43 sigma = options.sigma;

44 else

45 sigma = 1;

46 end

47

48 if isfield(options, 'l')

49 l = options.l;

50 else

51 l = 3;

52 end

53

54 if isfield(options, 'incd')

55 incd = options.incd;

56 else

57 incd = 0;

58 end

59

60

61 switch lower(type)

62

63 case 'michak_mmse_1'

64 CT = michak_mmse_shrinkage(C,L,incd,sigma,l);

65

66 case 'michak_mmse_2'

67 CT = michak_mmse_shrinkage(C,L,incd,sigma,l, 'method2');

68

69 otherwise

123

70 error(['Unknown option type = ' ,type]);

71 end

1 function [f coeff] = perform_tetrom_denoising(I,options, Iclean)

2 %

3 % I -> noisy image

4 % f -> clean image (used in method p1; see below)

5 % options:

6 % method -> 'L1', 'L2', 'T1','T2','s1','c1' (default 'l1')

7 % These methods are criterians to select best tetrom partiti ons.

8 % 'l1' -> Minimize Sum of absolute values of detailed coeffic ients

9 % 'l2' -> Minimize Energy in detailed coefficients

10 % 't1' -> Maximize Number of detailed coefficients greater t han

11 % given threshold (T)

12 % 't2' -> Zero out detailed coefficients less than T, and then

13 % maximise sum energy in the coefficients

14 % 's1' -> Minimize Standard Deviation of I

15 % 'c1' -> Maximize score = var * coeff_var + abs(I) * coeff_abs +

16 % max(abs(I)) * coeff_max,

17 % where var_c + var_i + var_m = 1

18 % 'p1' -> Minimize mean squre error given clean image

19 % T -> threshold

20 % L -> Number of decompositions

21

22 sigma = 10;

23

24 if nargin < 2

25 options.method = 'T1'

26 options.T = 50;

124

27 end

28

29 if ¬isfield(options, 'method')

30 options.method = 'L1' ;

31 end

32

33 if nargin < 3

34 Iclean = I;

35 end

36

37 if isfield(options, 'T')

38 T = options.T;

39 end

40

41 if isfield(options, 'L')

42 L = options.L;

43 end

44

45 PrintStatistics = 0;

46 if isfield(options, 'PrintStatistics')

47 PrintStatistics = options.PrintStatistics;

48 PrintStatFname = options.PrintStatFname;

49 end

50

51 if (PrintStatistics)

52 FidStat = fopen(PrintStatFname, 'a');

53 fprintf(FidStat, '%s %s %s %s %s %s %s %s %s', ...

54 ['blk :' , 'TetromNo :' , 'mean :' , 'var :' , 'mode :' , ...

55 'max :' , 'min :' , 'absI :' , 'absI2 :']);

56 else

57 FidStat = 'null' ;

125

58 end

59

60 % Get the dimensions

61 [m n] = size(I);

62

63 % Make sure m, and n are multiple of 4

64 if (mod(m,4))

65 error('Picture size has to be multiple of 4');

66 end

67

68 if (mod(n,4))

69 error('Picture size has to be multiple of 4');

70 end

71

72 %% TBD (Check for valid L)

73

74 ws = 4; %% window size

75

76 %%

77 % Do adaptive Haar on 4x4 window.

78 %%

79

80 TetromCoeff = zeros(m,n);

81 TetromTiling = [];

82

83 % We start with full Image, treated as coefficients

84 I_t = I;

85 I_tclean = Iclean;

86 BlkNo = 1;

87 MinEnergy = 2ˆ32-1;

88 MaxEnergy = 0;

126

89 for dec=1:L

90 TilingInfo = [];

91 [a b] = size(I_t);

92 TetromCoeffA = zeros(a/2,b/2);

93 TetromCoeffH = zeros(a/2,b/2);

94 TetromCoeffV = zeros(a/2,b/2);

95 TetromCoeffD = zeros(a/2,b/2);

96 ridx = 1;

97 cidx = 1;

98 for r=1:ws:a

99 for c=1:ws:b

100 I4x4 = I_t(r:r+ws-1,c:c+ws-1);

101 Iclean4x4 = I_tclean(r:r+ws-1,c:c+ws-1);

102 if isfield(options, 'Tiling')

103 BestTile = options.Tiling;

104 C4x4 = TetroletXform4x4(I4x4,options.Tiling);

105 % c4x4_temp = C4x4;

106 % c4x4_temp(1:2,1:2) = zeros(2);

107 % EnergyInDetails = sum(c4x4_temp.ˆ2);

108 % if EnergyInDetails > MaxEnergy

109 % MaxEnergy = EnergyInDetails;

110 % end

111 % if EnergyInDetails < MinEnergy

112 % MinEnergy = EnergyInDetails;

113 % end

114 % AverageEnergy = (MaxEnergy + MinEnergy)/2;

115 % EnergyThreshold_0 = (MinEnergy + AverageEnergy)/2;

116 % EnergyThreshold_1 = (MaxEnergy + AverageEnergy)/2;

117 % if EnergyInDetails > EnergyThreshold_1

118 % T = options.T * 5/4;

119 % elseif EnergyInDetails < EnergyThreshold_0

127

120 % T = options.T/2;

121 % else

122 % T = options.T * 3/4;

123 % end

124 % T = find_sure_thres(c4x4_temp(:),sigma);

125 % T = options.T;

126 % c4x4_temp = SoftThresh(C4x4,T);

127 % c4x4_temp = c4x4_temp. * (abs(c4x4_temp) > T);

128

129 % c4x4_temp(1:2,1:2) = C4x4(1:2,1:2);

130 % C4x4 = c4x4_temp;

131 elseif isfield(options, 'TilingGroup')

132 switch options.TilingGroup

133 case 1, Start=1; End=1;

134 case 2, Start=2; End=3;

135 case 3, Start=4; End=5;

136 case 4, Start=6; End=7;

137 case 5, Start=8; End=9;

138 case 6, Start=10; End=13;

139 case 7, Start=14; End=17;

140 case 8, Start=18; End=21;

141 case 9, Start=22; End=25;

142 case 10, Start=26; End=29;

143 case 11, Start=30; End=33;

144 case 12, Start=38; End=45;

145 case 13, Start=46; End=53;

146 case 14, Start=54; End=61;

147 case 15, Start=62; End=69;

148 case 16, Start=70; End=77;

149 case 17, Start=78; End=85;

150 case 18, Start=86; End=93;

128

151 case 19, Start=94; End=101;

152 case 20, Start=102; End=109;

153 case 21, Start=110; End=117;

154 end

155 options.Start=Start;

156 options.End = End;

157 [C4x4 BestTile] = GetBestTetromCoeff(I4x4,options, ...

158 Iclean4x4, PrintStatistics, FidStat);

159 else

160 if (PrintStatistics)

161 [meanV varV modeV maxV minV absIV ...

162 absI2V] = Get4x4BlockStat(I4x4);

163 fprintf(FidStat, '%d %d %f %f %f %f %f %f %f\n' , ...

164 [BlkNo 0 meanV varV modeV maxV minV absIV absI2V]);

165 end

166 [C4x4 BestTile] = GetBestTetromCoeff(I4x4,options, ...

167 Iclean4x4, ...

168 PrintStatistics, FidStat);

169 if (PrintStatistics)

170 [meanV varV modeV maxV minV absIV ...

171 absI2V] = Get4x4BlockStat(C4x4);

172 fprintf(FidStat, '%d %d %f %f %f %f %f %f %f\n' , ...

173 [BlkNo, BestTile, meanV varV modeV maxV minV absIV absI2V]) ;

174 BlkNo = BlkNo + 1;

175 end

176 end

177 TetromCoeffA(ridx:ridx+1,cidx:cidx+1) = C4x4(1:2,1:2) ;

178 TetromCoeffH(ridx:ridx+1,cidx:cidx+1) = C4x4(1:2,3:4) ;

179 TetromCoeffV(ridx:ridx+1,cidx:cidx+1) = C4x4(3:4,1:2) ;

180 TetromCoeffD(ridx:ridx+1,cidx:cidx+1) = C4x4(3:4,3:4) ;

181 TilingInfo = [TilingInfo,BestTile];

129

182 cidx = cidx+2;

183 end

184 ridx = ridx + 2;

185 cidx = 1;

186 end

187 TetromCoeff(1:a/2,1:b/2) = TetromCoeffA;

188 TetromCoeff(1:a/2,b/2+1:b) = TetromCoeffH;

189 TetromCoeff(a/2+1:a,1:b/2) = TetromCoeffV;

190 TetromCoeff(a/2+1:a,b/2+1:b) = TetromCoeffD;

191 TetromTiling = [TilingInfo,TetromTiling];

192 I_t = TetromCoeffA;

193 I_tclean = zeros(a/2,b/2); %% TBD

194 end

195

196 clear I_t;

197 clear I_tclean;

198

199 coeff = TetromCoeff;

200

201 %%% plot best tiling for now

202 %figure

203 %x = 1:length(TetromTiling);

204 %plot(x,TetromTiling,'r+'); title('Teterom Tiling');

205

206 %%

207 %% Thresholding

208 %%

209

210 % start from highest level

211 a = m/2ˆ(L-1);

212 b = n/2ˆ(L-1);

130

213 TetromCoeffA = TetromCoeff(1:a/2,1:b/2);

214

215 %TetromCoeffA = TetromCoeffA. * (abs(TetromCoeffA) > T/16);

216

217 for dec=1:L

218 % figure

219 TetromCoeffH = TetromCoeff(1:a/2,b/2+1:b);

220 TetromCoeffV = TetromCoeff(a/2+1:a,1:b/2);

221 TetromCoeffD = TetromCoeff(a/2+1:a,b/2+1:b);

222

223 % NumCoeffsGtT = sum((abs(TetromCoeffH(:)) > 0));

224 % subplot(712); plot(TetromCoeffH(:)); ...

225 % title(['Tetrominos coefficients H (Level= ', num2str(de c), ') ...

226 % Coeff. Count = ', num2str(NumCoeffsGtT)]);

227

228 % NumCoeffsGtT = sum((abs(TetromCoeffV(:)) > 0));

229 % subplot(714); plot(TetromCoeffV(:)); ...

230 % title(['Tetrominos coefficients V (Level= ', num2str(de c), ')...

231 % Coeff. Count = ', num2str(NumCoeffsGtT)]);

232

233 % NumCoeffsGtT = sum((abs(TetromCoeffD(:)) > 0));

234 % subplot(716); plot(TetromCoeffD(:));

235 % title(['Tetrominos coefficients D (Level= ', num2str(de c), ')...

236 % Coeff. Count = ', num2str(NumCoeffsGtT)]);

237

238 TetromCoeffH = TetromCoeffH. * (abs(TetromCoeffH) > (T/2ˆ(dec-dec)));

239 TetromCoeffV = TetromCoeffV. * (abs(TetromCoeffV) > (T/2ˆ(dec-dec)));

240 TetromCoeffD = TetromCoeffD. * (abs(TetromCoeffD) > (T/2ˆ(dec-dec)));

241

242 TetromCoeff(1:a/2,b/2+1:b) = TetromCoeffH;

243 TetromCoeff(a/2+1:a,1:b/2) = TetromCoeffV;

131

244 TetromCoeff(a/2+1:a,b/2+1:b) = TetromCoeffD;

245

246 % NumCoeffsGtT = sum((abs(TetromCoeffA(:)) > 0));

247 % subplot(711); plot(TetromCoeffA(:));

248 % title(['Tetrominos coefficients A ', num2str(NumCoeffs GtT)]);

249

250 % NumCoeffsGtT = sum((abs(TetromCoeffH(:)) > T));

251 % subplot(713); plot(TetromCoeffH(:));

252 % title(['Tetrominos coefficients thresholded H (Level= ' , ...

253 % num2str(dec), ') Coeff. Count = ', num2str(NumCoeffsGtT)]);

254

255 % NumCoeffsGtT = sum((abs(TetromCoeffV(:)) > T));

256 % subplot(715); plot(TetromCoeffV(:));

257 % title(['Tetrominos coefficients thresholded V (Level= ' , ...

258 % num2str(dec), ') Coeff. Count = ', num2str(NumCoeffsGtT)]);

259

260 % NumCoeffsGtT = sum((abs(TetromCoeffD(:)) > T));

261 % subplot(717); plot(TetromCoeffD(:));

262 % title(['Tetrominos coefficients thresholded D (Level= ' , ...

263 % num2str(dec), ') Coeff. Count = ', num2str(NumCoeffsGtT)]);

264

265 a = a* 2;

266 b = b* 2;

267 end

268

269 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

270 %%% Inverse transform

271 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

272

273 f = zeros(m,n);

274 i = 1;

132

275

276 % start from highest level

277 a = m/2ˆ(L-1);

278 b = n/2ˆ(L-1);

279 f = TetromCoeff;

280

281 for dec=1:L

282 ridx = 1;

283 cidx = 1;

284 t = zeros(a,b);

285

286 TetromCoeffA = f(1:a/2,1:b/2);

287 TetromCoeffH = f(1:a/2,b/2+1:b);

288 TetromCoeffV = f(a/2+1:a,1:b/2);

289 TetromCoeffD = f(a/2+1:a,b/2+1:b);

290

291 for r=1:ws:a

292 for c=1:ws:b

293 I4x4 = zeros(4);

294 I4x4(1:2,1:2) = TetromCoeffA(ridx:ridx+1,cidx:cidx+1) ;

295 I4x4(1:2,3:4) = TetromCoeffH(ridx:ridx+1,cidx:cidx+1) ;

296 I4x4(3:4,1:2) = TetromCoeffV(ridx:ridx+1,cidx:cidx+1) ;

297 I4x4(3:4,3:4) = TetromCoeffD(ridx:ridx+1,cidx:cidx+1) ;

298 t(r:r+ws-1,c:c+ws-1)=InvTetroletXform4x4(I4x4,Tetro mTiling(i));

299 i = i+1;

300 cidx=cidx+2;

301 end

302 ridx=ridx+2;

303 cidx = 1;

304 end

305 % update Tetrom Coefficients

133

306 f(1:a,1:b) = t;

307 a = a* 2;

308 b = b* 2;

309 end

310

311 if (PrintStatistics)

312 fclose(FidStat)

313 end

1 function CT = visu_threshold(C,L,incd,type,sigma)

2

3 % visu_threshold -> Do thresholding of wavelet coefficient s based

4 % on universal threshold

5 % -> Reference: Donoho papers,

6 % It also uses functions HardThresh and SoftThresh

7 % from Wavelab.

8 %

9 % CT = visu_threshold(C,L,incd,type);

10 %

11 % C,L is the result of wavedec2 function in matlab.

12 % CT (result) can be directly used in waverec2 function in mat lab.

13 %

14 % type :

15 % 'hard' : hard threshold method

16 % 'soft' : soft threshold method

17

18 % incd :

19 % 0 : Don't threshold average coefficients (default)

20 % 1 : Threhold average ceofficients

134

21 %

22 % Copyright (c) 2009 Manish K. Singh

23

24

25 CT = [];

26 thr = sqrt(2 * log(length(C))) * sigma;

27

28 %% Reduce the soft threshold,

29 %% because generally threshold is too large.

30 %%

31 if strcmp(type, 'Soft'),

32 thr = thr * 2/8;

33 end

34

35 thr=thr * 3/4

36

37 if incd == 0

38 mn = L(1,:); m=mn(1); n=mn(2);

39 cD = C(m* n+1: end);

40 if strcmp(type, 'Hard'),

41 CT = [C(1:m * n),HardThresh(cD,thr)];

42 else

43 CT = [C(1:m * n),SoftThresh(cD,thr)];

44 end

45 else

46 if strcmp(type, 'Hard'),

47 CT = HardThresh(C,thr);

48 else

49 CT = SoftThresh(C,thr);

50 end

51 end

135

1 function thre = BayesThres(y,sigma);

2 %

3 % Estimate bayes threshold as

4 %

5 % T = sigmaNˆ2/sigmaS

6 %

7 % Reference:

8 % Adaptive Wavelet Thresholding for image denoising and com pression

9 % By S. Grace Chang etc.

10 % sigmaS = sqrt(max((sigmaYˆ2 - sigmaNˆ2),0))

11 % sigmaY = 1/N(sum(Yˆ2))

12 %

13 % In case of SigmaS is 0, set the threshold to be minimum value.

14 %

15 % Copyright (c) 2009 Manish K. Singh

16

17 n = length(y);

18 y = y - mean(y); % Shift it so mean becomes 0.

19 sigmaYSquare = (1/n) * sum(y.ˆ2);

20 sigmaS = sqrt(max((sigmaYSquare-sigmaˆ2),0));

21

22 if sigmaS == 0

23 sigmaS = max(y(:)); % this will set the threshold to low

24 end

25

26 thre = sigmaˆ2/sigmaS;

136

1 function CT = sure_threshold(C,L,incd,sigma)

2

3 % sure_threshold

4 % -> Do thresholding of wavelet coefficients based on SURE

5 % -> level based thresholding

6 %

7 % CT = sure_threshold(C,L,incd,sigma);

8 %

9 % C,L is the result of wavedec2 function in matlab.

10 % CT (result) can be directly used in waverec2 function in mat lab.

11 %

12 % incd :

13 % 0 : Don't threshold average coefficients (default)

14 % 1 : Threhold average ceofficients

15 %

16 % Copyright (c) 2009 Manish K. Singh

17

18

19 % FindOut number of decompositions

20 DecLevels = length(L)-2;

21

22 CT = [];

23 index = 1;

24

25 %% Average coefficients

26 mn = L(1,:); m=mn(1); n=mn(2);

27 y = C(1:m * n);

28 if (incd == 0)

29 CT = [CT,y];

30 else

137

31 t = find_sure_thres(y,sigma);

32 CT = [CT,SoftThresh(y,t)];

33 end

34 index = m * n+1;

35

36 %% Detail coefficients

37 for i = 2:(DecLevels+1)

38 mn = L(i,:); m=mn(1); n=mn(2);

39 for j = 1:3 %% 3 loops for horizontal, vertical and diagonal details

40 y = C(index:index+m * n-1);

41 index = index+m * n;

42 t = find_sure_thres(y,sigma);

43 CT = [CT,SoftThresh(y,t)];

44 end

45 end

1 function thres = find_sure_thres(x,sigma)

2 % find_sure_thres -- Adaptive Threshold Selection Using

3 % principle of SURE

4 %

5 % Description

6 % SURE referes to Stein's Unbiased Risk Estimate.

7 % Reference:

8 % Wavelet Denoising and Speech Enhancement

9 % By V. Balakrishnan, Nash Borges, Luke Parchment

10 %

11 % lamda = arg min SURE(x,thres)

12 %

13 % SURE(x,thres) =

138

14 % sigmaˆ2+1/n(sum(min(abs(x),thres)ˆ2))- ...

15 % 2* sigmaˆ2/n * sum(abs(x) < thres)

16 %

17 % Copyright (c) 2009 Manish K. Singh

18 %

19

20 n = length(x);

21 thre_range = linspace(0,sqrt(2 * log(n)),20); %

22 r_list = [];

23

24 for t = thre_range

25 thres = t;

26 r = (n * sigmaˆ2-2 * sigmaˆ2 * (sum(abs(x) < thres)) ...

27 + sum(min(abs(x),thres).ˆ2))/n;

28 r_list = [r_list,r];

29 end

30 [tmp,i] = min(r_list); thres = thre_range(i);

31

32 %% Multiply it with log10(n) to achieve the better performan ce.

33

34 thres = log10(n) * thres;

1 function CT = bayes_threshold(C,L,incd,sigma)

2 %

3 % bayes_threshold -> Do thresholding of wavelet coefficien ts

4 % based on bayes method

5 %

6 % CT = bayes_threshold(C,L,incd,sigma);

7 %

139

8 % C,L is the result of wavedec2 function in matlab.

9 % CT (result) can be directly used in waverec2 function in mat lab.

10 %

11 % incd :

12 % 0 : Don't threshold average coefficients (default)

13 % 1 : Threhold average ceofficients

14 %

15 %

16 % sigma is estimated if not provided.

17 %

18 % Copyright (c) 2009 Manish K. Singh

19

20

21 %% TBD: add sigma calculation logic.

22

23 % FindOut number of decompositions

24 DecLevels = length(L)-2;

25

26 %% Average coefficients

27 CT = [];

28 mn = L(1,:); m=mn(1); n=mn(2);

29 y = C(1:m * n);

30 if (incd == 0)

31 CT = [CT,y];

32 else

33 t = BayesThres(y,sigma);

34 CT = [CT,SoftThresh(y,t)];

35 end

36 index = m * n+1;

37

38 %% Detail coefficients

140

39 for i = 2:(DecLevels+1)

40 mn = L(i,:); m=mn(1); n=mn(2);

41 for j = 1:3 %% 3 loops for hor., vert. and diag. details

42 y = C(index:index+m * n-1);

43 index = index+m * n;

44 t = BayesThres(y,sigma);

45 CT = [CT,SoftThresh(y,t)];

46 end

47 end

1 function CT = michak_mmse_shrinkage(C,L,incd,sigma,l,method)

2

3 % michak_mmse_shrinkage ->

4 % Do thresholding of wavelet coefficients based on

5 % wavelet shrinkage method suggested by Michak

6 %

7 % C,L is the result of wavedec2 function in matlab.

8 % CT (result) can be directly used in waverec2 function in mat lab.

9 %

10 % incd :

11 % 0 : Don't threshold average coefficients

12 % 1 : Threhold average ceofficients

13 %

14 % sigma is the noise variance.

15 % l spcifies the window size - 2 * l+1

16 %

17 % Optional arguments:

18 % method = method1 or method2 (Reference:

19 % Low-Complexity Image Denoising Based on Statistical Mode ling of

141

20 % Wavelet Coefficients M. K, Michak, Igor Kozintsev, Kannan

21 % Ramchandran, Member, IEEE, and Pierre Moulin, Senior Memb er, IEEE

22 % [IEEE SIGNAL PROCESSING LETTERS, VOL. 6, NO. 12, DECEMBER 1999]

23 %

24 %

25 % Copyright (c) 2009 Manish K. Singh

26

27 if nargin < 6

28 method = 'method1' ;

29 end

30

31 % FindOut number of decompositions

32 DecLevels = length(L)-2;

33

34 CT = [];

35 index = 1;

36

37 %% Average coefficients

38 mn = L(1,:); m=mn(1); n=mn(2);

39 y = C(1:m * n);

40 if (incd == 0)

41 CT = [CT,y];

42 else

43 CTM = michak_mmse(y,m,n,sigma,l, 'method1');

44 if (method == 'method2')

45 lambda = 1/std(CTM);

46 CT = [CT,michak_mmse(y,m,n,sigma,l, 'method2' ,lambda)];

47 else

48 CT = [CT,CTM];

49 end

50 end

142

51 index = m * n+1;

52

53 %% Detail coefficients

54 for i = 2:(DecLevels+1)

55 mn = L(i,:); m=mn(1); n=mn(2);

56 %% 3 loops for horizontal, vertical and diagonal details

57 for j = 1:3

58 y = C(index:index+m * n-1);

59 index = index+m * n;

60 CTM = michak_mmse(y,m,n,sigma,l, 'method1');

61 if (method == 'method2')

62 lambda = 1/std(CTM);

63 CT = [CT,michak_mmse(y,m,n,sigma,l, 'method2' ,lambda)];

64 else

65 CT = [CT,CTM];

66 end

67 end

68 end

1 function CT = michak_mmse(C,m,n,sigma,l,method,lambda,bext_typ e)

2 %

3 % Usage:

4 % CT = michak_mmse(C,m,n,sigma,window,lambda,bext_type);

5 %

6 % C, is the result of wavedec2 function in matlab.

7 % CT (result) can be directly used in waverec2 function in mat lab.

8 % m is number of rows, n is number of columns. mxn is image size.

9 % sigma is noise variance

10 % bext_type = extension method (default : 'sym');

143

11 % (all methods supported in "wextend" wavelet matlab toolbo x)

12 %

13 % l = specified the neighbour hood (window size = 2 * l+1)

14 % (Reference: Low-Complexity Image Denoising Based on

15 % Statistical Modeling of Wavelet Coefficients M. K,

16 % Michak, Igor Kozintsev, Kannan Ramchandran, Member,

17 % IEEE, and Pierre Moulin, Senior Member,

18 % IEEE [IEEE SIGNAL PROCESSING LETTERS, ...

19 % VOL. 6, NO. 12, DECEMBER 1999]

20 %

21 % X(k) = Y(k) * (sigmaXKˆ2)/(sigmaXKˆ2+sigmaˆ2)

22 % sigmaXK = (1/M) * (sum(Y(j)ˆ2-sigmaˆ2)) where sum is taken

23 % over a window around the coefficient

24 %

25 % Copyright (c) 2009 Manish K. Singh

26 %

27

28 if nargin < 7

29 lambda = 1;

30 end

31

32 if nargin < 8

33 bext_type = 'sym' ;

34 end

35

36 % Boundary extension of the image

37 CM = bextend_wavelet_coeffs(C,m,n,l,bext_type);

38

39 CT = [];

40 for i = 1:m

41 for j = 1:n

144

42 N = get_window_pixels(CM,m,n,i,j,l);

43 M = (2* l+1)ˆ2;

44 if method == 'method2'

45 varxk = ((M/(4 * lambda)) * (-1+sqrt(1+(8 * lambda/Mˆ2) ...

46 * sum(N.ˆ2))))-sigmaˆ2;

47 if varxk < 0

48 varxk = 0;

49 end

50 else

51 varxk = (1/M) * sum((N.ˆ2)-sigmaˆ2);

52 if varxk < 0

53 varxk = 0;

54 end

55

56 end

57 y = C((i-1) * n+j);

58 ym = y* (varxk)/(varxk+sigmaˆ2);

59 CT = [CT, ym];

60 end

61 end

1 function f = TetroletXform4x4(I,C)

2 %

3 % Perform Tetrolet Transform on 4x4 block given tetrominos

4 % tiling C. It will return a list matix with [A W0; W1 W2]

5 % where

6 % A,W0, W1 and W2 are 2x2 matrices.

7

8 % Collect 4 pixels as per tetrominoes tiling.

145

9 % Each column will contain one group of pixels.

10

11 t = GetTetromPermMatrix4x4(C);

12 t = t(:);

13 Imod = zeros(4);

14 for col=1:4

15 for row=1:4

16 Imod(col,row)= I(t((col-1) * 4+row));

17 end

18 end

19 I = Imod;

20

21 clear Imod, t;

22

23 % Do the haar transform

24 W = [1 1 1 1; 1 1 -1 -1; 1 -1 1 -1; 1 -1 -1 1];

25 W = 0.5. * W;

26 f = [W(1,1:4) * I;W(2,1:4) * I;W(3,1:4) * I;W(4,1:4) * I];

27

28 % Now put them into correct order

29 % TBD (We can threshold detailed coefficients here)

30 r = zeros(4);

31 f = f';

32 r(1,1) = f(1);

33 r(2,1) = f(2);

34 r(1,2) = f(3);

35 r(2,2) = f(4);

36

37 r(3,1) = f(5);

38 r(4,1) = f(6);

39 r(3,2) = f(7);

146

40 r(4,2) = f(8);

41

42 r(1,3) = f(9);

43 r(2,3) = f(10);

44 r(1,4) = f(11);

45 r(2,4) = f(12);

46

47 r(3,3) = f(13);

48 r(4,3) = f(14);

49 r(3,4) = f(15);

50 r(4,4) = f(16);

51

52 f = r;

1 function f = InvTetroletXform4x4(I,C)

2 %

3 % Perform Tetrolet inverse Transform on 4x4 block given

4 % tetrominos tiling C. It will return 4x4 matix.

5

6 % Reorder coefficients so that we perform Haar

7 % filtering.

8 I_r = zeros(4);

9 I_r(1,:) = [I(1,1) I(3,1) I(1,3) I(3,3)];

10 I_r(2,:) = [I(2,1) I(4,1) I(2,3) I(4,3)];

11 I_r(3,:) = [I(1,2) I(3,2) I(1,4) I(3,4)];

12 I_r(4,:) = [I(2,2) I(4,2) I(2,4) I(4,4)];

13 I = I_r';

14

15 clear I_r;

147

16

17 % Do the haar transform

18 W = [1 1 1 1; 1 1 -1 -1; 1 -1 1 -1; 1 -1 -1 1];

19 W = 0.5. * W;

20 f = [W(1,1:4) * I;W(2,1:4) * I;W(3,1:4) * I;W(4,1:4) * I];

21

22 % Now put them into correct order

23 t = GetTetromPermMatrix4x4(C);

24 t = t';

25 t = t(:);

26 r = zeros(4);

27

28 for i=1:16

29 r(t(i)) = f(i);

30 end

31

32 f = r;

1 function [C S B] = tetrom2(I,L)

2 %

3 % Tetrom decomposition

4 %

5

6 % Get the dimensions

7 [m n] = size(I);

8

9 % Make sure m, and n are multiple of 4

10 if (mod(m,4))

11 error('Picture size has to be multiple of 4');

148

12 end

13

14 if (mod(n,4))

15 error('Picture size has to be multiple of 4');

16 end

17

18 %% TBD (Check for valid L)

19

20 ws = 4; %% window size

21

22 %%

23 % Do adaptive Haar on 4x4 window.

24 %%

25

26 TetromCoeff = zeros(m,n);

27 C = [];

28 TetromTiling = [];

29

30 % We start with full Image, treated as coefficients

31 I_t = I;

32 for dec=1:L

33 TilingInfo = [];

34 [a b] = size(I_t);

35 TetromCoeffA = zeros(a/2,b/2);

36 TetromCoeffH = zeros(a/2,b/2);

37 TetromCoeffV = zeros(a/2,b/2);

38 TetromCoeffD = zeros(a/2,b/2);

39 ridx = 1;

40 cidx = 1;

41 for r=1:ws:a

42 for c=1:ws:b

149

43 I4x4 = I_t(r:r+ws-1,c:c+ws-1);

44 [C4x4 BestTile] = GetBestTetromCoeff(I4x4);

45 TetromCoeffA(ridx:ridx+1,cidx:cidx+1) = C4x4(1:2,1:2) ;

46 TetromCoeffH(ridx:ridx+1,cidx:cidx+1) = C4x4(1:2,3:4) ;

47 TetromCoeffV(ridx:ridx+1,cidx:cidx+1) = C4x4(3:4,1:2) ;

48 TetromCoeffD(ridx:ridx+1,cidx:cidx+1) = C4x4(3:4,3:4) ;

49 TilingInfo = [TilingInfo,BestTile];

50 cidx = cidx+2;

51 end

52 ridx = ridx + 2;

53 cidx = 1;

54 end

55 TetromCoeff(1:a/2,1:b/2) = TetromCoeffA;

56 TetromCoeff(1:a/2,b/2+1:b) = TetromCoeffH;

57 TetromCoeff(a/2+1:a,1:b/2) = TetromCoeffV;

58 TetromCoeff(a/2+1:a,b/2+1:b) = TetromCoeffD;

59 TetromTiling = [TilingInfo,TetromTiling];

60 I_t = TetromCoeffA;

61 C = [TetromCoeffH(:)' TetromCoeffV(:)' TetromCoeffD(:)' C];

62 end

63

64 C = [I_t(:)' C];

65 average_size = size(I)/(2ˆL);

66 S(1,:) = average_size;

67 for i=2:L+1

68 S(i,:) = average_size;

69 average_size = average_size. * 2;

70 end

71 S(i+1,:) = size(I);

72

73 B = TetromTiling;

150

1 function [meanV varV modeV maxV ...

2 minV absIV absI2V] = Get4x4BlockStat(I);

3 %

4 % Collect statistics of block I

5 % statistics: mean, variance, mode, median, max, min,

6 % : sum(abs(I)), sum(abs(Iˆ2))

7

8 I = I(:);

9 meanV = mean(I);

10 varV = std(I);

11 modeV = mode(I);

12 maxV = max(I);

13 minV = min(I);

14 absIV = sum(abs(I));

15 absI2V = sum(abs(I.ˆ2));

1 function f = MatlabCoeffInImageFormat(C,L,DoScale);

2

3 % Convert the one dimensional array of wavelet coefficient

4 % from wavedec2 command to image format (2D).

5 % C,L are outputs of wavedec2 matlab command.

6 % DoScale can be set to 1 to scale coefficients to cover

7 % entire range (0 to 255).

8

9 if nargin < 3

10 DoScale = 0;

11 end

151

12

13 f = [];

14

15 % Average coefficients

16 mn = L(1,:); m=mn(1); n=mn(2);

17

18 start = 0;

19 for i = 1:m

20 f = [f;C(start+1:start+n)];

21 start = start+ n;

22 end

23

24 if (DoScale)

25 f = scale(f);

26 end

27

28 f = f';

29

30 % Detail coefficients

31 MaxDecLevels = length(L)-2;

32

33 for level = 2:MaxDecLevels+1

34 mn = L(level,:); m=mn(1); n=mn(2);

35

36 % Horizontal

37 H = [];

38 for i = 1:m

39 H = [H;C(start+1:start+n)];

40 start = start+n;

41 end

42

152

43 if (DoScale)

44 H = scale(H);

45 end

46

47 H = H';

48

49 % Vertical

50 V = [];

51 for i = 1:m

52 V = [V;C(start+1:start+n)];

53 start = start+n;

54 end

55

56 if (DoScale)

57 V = scale(V);

58 end

59

60 V = V';

61

62 % Diagonal

63 D = [];

64 for i = 1:m

65 D = [D;C(start+1:start+n)];

66 start = start+m;

67 end

68

69 if (DoScale)

70 D = scale(D);

71 end

72

73 D = D';

153

74

75 % TBD: We are dropping the pixels at the end.

76 newf = f(1:n,1:m);

77 f = [newf,H;V,D];

78 clear newf;

79 end

1 function abserr = abserr(x,y)

2 %

3 % Absolute error - compute the absolute error in db.

4 % abserr(x,y) = 10 * log10((sum(x(:)-y(:))ˆ2));

5 %

6 % e = abserr(x,y);

7 %

8 % Copyright (c) 2009 Manish K. Singh

9

10 abserr = 10 * log10((sum(x(:)-y(:))ˆ2));

1 function calculate_error = calculate_error(x,y,s)

2

3 % Calculate error - compute the error based.

4 % Error can be either of the followings:

5 % s = 'a', absolute error = 10 * log10((sum(x(:)-y(:))ˆ2));

6 % s = 'm', MSE error = mean((x(:)-y(:)).ˆ2);

7 % s = 'p', PSNR error = max/mse (PSNR)

8 % s = 's', SNR error = 10 * log10(sˆ2/nˆ2)

9 %

10 % e = calculate_error(x,y,s); where s is either a, m or p.

154

11 %

12 % Copyright (c) 2009 Manish K. Singh

13

14 if (strcmp(s, 'a'))

15 calculate_error = abserr(x,y);

16 elseif (strcmp(s, 'm'))

17 calculate_error = mse(x,y);

18 elseif (strcmp(s, 'p'))

19 calculate_error = psnr(x,y); %% Function from PyreToolbox

20 elseif (strcmp(s, 's'))

21 calculate_error = SNR(x,y); %% Function from Wavelab

22 else

23 error(['option s = ' ,s, 'is not supported. Possible' , ...

24 'options are p, m, s, or a']);

25 end

1 function collect_image_statistics=collect_image_statistics(i m_hat,im)

2 %

3 % Collect image statistics

4 % At present, It only collects errors.

5 % Returned value is a list with following enteries

6 % [<abs.error> <mse> <psnr> <snr>]

7

8 collect_image_statistics = [];

9

10 collect_image_statistics = [collect_image_statistics, ...

11 calculate_error(im,im_hat, 'a')];

12 collect_image_statistics = [collect_image_statistics, ...

13 calculate_error(im,im_hat, 'm')];

155

14 collect_image_statistics = [collect_image_statistics, ...

15 calculate_error(im,im_hat, 'p')];

16 collect_image_statistics = [collect_image_statistics, ...

17 calculate_error(im,im_hat, 's')];

1 function YW = get_window_pixels(Y,m,n,i,j,l)

2 %

3 % Get all the pixels around a pixel(i,j) in a window.

4 % Where window size = 2 * l+1

5 % m is number of rows, n is number of columns.

6 % Y is all the image, boundary extended by l pixels on

7 % each side.

8 %

9 % Copyright (c) 2009 Manish K. Singh

10 %

11

12 YW = [];

13 m_ = m+2* l;

14 n_ = n+2 * l;

15 i_ = i+l;

16 j_ = j+l;

17

18 for y = [-l:1:l]

19 % r = [];

20 for x = [-l:l:l]

21 i__ = i_+y;

22 j__ = j_+x;

23 index = (i__-1) * n_+(j__);

24 YW = [YW,Y(index)];

156

25 end

26 % YW = [YW;r];

27 end

1 function [f] = invtetrom2(C,S,B)

2 %

3 % Inverse tetrom transform

4 % C = tetrom coefficients, B = tiling info

5 % S = house keeping matrix for C (same format as wavedec2)

6

7 % Arrange C in 2 D image format

8 % L is number of decompositions

9 L = length(S)-2;

10 t = S(L+2,:); m=t(1); n=t(2);

11 C_2D = zeros(m,n);

12

13 % average coefficients

14 a = m/2ˆ(L-1)

15 b = n/2ˆ(L-1)

16 coeff_ptr = 1;

17 t = S(1,:); coeff_m = t(1); coeff_n=t(2);

18 t = zeros(coeff_m,coeff_n);

19 t(:) = C(coeff_ptr:coeff_ptr+coeff_m * coeff_n-1);

20 coeff_ptr = coeff_ptr + coeff_m * coeff_n;

21 C_2D(1:a/2,1:b/2) = t;

22

23 for i=1:L

24 t = S(i+1,:); coeff_m=t(1); coeff_n=t(2);

25 % horizontal

157

26 t = zeros(coeff_m,coeff_n);

27 t(:) = C(coeff_ptr:coeff_ptr+coeff_m * coeff_n-1);

28 coeff_ptr = coeff_ptr + coeff_m * coeff_n;

29 C_2D(1:a/2,b/2+1:b) = t;

30 % Vertical

31 t = zeros(coeff_m,coeff_n);

32 t(:) = C(coeff_ptr:coeff_ptr+coeff_m * coeff_n-1);

33 coeff_ptr = coeff_ptr + coeff_m * coeff_n;

34 C_2D(a/2+1:a,1:b/2) = t;

35 % Diagonal

36 t = zeros(coeff_m,coeff_n);

37 t(:) = C(coeff_ptr:coeff_ptr+coeff_m * coeff_n-1);

38 coeff_ptr = coeff_ptr + coeff_m * coeff_n;

39 C_2D(a/2+1:a,b/2+1:b) = t;

40 a = a* 2;

41 b = b* 2;

42 end

43

44 clear C;

45 C = C_2D;

46

47 [m n] = size(C);

48 f = zeros(m,n);

49 i = 1;

50

51 % start from highest level

52 a = m/2ˆ(L-1);

53 b = n/2ˆ(L-1);

54 f = C;

55

56 ws=4;

158

57

58 for dec=1:L

59 ridx = 1;

60 cidx = 1;

61 t = zeros(a,b);

62

63 TetromCoeffA = f(1:a/2,1:b/2);

64 TetromCoeffH = f(a/2+1:a,1:b/2);

65 TetromCoeffV = f(1:a/2,b/2+1:b);

66 TetromCoeffD = f(a/2+1:a,b/2+1:b);

67

68 for r=1:ws:a

69 for c=1:ws:b

70 I4x4 = zeros(4);

71 I4x4(1:2,1:2) = TetromCoeffA(ridx:ridx+1,cidx:cidx+1) ;

72 I4x4(3:4,1:2) = TetromCoeffH(ridx:ridx+1,cidx:cidx+1) ;

73 I4x4(1:2,3:4) = TetromCoeffV(ridx:ridx+1,cidx:cidx+1) ;

74 I4x4(3:4,3:4) = TetromCoeffD(ridx:ridx+1,cidx:cidx+1) ;

75 t(r:r+ws-1,c:c+ws-1) = InvTetroletXform4x4(I4x4,B(i)) ;

76 i = i+1;

77 cidx=cidx+2;

78 end

79 ridx=ridx+2;

80 cidx = 1;

81 end

82 % update Tetrom Coefficients

83 f(1:a,1:b) = t;

84 a = a* 2;

85 b = b* 2;

86 end

159

1 function method_noise = method_noise(I, I_hat, plottitle, noplot)

2 % Do the noise analysis given original and noisy image.

3 % Usage: f = method_noise(I,In,options)

4 %

5 % I = clean image

6 % In = noisy image

7 % plottitle = 'title for the plot'

8 % noplot = default 0, if set will not produce noise plot.

9 %

10 % Copyright (c) 2009 Manish K. Singh

11 %

12 %

13

14 plottitle

15

16 if nargin < 4

17 noplot = 0;

18 end

19

20 diff = abs(I_hat - I - 255);

21

22 %% Scale the range so that it fills 0 to 255.

23 %% min: max -> x * 255/max

24 %%

25

26 [n1 n2] = size(diff);

27

28 diff = scale(diff);

29 % 1,n2: structure is visible to lesser extent.

30

160

31

32 %if (¬noplot)

33 figure

34 subplot(111); image(diff(256:512,1:255));

35 axis image; axis off; colormap gray(256);

36 title([plottitle]);

37 % switch noplot

38 %

39 % case 1,

40 % title('Lena residue; Visu soft method');

41 % print('-deps','lena_residue_visusoft.eps')

42 %

43 % case 2,

44 % title('Lena residue; Visu hard method');

45 % print('-deps','lena_residue_visuhart.eps')

46 %

47 % case 3,

48 % title('Lena residue; sure method');

49 % print('-deps','lena_residue_sure.eps')

50 %

51 % case 4,

52 % title('Lena residue; Bayes method');

53 % print('-deps','lena_residue_bayes.eps')

54 %

55 % case 5,

56 % title('Lena residue; michak1 method');

57 % print('-deps','lena_residue_michak1.eps')

58 %

59 % case 6,

60 % title('Lena residue; michak2 method');

61 % print('-deps','lena_residue_michak2.eps')

161

62 %

63 % case 7,

64 % title('Lena residue; BLS-GSM method');

65 % print('-deps','lena_residue_blsgsm.eps')

66 %

67 % case 8,

68 % title('Lena residue; Tetrom method');

69 % print('-deps','lena_residue_tetrom.eps')

70 %

71 % case 9,

72 % title('Lena residue; Redundant Haar method');

73 % print('-deps','lena_residue_redun.eps')

74 %

75 % end

76 %

77 end

1 function mse = mse(x,y)

2

3 % mse - compute the mean square error defined as

4 % MSE(x,y) = mean((x(:)-y(:)).ˆ2);

5 %

6 % m = mse(x,y);

7 %

8 % Copyright (c) 2009 Manish K. Singh

9

10 [a1 b1] = size(x);

11 [a2 b2] = size(y);

12

162

13 a = max(a1,a2);

14 b = max(b1,b2);

15

16 mse = (1/(a * b)) * sum((x(:)-y(:)).ˆ2);

1 function [f,p] = plot_fft(s);

2

3 % Calculate the power vs frequency of signal s.

4 % signal is assumed to be result of fft function.

5

6 n = length(s);

7 p = abs(s(1:floor(n/2))).ˆ2

8 nyquist = 1/2;

9 f = (1:n/2)/(n/2) * nyquist

1 function scale = scale(I,a,b, MaximumValue)

2 % Scale the image locally so that we can view the hidden detail s

3 % Scale the block to full range

4

5 [n1 n2] = size(I);

6 if (nargin < 2)

7 a = n1;

8 b = n2;

9 end

10

11 if (nargin < 4)

12 MaximumValue = 255;

13 end

163

14

15 %% Scale it to 0 to max.

16 for i = 1:a:n1

17 for j = 1:b:n2

18 p = I(i:i+a-1,j:j+b-1);

19 minValue = min(p(:));

20 maxValue = max(p(:));

21 I(i:i+a-1,j:j+b-1) = ...

22 ceil(MaximumValue * (p-minValue)/(maxValue-minValue));

23 end

24 end

25

26 scale = I;

1 function [BestCoeff BestTile] = ...

2 GetBestTetromCoeff(I, ...

3 options, ...

4 Iclean, ...

5 PrintStatistics, ...

6 FidStat)

7 %

8 % Get best tetrom coefficients.

9 % Returns Best coefficients [A W0;W1 W2] and BestTile.

10 % Where

11 % A = 4 average coefficients.

12 % W0, W1, W2 are detailed coefficients

13 % options are

14 % method = criteria to select based ...

15 % (possible values are L1, L2, T1)

164

16 % (default is L1)

17 % T = threshold for T1 method

18 % MaxC = limit the number of tiling.

19

20

21 BestCoeff = zeros(4);

22 BestTile = 1;

23 options.null = 0;

24 MaxC = 117;

25 End = 117;

26 method = 'L1' ;

27

28 if nargin < 4

29 PrintStatistics = 0;

30 FidStat = 0;

31 end

32

33 %% Keep MaxC option for backward compatiblility

34

35 if isfield(options, 'MaxC')

36 MaxC = options.MaxC;

37 End = options.MaxC;

38 end

39

40 Start = 1;

41 if isfield(options, 'Start')

42 Start = options.Start;

43 end

44

45 if isfield(options, 'End')

46 End = options.End;

165

47 end

48

49 T = 10;

50 if isfield(options, 'T')

51 T = options.T;

52 end

53

54 if isfield(options, 'method')

55 method = options.method;

56 end

57

58 % Initialize the BestScore variable

59 BestScore = -1;

60 if method == 'p1'

61 BestScore = 2ˆ31-1;

62 end

63 if method == 's1'

64 BestScore = 2ˆ31-1;

65 end

66 if method == 'l1'

67 BestScore = 2ˆ31-1;

68 end

69 if method == 'l2'

70 BestScore = 2ˆ31-1;

71 end

72

73

74 for C = Start:End

75 % Take a transform

76 XformCoeffs = TetroletXform4x4(I,C);

77 if (PrintStatistics)

166

78 [meanV varV modeV maxV minV absIV ...

79 absI2V] = Get4x4BlockStat(XformCoeffs);

80 fprintf(FidStat, '%d %d %f %f %f %f %f %f %f\n' , ...

81 [0 C meanV varV modeV maxV minV absIV absI2V]);

82 end

83

84 % calculate score

85 if method == 'p1'

86 % Threshold detailed coefficients,

87 a = XformCoeffs;

88 a = a. * (abs(a) > T);

89 a(1:2,1:2) = XformCoeffs(1:2,1:2);

90 I_hat = InvTetroletXform4x4(a,C);

91 Score = calculate_error(Iclean,I_hat, 'm');

92 if (Score < BestScore)

93 BestScore = Score;

94 BestTile = C;

95 BestCoeff = XformCoeffs;

96 end

97 elseif method == 's1'

98 Score = GetTetromScore(XformCoeffs,options);

99 if (Score < BestScore)

100 BestScore = Score;

101 BestTile = C;

102 BestCoeff = XformCoeffs;

103 end

104 elseif method == 'l1'

105 Score = GetTetromScore(XformCoeffs,options);

106 if (Score < BestScore)

107 BestScore = Score;

108 BestTile = C;

167

109 BestCoeff = XformCoeffs;

110 end

111 elseif method == 'l2'

112 Score = GetTetromScore(XformCoeffs,options);

113 if (Score < BestScore)

114 BestScore = Score;

115 BestTile = C;

116 BestCoeff = XformCoeffs;

117 end

118 else

119 Score = GetTetromScore(XformCoeffs,options);

120 if (C == 1)

121 BestScore = Score;

122 BestTile = C;

123 BestCoeff = XformCoeffs;

124 end

125 if (Score > BestScore)

126 BestScore = Score;

127 BestTile = C;

128 BestCoeff = XformCoeffs;

129 end

130 end

131 % remember the best one

132 end

1 function f = GetBestTetromLabelling(I);

2 % Get best order that minimizes distance

3 % from respective Haar Partition. See reference:

4 % Jens Krommweh, Department of Mathematics,

168

5 % University of Duisburg-Essen, Germany ``Tetrolet Transf orm:

6 % A New Adaptive Haar Wavelet Algorithm for Sparse Image

7 % Representation''

8

9 Bestscore = 16;

10 HaarLabel = [0 0 2 2; 0 0 2 2; 1 1 3 3; 1 1 3 3];

11

12 C(1,:) = [1 2 3 4];

13 C(2,:) = [1 2 4 3];

14 C(3,:) = [1 3 2 4];

15 C(4,:) = [1 3 4 2];

16 C(5,:) = [1 4 2 3];

17 C(6,:) = [1 4 3 2];

18

19 C(7,:) = [2 1 3 4];

20 C(8,:) = [2 1 4 3];

21 C(9,:) = [2 3 1 4];

22 C(10,:) = [2 3 4 1];

23 C(11,:) = [2 4 1 3];

24 C(12,:) = [2 4 3 1];

25

26 C(13,:) = [3 1 2 4];

27 C(14,:) = [3 1 4 2];

28 C(15,:) = [3 2 1 4];

29 C(16,:) = [3 2 4 1];

30 C(17,:) = [3 4 1 2];

31 C(18,:) = [3 4 2 1];

32

33 C(19,:) = [4 1 2 3];

34 C(20,:) = [4 1 3 2];

35 C(21,:) = [4 2 1 3];

169

36 C(22,:) = [4 2 3 1];

37 C(23,:) = [4 3 1 2];

38 C(24,:) = [4 3 2 1];

39

40

41 for count=1:24

42 temp1 = C(count,1);

43 temp2 = C(count,2);

44 temp3 = C(count,3);

45 temp4 = C(count,4);

46 T = [I(temp1,:); I(temp2,:); I(temp3,:); I(temp4,:)];

47 A = zeros(4);

48 A(T(1,:)) = 0;

49 A(T(2,:)) = 1;

50 A(T(3,:)) = 2;

51 A(T(4,:)) = 3;

52 P = A - HaarLabel;

53 score = sum(P(:) 6= 0);

54 if (score < Bestscore)

55 Bestscore = score;

56 f = T;

57 end

58 end

1 function f = GetTetromPermMatrix4x4(Index)

2 %

3 % There are 417 ways to fill a 4x4 square with tetrominoes shap es.

4 % These configurations are indexed using 1 to 417. Given any i ndex

5 % this function will return 4x4 matrix. Each row of which spec ifies

170

6 % the respective pixel positions in 4x4 block.

7

8 % Positions are numbered as follows:

9 % 1 5 9 13

10 % 2 6 10 14

11 % 3 7 11 15

12 % 4 8 12 16

13

14 M = [1 2 5 6; 9 10 13 14; 3 4 7 8; 11 12 15 16];

15

16 M(:,:,2) = [1 5 9 13; 3 7 11 15; 2 6 10 14; 4 8 12 16];

17 M(:,:,3) = [1 2 3 4; 5 6 7 8; 9 10 11 12; 13 14 15 16];

18

19 M(:,:,4) = [1 5 9 13; 2 3 6 7; 10 11 14 15; 4 8 12 16];

20 M(:,:,5) = [1 2 3 4; 7 8 11 12; 5 6 9 10; 13 14 15 16];

21

22 M(:,:,6) = [1 5 6 9; 2 3 4 7; 10 13 14 15; 8 11 12 16];

23 M(:,:,7) = [1 2 3 6; 4 7 8 12; 5 9 10 13; 11 14 15 16];

24

25 M(:,:,8) = [1 2 3 7; 4 8 11 12; 5 6 9 13; 10 14 15 16];

26 M(:,:,9) = [1 5 9 10; 2 3 4 6; 11 13 14 15; 7 8 12 16];

27

28 M(:,:,10) = [1 5 9 13; 3 4 7 8; 2 6 10 14; 11 12 15 16];

29 M(:,:,11) = [1 2 5 6; 3 4 7 8; 9 10 11 12; 13 14 15 16];

30 M(:,:,12) = [1 2 5 6; 3 7 11 15; 9 10 13 14; 4 8 12 16];

31 M(:,:,13) = [1 2 3 4; 5 6 7 8; 9 10 13 14; 11 12 15 16];

32

33 M(:,:,14) = [1 5 9 13; 2 3 7 11; 6 10 14 15; 4 8 12 16];

34 M(:,:,15) = [5 6 7 9; 1 2 3 4; 13 14 15 16; 8 10 11 12];

35 M(:,:,16) = [2 3 6 10; 4 8 12 16; 1 5 9 13; 7 11 14 15];

36 M(:,:,17) = [1 2 3 4; 6 7 8 12; 5 9 10 11; 13 14 15 16];

171

37

38 M(:,:,18) = [1 5 9 13; 2 3 4 6; 10 14 15 16; 7 8 11 12];

39 M(:,:,19) = [1 5 9 10; 2 3 6 7; 13 14 15 16; 4 8 11 12];

40 M(:,:,20) = [1 2 3 7; 4 8 12 16; 5 6 9 10; 11 13 14 15];

41 M(:,:,21) = [1 2 3 4; 7 8 12 16; 5 6 9 13; 10 11 14 15];

42

43 M(:,:,22) = [1 5 9 13; 2 3 4 8; 6 7 10 11; 12 14 15 16];

44 M(:,:,23) = [1 2 5 9; 3 4 8 12; 6 7 10 11; 13 14 15 16];

45 M(:,:,24) = [1 2 3 5; 6 7 10 11; 9 13 14 15; 4 8 12 16];

46 M(:,:,25) = [1 2 3 4; 6 7 10 11; 5 9 13 14; 8 12 15 16];

47

48 M(:,:,26) = [1 2 6 10; 3 4 8 12; 5 9 13 14; 7 11 15 16];

49 M(:,:,27) = [1 2 3 5; 4 6 7 8; 9 10 11 13; 12 14 15 16];

50 M(:,:,28) = [1 2 5 9; 3 4 7 11; 6 10 13 14; 8 12 15 16];

51 M(:,:,29) = [1 5 6 7; 2 3 4 8; 9 13 14 15; 10 11 12 16];

52

53 M(:,:,30) = [1 2 6 10; 3 4 7 11; 5 9 13 14; 8 12 15 16];

54 M(:,:,31) = [1 5 6 7; 2 3 4 8; 9 10 11 13; 12 14 15 16];

55 M(:,:,32) = [1 2 5 9; 3 4 8 12; 6 10 13 14; 7 11 15 16];

56 M(:,:,33) = [1 2 3 5; 4 6 7 8; 9 13 14 15; 10 11 12 16];

57

58 M(:,:,34) = [1 5 6 10; 2 3 4 8; 9 13 14 15; 7 11 12 16];

59 M(:,:,35) = [1 2 5 9; 3 4 6 7; 10 11 13 14; 8 12 15 16];

60 M(:,:,36) = [1 2 3 5; 4 7 8 11; 6 9 10 13; 12 14 15 16];

61 M(:,:,37) = [1 2 6 7; 3 4 8 12; 5 9 13 14; 10 11 15 16];

62

63 M(:,:,38) = [1 2 5 6; 3 4 8 12; 9 10 13 14; 7 11 15 16];

64 M(:,:,39) = [1 2 3 5; 4 6 7 8; 9 10 13 14; 11 12 15 16];

65 M(:,:,40) = [1 2 6 10; 3 4 7 8; 5 9 13 14; 11 12 15 16];

66 M(:,:,41) = [1 2 5 6; 3 4 7 8; 9 10 11 13; 12 14 15 16];

67 M(:,:,42) = [1 2 5 9; 3 4 7 8; 6 10 13 14; 11 12 15 16];

172

68 M(:,:,43) = [1 5 6 7; 2 3 4 8; 9 10 13 14; 11 12 15 16];

69 M(:,:,44) = [1 2 5 6; 3 4 7 11; 9 10 13 14; 8 12 15 16];

70 M(:,:,45) = [1 2 5 6; 3 4 7 8; 9 13 14 15; 10 11 12 16];

71

72 M(:,:,46) = [1 5 9 13; 3 4 8 12; 2 6 10 14; 7 11 15 16];

73 M(:,:,47) = [1 2 3 5; 4 6 7 8; 9 10 11 12; 13 14 15 16];

74 M(:,:,48) = [1 2 6 10; 3 7 11 15; 5 9 13 14; 4 8 12 16];

75 M(:,:,49) = [1 2 3 4; 5 6 7 8; 9 10 11 13; 12 14 15 16];

76 M(:,:,50) = [1 2 5 9; 3 7 11 15; 6 10 13 14; 4 8 12 16];

77 M(:,:,51) = [1 5 6 7; 2 3 4 8; 9 10 11 12; 13 14 15 16];

78 M(:,:,52) = [1 5 9 13; 3 4 7 11; 2 6 10 14; 8 12 15 16];

79 M(:,:,53) = [1 2 3 4; 5 6 7 8; 9 13 14 15; 10 11 12 16];

80

81 M(:,:,54) = [1 5 9 13; 2 3 4 6; 7 10 11 14; 8 12 15 16];

82 M(:,:,55) = [1 5 9 10; 2 3 4 8; 13 14 15 16; 6 7 11 12];

83 M(:,:,56) = [1 2 5 9; 3 6 7 10; 11 13 14 15; 4 8 12 16];

84 M(:,:,57) = [5 6 10 11; 1 2 3 4; 9 13 14 15; 7 8 12 16];

85 M(:,:,58) = [1 2 3 7; 4 8 12 16; 5 9 13 14; 6 10 11 15];

86 M(:,:,59) = [1 2 3 5; 4 8 11 12; 6 7 9 10; 13 14 15 16];

87 M(:,:,60) = [2 6 7 11; 3 4 8 12; 1 5 9 13; 10 14 15 16];

88 M(:,:,61) = [1 2 3 4; 7 8 10 11; 5 6 9 13; 12 14 15 16];

89

90 M(:,:,62) = [2 3 4 6; 7 8 10 11; 1 5 9 13; 12 14 15 16];

91 M(:,:,63) = [2 6 7 11; 3 4 8 12; 1 5 9 10; 13 14 15 16];

92 M(:,:,64) = [1 2 3 5; 4 8 12 16; 6 7 9 10; 11 13 14 15];

93 M(:,:,65) = [1 2 3 4; 7 8 12 16; 5 9 13 14; 6 10 11 15];

94 M(:,:,66) = [5 6 10 11; 1 2 3 7; 9 13 14 15; 4 8 12 16];

95 M(:,:,67) = [1 2 5 9; 3 6 7 10; 13 14 15 16; 4 8 11 12];

96 M(:,:,68) = [1 5 9 13; 2 3 4 8; 10 14 15 16; 6 7 11 12];

97 M(:,:,69) = [5 6 9 13; 1 2 3 4; 7 10 11 14; 8 12 15 16];

98

173

99 M(:,:,70) = [2 3 6 10; 4 7 8 11; 1 5 9 13; 12 14 15 16];

100 M(:,:,71) = [1 2 6 7; 3 4 8 12; 5 9 10 11; 13 14 15 16];

101 M(:,:,72) = [1 2 3 5; 4 8 12 16; 6 9 10 13; 7 11 14 15];

102 M(:,:,73) = [1 2 3 4; 6 7 8 12; 5 9 13 14; 10 11 15 16];

103 M(:,:,74) = [1 5 6 10; 2 3 7 11; 9 13 14 15; 4 8 12 16];

104 M(:,:,75) = [1 2 5 9; 3 4 6 7; 13 14 15 16; 8 10 11 12];

105 M(:,:,76) = [1 5 9 13; 2 3 4 8; 6 10 14 15; 7 11 12 16];

106 M(:,:,77) = [5 6 7 9; 1 2 3 4; 10 11 13 14; 8 12 15 16];

107

108 M(:,:,78) = [1 5 9 13; 2 3 4 6; 10 11 14 15; 7 8 12 16];

109 M(:,:,79) = [1 5 9 10; 2 3 4 6; 13 14 15 16; 7 8 11 12];

110 M(:,:,80) = [1 5 9 10; 2 3 6 7; 11 13 14 15; 4 8 12 16];

111 M(:,:,81) = [1 2 3 4; 7 8 12 16; 5 6 9 10; 11 13 14 15];

112 M(:,:,82) = [1 2 3 7; 4 8 12 16; 5 6 9 13; 10 11 14 15];

113 M(:,:,83) = [1 2 3 7; 4 8 11 12; 5 6 9 10; 13 14 15 16];

114 M(:,:,84) = [1 5 9 13; 2 3 6 7; 10 14 15 16; 4 8 11 12];

115 M(:,:,85) = [1 2 3 4; 7 8 11 12; 5 6 9 13; 10 14 15 16];

116

117 M(:,:,86) = [1 5 9 13; 2 3 4 8; 6 7 10 14; 11 12 15 16];

118 M(:,:,87) = [1 2 5 9; 3 4 7 8; 13 14 15 16; 6 10 11 12];

119 M(:,:,88) = [1 2 5 6; 3 7 10 11; 9 13 14 15; 4 8 12 16];

120 M(:,:,89) = [5 6 7 11; 1 2 3 4; 9 10 13 14; 8 12 15 16];

121 M(:,:,90) = [1 2 3 5; 4 8 12 16; 9 10 13 14; 6 7 11 15];

122 M(:,:,91) = [1 2 5 6; 3 4 8 12; 7 9 10 11; 13 14 15 16];

123 M(:,:,92) = [2 6 10 11; 3 4 7 8; 1 5 9 13; 12 14 15 16];

124 M(:,:,93) = [1 2 3 4; 6 7 8 10; 5 9 13 14; 11 12 15 16];

125

126 M(:,:,94) = [1 5 9 13; 2 3 4 7; 6 10 14 15; 8 11 12 16];

127 M(:,:,95) = [1 5 6 9; 2 3 4 7; 13 14 15 16; 8 10 11 12];

128 M(:,:,96) = [1 5 6 9; 2 3 7 11; 10 13 14 15; 4 8 12 16];

129 M(:,:,97) = [5 6 7 9; 1 2 3 4; 10 13 14 15; 8 11 12 16];

174

130 M(:,:,98) = [1 2 3 6; 4 8 12 16; 5 9 10 13; 7 11 14 15];

131 M(:,:,99) = [1 2 3 6; 4 7 8 12; 5 9 10 11; 13 14 15 16];

132 M(:,:,100) = [2 3 6 10; 4 7 8 12; 1 5 9 13; 11 14 15 16];

133 M(:,:,101) = [1 2 3 4; 6 7 8 12; 5 9 10 13; 11 14 15 16];

134

135 M(:,:,102) = [1 5 9 13; 2 3 4 7; 6 10 11 14; 8 12 15 16];

136 M(:,:,103) = [1 5 6 9; 2 3 4 8; 13 14 15 16; 7 10 11 12];

137 M(:,:,104) = [1 2 5 9; 3 6 7 11; 10 13 14 15; 4 8 12 16];

138 M(:,:,105) = [5 6 7 10; 1 2 3 4; 9 13 14 15; 8 11 12 16];

139 M(:,:,106) = [1 2 3 6; 4 8 12 16; 5 9 13 14; 7 10 11 15];

140 M(:,:,107) = [1 2 3 5; 4 7 8 12; 6 9 10 11; 13 14 15 16];

141 M(:,:,108) = [2 6 7 10; 3 4 8 12; 1 5 9 13; 11 14 15 16];

142 M(:,:,109) = [1 2 3 4; 6 7 8 11; 5 9 10 13; 12 14 15 16];

143

144 M(:,:,110) = [1 5 6 10; 2 3 4 7; 9 13 14 15; 8 11 12 16];

145 M(:,:,111) = [1 5 6 9; 2 3 4 7; 10 11 13 14; 8 12 15 16];

146 M(:,:,112) = [1 5 6 9; 2 3 4 8; 10 13 14 15; 7 11 12 16];

147 M(:,:,113) = [1 2 5 9; 3 4 6 7; 10 13 14 15; 8 11 12 16];

148 M(:,:,114) = [1 2 3 6; 4 7 8 11; 5 9 10 13; 12 14 15 16];

149 M(:,:,115) = [1 2 3 6; 4 7 8 12; 5 9 13 14; 10 11 15 16];

150 M(:,:,116) = [1 2 3 5; 4 7 8 12; 6 9 10 13; 11 14 15 16];

151 M(:,:,117) = [1 2 6 7; 3 4 8 12; 5 9 10 13; 11 14 15 16];

152

153 f = M(:,:,Index);

1 function f = GetTetromScore(I,options)

2 %

3 % Calculate a score for given coefficients in I.

4 % options.sigma -> variance of noise

175

5 % options.method -> method used in score calculation.

6 % options.coeff_var -> used in method c1 in core calculation .

7 % options.coeff_abs -> used in method c1 in core calculation .

8 % options.coeff_max -> used in method c1 in core calculation .

9 % methods are: (score reperesents ..)

10 % 'l1' -> Sum of absolute values of detailed coefficients

11 % 'l2' -> Energy in detailed coefficients

12 % 't1' -> Number of detailed coefficients greater than given

13 % threshold (T)

14 % 't2' -> Zero out detailed coefficients less than T, and then

15 % sum energy in the coefficients

16 % 's1' -> Standard Deviation of I

17 % 'c1' -> score = var * coeff_var + abs(I) * coeff_abs +

18 % max(abs(I)) * coeff_max,

19 % where var_c + var_i + var_m = 1

20 % I = coefficients

21

22 options.null = 0;

23

24 if isfield(options, 'method')

25 method = options.method;

26 else

27 method = 'T1' ;

28 end

29

30 if isfield(options, 'T')

31 T = options.T;

32 else

33 T = 10;

34 end

35

176

36 if isfield(options, 'sigma')

37 sigma = options.sigma;

38 else

39 sigma = 15;

40 end

41

42 if isfield(options, 'coeff_var')

43 coeff_var = options.coeff_var;

44 else

45 coeff_var = 1;

46 end

47

48 if isfield(options, 'coeff_abs')

49 coeff_abs = options.coeff_abs;

50 else

51 coeff_abs = 0;

52 end

53

54 if isfield(options, 'coeff_max')

55 coeff_max = options.coeff_max;

56 else

57 coeff_max = 0;

58 end

59

60 %% Ignore average coefficients from

61 a = I;

62 a(1:2,1:2) = zeros(2);

63

64

65 % L1 score

66 switch lower(method)

177

67 case 'l1'

68 %% minimum sum of detailed coefficients

69 %% Same as in proposed paper

70 f = sum(abs(a(:)));

71

72 case 'l2'

73 %% Minimum Energy in detail coefficients

74 a = a(:);

75 f = sum(a.ˆ2);

76

77 case 't1'

78 %% More number of large coefficients

79 a = a(:);

80 a = abs(a) > T;

81 f = sum(a);

82

83 case 't2'

84 %% 0 weight to detailed coefficient smaller than threshold.

85 %% Iˆ2 -> larger weight to large coefficients

86 a = I;

87 I = I. * (abs(I) ≥ T);

88 I(1:2,1:2) = a(1:2,1:2);

89 I = I(:);

90 f = sum(I.ˆ2);

91

92 case 's1'

93 % Minimum standard deviations

94 f = std(I(:));

95

96 case 'c1'

97 % score = var * coeff_var + abs(I) * coeff_abs + max(abs(I)) * coeff_max

178

98 % where = var_c + var_i + var_m = 1

99 I = I(:);

100 f = var(I) * coeff_var + sum(abs(I)) * coeff_abs + max(abs(I)) * coeff_max;

101

102 otherwise

103 error(['Unknown option method = ' ,method]);

104

105 end

179

B.2 Code used to Generate the Thesis Figures

1 % Generate figure 1

2 % Load an image

3 I = load_image('boat');

4 n = length(I);

5

6 % Add noise

7 sigma = 40;

8 Noise = sigma * randn(n);

9 In = I + Noise;

10

11 % Plot the image and noisy image

12 figure

13 subplot(111); image(I); axis square; axis off;

14 title('Clean boat image'); colormap gray(256);

15 print('-deps' , 'CleanBoat.eps');

16 figure

17 subplot(111); image(In); axis square; axis off;

18 title('noisy boat image'); colormap gray(256);

19 print('-deps' , 'NoisyBoat.eps');

1 %% Generate and plot histogram for boat, lena,

2 %% barb and mandrill images.

3

4 for index = 1:4

5 if (index == 1)

6 name = 'boat' ;

180

7 elseif (index == 2)

8 name = 'lena' ;

9 elseif (index == 3)

10 name = 'mandrill' ;

11 else

12 name = 'barbara' ;

13 end

14

15 % Load an image

16 L = 2 ; % Number of decomposition levels

17 M = load_image(name);

18 MW = perform_wavelet_transform(M,L,1);

19

20 % Extract detail coefficients and plot their histogram

21 LH1 = MW(end /2+1: end, 1: end/2);

22 HL1 = MW(1:end /2 , end /2+1: end);

23 HH1 = MW(end /2+1: end, end /2+1: end);

24

25 % Quantize all coefficients to finite precision

26 T = 3; % bins for histogram

27 [tmp,LH1q] = perform_quantization(LH1,T);

28 [tmp,HL1q] = perform_quantization(HL1,T);

29 [tmp,HH1q] = perform_quantization(HH1,T);

30

31 % Generate histogram

32 [LH1h,LH1x] = compute_histogram(LH1q);

33 [HL1h,HL1x] = compute_histogram(HL1q);

34 [HH1h,HH1x] = compute_histogram(HH1q);

35

36 % Plot the results

37 figure

181

38 subplot(221); image(M);

39 axis image; axis off; title(['Image ' ,name]);

40 subplot(222); plot(LH1x,LH1h);

41 title(['LH1 coefficients histogram']);

42 xlabel('Coefficient Value'); ylabel('Normalized frequency');

43 subplot(223); plot(HL1x,HL1h);

44 title(['HL1 coefficients histogram']);

45 xlabel('Coefficient Value'); ylabel('Normalized frequency');

46 subplot(224); plot(HH1x,HH1h);

47 title(['HH1 coefficients histogram']);

48 xlabel('Coefficient Value'); ylabel('Normalized frequency');

49 colormap gray(256);

50 fname = strcat('histogram' ,name);

51 print('-deps' ,fname);

52 end

1 %% Plot sinwave and Db10 wavelet

2

3 s = sin(20. * linspace(0,pi,1000));

4 [phi, psi, x] = wavefun('db10' , 5);

5

6 subplot(121); plot(s) ; title('Sine wave');

7 subplot(122); plot(psi); title('Db10 Wavelet');

8 print('-deps' , 'SineVsDb10Wave');

1 %% Generate 1D Denoising example for Thesis report.

2 %% Uses load_signal function from PyreToolBox.

3

182

4 %%%

5 %% Some global variables that control how this program is run .

6 %%%

7 n = 1024; %% length of signal

8 DecLevels = 6;

9 waveletname = 'db4' ;

10 err_type = 'm' ; %% a -> abs, m -> mse, p -> psnr

11 %%%

12

13 % Load piece wise regular signal

14 randn('state' ,1001);

15 y = load_signal('piece-regular' ,n); %% Clean signal

16 sigma = 0.06 * (max(y)-min(y)); %% Noise level

17 yn = y + sigma * randn(n,1); %% Noisy signal

18 errA = calculate_error(y,yn, 'a'); %% Quantify the error

19 errM = calculate_error(y,yn, 'm'); %% Quantify the error

20 errP = calculate_error(y,yn, 'p'); %% Quantify the error

21

22 % Plot the clean and noisy signal

23 figure('Name' , '1-D Denoising Examples');

24 plot(y); title('Original clean signal');

25 print('-deps' , 'Fig3_1_CleanSignal');

26 axis tight;

27 figure

28 plot(yn);

29 title(['Noisy signal with abs. err. = ' ,num2str(errA), ...

30 ' mse = ' ,num2str(errM), ' psnr = ' ,num2str(errP)]);

31 axis tight;

32 print('-deps' , 'Fig3_1_NoisySignal');

33

34 %%

183

35 % Running average and plot it's result.

36 % Sharp edges will be smoothed out.

37 % Iterate and find out best window to lower MSE.

38 %%

39 windowrange = [1:2:15];

40 e_list = [];

41

42 for w = windowrange

43 y_hat = filter(ones(1,w)/w,1,yn);

44 err = calculate_error(y,y_hat,err_type);

45 e_list = [e_list,err];

46 end

47

48 % Plot the error vs window

49 figure

50 plot(windowrange,e_list);

51 title('Error vs averaging window');

52 xlabel('Window size');

53 ylabel('MSE in db');

54 print('-deps' , 'Fig3_1_MSEvsWindowSize');

55

56 %% Calculate & plot the optimally filtered result

57 [tmp,i] = min(e_list); w = windowrange(i);

58 y_hat = filter(ones(1,w)/w,1,yn);

59 errA = calculate_error(y,y_hat, 'a'); %% Quantify the error

60 errM = calculate_error(y,y_hat, 'm'); %% Quantify the error

61 errP = calculate_error(y,y_hat, 'p'); %% Quantify the error

62 figure

63 plot(y_hat);

64 title(['Denoised signal with running average of window ' , ...

65 num2str(w), 'abs. err. = ' ,num2str(errA), ...

184

66 'mse = ' ,num2str(errM), ' psnr = ' ,num2str(errP)]);

67 axis tight;

68 print('-deps' , 'Fig3_1_DenoisedAverage');

69

70 %%%

71 % Wiener filtering

72 %%

73 ff = fft(y); ffn = fft(yn);

74 pf = abs(ff).ˆ2; % spectral power

75 hwf = pf./(pf+n * sigmaˆ2);

76 y_hat = real(ifft(ffn. * hwf));

77 errA = calculate_error(y,y_hat, 'a');

78 errM = calculate_error(y,y_hat, 'm');

79 errP = calculate_error(y,y_hat, 'p');

80 figure

81 plot(y_hat);

82 title(['Denoised signal with wiener filtering, and' ...

83 'abs. err. = ' ,num2str(errA), ' mse = ' , ...

84 num2str(errM), ' psnr = ' ,num2str(errP)]); axis tight;

85 print('-deps' , 'Fig3_1_DenoisedWeiner');

86

87 %%%

88 % Wavelet transform and hard threshold denoising

89 % Try different thresholds and pick the best.

90 %%

91 [C,L] = wavedec(yn,DecLevels,waveletname);

92

93 % Iterate over different thresholds

94 t_list = linspace(0,15,30);

95 e_list = [];

96

185

97 for t = t_list

98 T = t * sigma;

99 cD = C((L(1)+1): end);

100 CT = [C(1:L(1));HardThresh(cD,T)];

101 y_hat = waverec(CT,L,waveletname);

102 err = calculate_error(y,y_hat,err_type);

103 e_list = [e_list,err];

104 end

105

106 % Now calculate/plot the best denoised version of signal

107 [tmp,i] = min(e_list); T = t_list(i) * sigma;

108 figure

109 plot(t_list,e_list); title('Error vs T/sigma');

110 xlabel('Threshold in units of sigma');

111 ylabel('MSE in db');

112 print('-deps' , 'Fig3_1_MSEvsThreshold');

113

114 cD = C((L(1)+1): end);

115 CT = [C(1:L(1));HardThresh(cD,T)];

116 y_hat = waverec(CT,L,waveletname);

117 errA = calculate_error(y,y_hat, 'a'); %% Quantify the error

118 errM = calculate_error(y,y_hat, 'm'); %% Quantify the error

119 errP = calculate_error(y,y_hat, 'p'); %% Quantify the error

120

121 figure

122 plot(y_hat);

123 title(['Denoised signal with ' ,waveletname, ...

124 'wavelet (L=' ,num2str(DecLevels), ') abs. err. = ' , ...

125 num2str(errA), ' mse = ' ,num2str(errM), ' psnr = ' , ...

126 num2str(errP)]); axis tight;

127

186

128 print('-deps' , 'Fig3_1_DenoisedWavelet');

1 %% Generate 1D Denoising example for Thesis report.

2 %% Uses load_signal function from PyreToolBox.

3

4 %%%

5 %% Some global variables that control how this program is run .

6 %%%

7 n = 1024;

8 DecLevels = 6;

9 Wavelets = char('db1' , 'db2' , 'db3' , 'db4' , 'db9' , 'sym2' , ...

10 'sym3' , 'sym4' , 'sym8' , 'coif1' , 'coif4' , 'coif5');

11 err_type = 'm' ; %% m -> mse error, p -> psnr error,

12 %% a -> absolute error

13 %% This is used to find optimal threshold

14 %%%

15

16 % Load piece wise regular signal

17 randn('state' ,1001);

18 y = load_signal('piece-regular' ,n); %% Clean signal

19 sigma = 0.06 * (max(y)-min(y)); %% Noise level

20 yn = y + sigma * randn(n,1); %% Noisy signal

21 err = calculate_error(y,yn,err_type); %% Quantify the error

22

23 % Plot the clean and noisy signal

24 figure('Name' , '1-D Denoising Examples');

25 plot(y); title('Original clean signal');

26 axis tight;

27 print('-deps' , 'Fig3_2_CleanSignal');

187

28 figure

29 plot(yn);

30 title(['Noisy signal with err. = ' ,num2str(err)]);

31 axis tight;

32 print('-deps' , 'Fig3_2_NoisySignal');

33

34 %%%

35 % Wavelet transform and hard threshold denoising

36 % Try different thresholds and pick the best.

37 %%

38 for i = 1:length(Wavelets)

39 waveletname = strtrim(Wavelets(i,1: end))

40 [C,L] = wavedec(yn,DecLevels,waveletname);

41

42 % Iterate over different thresholds

43 t_list = linspace(0,15,30);

44 e_list = [];

45 cD = C((L(1)+1): end);

46

47 for t = t_list

48 T = t * sigma;

49 CT = [C(1:L(1));HardThresh(cD,T)];

50 y_hat = waverec(CT,L,waveletname);

51 err = calculate_error(y,y_hat,err_type);

52 e_list = [e_list,err];

53 end

54

55 % Now calculate/plot the best denoised version of signal

56 [tmp,j] = min(e_list); T = t_list(j) * sigma;

57

58 CT = [C(1:L(1));HardThresh(cD,T)];

188

59 y_hat = waverec(CT,L,waveletname);

60 err = calculate_error(y,y_hat,err_type);

61

62 figure

63 plot(y_hat);

64 title(['Denoised signal with ' ,waveletname, ...

65 'wavelet, MSE = ' ,num2str(err)]);

66 fname = strcat('Fig_3_2_DenoisedSignal_' ,waveletname);

67 axis tight;

68 print('-deps' ,fname);

69

70 end

1 %% Generate 2D Denoising example for Thesis report.

2 %% Uses load_image functions from PyreToolBox.

3

4 %%%

5 %% Some global variables that control how this program is run .

6 %%%

7 DecLevels = 2; %

8 waveletname = 'db10' ;

9 err_type = 'm' ; %% a -> abs, m -> mse, p -> psnr

10 name = 'lena' ; %% picture name

11 %%%

12

13 % Load the image

14 I = load_image(name);

15 n = length(I);

16

189

17 randn('state' ,1001); % to have repeatability in result

18

19 % Add noise

20 sigma = 30;

21 In = I + sigma * randn(n);

22

23 % Calculate error

24 errP = calculate_error(I,In, 'p'); %% Quantify the error

25

26 figure

27 subplot(111); image(I); axis image; axis off;

28 title('Original Image'); colormap gray(256);

29 print -deps Denoising2DExample_1.eps

30 figure

31 subplot(111); image(In); axis image; axis off;

32 title(['Noisy Image, psnr = ' ,num2str(errP), 'db']);

33 colormap gray(256);

34 print -deps Denoising2DExample_2.eps

35

36 %%%

37 %% Running average and plot it's result

38 %%%

39 windowrange = [1:2:15];

40 e_list = [];

41

42 for w = windowrange

43 I_hat = filter2(ones(1,w)/w,In);

44 err = calculate_error(I,I_hat,err_type);

45 e_list = [e_list,err];

46 end

47

190

48 % Plot the error vs window

49 figure

50 subplot(111); plot(windowrange,e_list);

51 title('Error vs averaging window'); axis square;

52 print -deps Denoising2DExample_3.eps

53

54 % Plot the optimal filtered image

55 [tmp,i] = min(e_list); w = windowrange(i);

56 I_hat = filter2(ones(1,w)/w,In);

57 errP = calculate_error(I,I_hat, 'p'); %% Quantify the error

58 figure

59 subplot(111); image(I_hat); axis image; axis off;

60 title(['Running average of window ' ,num2str(w), ...

61 ' psnr = ' ,num2str(errP), ' db']);

62 colormap gray(256);

63 print -deps Denoising2DExample_4.eps

64

65 %%%

66 %% Wiener2 filter

67 %%%

68 fI = fft2(I); fIn = fft2(In);

69 pf = abs(fI).ˆ2; % spectral power

70 % fourier transform of the wiener filter

71 hwf = pf./(pf+ nˆ2 * sigmaˆ2);

72 % perform the filtering over the fourier

73 I_hat = real(ifft2(fIn . * hwf));

74 errP = calculate_error(I,I_hat, 'p'); %% Quantify the error

75 figure

76 subplot(111); image(I_hat); axis image; axis off;

77 title(['Wiener2 psnr = ' ,num2str(errP), ' db']);

78 colormap gray(256);

191

79 print -deps Denoising2DExample_5.eps

80

81 %%%

82 % Wavelet transform and hard threshold denoising

83 % Try different thresholds and pick the best. (OracleShrink)

84 %%

85 [C,L] = wavedec2(In,DecLevels,waveletname);

86

87 % Iterate over different thresholds

88 t_list = linspace(0,5,10);

89 e_list = [];

90 index = L(1,:); m = index(1); n = index(2);

91 cD = C((m * n+1): end);

92

93 for t = t_list

94 T = t * sigma;

95 CT = [C(1:m * n),SoftThresh(cD,T)];

96 I_hat = waverec2(CT,L,waveletname);

97 err = calculate_error(I,I_hat,err_type);

98 e_list = [e_list,err];

99 end

100

101 % Now calculate/plot the best denoised version of signal

102 [tmp,i] = min(e_list); T = t_list(i) * sigma;

103 figure

104 subplot(111); plot(t_list,e_list); title('Error vs T/sigma');

105 axis square; colormap gray(256);

106 print -deps Denoising2DExample_6.eps

107

108 CT = [C(1:m * n),SoftThresh(cD,T)];

109 I_hat = waverec2(CT,L,waveletname);

192

110 errP = calculate_error(I,I_hat, 'p'); %% Quantify the error

111

112 figure

113 subplot(111); image(I_hat); title([waveletname, ...

114 'wavelet (L=' ,num2str(DecLevels), ') psnr = ' ,num2str(errP), ' db']);

115 axis image; colormap gray(256); axis off;

116 print -deps Denoising2DExample_7.eps

117

118 %%%

119 % Wavelet transform, using bayes

120 %%

121 figure

122 str.repres1 = 'fs' ;

123 str.repres2 = '' ;

124 str.parent = 1;

125 str.Nor = 8;

126 str.Nsc = 2;

127 options(1).name = 'blsgsm' ;

128 options(1).params = str;

129 f = denoise_image(In, options,sigma, 'p' ,1,I,name,0);

130 print -deps Denoising2DExample_8.eps

1 %% Generate 2D Denoising example for Thesis report.

2 %% Uses load_signal,load_image function from PyreToolBox .

3

4 %%%

5 %% Some global variables that control how this program is run .

6 %%%

7 DecLevels = 2;

193

8 Wavelets = char('db1' , 'db4' , 'db9' , 'db13' , 'sym2' , ...

9 'sym4' , 'sym8' , 'coif1' , 'coif4' , 'coif5' , ...

10 'bior4.4' , 'dmey');

11 err_type = 'm' ; %% m -> mse error, p -> psnr error,

12 %% a -> absolute error

13 %% This is used to find optimal threshold

14 name = 'lena' ; %% picture image

15 %%%

16

17 % Load the image

18 I = load_image(name);

19 n = length(I);

20

21 randn('state' ,1001); % to have repeatable results

22

23 % Add noise

24 sigma = 0.12 * (max(I(:))-min(I(:)));

25 In = I + sigma * randn(n);

26

27 % Calculate error

28 err = calculate_error(I,In, 'p'); %% Quantify the error

29 figure

30 image(I); axis image; axis off;

31 title('Original Image'); colormap gray(256);

32 print('-deps' , 'Fig3_4_LenaCleanImage');

33 figure

34 image(In); axis image;

35 title(['Noisy Image, psnr = ' ,num2str(err), ' db']);

36 colormap gray(256);

37 print('-deps' , 'Fig3_4_LenaNoisyImage');

38

194

39 %%%

40 % Wavelet transform and hard threshold denoising

41 % Try different thresholds and pick the best.

42 %%

43 figure

44 figcnt = 1;

45 epsfilecnt = 1;

46

47 for i = 1:length(Wavelets)

48 waveletname = strtrim(Wavelets(i,1: end))

49 [C,L] = wavedec2(In,DecLevels,waveletname);

50

51 % Iterate over different thresholds

52 t_list = linspace(0,6,12);

53 e_list = [];

54 index = L(1,:); m = index(1); n = index(2);

55 cD = C((m * n+1): end);

56

57 for t = t_list

58 T = t * sigma;

59 CT = [C(1:m * n),HardThresh(cD,T)];

60 I_hat = waverec2(CT,L,waveletname);

61 err = calculate_error(I,I_hat,err_type);

62 e_list = [e_list,err];

63 end

64

65 % Now calculate/plot the best denoised version of signal

66 [tmp,j] = min(e_list); T = t_list(j) * sigma;

67

68 CT = [C(1:m * n),HardThresh(cD,T)];

69 I_hat = waverec2(CT,L,waveletname);

195

70 err = calculate_error(I,I_hat, 'p');

71

72 subplot(1,1,figcnt); image(I_hat);

73 title([waveletname, ' psnr = ' ,num2str(err), ' db']);

74 axis image; colormap gray(256); axis off;

75 if (figcnt == 1)

76 fname = strcat('Denoising2DEffectOfBasis_' ,num2str(epsfilecnt));

77 print('-deps' , fname);

78 figure

79 figcnt = 1;

80 epsfilecnt = epsfilecnt + 1;

81 else

82 figcnt = figcnt + 1;

83 end

84

85 end

1 % Load an image

2 name = char('lena' , 'barbara' , 'boat' , 'house');

3 %sigma = [10 15 20 25 30];

4 %name = char('lena');

5 sigma = 0;

6 errtype = 'p' ;

7 n = 128;

8

9 %% tetrom parameters

10 options.method = 'l1' ;

11 options.L = 1;

12 MaxC = 117;

196

13 randn('state' ,0);

14

15 [NumImages,temp] = size(name);

16 for i = 1:NumImages

17 iname = strtrim(name(i,1: end));

18 I = load_image(iname,n);

19 % Add noise

20 for sig = sigma

21 In = I + sig * randn(n);

22 options.sigma = sig;

23 options.T = sqrt(2 * log(n * n)) * sig;

24 disp(['Threshold is ' ,num2str(options.T)]);

25

26 % call the denoise function (tetrom)

27 [f c_tetrom] = perform_tetrom_denoising(In,options,I);

28 % call the denoise function (haar)

29 options.MaxC = 1;

30 [fhaar c_haar] = perform_tetrom_denoising(In,options,I);

31 options.MaxC = MaxC;

32

33 % compute histogram and plot

34 LL1_t = c_tetrom(1: end /2, 1: end /2);

35 LH1_t = c_tetrom(end/2+1: end , 1: end/2);

36 HL1_t = c_tetrom(1: end /2 , end /2+1: end);

37 HH1_t = c_tetrom(end/2+1: end , end /2+1: end);

38

39 LL1_h = c_haar(1: end /2, 1: end /2);

40 LH1_h = c_haar(end/2+1: end, 1: end /2);

41 HL1_h = c_haar(1: end /2 , end/2+1: end);

42 HH1_h = c_haar(end/2+1: end, end/2+1: end);

43

197

44 % Quantize all coefficients to finite precision

45 T = 3; % bins for histogram

46 [tmp,LL1q_t] = perform_quantization(LL1_t,T);

47 [tmp,LH1q_t] = perform_quantization(LH1_t,T);

48 [tmp,HL1q_t] = perform_quantization(HL1_t,T);

49 [tmp,HH1q_t] = perform_quantization(HH1_t,T);

50

51 [tmp,LL1q_h] = perform_quantization(LL1_h,T);

52 [tmp,LH1q_h] = perform_quantization(LH1_h,T);

53 [tmp,HL1q_h] = perform_quantization(HL1_h,T);

54 [tmp,HH1q_h] = perform_quantization(HH1_h,T);

55

56 % Generate histogram

57 [LL1h_t,LL1x_t] = compute_histogram(LL1q_t);

58 [LH1h_t,LH1x_t] = compute_histogram(LH1q_t);

59 [HL1h_t,HL1x_t] = compute_histogram(HL1q_t);

60 [HH1h_t,HH1x_t] = compute_histogram(HH1q_t);

61

62 [LL1h_h,LL1x_h] = compute_histogram(LL1q_h);

63 [LH1h_h,LH1x_h] = compute_histogram(LH1q_h);

64 [HL1h_h,HL1x_h] = compute_histogram(HL1q_h);

65 [HH1h_h,HH1x_h] = compute_histogram(HH1q_h);

66

67 % Plot the results

68 figure

69 subplot(221); image(In); colormap gray(256);

70

71 subplot(222); plot(LH1x_t,LH1h_t, 'r');

72 title(['LH1 coefficients histogram']);

73 hold on

74 subplot(222); plot(LH1x_h,LH1h_h);

198

75 title(['LH1 coefficients histogram']);

76 hold off

77

78 subplot(223); plot(HL1x_t,HL1h_t, 'r');

79 title(['HL1 coefficients histogram']);

80 hold on

81 subplot(223); plot(HL1x_h,HL1h_h);

82 title(['HL1 coefficients histogram']);

83 hold off

84

85 subplot(224); plot(HH1x_t,HH1h_t, 'r');

86 title(['HH1 coefficients histogram']);

87 hold on

88 subplot(224); plot(HH1x_h,HH1h_h);

89 title(['HH1 coefficients histogram']);

90 hold off

91

92 end

93 end

1 % Tetrolet vs Haar Denoising performance

2 % Plot tetrolet transform PSNR vs number of tetrom partition s

3 % averaged.

4

5 name = char('lena' , 'barbara' , 'boat' , 'house');

6 sigma = [5 10 15 20 25 30];

7 %sigma = 10;

8 errtype = 'p' ;

9 plot_img = 1;

199

10 n = 128;

11 randn('state' ,1001); %% Set randomization to have repeatable answer.

12 NumberOfIterations = 117;

13

14 %% Tetrolet options

15 options.method = 'T1' ;

16 options.L = 1;

17 options.PrintStatistics = 0;

18 options.PrintStatFname = '' ;

19

20 [NumImages,temp] = size(name);

21 for sig = sigma

22 figure

23 hold on

24 options.sigma = sig;

25 T0 = sqrt(2 * log(n * n)) * sig * 0.68;

26 options.T = T0;

27 k = 0;

28 for i = 1:NumImages

29 iname = strtrim(name(i,1: end));

30 I = load_image(iname,n);

31 Error = [];

32 In = I + sig * randn(n);

33 i_hat = zeros(n);

34 for j=1:NumberOfIterations

35 options.Tiling = j;

36 % call the denoise function

37 [f c_tetrom] = perform_tetrom_denoising(In,options,I);

38 i_hat = i_hat + f;

39 Error = [Error; calculate_error(I,i_hat./j,errtype)];

40 end

200

41 switch k

42 case 0, plot(1:NumberOfIterations,Error, 'ko:');

43 case 1, plot(1:NumberOfIterations,Error, 'kx:');

44 case 2, plot(1:NumberOfIterations,Error, 'k+:');

45 case 3, plot(1:NumberOfIterations,Error, 'k * :');

46 case 4, plot(1:NumberOfIterations,Error, 'ks:');

47 case 5, plot(1:NumberOfIterations,Error, 'kd:');

48 end

49 k = k + 1;

50 end

51 legend(name);

52 hold off;

53 end

1 % Plot tetrom denoising performance vs threshold

2

3 name = char('lena' , 'barbara' , 'boat' , 'house');

4 sigma = [10 20];

5 %sigma = 10;

6 errtype = 'p' ;

7 dna = 0;

8 n = 128;

9 MaxC = 117;

10 decl = 1;

11 opt.L = decl;

12 opt.PrintStatistics = 0;

13 opt.PrintStatFname = 'none' ;

14 randn('state' ,1001);

15

201

16 [NumImages,temp] = size(name);

17

18 for sig = sigma

19 figure

20 hold on

21 T0 = sqrt(2 * log(n * n)) * sig;

22 thres_list = [1/8:1/8:3/2];

23 opt.sigma = sig;

24

25 for i = 1:NumImages

26 iname = strtrim(name(i,1: end));

27 I = load_image(iname,n);

28 % Add noise

29 In = I + sig * randn(n);

30

31 Error = [];

32

33 for thres = thres_list

34 opt.T = thres * T0;

35

36 %% Now do tetrom based denoising

37 i_hat_sum = zeros(n);

38 for j=1:117

39 opt.Tiling = j;

40 % call the denoise function (tetrom)

41 [f c_tetrom] = perform_tetrom_denoising(In,opt,I);

42 i_hat_sum = i_hat_sum+f;

43 end

44 im_hat = i_hat_sum./j;

45 clear i_hat_sum;

46 Error = [Error, calculate_error(I,im_hat,errtype)];

202

47 end

48 switch i

49 case 1, plot(thres_list,Error, 'ko:');

50 case 2, plot(thres_list,Error, 'kx:');

51 case 3, plot(thres_list,Error, 'k+:');

52 case 4, plot(thres_list,Error, 'k * :');

53 end

54 xlabel('Threshold (T/T0) where T0 is universal threshold');

55 ylabel('Psnr in db');

56 end

57 legend(name);

58 title(['Tetrolet performance vs threshold with sigma = ' , ...

59 num2str(sig), ' T0 = ' ,num2str(T0)]);

60 end

1 % Program to generate performance table.

2

3 %% Load images

4 name = char('boat' , 'house');

5 %name = char('barbara');

6 sigma = [10 15 20 25 30];

7 %sigma = [10];

8 NumIterations = 10;

9 seed = 1001;

10 n = 128;

11

12 %% Information about what algorithms we are using

13 str.wnam = 'db1' ;

14 str.decl = 1;

203

15

16 options(1).name = 'visu' ;

17 str.type = 'hard' ;

18 options(1).params = str;

19

20 options(2).name = 'visu' ;

21 str.type = 'soft' ;

22 options(2).params = str;

23

24 options(3).name = 'sure' ;

25 options(3).params = str;

26

27 options(4).name = 'bayes' ;

28 options(4).params = str;

29

30 options(5).name = 'michak1' ;

31 options(5).params = str;

32

33 options(6).name = 'michak2' ;

34 options(6).params = str;

35

36 options(7).name = 'blsgsm' ;

37 options(7).params = 'null' ;

38

39 options(8).name = 'tetrom' ;

40 options(8).params = str;

41

42 options(9).name = 'redun' ;

43 str.wnam = 'haar' ;

44 options(9).params = str;

45

204

46 algonames = char(options(1).name,options(2).name, ...

47 options(3).name,options(4).name, ...

48 options(5).name,options(6).name, ...

49 options(7).name,options(8).name, ...

50 options(9).name);

51

52 result = [];

53 f0 = zeros(NumIterations,4);

54 f1 = zeros(NumIterations,4);

55 f2 = zeros(NumIterations,4);

56 f3 = zeros(NumIterations,4);

57 f4 = zeros(NumIterations,4);

58 f5 = zeros(NumIterations,4);

59 f6 = zeros(NumIterations,4);

60 f7 = zeros(NumIterations,4);

61 f8 = zeros(NumIterations,4);

62 f9 = zeros(NumIterations,4);

63

64

65 [NumImages,temp] = size(name);

66 randn('state' ,seed);

67

68 for i = 1:NumImages

69 iname = strtrim(name(i,1: end));

70 I = load_image(iname,n);

71 for sig = sigma

72 display([iname, ' (sigma = ' ,num2str(sig), ...

73 ') ABS MSE PSNR SNR']);

74 for itr = 1:NumIterations

75 In = I + sig * randn(n);

76 f = denoise_image(In, options, sig, 'p' , 0, I, iname, 0);

205

77 if itr == 1

78 result = f;

79 else

80 result = result + f;

81 end

82 f0(itr,:) = f(1,:);

83 f1(itr,:) = f(2,:);

84 f2(itr,:) = f(3,:);

85 f3(itr,:) = f(4,:);

86 f4(itr,:) = f(5,:);

87 f5(itr,:) = f(6,:);

88 f6(itr,:) = f(7,:);

89 f7(itr,:) = f(8,:);

90 f8(itr,:) = f(9,:);

91 end

92 % calculate standard deviation and print

93 err = zeros(9,4);

94 err(1,:) = std(f0);

95 err(2,:) = std(f1);

96 err(3,:) = std(f2);

97 err(4,:) = std(f3);

98 err(5,:) = std(f4);

99 err(6,:) = std(f5);

100 err(7,:) = std(f6);

101 err(8,:) = std(f7);

102 err(9,:) = std(f8);

103 % calculate average and print

104 result = result./NumIterations;

105 result = [algonames,num2str(result)];

106 display(result);

107 display(err);

206

108 display(f0);

109 display(f1);

110 display(f2);

111 display(f3);

112 display(f4);

113 display(f5);

114 display(f6);

115 display(f7);

116 display(f8);

117

118 figure

119 hold on

120 x = [1:NumIterations];

121 plot(x,f0(:,3), 'bo:');

122 plot(x,f1(:,3), 'gx:');

123 plot(x,f2(:,3), 'kd:');

124 plot(x,f3(:,3), 'c * :');

125 plot(x,f4(:,3), 'ms:');

126 plot(x,f5(:,3), 'yd:');

127 plot(x,f7(:,3), 'r+:');

128 xlabel('Iterations'); ylabel('psnr in db');

129 title([iname, ' Image']);

130 legend('VisuHard' , 'VisuSoft' , 'Sure' , ...

131 'Bayes' , 'Michak1' , 'Michak2' , 'Tetrom');

132

133 figure

134 hold on

135 plot(x,f6(:,3), 'bo:');

136 plot(x,f8(:,3), 'gx:');

137 plot(x,f7(:,3), 'r+:');

138 xlabel('Iterations'); ylabel('psnr in db');

207

139 title([iname, ' Image']);

140 legend('BLS-GSM' , 'Redundant' , 'Tetrom');

141

142 end

143

144 end

208

Appendix C

Acronyms

ADC Analog to Digital converter

AWGN Additive White Gaussian Noise

CWT Complex Wavelet Transform

DT-CWT Dual Tree Complex Wavelet Transform

DWT Discrete Wavelet Transform

GGD Generalized Gaussian Distribution

GSM Gaussian Scale Mixture

HH High High (output of high pass followed by high pass filter)

HL High Low (output of high pass followed by low pass filter)

IDWT Inverse Discrete Wavelet Transform

LCD Liquid Crystal Display

LH Low High (output of low pass followed by high pass filter)

LL Low Low (output of low pass followed by low pass filter)

MAP Maximum A Posteriori Probability

ML Maximum Likelihood

MMSE Minimum Mean Square Error

MRA Multiresolution Analysis

MSE Mean Square Error

PSNR Peak Signal to Noise Ratio

QMF Quadrature Mirror Filters

SNR Signal to Noise Ratio

SURE Stein’s Unbiased Risk Estimate

209

TIWT Translation Invariant Wavelet Transform

210

	Denoising of Natural Images Using the Wavelet Transform
	Recommended Citation

	Introduction
	Image Denoising versus Image Enhancement
	Noise Sources
	Denoising Artifacts
	The Wavelet Transform in Image Denoising
	Introduction to the Wavelet Transform

	Survey of Literature
	Thresholding Methods
	Hard Thresholding Method
	Soft Thresholding Method
	VisuShrink
	SUREShrink
	BayesShrink

	Shrinkage Methods
	Linear MMSE Estimator
	Bivariate Shrinkage using Level Dependency

	Other Approaches
	Gaussian Scale Mixtures
	Non-Local Mean Algorithm
	Image Denoising using Derotated Complex Wavelet Coefficients

	Wavelets in Action
	1D signal Denoising Example
	Effect of the Wavelet Basis

	Natural Image Denoising Example
	Effect of the Wavelet Basis

	Tetrolet Transform Based Denoising
	Haar Wavelet Transform
	Example of the Tetrolet Transform
	Histogram Comparison
	Tetrolet Transform Based Denoising Algorithm

	Performance
	Performance Criteria
	Comparison with Haar Wavelet Transform and Universal Thresholding
	Visual Comparison
	Lena Image Example
	The Boat Image Example
	The House Image Example
	Barbara Image Example
	Tetrolet Transform Denoising Performance versus Threshold
	Performance Tables
	Residuals Analysis

	Summary and Conclusions
	Bibliography
	Tetrominoe Shapes
	Matlab Code
	Functions
	Code used to Generate the Thesis Figures

	Acronyms

