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ABSTRACT 

EFFECTS OF WATER CONSERVATION ON EVAPOTRANSPIRATION IN  
LAS VEGAS, NEVADA 

 

by Joe Belli 

Las Vegas, Nevada, is a rapidly growing arid city that is experiencing significant 

challenges in water consumption.  Most of the water is used outdoors, precluding 

recycling and reuse of water.  With a large increase in population, the Southern Nevada 

Water Authority created the Water Smart Landscape Program to limit outdoor water 

usage.  This study used remote sensing images and techniques to examine how much 

water was lost to the atmosphere through evapotranspiration (ET) in the Las Vegas 

metropolitan region from 1999 to 2009.  The results showed that both extreme weather 

conditions and water policy influence ET rates. 
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INTRODUCTION 

Las Vegas, Nevada, is currently facing major problems with water usage, 

availability, and conservation.  Water in the region is harder to obtain and is being 

consumed at higher rates due to the steady growth in population.  Within the last twenty 

years, Las Vegas has experienced a large population boom, making it one of the fastest 

growing cities in the United States.  At the moment, the Las Vegas metropolitan area has 

over 1.9 million people (City Data, 2010).  The population is projected to grow by 

80,000-90,000 people annually through 2013 (Krystyna, 2001).  The large population 

combined with the hot and arid climate creates major problems for water availability and 

consumption.  With a projected increase in temperature and drought for the region, water 

resources are expected to be in even greater demand in the near future.  In Las Vegas, 

planning and conservation methods are being employed to limit the consumption of 

water.  Minimizing outdoor water usage is a key conservation goal since most water is 

used for landscaping.  

As of 2006, residential properties accounted for 59% (Figure 1) of water usage in 

Las Vegas  (SNWA, 2010).  Surprisingly, casinos and golf courses consumed only 14% 

of total water usage, while industrial and commercial usage was at 13% (SNWA, 2010).  

The remaining percentage represented schools, parks, and common areas.  According to 

the Southern Nevada Water Authority (SNWA), all outdoor water usage accounted for 

60% of total water usage in the area (SNWA, 2010).  The SNWA implemented the Water 

Smart Landscape Program, which gives rebates to property owners who convert from 

thirsty grass to more water-efficient desert landscaping.  
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Figure 1: Water Consumption in Southern Nevada in 2006 (SNWA, 2010) 

Las Vegas Water System 
 

The majority of Las Vegas’ water comes from Lake Mead, located east of the 

city.  Lake Mead provides around 88% of the water supply for the region (LVWCC, 

2000).  Six states and Mexico share water from the Colorado River, which delivers Lake 

Mead its water.  Water withdrawals for Las Vegas are limited by law to a maximum of 

300,000 acre-feet per year (3.7x10^8 m3) (LVWCC, 2000).  Credit is provided for any 

water returned to Lake Mead through wastewater treatment plants.  Any unused water 

that flows into the sewer from activities such as showering or washing cars travels to a 

wastewater treatment plant.  The treated water is then returned to Lake Mead through the 

Las Vegas Wash (Figure 2) where it is credited.  The ability to reuse water extends the 

resource of Lake Mead.  Any water lost to the atmosphere from watering lawns cannot be 

reused and thus depletes water resources in the region.  According to the SNWA, 60% of 
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water delivered to residents is used only once and most of that percentage is for 

landscape irrigation (SNWA, 2009).  

Drought conditions have occurred in Las Vegas within the last ten years, causing 

a big concern for water availability.  In early 2009, the total water storage of Lake Mead 

was only 52% of its total capacity (SNWA, 2009).  Drought continues to push Las Vegas 

to the limit of its water supply.  For Las Vegas to continue to supply its residents with an 

adequate amount of water, it is extremely critical to sustain high water levels in Lake 

Mead; to do so, limiting water lost to the atmosphere as well as maximizing recycling of 

water are very important.   

 

Figure 2: Las Vegas Wash (City of Henderson, 2010) 
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Water Smart Landscape Program 

 The Water Smart Landscape Program of the SNWA is a program used to decrease 

water consumption and water lost to the atmosphere through soil and lawns.  The 

program pays $1.50 for every square foot of grass converted to native vegetation.  To 

avoid creating heat islands with exclusive rock gardens, 50% of the land converted must 

be canopy coverage (Sovocool, 2005).  Although the program is focused on residential 

properties, it also includes other types of properties, such as shopping centers, business 

parks, and golf courses.  A single business could make up to a maximum of $300,000 in 

rebates in a single year (Sovocool, 2005).  To be eligible for a rebate, a minimum size of 

400 square feet of lawn must be converted to natural vegetation. Although less common, 

properties under 400 square feet of lawn can still be accepted if they eliminate an entire 

front or back lawn of a residential unit or if they completely eliminate a lawn on a 

commercial, industrial, or institutional property.   

 The Water Smart Landscape Program was implemented in 1999.  From July 2000 

to July 2004, the program increased to 3,400,000 square feet rebated per month (Figure 

3).  On average, the total area of one property converted to a natural landscape was 2,162 

square feet (Sovocool, 2005).  It has been estimated that converting lawns to a natural 

landscape saves 55 gallons of water per year per square foot, or an average of 118,910 

gallons of savings per property per year (SNWA, 2009). 
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Water Smart Landscape Program- Square Feet Rebated 
July 2000 - July 2004
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Figure 3: Growth of Water Smart Landscape Program  
 
Evapotranspiration  

Evapotranspiration (ET) is the physical process whereby water is lost from the 

ground surface, including from both the soil and the vegetation, to the atmosphere as 

vapor.  ET is the sum of evaporation and transpiration and is one of the main consumers 

of energy at the earth’s surface.  Potential evapotranspiration (ETo) is the maximum 

amount of ET that would occur given accurate weather conditions.  In hot and arid 

climates, ET can be magnified during the summer months.  During a drought, ET is 

intensified because ET continues to deplete the limited remaining water supplies in soil, 

lakes, and streams.  ET is a major reason why a vast amount of water is lost to watering 

and maintaining lawns; water that could otherwise run off and be recycled is lost to the 

atmosphere through ET. 
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Objective 

The objective of this study was to determine whether Landsat satellite data could 

be used to estimate ET in light of the Water Smart Landscape Program in Las Vegas, 

Nevada.  This study examined July data over an 11-year span from 1999 to 2009 using 

remote sensing techniques.  It was hypothesized that the Landsat satellite images would 

be able to provide adequate ET results, even with limited meteorological data.  In doing 

so, the ET results may provide an indication of how well the Smart Water Landscape 

Program has done.  If the Smart Water Landscape program is successful, it is expected 

that ET rates will not have significantly increased, despite urban growth, in recent years. 
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LITERATURE REVIEW  

Obtaining accurate information on water consumption is extremely important for 

water resource managers.  Water distribution is already a major issue for many cities 

around the world.  As populations continue to increase, managing water will be even 

more critical.  For many environmental monitoring applications, including water resource 

management, understanding the distribution of ET is extremely critical (Batra et al., 

2006).  ET is not only vital for monitoring irrigation performance but also in evaluating 

water productivity.  ET allows for water managers to help predict and accurately assess 

water usage because ET is one of the most useful indicators for determining whether 

water is being used correctly (Mutiga et al., 2009). 

Achieving direct measurements of actual ET can be difficult; it is easier to do 

when the study area is small because in most cases direct measurements, as in data 

gathered from weather stations, provide only point values (Mutiga et al., 2009).  When 

studying a large area, using direct measurement proves challenging because a lot of the 

land may be missed in the measurement; instead, using direct measurement to validate 

another form of measurement is a better technique to study ET.  Although ET is one of 

the most important factors in a water cycle, it is usually one of the most difficult to 

measure (Mutiga et al., 2009).  Currently, the most common way to measure ET is 

through remote sensing data.  Remote sensing techniques can combine important 

determining factors such as soil temperature, vegetation cover, vapor pressure, and wind 

speed to obtain ET values (Batra et al., 2006).  For estimating large-scale areas, remote 

sensing has been proven to be the only appropriate technique because it is the only 
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technology that can provide representative parameters  (Li and Lyons, 2002).  Using 

remote sensing techniques to estimate ET continues to grow with new advances.  

Significant progress has been made within the past three decades to estimate ET (Mutiga 

et al., 2009).  Today, computing ET from a small pixel scale to that of an entire valley is 

possible.  In sum, the advances of remote sensing have made calculating ET values easier 

for researchers. 

When computing ET values from remote sensing devices, the most common data 

come from Landsat Thematic Mapper (TM) imaging sensors.  Spectral bands 1 through 7 

are used from the Landsat sensors.  Spectral bands 1 through 5 and 7 provide data for 

short-wave visible and near-infrared bands.  Spectral band 6 provides data on thermal 

radiation (Folhes et al., 2009).  A regional spatial coverage and resolution of 30 meters 

for each scene provides for the optimal estimation of ET.  The majority of studies 

encountered throughout the literature surveyed used 30-meter resolution.  When 

computing ET from remote sensing images, using cloud-free images is essential; clouds 

in the atmosphere act as barriers that block views of the surface. 

Algorithms are the main method used to calculate ET values from remote sensing 

devices.  A number of different algorithms and techniques have been proposed; however, 

three common methods are the Surface Energy Balance Algorithm for Land (SEBAL), 

Mapping Evapotranspiration at High Resolution and with Internalized Calibration 

(METRIC), and the Penman-Monteith approach.  SEBAL was developed by Bastiaanssen 

in 1995 and has been applied to many semi-arid and arid regions all over the world 

(Folhes et al., 2009).  Data from the visible, near infrared, and thermal bands are all used 
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in SEBAL.  The algorithm uses energy balance to compute ET.  The energy driving the 

water cycle is equal to the incoming energy minus the energy reflected back to space and 

the energy heating the ground soil (Mutiga et al., 2009). 

The METRIC approach is an energy balance model for estimating ET and is an 

extended modification of the widely accepted SEBAL.  METRIC predicts ET by the 

calculation of the energy balance at the surface, which is done on a pixel-by-pixel basis 

for the direct time the satellite overpasses (Folhes et al., 2009).  Since the image provides 

information only for the time the satellite overpasses, METRIC computes ET for the 

moment the image is captured.  

The Penman-Monteith equation is another energy balance approach to estimate 

ET.  The equation requires temperature, relative humidity, wind, saturated vapor 

pressure, and net radiation to calculate ET (Wu, 1997).  The Penman-Monteith is highly 

recommended and frequently used because of its accommodation of small time periods 

and of its comprehensive theoretical base.  However, the equation requires a substantial 

amount of meteorological data while using extensive calculations and extremely detailed 

unit conversions.  In many cases the meteorological data may not be available for the 

region. 

The Hargreaves model is an excellent and commonly used model to calculate ETo 

rates.  The model is widely used because it is a simpler model that requires only two 

parameters, average temperature and incident solar radiation, which is the total amount of 

solar energy a location receives a day (Wu, 1997).  Unlike most ET models, the 

Hargreaves equation does not require complex meteorological data (Hargreaves and 
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Samani, 1982).  Since incident solar radiation and temperature are easy to obtain, the 

Hargreaves model is a simple and efficient method to calculate ETo anywhere in the 

world.  

The SNWA performed a Xeriscape Conversion study in 2005 to examine how 

much cultivated grass was being converted to native vegetation, without the use of 

remote sensing techniques.  The main goal of the study was to determine water saving 

estimates.  The study used hundreds of participants as well as installation of submeters to 

collect and analyze the data.  Using statistical methods, the SNWA found a total savings 

of 30% (96,000 gallons) for annual residential consumption for those who converted 

from grass to native vegetation (Sovocool, 2005).  Savings were most evident in the 

summer months when more water is needed to irrigate lawns.  The study also 

experimented with the local principle that implies that native vegetation planting requires 

one-third the ET rate needed for grass; the Xeriscape Conversion study found this 

proportion to be accurate. 
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STUDY AREA 

The study area encompasses the entire Las Vegas metropolitan area, located in the 

central portion of Clark County, Nevada.  The coordinates for the Las Vegas 

metropolitan area are 115° 19'  30.90"  W to - 115° 19'  01.34"  W and 36° 20'  28.14"  N to 

- 36° 20'  03.39"  N.  The study area includes Boulder City, which is situated 20 miles 

southeast of Las Vegas (Figure 4). 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Study Area   
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DATA AND MATERIALS 

The data used for the analysis consist of Landsat remote sensing scenes of the Las 

Vegas region in July from 1999 to 2009.  The exact date within July that the scenes were 

captured varies between the years, but all captured scenes occurred in early portions of 

the months.  July provided the most accurate analysis because ET rates are the highest in 

the hottest month of the year.  The data was obtained using the USGS Global 

Visualization Viewer.  The remote sensing scenes were all Landsat 7 scenes with the 

satellite flight path 39 and the row 35.  Each year’s data came with remote sensing bands 

1 to 7, with the exception of the year 2000 that did not included band 7.  

Software Used 

The main software used for the analysis was IDRISI.  The primary use of IDRISI 

is to process geospatial raster data.  IDRISI is one of the leading software programs for 

geospatial and remote sensing data.  The software offers a number of different tools and 

options for users to analyze imagery.  IDRISI uses advanced remote sensing analysis and 

spatial modeling to create new information.  Both remote sensing and geographic 

information systems capabilities are incorporated in the software to allow for the creation 

of geospatial data as well as the extraction of important information from the data. 

Data Preparation 

 In order to begin the analysis, a number of steps were required to prepare the data.  

After downloading the remote sensing bands, the data were converted into the GeoTIFF 

format so that IDRISI could import it.  The remote sensing images included a lot of non-

urban area in Clark County that did not pertain to this study.  To simplify the analysis, the 
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remote sensing layers were windowed to only include the urban area of Las Vegas.  

Every band for every year was windowed to the study area. 
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METHODOLOGY 

 The analysis used different remote sensing techniques to help determine the ET 

rates in Las Vegas from 1999 to 2009; each technique focused on different features of 

remote sensing.  Since each technique studied a unique aspect of the physical landscape, 

the results are completely distinctive to the individual method.  Incorporating the results 

for the three techniques helped to estimate ET rates.  The techniques used were the 

tasseled cap transformation, normalized difference vegetation index (NDVI), and the 

Hargreaves Model. 

Tasseled Cap Transformation  

The tasseled cap transformation is an algorithm that converts the original bands of 

an image into a new set of bands or variables.  The parameters are different depending on 

remote sensing satellite.  For Landsat TM, the parameters used for Landsat 7, the original 

bands are transformed into three variables that measure physical characteristics of the 

landscape.  The three variables are brightness (B), greenness (G), and wetness (W).  The 

tasseled cap transformation is often used as a vegetation index to measure the amount of 

soil brightness, vegetation, and wetness content for each pixel in the image (Jensen, 

2007).  A tasseled cap transformation was created in IDRISI for every year in the study 

and is presented in Appendix B.  The equation for Landsat TM is: 

        B= 0.2909 TM1 + 0.2493 TM2 + 0.4806 TM3 + 0.5568 TM4 + 0.4438 TM5 + 0.1706 TM7 

        G= -0.2728 TM1– 0.2174 TM2 – 0.5508 TM3 + 0.7221 TM4 + 0.0733 TM5 – 0.1648 TM7 

        W= 0.1446 TM1 + 0.1761 TM2 + 0.3322 TM3 + 0.3396 TM4 – 0.610 TM5 – 0.4186 TM7   (1) 

where TMx= the Landsat Thematic Mapper band number x.  
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NDVI 

 NDVI is a remote sensing equation used to assess live vegetation of an area.  The 

equation is a ratio that produces a range of values from zero to one.  Values closer to zero 

correspond to barren areas lacking water, whereas values closest to one are areas with 

water.  Many scientists continue to use NDVI for Landsat remote sensing data.  Both 

seasonal and inter-annual changes in vegetation growth can be monitored using NDVI. 

Chlorophyll is responsible for producing the green color in plants by absorbing the red 

light and reflecting the green.  To calculate NDVI, the red band (band 3) is subtracted 

from the reflectance in the near-infrared band (band 4) and is then divided by the sum of 

the red band and the near-infrared band.  The equation is written as:  

NDVI=  (NIR-RED)/(NIR+RED)                                                                         (2) 

The results show the amount of live vegetation growing in a particular area.  For this 

study the NDVI equation is derived as: 

 NDVI= (TM 4–TM 3)/(TM 4+TM 3)                                                                  (3) 

 Hargreaves Model 

 As mentioned, the Hargreaves Model is a simplified model that requires only 

temperature and solar energy to calculate ETo rates.  The model is expressed as: 

ETo= 0.0135 (T + 17.78) Rs                                                                                                                           (4)           

where ETo= potential daily evapotranspiration, in mm/day; T= mean temperature, in 

degrees Celsius; and Rs= incident solar radiation, in either megajoules per square meter 

or Langley per day.  The result of ETo is expressed as a unit of mm/day. 
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ANALYSIS AND RESULTS 

The analysis first calculated the ETo using the Hargreaves Model.  The tasseled 

cap transformation for wetness was then used to classify urban areas for the analysis.  

The calculated ETo was reapplied to help estimate ET rates.  

Calculating ETo 

The ETo rates were calculated using the Hargreaves model.  Mean temperature 

values for the specific date in each year of the study were derived from data obtained by 

Weather Underground.  The same weather station in Las Vegas was used for each year to 

maintain consistency.  The Hargreaves model also requires incident solar radiation in 

either megajoules per square meter or Langley per day.  The average incident solar 

radiation for Las Vegas in July is 7.37 kWh/m2/day (NASA, 2010).  When converted, the 

average incident solar radiation for Las Vegas in July is 26.53 MJ/m2/day.  The average 

incident solar radiation was kept constant at 26.53 MJ/m2/day for each year of the study, 

due to the lack of daily solar radiation data.  Once the average daily temperature and 

incident solar radiation were obtained, the Hargreaves model using megajoules per square 

meter was applied to every year.  The equation used was: 

ETo= 0.0135 (T +17.78) Rs (238.8/595.5-0.55T)                                                  (5) 

where Rs= incident solar radiation, in MJ/m2/day and T= average daily temperature, in 

degrees Celsius. 

Classifying Urban Area for Analysis  

To calculate ET rates for the Las Vegas metropolitan area, urban areas needed to 

be distinguished from non-urban desert land.  An open field with latitude and longitude 
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coordinates 36° 6' 23.0538" N to -115° 16' 11.9856" W (red point on Figure 5) was set as 

the minimum wetness value for each year.  The open field was selected as the minimum 

value because in the tasseled cap transformation for wetness the field perfectly 

represented values associated with dry, arid land.  The field was also located within the 

city and was visible in each year of this study.  Any wetness values below the minimum 

open field value for each year were not used in the analysis.  A two-step process occurred 

to obtain the maximum wetness values for each year.  The maximum wetness value for 

each year is the value where ET is at the highest and is equal to the ETo.  In most cases 

open bodies of water will have the highest ET rate.  For each year, the wetness value of 

Lake Mead (yellow point on Figure 5) was taken from the tasseled cap transformation. 

To increase accuracy, the wetness value of the Canyon Gate Country Club golf course 

(green point on Figure 5) was taken as well.  Canyon Gate Country Club was used 

because lawns have extremely high ET rates and country clubs are known to maintain 

and water their courses very well.  The mean of the wetness values from Lake Mead and 

the Canyon Gate Country Club were used as the maximum wetness value for each year. 

Any values above the maximum value were not used in the analysis. 
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Figure 5- Open Field, Canyon Gate Country Club, and Lake Mead  

Calculating ET for Each Year 

After classifying which areas would be used for the analysis, the next step was to 

take the wetness values from the tasseled cap transformation and convert them to 

meaningful units of measure to calculate ET rates.  The tasseled cap transformation 

wetness histograms for each year were imported into Microsoft Excel for calculations. 

The wetness values from the tasseled cap transformation for each year were scaled down 

and assigned a new value between zero and one.  The minimum wetness value, in the 

open field, was given a new value of zero.  The maximum value of one was derived by 

taking the mean of the Canyon Country Club and Lake Mead; any values equal to the 

mean were assigned one.  Creating a mean saturates at the high end, in open water, so 

that landscape values are better represented.  Values between zero and one were 

normalized at equal intervals.  The equal intervals were calculated by dividing the 

number of wetness values from the tasseled cap transformation by one for each year.  

Once the wetness values were normalized to a new value between zero to one, the new 
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values were multiplied by their frequency of pixels value to get an overall value of 

wetness for the area.  The frequency of pixel values provided quantitative information on 

how often each wetness value occurred in the remote sensing image.  The overall values 

of wetness could then be converted into meaningful units, mm/day. 

The newly calculated overall values of wetness for each year were then multiplied 

by its ETo computed earlier.  The results give the overall ET for the area in each year.  

The ETo acts as a ceiling value, meaning that the highest ET rate for the given day for 

each year will be equal to the ETo.  When multiplying by the ETo, the minimum value of 

ET will equal zero and the maximum value will equal the ETo.  The last step was to 

divide the overall ET for the area of each year by the total frequency of pixels to get the 

average regional ET rate. 

Results 

 The calculated results for ETo started at 7.52 mm/day in 1999 and ended at 7.68 

mm/day in 2009 (Table 1).  During the time span for this study, the ETo reached its 

highest value of 8.3 mm/day in 2006.  Not surprisingly, the ETo was the lowest at 7.06 

mm/day in 2000 when the mean temperature was also at its lowest, 30o Celsius.  The 

hottest mean temperature and the highest ETo rate were produced in 2006.  ETo is 

calculated by both incident solar radiation and mean temperature (Equation 5).  Since the 

incident solar radiation is an average that was kept constant throughout the analysis, 

mean temperature heavily determined ETo rates.  Hotter mean temperatures produced 

higher ETo rates. 
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Table 1- Calculated ETo Per Year 

Date 
Mean Temp 

(Celsius) Precipitation Incident Solar Radiation 

ETo =pot. 
max 
(mm/day) 

7/04/1999 33 0 26.532 7.52 
7/06/2000 30 0 26.532 7.06 
7/09/2001 32 0 26.532 7.37 
7/12/2002 37 0 26.532 8.15 
7/05/2003 34 0 26.532 7.68 
7/04/2004 32 0 26.532 7.37 
7/12/2005 36 0 26.532 7.99 
7/15/2006 38 0 26.532 8.30 
7/02/2007 36 0 26.532 7.99 
7/04/2008 37 0 26.532 8.15 
7/07/2009 34 0 26.532 7.68 

 
The calculated ET rates provided different results.  The ET rate started at 3.34 

mm/day in 1999 and increased to the highest value in 2001 at 4.18 mm/day (Table 2).  

After 2001, the ET rates slowly decreased and leveled off to 3.59 mm/day in 2009.  A 

small peak occurred in 2006 at 3.81 mm/day.  The ET results were considerably lower 

than the ETo results.  For the ET results to be similar to the ETo results, the time of day in 

which the remote sensing data were collected would have had to have been in the mid-

afternoon when the outside temperatures were hotter.  The time of day in which the data 

were collected is important, and is later discussed.  
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Table 2- ET Rates 

Year ETo Interval 
Total 

Frequency Overall ET 
ET Rate mm/day (Overall 

ET/Total Frequency) 
1999 7.68 0.042 2898589 9687107.50 3.34 
2000 8.15 0.036 2925169 10385356.84 3.55 
2001 7.99 0.048 2985597 12474552.80 4.18 
2002 8.30 0.050 3038595 12493534.75 4.11 
2003 7.99 0.056 3069552 11080441.53 3.61 
2004 7.37 0.044 2878126 10296836.61 3.58 
2005 7.68 0.040  2830910 9333623.19 3.30 
2006 8.15 0.036 2936263 11179023.07 3.81 
2007 7.37 0.035 2966607 10031183.84 3.38 
2008 7.06 0.040 2844726 10374485.88 3.65 
2009 7.52 0.030 2999989 10782921.15 3.59 

 
The wetness tasseled cap histograms also produced results that showed the change 

of wetness over the eleven-year time span throughout the landscape.  The complete 

wetness histograms spanning from 1999 to 2009 are shown in Appendix A; these 

histograms plot the number of pixels present in the image for each wetness value.  Figure 

6 is the wetness histogram for 2005.  The x-axis charts the degree, or amount, of wetness.  

As the x-axis increases, so does the amount of wetness.  Arid and dry lands are 

represented on the left portion of the x-axis.  The y-axis plots the amount of pixels, or 

pixel frequency, in the remote sensing image.  The 2005 wetness histogram contains a 

high pixel frequency for drier lands (Figure 6).  The pixel frequency drops as the wetness 

values increase.  The tasseled cap histograms are further analyzed in the discussion 

section of the document. 
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Figure 6: 2005 Wetness Tasseled Cap Histogram 
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DISCUSSION AND CONCLUSION 

 The results from the ET rates produced an interesting peak in the graph (Figure 7) 

in 2001 and 2002.  The ET rates for 2001 and 2002 appeared as outlying results in this 

study.  At first, it was thought that this peak was caused by delays in implementing the 

Water Smart Landscape Program in 1999.  An increase in ET rates may have occurred for 

the first few years as the program slowly developed.  However, it is concluded that the 

peak in ET rates was not caused by the implementation of the Water Smart Landscape 

Program, but instead by weather conditions.  
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Figure 7: Calculated ET Rates 

Three days prior to the July 2001 date, it rained 0.39 inches in the Las Vegas 

metropolitan area (Weather Underground, 2010).  Rain and thunderstorms were also 

recorded for the July 2002 date, despite clear conditions when the image was captured.  

The wet soil for both years consequently would increase ET rates.  The wetness 

histograms from 2001 and 2002 changed shape as well (Figure 8).  The overall change in 
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the shape of the histograms from 2001 to 2002 seemed to correspond with the presence of 

precipitation.  The total mean ET rates for the region decreased after 2002 but show a 

small upward peak in 2006 (Figure 7).  Although no precipitation occurred during the 

week in 2006, both the ETo and mean temperature were the highest in 2006.  The increase 

in temperature caused an increase in ET rates.  With the exceptions of 2001 and 2002, the 

ET rates remained stable with slight increases and decreases throughout the study.  
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Figure 8: 2001 and 2002 Wetness Histograms 

Figure 9 is a modified wetness histogram of 1999 and 2009 that contains only the 

minimum to maximum wetness values used in the analysis.  The modified histograms are 

a specific portion of the overall histograms.  Although detecting the change in shape 

between the 1999 and 2009 is much more apparent in the overall histograms, the 

modified histograms allow for a specific concentrated on the key wetness values.  The 

shape of the 1999 wetness histogram has a predominant peak that occurs just under 
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200,000 pixels (Figure 9).  Once the 1999 histogram hits its peak, the graph gradually 

decreases.  Unlike the 1999 wetness histogram with one larger broad peak, the 2009 

wetness histogram contains two subtle smaller peaks (Figure 9).  The two broad peaks 

occur around 110,000 pixels, considerably lower than the 1999 wetness histogram pixel 

frequency.  The slight trough between peaks most likely is where a transition from drier 

to wetter areas transpires.  This occurs at a wetness value of about -32 for 1999 and -54 

for 2009 (Figure 9).  The 1999 image seems to have larger dry areas, due to the higher 

pixel frequency in the dry, left-hand portion of the distribution, with a more distinctive 

transition to wet areas.  The wetter areas in both 1999 and 2009 have similar pixel 

frequencies of around 110,000.  It is difficult to determine exactly what differences occur 

between the two years.  The 1999 histogram is much more sporadic, whereas the 2009 

histogram is very consistent.  However, the regional average calculated ET rates for the 

two years were very close with 1999 at 3.34 mm/day and 2009 at 3.59 mm/day.  The 

modified histograms were used to provide a different perspective and a more detailed 

look at wetness values between the start and end years of the study. 
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Figure 9: 1999 and 2009 Modified Wetness Histograms 

As mentioned earlier, the time of day in which the remote sensing data were 

collected was very important for the ET results.  The remote sensing satellite scenes used 

in the study were taken in the early morning around 10 am.  ET rates are lower in the 

early morning than in the afternoon when temperatures are hotter.  The ETo results range 

from 7.06 mm/day to 8.3 mm/day, values that occur in the afternoon when temperatures 

increase.  The ET rates range from 3.3 mm/day to 4.18 mm/day, which reflects the early 

morning time that the remote sensing images were taken.  To help provide validity to the 

ET results, findings from a study conducted to calculate hourly ETo showed that in 

Logan, Utah on August 2, 1990 the ETo was 1.42 mm at 10 am (Allen et al., 2006).  

Although slightly cooler than Las Vegas, Logan has hot summers with some 

precipitation.  The temperature in Logan was 60o Fahrenheit at 10 am.  The ET rates 

1999 Modified Wetness Tasseled Cap

0
50

100
150
200
250
300

-77 -73 -69 -66 -62 -58 -54 -51 -47 -43 -40 -36 -32 -28 -25 -21 -17 -13 -10 -6 -2 1 5 9 13

P
ix

el
s 

(T
h

o
u

sa
n

d
s)

Wetness Values

2009 Modified Wetness Tasseled Cap

0
50

100
150
200
250
300

-1
06

-1
00 -9

4
-8

8
-8

2
-7

6
-7

0
-6

4
-5

8
-5

2
-4

6
-4

0
-3

4
-2

7
-2

1
-1

5 -9P
ix

el
s 

(T
h

o
u

sa
n

d
s)

Wetness Values



 

27 27

calculated for Las Vegas are higher than Logan but the average temperature at 10 am in 

July in Las Vegas is around 90o Fahrenheit (Weather Underground, 2010).  The thirty-

degree difference in temperature explains the higher ET rates in Las Vegas.  The time of 

day is an extremely important factor on how much ET occurs, but a valid comparison can 

be made between locations at the same time of day. 

 Other methods of estimating ET were tested as part of this study but were 

unsuccessful.  The first method was a land-water mask using NDVI.  Each year’s NDVI 

histogram was used to differentiate water values from land values.  Once distinguished, a 

mask was created to calculate areas where both water and land values occurred in the 

same setting.  The results were not used because they calculated the total area in square 

meters where land and water occurred.  The land-water mask did not produce results on 

the frequency of wetness in the land.  Another method tried was applying a gaussian filter 

to calculate ET rates.  A gaussian filter is a process that smoothes the image by 

calculating weighted averages in a moving filter box.  Three different weather stations 

provided ET data over the past twenty years for each of their specific location.  A 

gaussian filter was applied to the wetness tasseled cap transformation to determine if a 

correlation existed between the actual ET values and the ET values calculated in this 

study.  This provided a means of smoothing pixel values in order to see whether their 

correlation with direct point observations improved.  They did not, so this method was 

not pursued. 

 A further extension of this study would be to examine and compare ET rates of 

individual neighborhoods.  Since the study examined the region as a whole, comparing 



 

28 28

neighborhoods could provide a more detailed analysis for water planners.  An interesting 

neighborhood is the Summerlin area, located in the western part of Las Vegas.  Figure 10 

provides a qualitative wetness tasseled cap comparison of the Summerlin area in 1999 

and 2009.  The two years are set to the same wetness value scale.  The orange, red, and 

purple colors are characterized as areas with little or no ET.  Areas with moderate ET 

rates are represented in yellow and areas in green correspond with high ET rates.  Based 

on the comparison, 1999 has significantly more green areas on the map (Figure 10).  

However, a lot of land had not been developed in 1999.  Interestingly, in 2006 the Red 

Rock Casino and Resort opened in Summerlin.  Development quickly took place to 

attract more residents and visitors to the area.  By 2009 the area dramatically increased in 

population.  The population growth from 1999 to 2009 in Summerlin is apparent in 

Figure 10.  Areas that are green in 1999 appear as yellow in 2009.  Although the average 

ET rates seem lower in 2009 than 1999, the change in wetness values and colors between 

the two years are not necessarily due to a decrease in average ET rates.  Meteorological 

impacts and climatic factors can alter tasseled cap transformations the same way they can 

alter wetness histograms.  An in-depth neighborhood analysis with more detailed data 

would be a great extension to the study, as it would provide a better understanding of ET 

rates on a smaller scale. 
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Figure 10: Comparison of 1999 and 2009 Summerlin Tasseled Cap 

In summary, it is important to note that the study is a snapshot in time of a set of 

particular days.  Results are based on a specific time of day rather than an average or 

integration over the day or month.  The time of day in which a remote sensing image is 

captured affects ET results.  Lower ET rates would occur at night and in the early 

morning when temperatures are lower.  Higher ET rates would occur in the mid-

afternoon when temperatures are at their highest.  Climatic factors also play a huge role 

in the outcome of the results.  For example, if the soil were saturated due to rain, the ET 

rates would be higher.  Both the time of day and climatic factors can alter ET rates.  

Nevertheless, if properly calibrated, remotely sensed data can be very helpful in 

analyzing ET rates and in showing how they change over time within any given region. 
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Conclusion 

The results discussed here support the thesis that ET rates are affected both by 

weather conditions and water policy.  Precipitation and severe hot weather caused the 

largest increase in the ET results in 2001, 2002, and 2006.  Extreme weather conditions 

significantly altered the ET rates.  However, the ET rates steadied out and remained fairly 

stable around 3.5 mm/day to 3.7 mm/day over the rest of the decade, when conditions 

were generally average for each captured date.  The Water Smart Landscape Program 

seemed to have played a role in keeping the ET rates constant.  During the eleven-year 

time span, the population increased 18.6% (City Data, 2010).  Although ET rates did not 

decrease over time, the ET rates did not significantly increase with a steady growth in 

population (Figure 11).  With such a steady growth in population, it is expected that ET 

would have significantly increased as well 
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Figure 11: Las Vegas Metropolitan Population vs. ET 

The implementation of the Water Smart Landscape Program was likely a big 

reason that ET rates stayed fairly constant for the region.  The Water Smart Landscape 

Program was not solely the only reason why ET rates remained stable.  The SNWA 
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created other conservation methods that likely contributed to the success.  However, the 

Water Smart Landscape Program was the biggest conservation method employed to limit 

outdoor water usage.  To fully understand how weather conditions and the Water Smart 

Landscape Program alter ET rates, it would be best to examine multiple days within each 

month.  Due to the return time of the Landsat satellite it was not possible.  Nevertheless, 

this study proved it was possible to use Landsat satellite images to obtain adequate ET 

results.  
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APPENDIX A: WETNESS HISTOGRAMS 
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2001 Wetness Histogram
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2003 Wetness Histogram

0

50

100

150

200

250

300
P

ix
el

s 
(T

h
o

u
sa

n
d

s)

Degree of Wetness

2004 Wetness Histogram
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2005 Wetness Histogram
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2006 Wetness Histogram
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2007 Wetness Histogram

0

50

100

150

200

250

300
P

ix
el

s 
(T

h
o

u
sa

n
d

s)

Degree of Wetness

2008 Wetness Histogram
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2009 Wetness Histogram
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APPENDIX B: TASSELED CAP MAPS 
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2001 Wetness Tasseled Cap 
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2005 Wetness Tasseled Cap 
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2007 Wetness Tasseled Cap 
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2009 Wetness Tasseled Cap 
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