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ABSTRACT

TEACHING AND LEARNING OF PROOF IN THE COLLEGE

CURRICULUM

by Maja Derek

Mathematical proof, as an essential part of mathematics, is as difficult to

learn as it is to teach. In this thesis, we provide a short overview of how

mathematical proof is understood by students in K-16. Furthermore, we answer

questions about mistakes students usually make in the transition period from

high school to college in understanding mathematics and mathematical proof.

Through a case study, we learned that deduction mistakes characteristic for early

mathematical education, such as arguing from an example, can be abandoned

very easily as students begin to understand the inadequacy of one, or finitely

many, examples when arguing about a general mathematical claim. Furthermore,

students accept basic procedures and different methods of proof, but they

experience difficulties when faced with new or complicated mathematical topics

to prove, such as those concerning the floor function introduced during the proof

teaching sessions. Also, we observe the students’ progress during the teaching

sessions for a specific proving method. Finally, we discuss grounds for further

investigation about learning and teaching mathematical proof. For example,

introduced are ideas of how to alter research instruments and/or modify the

group studied to be able to answer more specific questions about mathematical

proof in the college curriculum.
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CHAPTER 1

INTRODUCTION

This thesis examines the concepts of teaching and learning of mathematical

proof in the college curriculum. To emphasize the importance of studying

mathematical proof at the college level, as opposed to mathematical proof in

K-12 education, we provide a summary of how proof is defined and understood

through grades K-16. Also, the evolution of our current understanding of

mathematical proof in K-16 is outlined.

In Chapter 3, we focus our attention college-level proof and look deeper

into the college curriculum examples used to teach mathematical proof. The role

of mathematical proof at the college level is to use it as a tool to validate

mathematical conjectures but also to develop the sense of why something is true.

Proof is the only tool of validation in mathematics that is accepted by

mathematical society, and as such every science student should realize its

importance.

Following the theoretical discussion of mathematical proof in the college

curriculum is the case study described in Chapter 4. The case study addresses

students’ transition from high-school to a more formal, college level and rigorous

way of understanding and constructing a proof. The focus of the case study is on

the mistakes students make while attempting to construct a valid argument. We
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categorize those mistakes and procedures students employ using language and

notation adopted from their textbook (Epp, 2004).

In Chapter 5, we present results from each data instrument used in the case

study: pre-teaching and post-teaching questionnaires; two quizzes; and the

midterm exam. The results are presented in two ways: tables showing percentage

of correct answers and tables with listed mistakes accompanied by the percentage

of occurrence of each mistake.

In Chapter 6, we discuss the results, concentrating on the meaning of the

mistakes. Also, in this part of the thesis, we give examples of students’ actual

work to provide for better understanding of the classification of the mistakes as

well as to visualize students’ reasoning processes.

Finally, in the last Chapter 7, we report on the data collected during the

case study and compare our observations to the norms and standards students

should meet during early college mathematics education. As a part of that last

chapter, we also state questions that, if studied further, would provide a better

understanding of students’ proof and the comprehension of proving methods.

Finally, suggested are some directions for improvement of instruction of proof at

the college level.
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CHAPTER 2

LITERATURE REVIEW ON MATHEMATICAL PROOF K-12

2.1 What is mathematical proof?

“Prove it!” is a very common phrase in every day speech, and we all use it

when asking for an explanation or a validation of an argument. On the other

hand, almost no one thinks of it as something special or worthwhile to study.

What do we actually mean when asking that something be proved?

Usually, we just ask for evidence. Very often we are convinced by one fact or one

occurrence or just one person exhibiting certain behavior or experiencing a

certain phenomenon.

On the other hand, mathematical proof is much more than just one or a

few examples supporting a mathematical statement. In sciences such as biology,

medicine and chemistry, experiments and their outcomes are the primary

methods of validating an hypothesis, but still scientists look for explanations of

why something happens and what elements could change the result. In such

practice, numerous examples and experiments are necessary before establishing

some process to be understood. Often we rely on statistics, though we could

never be 100% certain of something. That is why it is common to hear about 95%

confidence intervals, or if an event occurs there is a 75% chance of it occurring

again, and similar statements. Such statements can be very misleading since
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there are many hidden variables that we do not know about, such as the size of

the sample or how the sample was chosen. An example is building statistics on a

sample with a built-in bias (Huff, 1954), focusing only on a part of the group and

neglecting other subsets that might exhibit different behavior from that reported.

In mathematics, we do not take chances, and we do not trust a group of

facts. In mathematics, we like to prove things to be true in well defined

environments with well known properties. When something is considered true in

mathematics there is no chance that another scientist anywhere in the world, or

space, could prove us wrong. That is why proofs in mathematics are essential,

and non-proved facts are either omitted in mathematics curriculum or left as

open problems to study further.

Even though it sounds like a very simple process - you either prove a

mathematical statement or you do not - mathematical proof might be a very

complicated and time-expensive process depending on the complexity of the

problem. Sometimes it takes years to prove a conjecture and sometimes even

centuries. A well known problem that preoccupied many mathematicians for

centuries is “Fermat’s Last Theorem,” or perhaps we should say Fermat’s famous

conjecture. In 1673, Pierre de Fermat stated the following conjecture:

Equation
xn + yn = zn

has no non-zero solutions for x, y, z and n integers, n > 2.

The conjecture was finally proved in 1995 by Andrew Wiles (NCTM, 1999).

Originally, he announced his proof in 1993, but a serious flaw was discovered by

one of the reviewers. It took Wiles almost two years to analyze and reexamine

his work so he could finalize his proof.
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Having an example like Fermat’s Last Theorem in mind, it is clear that

learning how to construct proofs in mathematics is not a simple task, but it is

more of a lifetime adventure that starts early in the elementary school

curriculum. Students learn to explain, justify, validate, and finally prove their

results throughout their education, and most of them never master or even

appreciate the efforts of proving.

In this thesis, our central goal is to gain an insight into early college

students’ understanding of mathematical proof. We do not look only for the

answer as to whether they are able or unable to construct proof but also for the

obstacles preventing them from succeeding.

Finally, to answer “What is mathematical proof?” we can simply say:

“Mathematical proof is a valid argument.” But then we need to define what a

valid argument is. There are many definitions of mathematical proof, and each of

them is characteristic of a certain level of mathematical maturity.

A poetic description of what mathematical proof is can be found

in Schoenfeld (2009):

If problem solving is the “heart of mathematics” then proof is its
soul. (p. xii)

2.2 Valid argument across the grades in K-12

In mathematics, proof has several functions. As suggested by de Villiers in

Harel and Sowder (2007), there are six roles of mathematical proof, and they are

not mutually independent. Mathematical proof (Harel & Sowder, 2007, p. 819)

serves us as:

• verification
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• explanation

• discovery

• systematization

• intellectual challenge

• communication

“The notion of proof is not absolute...” (Hersh, 2009, p. 17). The

understanding and the function of proof changes with mathematical

developmental stages until it reaches the point of formal and rigorous proof as

understood and accepted by researchers and mathematical society. Within the

above framework, in elementary school, proving can be understood as “sense

making,” and it relies on informal mathematical reasoning and argumentation.

As long as the argument is valid, non-contradictory, related to the subject and it

yields a right conclusion teachers accept such argument as a mathematical proof

at that level. Moreover, justifications by specific cases are very common and even

desirable at this level. Later in this thesis, we refer to such validation as arguing

from the example or proof by example. Encouraging students to explain their

ideas and conclusions nurture three out of six roles described by de Villiers:

verification, explanation and communication. Through exchanging their ideas

and explanations, students and teachers form a purposeful mathematical

communication. Even informal proof gives an explanation of the problem itself,

and in a way it offers the verification of the conclusions. In the elementary

grades, students see mathematics as something useful and practical and are

unable to implement abstract thinking. Hence, proof by example is acceptable
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even though, later in our work, we characterize proof by example as the main

mistake and misunderstanding that students have about mathematical proof.

Similar practice is common through the middle school, while at the same

time students are introduced to symbols and formal symbolic mathematical

notation. The process of proving remains of an empirical nature. An interesting

study of how students in seventh grade construct proof is described by Boaler

and Humpreys (2005). The teacher in the study is guided by the description of

the proving process given by Mason, Burton, and Stacey (Mason, Burton, &

Stacey, 1982, p. 103) who note three phases of proving:

Convince yourself.

Convince a friend.

Convince an enemy.

The teacher adopts the process of proving to a reasonable skeptic, finding the

argument to be valid only when it suffices to convince a skeptic. The teacher

recalls a problem from the previous session, asking students to validate the

conjecture they came up with. The conjecture to be proved is:

2(n− 1) = 2n− 2.

Students are divided into groups, and by that organization they have been given

an opportunity to follow the process above: to convince themselves, convince a

friend (group members), and finally as a group to convince a skeptic (the

teacher). All students started in the same way, validating the conjecture on

specific examples. Only after the teacher stated the question: “How many

numbers do you have to try out to be convinced?” did some students start to

think in a more general way, and the reply she got was: “All numbers!”. From
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this example we can see that students in the middle school can comprehend the

necessity to validate general conjectures on all numbers, though very often they

do not know how to accomplish such a complex goal. Very few students tried to

use symbolic notation in order to represent any number, and with guidance and a

lot of help from the teacher’s side the class constructed the proof.

Looking forward into the case study described in more detail and discussed

in Chapter 4, we can provide an example of K-8 reasoning when given the

following problem.

Example 2.2.1. Prove if n is odd, then n2 + 1 is even.

The problem itself is fairly simple, and most students in sixth grade would

be able to understand and tackle it in some way. Most of them would try it out

first using examples, but some might look further and try to characterize odd

numbers using symbolic notation.

Using the National Council of Teachers of Mathematics Curriculum

Standards for School Mathematics (1989), we can follow the expectations and

standards in reasoning in grades K-4, 5-8, and 9-12. Thus in the lowest level,

students should (NCTM 1989, p. 29):

• draw logical conclusions about mathematics

• use models, known facts, properties, and relationships to
explain their thinking

• justify their answers and solution processes

• use patterns and relationships to analyze mathematical
situations

• believe that mathematics makes sense.

Furthermore, in grades 5 through 8, students should (NCTM 1989, p. 81):

• recognize and apply deductive and inductive reasoning
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• understand and apply reasoning processes, with special
attention to spatial reasoning and reasoning with
proportions and graphs

• make and evaluate mathematical conjectures and arguments

• validate their own thinking

• appreciate the pervasive use and power of reasoning as a
part of mathematics.

Finally, the high-school mathematics curriculum should include various and

numerous examples that will help students extend logical reasoning so that by

the end of the 12th grade they should be able to (NCTM 1989, p. 143):

• make and test conjectures

• formulate counterexamples

• follow logical arguments

• judge the validity of arguments

• construct simple valid arguments.

Also, advanced, college oriented students should be given an opportunity to learn

about indirect proofs and proofs by mathematical induction.

As we can see from the standards above transition to high-school

understanding of mathematical proof consists mainly of using symbolic notation

when validating general conjectures, and thus, building the road to formal proof.

According to NCTM (NCTM, 2000a) students in secondary school should be able

to

...justify and prove mathematically based ideas..

To summarize, in K-12 mathematics education by Principles and standards

for School Mathematics (NCTM, 2000a) students should develop reasoning skills

so that they can:
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• Recognize reasoning and proof as fundamental aspects of mathematics

• Make and investigate mathematical conjectures

• Develop and evaluate mathematical arguments and proofs

• Select and use various types of reasoning and methods of proof.

Proof in K-12 can be found mostly as a part of the problem-solving section

of curriculum. As such we can show various problem-solving examples that can

be traced in K-12 depending on how the problem is stated at each level as well as

on the questions asked.
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Example 2.2.2 (Triangle and square).

grades K-2 Is the white triangle smaller than the black square in Figure 2.1?

Figure 2.1: Triangle and square comparison for grades K-2

Children at the youngest age need to manage the models in order to

compare two shapes. They are still learning and accepting the meaning

of small-large, and they have difficulties to assign values to the shapes, as

for example, length of the side of the triangle is three inches. Thus, we

should not expect from them more than the simplest comparison between

two objects described in the problem.

Their response and reasoning should be based on overlapping the

objects as shown in the following Figure 2.2:

Figure 2.2: Answer to the triangle and square comparison for grades K-2

grades 3-4 Is the the triangle with equal sides of length three inches smaller or

larger than the square with the sides of length of three inches?

Advancing to third grade students start managing numbers and they

learn to recognize numbers representing objects and their characteristics.
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Also, they are becoming familiar with the properties and names of

shapes. For example, they learn that a shape with four equal sides and

four equal angles is called a square. Also, they learn the meaning of area.

Still, they are unable to use abstract thinking and problems they

encounter should be very specific accompanied by figures or models as

true as possible.

grades 5-8 Is the area of the equilateral triangle smaller or larger than the area

of the square with the same sides?

At this level students should be able to recognize the features of the

shapes named in the problem and construct figures representing them on

their own. Also, they should have knowledge of the formulas representing

areas of each geometrical shape in the problem and be able to compare

those formulas algebraically in order to answer the question. The most

common line of reasoning would be to start with specific numbers and

conjecture the relation in general. It is possible for students to reason

from general formulas but intuitive justification using visualizing

methods or software should be accepted as valid arguments.

grades 9-12 Show that the area of an equilateral triangle with sides n is smaller

than the area of a square with sides n.

Again, it is common to start with specific examples but the

generalizing should be immediate and students should be able to justify

their reasoning using area formulas only.

The problem described and analyzed in example 2.2.2 can be observed

within the framework of van Hiele’s model of reasoning as described by Burger
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and Culpepper (1993). According to van Hiele’s model there are five levels of

reasoning in geometry

(1) visualization

(2) analysis

(3) abstraction (informal deduction)

(4) deduction

(5) rigor

By the van Hiele theory students at the two lowest van Hiele levels of

reasoning are unable to construct any formal type of mathematical proof. Even

the students at the third van Hiele level are not expected to manipulate with

rigorous proving processes but might be able to do only short proofs based on the

empirically derived premises. Finally, students at the van Hiele levels four and

five are expected to be able to provide consistently formal proofs. Such

hypotheses are partially supported by the research reported by Senk (1989). As

reported, students enter mathematical education at the first, ground level. The

second and third levels are characteristic for the high school students, but only

those advanced to the third level might be successful in writing mathematical

proofs. This level is called a transitional level between formal and informal

geometry. Currently most high school students are at or below the second van

Hiele level, indicating that most of them are unable to understand, appreciate or

construct a formal mathematical proof. On the other hand, if looking at the

NTCM standards (NCTM, 1989) it is expected that high school students be at

least at the third van Hiele level upon graduation.
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2.3 Summary

In this chapter we have given a definition of what mathematical proof is

and how it is understand at different ages. Also, we have learned about six roles

of proof and have seen how some of them are conveyed to students during the

exemplar teaching session described by Boaler and Humphreys (2005). Finally,

we have observed one problem through different grades and how the same

problem can be restated to challenge students at each stage. We have also

discussed the van Hiele levels of reasoning and in short assigned K-12 grades to

the first three levels. Before entering college students are expected to be at the

third level but as supported by research (Senk, 1989) we have seen that most

students are at the second or lower level by the end of their high school

education. On the other hand, the fourth and fifth levels of reasoning are

required to construct and understand mathematical proof at the college level.
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CHAPTER 3

MATHEMATICAL PROOF IN THE COLLEGE CURRICULUM

The teacher’s role in a student’s learning the process of mathematical

proof, its importance and its functions, is crucial. According to the Principles an

Standards for School Mathematics (NCTM, 2000a):

Effective mathematics teaching requires understanding what
students know and need to learn and then challenging and
supporting them to learn it well.

Also, to be able to teach effectively a teacher needs to understand what

students know, as well as what students do not know, and what they do not

understand. Having this in mind it is logical to search for the answers of what

students know and do not know about mathematical proof among the students

themselves.

In Section 3.2, we see what is expected from college students to know

coming from high school as well as what they should learn about mathematical

proof and what new proving skills they should develop during early college. To

define what is the old knowledge, inherited from earlier education, and what are

the newly acquired abilities, we look for the errors students make when

constructing mathematical proof. In the next Chapter 4, we concentrate on 33

college students and analyze their work during four weeks, eight sessions (seven
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teaching sessions). Our main goal is to identify and classify mistakes they make

using language and categorization adopted from the textbook, Discrete

Mathematics with Applications (Epp, 2004). Such classification allows us to

discover and define at which level a student gets “stuck,” for example if a student

persists on proof by example we say that s/he did not evolve from middle school

comprehension of mathematical proof. Being stuck might be a frustrating

situation for both students and teacher; however it should serve as a starting

point for learning and teaching.

3.1 The role of proof in the college curriculum

We need to distinguish between undergraduate students that are math

majors and others, usually science, majors. Other programs do not involve a lot

of mathematics and do not require rigorous knowledge and understanding of

proof. However, logical reasoning characteristic to mathematics, and validation in

arguments, should be implemented in every day life, not only mathematics

education. Because of the differences between math majors and other majors our

focus is restricted to the early college curriculum, e.g., the first two years, when

most students who have math requirements share similar mathematical courses.

The difference between K-12 and college mathematics is in the complexity

of the problems students are confronted with. The problems they need to solve

take more time to resolve, include different approaches, require different methods

and very often there is more than one way to reach a solution. In most cases

students are asked to prove their answer and to justify their methods, steps and

algorithms. Proofs by example, informal arguments and similar methods are no

longer accepted. Students are asked to use axioms and definitions to prove
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simpler statements, and furthermore, to dissect more complex problems into parts

that could be proved using only primary sources such as axioms and definitions.

In advanced mathematical courses, students are required to prove theorems,

lemmas, and corollaries from statements and theorems previously proved.

In the first year, students take lower division mathematical courses; for

example calculus (I, II, III, with precalculus) and discrete mathematics

(requirements in BS in mathematics, BS in computer science, BS in computer

engineering) 1 . In calculus students see many proofs, especially of the facts they

were using through high-school or earlier and sometimes they are asked to

provide proofs; but in discrete mathematics students actually learn more about

what proof is, different methods of proof, and how to construct a proof.

3.2 Methods of proof in the college curriculum

In this section, we report on the methods usually taught in a discrete

mathematics course. The differences of what and how the course is taught to

students between different colleges, or different teachers, are inevitable and

sometimes the same teacher decides to take a different approach and emphasize

some methods over others. However, in general, all teachers at most colleges

discuss some of the nine following techniques:

• Trivial Proof

• Vacuous Proof

• Direct Proof

• Indirect Proof

1 All requirements listed are from degrees and programs offered at a large state university in
northern California, year 2010.
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∗ Contraposition

∗ Contradiction

• Proof by Cases

• Counterexample

• Proof by Exhaustion

• Existence Proof

∗ Constructive Proof

∗ Non-constructive Proof

• Mathematical Induction

In the later sections, we limit our investigation only to the seven methods

considered in the textbook (Epp, 2004):

(1) Direct proof

(2) Indirect proof by contraposition

(3) Indirect proof by contradiction

(4) Proof by cases

(5) Proof by counterexample

(6) Proof by exhaustion

(7) Existence proof
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Table 3.1: Truth table for the implication relation P → Q

P Q P → Q
T T T
F T T
T F F
F F T

The definitions and examples of the nine methods listed above are following:

Trivial Proof and Vacuous Proof are the simplest proving techniques and

both are based on the implication truth table.

Suppose we want to prove a theorem of the form P → Q where P is a

hypothesis and Q a conclusion. Then we have the following definitions.

Definition 3.2.1 (Trivial Proof). When the conclusion Q is already known to be

true it follows from the truth table 3.1 that the implication statement P → Q is

always true. In this case we need to show that Q is true.

Example 3.2.2. Prove that if x ∈ R, x ≥ 0 then x2 ≥ 0.

But from calculus we already know that for all real numbers x, x2 ≥ 0 so

the implication x ≥ 0⇒ x2 ≥ 0 is trivially true.

Definition 3.2.3 (Vacuous Proof). The implication P → Q is always true if the

hypothesis P is false. Thus we need to show that P is false.

Example 3.2.4. Prove: If x ∈ R such that x2 + 2 = 0 then x > 0.

Since the hypothesis that a real number has a negative square is false there

is nothing that can be concluded from it. Hence there is nothing to be proved.

Both Trivial and Vacuous Proof are often omitted in the college curriculum

and it is hard to find their definitions or examples in discrete mathematics

textbooks.
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Definition 3.2.5 (Direct Proof). We assume that the hypothesis P is true.

Using rules of inference and theorems already proved we can show that Q must

be true as well.

This is the most common proving method but its name might be

misleading at first. The directness of such proof comes from the final written

form but its progress usually is much different and often starts in reverse order.

When trying to prove Q from P mathematicians might work their way backward

to see how Q follows from P , or in other cases the proof is the result of

interchanging forward and backward steps.

Example 3.2.6. For n ∈ N such that n even, show that n2 is even.

n even ⇒ ∃k ∈ N so that n = 2k

It follows that n2 = n× n = (2k)× (2k) = 2(2k2) = 2m for m = 2k2 ∈ N.

Thus by the definition of even numbers n2 is even.

Definition 3.2.7 (Indirect Proof: Contraposition). Because implications P → Q

and ¬Q→ ¬P are logically equivalent it follows that P → Q is valid when

¬Q→ ¬P and vice versa.

Example 3.2.8. Prove: for n ∈ N, n2 odd → n odd.

The contrapositive of the statement n2 odd → n odd is n not odd → n2 not

odd. In other words: n even → n2 even.

We have already proved that implication in Example 3.2.6 thus by Proof by

Contraposition we can conclude that n ∈ N, n2 odd → n odd is true.

Definition 3.2.9 (Indirect Proof: Contradiction). We assume that the

hypothesis P is true while assuming at the same time that the conclusion Q is

false. The proof is completed when we arrive at contradiction such as ¬P , Q or

R ∧ ¬R starting from P ∧ ¬Q.
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Example 3.2.10. A common problem provable by contradiction is: Prove that
√

2 is irrational.

Our hypothesis is that 2 is rational number, and the conclusion is
√

2 is

irrational.

Suppose 2 is rational and
√

2 is rational. By the definition of rational

numbers
√

2 is rational if ∃m ∈ Z and n ∈ N, gcd(m,n) = 1 such that
√

2 = m
n

.

Now: √
2 =

m

n
⇔ 2 =

m2

n2
⇔ 2n2 = m2

⇒ m2 is even⇒ m is even

Next, m even ⇒ ∃k ∈ N s.t. m = 2k ⇒ m2 = 4k2.

Finally,

m2 = 2n2 ⇔ 4k2 = 2n2 ⇔ 2k2 = n2

⇒ n is even

And we have reached the contradiction with gcd(m,n) = 1. In this case we have

arrived at the contradiction of the form R ∧ ¬R (gcd(m,n) = 1 and both m and

n are even i.e. gcd(m,n) = 2k, k ∈ N).

Definition 3.2.11 (Proof by Cases). In this case the proof is conducted by

breaking down the original implication into two or more cases and proving each

case separately. P → Q becomes P1 → Q ∧ P2 → Q, . . ., Pk → Q where

P1 ∪ P2 ∪ . . . ∪ Pk = P .

Example 3.2.12. For every n ∈ N n2 + 1 is not divisible by 4.

We can break this problem into two cases by investigating n even and n odd

separately, but very soon we discovered that this can not lead to the conclusion.

Thus, the implication should be broken into four cases:

(1) n ≡ 0 mod 4⇒ n2 ≡ 0 mod 4⇒ n2 + 1 ≡ 1 mod 4
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(2) n ≡ 1 mod 4⇒ n2 ≡ 1 mod 4⇒ n2 + 1 ≡ 2 mod 4

(3) n ≡ 2 mod 4⇒ n2 ≡ 0 mod 4⇒ n2 + 1 ≡ 1 mod 4

(4) n ≡ 3 mod 4⇒ n2 ≡ 1 mod 4⇒ n2 + 1 ≡ 2 mod 4

Since every natural number n falls in one of the four cases above we have shown

that for every n, 4 does not divide n2 + 1.

Definition 3.2.13 (Proof by Counterexample). This method is used to disprove

statements of the form ∀x, P (x) is true (or to prove that ∀x P (x) is false). The

proof is completed when we can provide an element a such that P (a) is false.

Example 3.2.14. Disprove: Every p ∈ N, p prime ⇒ p is odd.

2 is a natural number that is prime but even ⇒ implication above is false.

Definition 3.2.15 (Proof by Exhaustion). We use this method to show that ∀x

P (x) is true by showing that P (x) is true for each x independently. This is

possible only when x takes only finitely many different values.

Example 3.2.16. For n ∈ N, 1 < n ≤ 3, 2n − 1 is prime.

Since n can only be 2 or 3 it can be easily checked if the the proposition is

valid.

n = 2⇒ 22 − 1 = 4− 1 = 3 prime

n = 3⇒ 23 − 1 = 8− 1 = 7 prime

The proposition is proved.

Existence proofs are methods to prove statements such as: ∃x such that

P (x). There are two ways to prove this type of statement.

Definition 3.2.17 (Existence proof: Constructive proof). In constructive proof

the strategy is to find or construct an element a such that P (a) is true.
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Example 3.2.18. There is a natural number n such that 2n is a prime number.

2n is an even number for every n ≥ 1, thus we are looking for an even,

prime number. The only such number is 2 so we need to find n such that

2n = 2⇒ n = 1.

Definition 3.2.19 (Existence proof: Non-constructive proof). As opposed to

constructive proof we use non-constructive proof when we are unable to find or

construct an element a such that P (a) is valid. In this case we assume that there

is no such element a and we arrive at a contradiction. Thus we show that there

must be some a such that P (a) is true.

Example 3.2.20. There are irrational numbers a, b such that ab is rational.

This is a well-known example of non-constructive proof.

Let us consider the number m =
√

2
√
2
. Now m is either rational or

irrational. We already know that
√

2 is irrational, thus if m is rational we have

shown the existence. On the other hand if m is irrational then for a = m and

b =
√

2 we have ab = 2. Hence, either way there are such a and b.

Definition 3.2.21 (Mathematical Induction). We want to prove that the

statement P (n) holds for all natural numbers n ≥ m for some m ∈ N. There are

two steps to the proof:

• Basis Show that the statement holds for some n = m.

• Inductive Step Assuming that the statement holds for n− 1 we need to

show that it is valid for n as well.

Example 3.2.22. Show that for every n ∈ N, 3|(n3 + 3n2 + 2n).

• Basis For n = 1 we have n3 + 3n2 + 2n = 6 and 3|6.



24

• Inductive Step Assume that for an arbitrary n, 3|n then n = 3k.

Now for n + 1 we have:

(n + 1)3 + 3(n + 1)2 + 2(n + 1) = n3 + 6n2 + 11n + 6

= (n3 + 3n2 + 2n) + 3(n2 + 3n + 2)

by assumption = 3k + 3(n2 + 3n + 2)

= 3(k + n2 + 3n + 2)

⇒ 3|[(n + 1)3 + 3(n + 1)2 + 2(n + 1)]

⇒ 3|(n3 + 3n2 + 2n), ∀n ∈ N

We have defined and provided an example for each of the methods but in

future sections, we limit our discussion and report only to the seven proving

methods that are covered and investigated in Epp’s textbook (Epp, 2004). Thus,

methods that are discussed in the following chapters are:

• Direct proof

• Indirect proof: contradiction and contraposition

• Proof by exhaustion

• Existence proof: constructive proof

• Proof by cases

• Proof by counterexample

3.3 How to write a proof?

Methods of proof as well as the importance of mathematical proof are

introduced to students through numerous examples. So they are expected to
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mimic simple proofs that are done in the classroom at first and then start writing

proofs by themselves using methods and results presented in the classroom. Since

the role of mathematical proof is to convince oneself and others of the

truthfulness of one’s proposition, the proof should be readable and

understandable to the wider audience, not to the author only. For that purpose it

should be clear where the proof starts, where it ends, what we know to be true

and what we need to show. Also, it is very important to provide a reasonable and

clear justification of each step in the proof. In most of the textbooks on discrete

mathematics it is common to find the “recipe” with steps of how to write a proof

in order to produce a structurally readable mathematical proof. For example,

in (Epp, 2004) the following steps are discussed:

(1) Copy the statement of the theorem to be proved on your paper

It should be clear to the reader what the assignment is.

(2) Clearly mark the beginning of your proof with the word Proof

Just to have a neat start, this is important in long and complex proofs.

(3) Make your proof self-contained

Clearly state the definitions and axioms used in the proving process, as

well as the supporting claims that might be proved elsewhere; clearly

state where and when, or prove them here.

(4) Write your proof in complete sentences

For readability purposes it is desirable to have explanations and

transition between ideas stated in sentences rather than symbolic

notation only.
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(5) Give a reason for each assertion you make in your proof

Explain and justify each declaration used in the proof. Furthermore,

provide a reason why such declaration should be valuable for the proof.

(6) Include the “little words” that make the logic of your arguments clear,

e.g. if, then, now, such as, follows, therefore, for, let us assume, this

means, by assumption, by definition. (Epp, 2004, p. 134)

We also believe that the following should be added

(7) Mark the end of the proof using one of the common end notations, such

as: Q.E.D. or �

Having all these steps does not guarantee a complete and valid proof but

following the prescribed structure can help one to start and focus on what needs

to be proved. Also, following the proof scheme allow readers, teachers and peers

to comprehend one’s reasoning and to identify flaws if any.

3.4 Common mistakes

In her textbook, Epp also lists the most common mistakes students make

(Epp, 2004, p. 135). The following Table 3.2 is a summary of common mistakes

listed in the textbook. The table consists of two categories: Mistakes and Grade

level. The grade level category represents the educational stage at which students

learn how to overcome the mistake. In an earlier stage such a mistake might be

tolerable, such as arguing from examples being acceptable in grades K-5.
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Table 3.2: Common mistakes in constructing mathematical proof

Mistake Grade level
Arguing from example K-6

Same identifier 6-8
Jumping to a conclusion 8-12

Begging the question 8-12
Misuse of the word “if” 11-12

3.5 Summary

In this chapter we have laid the base for our case study by providing a full

list of proving methods taught at colleges accompanied with the definition of each

method and an illustration of their employment on the examples. Furthermore,

we have listed common mistakes students make according to the textbook used

during the case study (Epp, 2003). Also, based on the literature research we have

assigned an educational level to each mistake category, as in Table 3.2.

In the following chapters, we analyze case study results by discussing

mistakes categorized by Table 5.1. Also, we compare the occurrence of each

mistake between different proving methods. Furthermore, brought up are

conclusions about students’ comprehension of proof based on mistakes they make

and their occurrence.
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CHAPTER 4

CASE STUDY ON THE TEACHING AND LEARNING OF PROOF

The case study, as the central part of this thesis, was conducted in one of

the two sections in the Discrete Mathematics course, at a large state university in

northern California, during Spring term of 2010. Subjects of the study were

students enrolled in the course during the term. In total, 33 students

participated in the study, and they were all presented with the same research

instruments described in Section 4.2 below.

The study was completed in four weeks, and consisted of the following

phases:

(1) Survey and consent forms

(2) Pre-teaching questionnaire

(3) Observation and two quizzes

(4) Post-teaching questionnaire

(5) Midterm exam

By its nature, this study was a systematic research design as characterized

in Wiliam (1998, p. 7). The researcher enters the classroom and investigates the

subjects’ performance in their authentic environment using described
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instruments. The main goal of the research is to learn and understand the way in

which mathematical proof is taught, as well as to learn about the difficulties

students have while learning to construct a valid argument.

4.1 Aim

The aim of this case study is for the researcher to gain an insight into the

process of learning/teaching mathematical proof at the early college level. From

personal experience the researcher is aware of long, exhausting and very often

unsuccessful attempts to learn how to construct a proof. At the same time, the

researcher lacks the knowledge of how other students overcome common mistakes

in proving and how they develop the sense for a valid argument.

The ultimate goal is to categorize common mistakes students make,

describe difficulties students encounter and to identify gaps in mathematical

knowledge inherited from earlier education. Finally, the following questions are

pursued:

• What type of proof do students accept as the most practical?

• What proof method do students find most complicated to use?

• What common mistakes do students make?

• Which mistakes exhibit a tendency to increase/decrease during and after

the teaching sessions?

• Which difficulties do students encounter when attempting to construct a

valid mathematical proof in the early college curriculum?
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4.2 Methods

The techniques of data collection employed in the present study are the

most common techniques in mathematics education research as described by

Zevenbergen (1998). These are: participant observation and text documents. It

is important to say that the researcher enters the classroom in the

nonparticipatory role in order to observe the daily school life. The role of this

technique is to learn from the participants without imposing the researcher’s

opinion. As the part of the context the researcher is expected to “understand the

research setting, its participants, and their behavior” (Glesne & Peshkin, 1992, p.

42) . The teaching sessions were slow paced and such a setting allowed the

researcher to take notes by hand. Also, only the teacher wrote on the blackboard

while students’ participation consisted only of oral suggestions and comments.

Furthermore, examples and problems used during the teaching sessions were

taken from the textbook by S. Epp (2003) which made taking notes easier: by

having the problems already written down the researcher focused easily on the

students’ participation.

The second data collection technique used in the reported case study are

the following text documents:

• Survey

• Pre-teaching questionnaire

• Class quizzes and Midterm test

• Post-teaching questionnaire

Survey The questions students answer in the survey are not only for

identifying and matching purposes but also to get an insight into the trends
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between different groups characterized by gender, college major, English

proficiency and math courses taken with or before Math 042. The survey in its

full extent is enclosed in the Appendix A.

Pre- and Post- teaching questionnaires are similar in their context and

serve us to see if students’ understanding of mathematical proof advances during

instruction or the instruction itself has no significant impact on their deductive

reasoning. The survey and questionnaires were constructed by the researcher.

Class quizzes and tests are part of the observation phase and their main

purpose is to track the teaching/learning process over the six instruction sessions.

Also, since quiz questions are of the same nature as the questionnaire questions it

is possible and reasonable to compare the results on the quizzes to those on the

questionnaires. Both questionnaires can be found in later sections 4.4.1 and 4.4.2.

The data collected from the questionnaires are presented in two ways, qualitative

and quantitative. The first quiz was constructed by the class instructor, while the

second one was designed by the researcher.

Quantitatively we report the number of students who have the ability to

solve the problem and correctly explain their answer by providing a

mathematical or English proof. By English proof we mean a logical explanation

in English that does not necessarily use mathematical symbols. The reason to

accept the English proof is not to discredit students who understand what needs

to be done in order to validate their answer even if they lack the ability and/or

knowledge to express themselves using formal mathematical language.

Additional quantitative data derive from the questionnaires, providing

categories of the mistakes students make when explaining their answers. The

mistake in the explanation does not mean that the student got the wrong answer

to the question, but the mistake shows the student’s inability to prove s/he is
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correct. For example, if a student’s answer to the question is correct but the

provided proof is a proof by example, this indicates the level of understanding

has not evolved from the lover level of mathematical maturity linked to the

middle school level. For example, a pre-teaching questionnaire problem is:

For all natural numbers n in the set N = {1, 2, 3, . . .},
(2n + 1)(2n + 1) is ODD.

The statement is:

(1) True

(2) False

Answer:

Please explain your answer.

Qualitative aspects of the collected data are in the description of mistake

categories, information gleaned about classroom atmosphere during observations

and description of students’ work on different tests.

Finally, to draw conclusions of how and when students start developing

their understanding of mathematical proof at the higher level we implement both

techniques and combine the results into a single report.

4.3 Lessons

The instruction observation is a substantial part of the case study.

Therefore, we provide a summary of the teaching from the researcher’s point of

view, emphasizing students’ responses to the new methods and topics, instead of

the teacher’s performance.

In total there were six sessions dedicated to teaching and learning new

proving methods. Two out of six sessions were testing sessions; in other words,

students had only four teaching sessions.
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In the first session the teacher, hereafter refereed to as Dr. G, introduces

proving techniques using homework examples, making a smooth transition from

the previous topic.

Example 4.3.1.

D = {−48,−14,−8, 0, 1, 3, 16, 23, 26, 32, 36}

∀x ∈ D if x is odd then x > 0.

True or false?

When the teacher discusses the homework problem he mentions that this is

true and it could be proved using proof by exhaustion.

Based on the silence and students’ indifference to Dr. G’s monologue the

researcher concluded that students were not interested in the word “proof” or

why the teacher mentions that it could be proved using a method with a certain

name. Even after explaining what the method means and how it could be

employed students had no comments and let the teacher proceed.

Following the example, Dr. G introduced his way of teaching in a

philosophic manner saying:

“Teaching a proof if well prepared is not teaching but reading
what someone else has done before.”

and he continued with examples from the textbook always letting students

provide an answer before showing the proof himself. Another technique the

teacher employed was student oriented in that he let students guide him in the

proving process even when knowing that it is wrong. He wanted students to

realize what and where the proof went in the wrong direction. The following

example 4.3.2 illustrates such a process. Note that as the observations were not
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taped, the dialogue is reproduced from careful notes taken during class and

represents the spirit of what occurred in class.

Example 4.3.2. Teacher :

Let’s prove the following theorem.

Theorem: The product of two odd numbers is odd.

Teacher : The easiest way to begin proving to yourself that some-

thing is true is by looking at an example. So for example

we have 3 · 5 = 15, where both 3 and 5 are odd, and we

can see that their product is odd. Now, we’ll try to prove

this claim for any two odd integers.

Proof : Start with the definition of what you have:

Definition: n being an odd integer means that there is an integer k

such that n = 2k+1 or in symbolic notations we can write

this definition as: n is odd ⇔ ∃k ∈ Z. s.t. n = 2k + 1.

Teacher : Next you need to translate what odd is into math lan-

guage.

We need to prove that for two odd integers, n1 and n2

odd, their product is odd, i.e. n1 · n2 is odd.

Do you have any ideas how to continue the proof?

Student 1 : We can write n1 = 2k + 1 and

n2 = 2k + 1 and then we have n1 · n2 = (2k + 1) · (2k + 1)

Teacher : Ok, so if we continue we get:

n1 ·n2 = (2k+ 1) · (2k+ 1) = 4k2 + 2k+ 1 = 2(2k2 +k) +1

Is this an odd integer?
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Group of students : Yes.

Teacher : Do you believe that we have proved our statement?

Group of students : Yes

(though they hesitated when answering.)

Teacher : How many of you believe that we have provided a correct

proof?

(Ten out of 33 students raised their hands.)

Teacher : And how many believe that we are wrong?

(16 out of 33 students raised their hands. Seven students could not decide. None

of the students who were against the proof could explain why it was wrong. So

the teacher asked students to substitute k for some integers and to analyze the

numerical examples. Only after taking k = 1, 3, 5 some of the students realized

that what they proved is if n is an odd integer then n2 is odd.)

Teacher : Well, not bad but you should be aware that k could not

be the same for both n1 and n2, so we should put:

n1 = odd→ n1 = 2k1 + 1

n2 = odd→ n2 = 2k2 + 1. for k1, k2 integers.

Any ideas how to proceed?

(This particular problem, later characterized as the same identifier mistake, was

not discussed any further. It is important to mention that students were

reintroduced to symbolic notation and its usage in previous sessions at the

beginning of the semester. So the teacher felt that they should have been familiar

with identifiers. Furthermore, as we have said before, Dr. G prefers to teach

students using examples. Therefore, a few more examples with similar problems

were introduced on the blackboard and each time Dr. G only mentioned the

necessity to use appropriate symbolic notation.)
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Student 2 : Multiply n1 and n2,

n1 · n2 = (2k1 + 1) · (2k2 + 1) = ....

Teacher : Is there a problem?

Student 3 : ...

n1 · n2 = (2k1 + 1) · (2k2 + 1) = 4k1k2 + 2k1 + 2k2 + 1

but how do we know that this is an odd integer?

Teacher : Can you relate this expression to the definition of an odd

integer?

Student 3 : Oh, 4k1k2 + 2k1 + 2k2 + 1 = 2(2k1k2 + k1 + k2) + 1, it is

similar but...

Teacher : Can anyone translate our expression into the rigid defini-

tion from the beginning?

Silence... so the teacher continues:

We can rewrite our expression in a way: 2(2k1k2 + k1 +

k2) + 1 = 2k + 1, for k = 2k1k2 + k1 + k2 integer.

To finish the proof we simply write the final statement

that shows what needed to be proved, i.e. n1 ·n2 = (2k1 +

1) · (2k2 + 1) = 4k1k2 + 2k1 + 2k2 + 1 = 2k + 1 for some

k = 2k1k2+k1+k2 integer thus by the definition, product

of two odd integers is an odd integer. 2

Just for your information we use symbols as: 2, “q.e.d.”

or simply “end” to note the end of the proof.

The type of proof we just used to prove the theorem is

called a direct proof.
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Example 4.3.2 is a good example of how students misuse symbolic notation,

i.e. it is an example of the same identifier mistake as described in Table 5.1.

During all four teaching sessions Dr. G never introduced a proving method

at first, but after proving an example problem he mentioned what the method is

called and then, if possible, provided the general steps in the process.

Even though the first few examples may seem very simple and almost

trivial, students had a hard time tackling the proving process for each of the

problems. Example 4.3.3 shows four problems similar in difficulty to the first one,

and reports on students’ reactions and/or related questions.

Example 4.3.3.

• There is no smallest integer.

When asked if they believe that statement is true all students answered

“YES” in one voice, but when asked why they believe so no one had an

answer.

• For all integers n, n ≤ n2. As in the previous problem students were very

sure of the correctness of the statement and when asked to justify three

out of 33 students provided numerical examples but when asked to offer a

proof or at least to start the proof there were no responses. Thus, Dr. G

provided proving steps using the “Proof by contradiction” method.

• The sum of an odd and an even number is odd.

As before, after stating the problem the teacher let students to lead the

proof. In this problem one student offered the beginning such that:

Student 1 : n1 = 2k + 1 and n2 = 2k, thus n1 + n2 = 2k + 1 + 2k =

4k + 1, so it is an odd number.
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Teacher : Do you all agree?

Student 2 : No, we can not use same k for both n1 and n2.

Teacher : Correct.

As we can see in the example 4.3.3 some students continue to make the

same identifier mistake, but at the same time another student realizes the

mistake and makes the correction without Dr. G’s intervention. In their attempt

to offer the proof to the stated problems students made several more mistakes

besides same identifier. Often students do not connect lines of the proof with the

equality sign to indicate equivalence or during the discussion they forget what

needs to be proved.

Examples of similar difficulty were introduced to students in the following

sessions, and often we observed similar scenarios. At first students let the teacher

show them the first example and afterwards they try to mimic his methods and

steps in order to provide proofs. An unfortunate observation during the teaching

sessions is that only five students were active and joined the teacher in providing

proofs. They either suggested proving steps or corrected their peers when they

believed they were wrong. But the other 28 students quietly copied examples

from the blackboard or answered in choir when asked fairly simple questions.

Another observation that caught our attention is that only male students were

active in discussions but the classroom structure was in a ratio that can not be

statistically significant, in other words there were only five female students in the

group of 33 students.

Students also showed insecurity in mathematical topics and definitions and

even when they knew how to start the proof they were unable to define certain
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expressions. Thus through the four teaching sessions students asked the following

questions and exhibited intimidation with the new topics:

(1) Prove: If n is any odd integer, then −1n = −1.

After showing examples and breaking out the expression using the

definition of odd numbers and the exponential laws we heard the

question:

Student : What are exponential laws?

(2) Prove that the statement is false.

There exist k ∈ Z s.t. k ≥ 4 and 2k2 − 5k + 2 is prime.

After factoring, which was done by the teacher since the students forgot

how to factor binomials [no one even remembered to search for roots of

the quadratic equation] one student asked:

Student : I have a question? When defining, a prime number is not

1 and not composite? So 1 is not prime.

Teacher : Yes.

Student : What is a composite?

(Surprisingly, none of his classmates provided the definition of a

composite number. Some students gave numerical examples but no one

was confident enough to formally explain what a composite is.)

(3) Prove 4 does not divide n2 + 1.

Teacher : We can do this in two ways: observing “even and odd

cases” or in a way we just learned using mod notation,

mod 4. Which do you prefer?
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Students : Even and odd cases.

(The answer students gave shows that students rather use methods they

are more familiar with and procedures they are more confident with than

learning and employing new methods.)

(4) Prove, 3 6 |n2 + 1 ∀n.

This problem is within the same topic as the previous problem and when

asked how to start the proof, students suggested to observe for n being

even and odd. Very soon they discovered that “even or odd” cases are

not sensitive enough to cover all the possibilities so they have to employ

newly acquired knowledge about divisibility. As soon as the teacher

suggested using mod notation, the students withdrew and let the

teacher proceed on his own.

We observed similar behavior during the next session as well. Students

were introduced to a new topic, floor and ceiling functions. After going

over definitions and basic properties the teacher started with the simplest

proving tasks.

(5) Teacher : Example: If n is even, then

bn
2
c =

n

2

are you ready for this?

Let us look at the example: n = 4, we have

bn
2
c = b4

2
c = 2 =

4

2
.

This is so trivial. I’ll show you two proofs.

What is the obvious way to start this?
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Students : n = 2k .....

(Now they knew how to start if they have even or odd numbers in the

conditions, but the problem was how to continue. The newly introduced

floor function definition became an obstacle. None of the 33 students felt

confident enough to suggest the next step, so the teacher proceeded on

his own.)

4.4 Research instruments

In this section, described are all research instruments used in the case

study. Moreover, we provide the required or expected answers to sample

questions and present a selected student’s work to illustrate how their work has

been evaluated and mistakes categorized. Very often students provide right

answers but still make significant mistakes in justification.

4.4.1 Pre-teaching questionnaire

The pre-teaching questionnaire or Questionnaire 1 consists of three

questions. All three are related to mathematical proof and understanding of the

same. Students are presented with fairly simple number theory problems and

asked to answer whether the statement is true or false or to choose the correct

answer in a multiple choice question. Either way, we are using two different

approaches to the questions, one is to evaluate if students answer correctly, and

the other is to see their reasoning behind the answer. Also, when no explanation

is given we are assuming that the student is guessing without understanding the

background of the problem. In the pre-teaching questionnaire we are trying to

determine whether students consider it important to explain their answers and
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how close those explanations are to the actual proofs of the problems.

Through their explanations we can see how students are working on solving

the problem. Using the list of actions needed to solve the problem as explained in

Polya (1971, p. xvi), we can decode students’ process of solving the given

problem.

For example:

(1) For all natural numbers n in the set N = {1, 2, 3, . . .},

(2n + 1)(2n + 1) is ODD.

The statement is:

(a) True

(b) False

Answer:

Please explain your answer.

A student familiar with the process of proof and its purpose usually follows

the steps described by Poyla in How to Solve It (Polya, 1971):

• Understanding the problem

What is unknown in the problem? The parity of the expression. What are

the conditions? n is a natural number, n > 0. Does it seem true? Try out

for a few natural numbers, n = 1 we get 9, for n = 4 we get 9 · 17 = 153.

• Devising a plan

Find the connection between the unknown and the conditions by

answering the following questions: Have you seen the same or similar

problem before? In the class we talked about the definition of odd and
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even numbers, also we have talked about the properties of products and

sums of odds or evens. Can you use a previous problem to solve this one?

Can you use results of the previous problem solved? Can you use the

methods of solving the previous problem? Here, I can use both.

• Carrying out the plan

How they carry out the plan of the solution shows in the explanation

students provide for their answer. Most students choose to give an

English explanation as below:

2n + 1 is always ODD

2n + 1 is always ODD

product of two ODD numbers is always ODD

In this example it is clear that the student is going through the two

previous phases but what is missing here are validations of the claims

stated while carrying out the plan.

• Looking back

The final and crucial phase in validating the answer is to go back to your

answer, and to check if every step is validated and that anybody who is

reading the solution should be convinced that this is the right answer.

4.4.2 Post-teaching questionnaire

In the post-teaching questionnaire the problems were more direct and

formal proofs were required. Three out of four questions were tightly related to

the topics covered during seven teaching sessions. The fourth problem required

students to read and understand the well known Pythagorean Theorem and to
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state its converse. Furthermore, they were asked to use the converse to justify

their answer about the given triplet that happened to be a Pythagorean triplet.

The objective of that question is to determine whether students are able to

transfer their new knowledge about mathematical proof to a topic that was not

covered during lecture.

An exemplary problem in the post-teaching questionnaire was:

Prove that for all integers a and b if a|b then an|bn for all n ∈ N.

Proof :

The desired proof type was a direct proof. If the students choose to follow

the same Polya recipe as described above, the complete justification would be as

follows:

• Understanding the problem

What is unknown in the problem? The divisibility of one integer by

another having certain properties. What are the conditions? n, a and b

are integers such that a|b. Does the claim seem true? Try out for a few

numbers: n = 2, a = 3, b = 12 we get a2 = 9, b2 = 144 and

144 : 9 = 16⇒ 9|144; or n = 3, a = 2, b = 6 we get a3 = 8, b3 = 216 and

216 : 8 = 27⇒ 8|216 It might be true.

• Devising a plan

Find the connection between the unknown and the conditions by

answering the following questions: Have you seen the same or similar

problem before? In the class we talked about the definition and conditions

for divisibility. Can you use a previous problem to solve this one? Can

you use results of the previous problem solved? Can you use the methods
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of solving the previous problem? Absolutely. I should start with the

definition and carry on from there.

• Carrying out the plan

How they carry out the plan of the solution shows in the explanation

students provide for their answer. Most students tried to provide a direct

proof from the definitions:

a|b⇒ ∃k ∈ Z so that b = a× k

Thus bn = (a× k)n = an × kn ⇒ an|bn by the definition

for there is an integer z = kn such that bn = an × z.

4.4.3 Quizzes during the teaching sessions

During the seven lecture sessions students had an opportunity to see their

progress by solving two short quizzes. Each quiz had only one problem.

Quiz 1 Prove that if n is an odd integer then n2 is odd.

Since the quiz problem was similar to the teaching examples that were

proved using direct proof, the students were expected to provide a direct proof as

well, using the definition of an odd integer. The proof itself follows easily from

the definition. Using the previously described Polya recipe we can present the

proof in short form:

• Understanding the problem

Unknown: The parity of n2. Conditions: n is odd. Does the claim seem

true? Examples: n = 3 and n2 = 9 or n = 13 and n2 = 169, hmm both

are valid. Might be true.

• Devising a plan
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The connection between unknown and conditions: Similar problem?

During the previous session students were introduced to the following

problem: The product of two odd integers is always odd. Can you use the

previous problem to solve this one? Can you use results of the previous

problem solved? Can you use the methods of solving the previous

problem? Yes to all. Students can mimic the proof by adjusting both odd

integers to be the same integer, or they can argue from the proved

conjecture about the two odd integers.

• Carrying out the plan

Most students tried to provide a direct proof from the definitions by

mimicking proof of the conjecture about the product of two odd integers.

The second quiz was presented to students after five sessions. In addition

to the different methods of proof, they were also introduced to a new topics in

number theory such as floor and ceiling functions. Accordingly, their second quiz

was on that topic and they were asked to provide a direct proof.

Quiz 2 For n an odd integer prove that

bn
2
c =

n− 1

2
.

The best solution would follow the sequence of steps as described by Polya.

Thus we would expect to see the following work:

• Understanding the problem

Unknown: The value of floor function for certain integers. Conditions: n

is odd. Does the claim seem true? Examples: n = 3 and b3
2
c = 1 while

3−1
2

= 1. Or n = 23 and b23
2
c = 11 while 23−1

2
= 22

2
= 11. It works on

examples.
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• Devising a plan

The connection between unknown and conditions: Similar problem?

During the previous session students were introduced to the the definition

of floor function as well as to various similar problems. They have also

seen a few solutions and proofs manipulating the floor definition. Can

you use a previous problem to solve this one? Can you use results of the

previous problem solved? Can you use the methods of solving the

previous problem? Yes to all. Students should start from the definition

and in a step or two they should employ their knowledge about the values

of floor function for integers.

• Carrying out the plan

Most students tried to provide a direct proof from the definition.

4.4.4 Midterm exam

Chronologically the last data source in the case study is the midterm exam.

After the last teaching session students had one review session where they had an

additional opportunity to ask questions on the proof topics and to review

problems they found to be challenging for them to solve in class or homework.

Also, the teacher solved at least one problem for each type of question that would

appear on the exam. The exam itself consisted of nine questions, and some

questions had multiple subproblems. Five out of nine questions were proof

related and we focus only on these problems. Proof related exam questions were

a collection of problems similar to those in two quizzes and two questionnaires

introduced to students during the teaching sessions. Thus, the midterm exam

summarizes students’ evolution in understanding and employing methods of
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mathematical proof.

The topics that appeared in the midterm exam are as follows:

(1) even/odd

(2) divisibility

(3) divisibility properties

(4) floor function

(5) proof of theorem

The full midterm exams, two versions, can be found in Appendix A.3.

4.5 Summary

The main part of this thesis is the case study described in Chapter 4. Here

we have described continuity of the teaching lessons, problems and teaching

examples introduced to students, and provided a brief description of the teacher’s

teaching philosophy. Furthermore, parts of teacher-students’ dialogues are

included in Section 4.3 to gain a better perspective of the teaching lessons.

In great detail we have described each of five data instruments: two

quizzes, two questionnaires and a midterm test. A few individual problems are

discussed together with desirable, expected solutions.

All data instruments in their original form, as given to students, can be

found in Appendix A.



49

CHAPTER 5

RESULTS

In this chapter, we report on the results collected from the research

documents described in Section 4.4. First, we present the extended table of

common mistakes students do. The full list of mistakes is the result of analyzing

students’ work during the case study. The full description of mistake categories

can be found in Table 5.1. Mistakes and their meaning are used to analyze and

discuss results and students’ work and progress during the case study.

Furthermore, the results are presented with two tables for each data instrument,

one with the percentages of correct answers and the other with the list of all

mistakes for each question. We also trace the occurrence of each mistake, or

better to say mistake category.

5.1 Common mistakes

In this section, we provide an extended list of common mistakes students

make. The author (Epp, 2004, p. 135) lists five mistakes, see page 27. After

conducting the study we have categorized four more. Furthermore, each mistake

is illustrated with an example extracted from the students’ work during the

teaching sessions. To identify and match different data sources students have

chosen a pseudonyms, therefore we use the pseudonyms to match each example
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to the student.

(1) arguing from example(s), as illustrated in Figure 5.1. This is a problem

from the midterm test, and the student who argued from an example

used a pseudonym of his/her choice; “006620939”.

Figure 5.1: Example of argue from example mistake

(2) using the same identifier to mean two different things. Again, we have

used a midterm problem from the student known to researcher under the

code “3.1415”.

Figure 5.2: Example of same identifier mistake
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(3) jumping to a conclusion; as shown in Figure 5.3. To illustrate this

mistake category we have used a first problem in the pre-teaching

questionnaire from a student with the code “penpen.”

Figure 5.3: Example of jumping to conclusion mistake

(4) begging the question; assume what is to be proved, as in Figure 5.4. At

the first glance begging the question and jumping to conclusion might

look similar, but through the examples we can see their main difference.

Jumping to conclusion is when a student starts an argument correctly

from the definition or any other primary source, but then after a few

steps comes to a conclusion without justifying all his steps. On the

contrary, when making begging the question mistake, the student assumes

what needs to be proved in the first step and then proceeds his argument

from there. Such work is well illustrated by the student “jwild37” in

his/her work on the sixth problem in the midterm test shown in
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Figure 5.4.

Figure 5.4: Example of begging the question mistake

(5) misuse of the word “if”

In the case study described in Chapter 4 we can see a few more errors

arising frequently. Thus additional categories are:

(6) trying to solve for the unknown instead of proving the claim for the

unknown

The student treats the statement as the problem to be solved for the

unknown instead of trying to prove the general claim. An example can

be seen in Figure 5.5, work extracted from the midterm test by a student

known under the pseudonym “lenlen.”
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Figure 5.5: Example of solving for the unknown mistake

(7) intuitive or English proof

The student understands what needs to be proved and is able to build up

a logical reasoning process but lacks the ability to express the process in

mathematical/symbolic language, for example see Figure 5.6 presenting

the third midterm problem solved by a student named “Jillian.”

Figure 5.6: Example of intuitive proof mistake

(8) wrong conclusion or no conclusion
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In this category we look for a complete lack of argument, an invalid

argument and/or a wrong conclusion following a correct argument. No

conclusion can be due to the following reasons: misunderstanding of

what needs to be proved; lack of prerequisite knowledge of definitions

and axioms needed to prove the claim; or, inability to use definitions,

axioms, previously proved theorems in the proving process. An invalid

argument usually follows incorrect definitions or illogical reasoning. A

wrong conclusion might be the consequence of a computational mistake,

misinterpretation of the previously proved results and/or undeveloped

logical reasoning. One of the examples can be seen in Figure 5.7. Here

we are presenting the problem from the second quiz by a student behind

the code “m8G04.”

Figure 5.7: Example of wrong (no) conclusion mistake

(9) computational mistakes

Most computational mistakes are caused by carelessness and have no

significant meaning in our study.
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The following Table 5.1 is a summary of common mistakes listed above.

The table consists of three categories: Mistakes, Grade level and Difficulties. As

before, the grade level category represents the educational stage at which

students learn how to overcome the mistake. The third category, difficulties, lists

rationales behind the mistake. The table, especially difficulties represented by

each mistake category, are the result of the class observation and case study

results. After observing students’ work during the teaching sessions and

analyzing the collected data the researcher categorized all the mistakes and

constructed the table. Furthermore, it is possible for a student to make more

than one mistake simultaneously. In this case, we record only the one with the

higher priority. For example, if a student argues from an example and makes a

computational error in the same problem we disregard the computational mistake

and account only for the other. In fact, we use the hierarchy from Figure 5.8

when prioritizing mistakes. Also, it should be noticed that there is no misuse of

the word “if” in the figure. We have omitted that mistake since all the students

in the study avoided using little words, thus every student made that particular

error in each problem. The hierarchy depicted in Figure 5.8 is based on Table 5.1,

more specifically on the grade level assigned to the mistake category. The highest

priority has a mistake that is common among lower grades, and that should be

abandoned as student advances to the higher level of education. The only

exception to this reasoning is the intuitive proof that is ranked lower on the scale.



56

Table 5.1: Extended list of common mistakes in constructing mathematical proof

Mistake Level Difficulties

Arguing from example K-6
Inability to generalize

Uncomfortable with symbolic notations
Difficulty to employ abstract reasoning

Same identifier 6-8

Uncomfortable with symbolic notations
Uncertain of general definitions
Doesn’t understand the relation

between symbols and numbers they replace

Jumping to conclusion 8-12

Inability to think abstractly
Doesn’t understand process of justification

Unsure of what needs to be proved
Disregarding some cases

Begging the question 8-12
Unsure of what needs to be proved

Inability to see the difference
of what is given and what asked

Misuse of the word “if” 11-12 Doesn’t understand process of justification

Intuitive proof K-5

Insufficient knowledge about the topic
Inability to think abstractly

Doesn’t understand process of justification
Inability to manipulate

with the symbolic notation

Solving for unknown 5-10
Doesn’t understand process of justification

Inability to generalize
Unsure of what needs to be proved

Wrong conclusion 5-12

Unsure of what needs to be proved
Doesn’t understand the claim

Doesn’t understand the conditions
or no conclusion Inability to make a connection
(no justification) between the conditions and claim

Proving irrelevant claim

Computational mistakes 5-12
Mindless mistakes

Disregarding conditions

5.2 Pre-teaching questionnaire

A total of 33 pre-teaching questionnaires were analyzed. It is possible to

record a correct answer to the true/false or multiple choice question, while at the
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Arguing from example

��
Solving for the unknown

��
Same identifier

ss ++
Begging the question

++

Jumping to conclusion

ss
Intuitive proof

��
Wrong (no) conclusion

��
Computational mistake

Figure 5.8: Mistakes priority

same time the justification to the answer might be inaccurate. Thus, we can

notice different numbers in the tables, i.e. as we can see in the pre-teaching

questionnaire tables, Table 5.2 and Table 5.3, there were 26 correct answers out

of 33, while we have counted 28 proving mistakes. The number of correct answers

per question can be found in Table 5.2.

Furthermore, questions on the first questionnaire were:

(1) For all natural numbers n in the set N = {1, 2, 3, . . .},

(2n + 1)(2n + 1) is ODD. (True or False?)

(2) For n = 0 we have (2 · 0 + 1)(20 + 1) = 1 · 2 = 2 and 2 is even.

How does this fact relate to the previous problem?
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(a) It is irrelevant to the previous problem.

(b) It is a counterexample we can use to prove that the statement in 1.

is not true.

(c) It is a special case of the previous problem.

(3) For all positive real numbers a and b, the following is true:

√
a + b <

√
a +
√
b.

Which of the following statements can be deduced:

(a) There exist a, b > 0 such that
√
a + b =

√
a +
√
b.

(b) There are no a, b > 0 such that
√
a + b =

√
a +
√
b.

(c) For all a, b ∈ R
√
a + b =

√
a +
√
b.

(d) None of the above.

Table 5.2: Pre-teaching questionnaire results

Question 1 Question 2 Question 3 Total
Correct in # 26 25 20

% 78.8 75.6 60.6 71.7

Mistakes for Questionnaire 1 are listed in Table 5.3. The mistakes were

classified using Table 5.1 on the page 56. Furthermore, in case a student made

more than one mistake we have recorded only the one with the highest priority as

illustrated in Figure 5.8. Due to the structure of the questionnaires we have one

of the three possibilities:

• Correct answer and the correct justification
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• Correct answer and incorrect proof

• Incorrect answer and incorrect (no) justification.

These explain the discrepancies between result tables and results per mistake

tables, i.e. number of mistakes plus correct answers does not add up to the total

number of questionnaires analyzed.

Table 5.3: Pre-teaching questionnaire results per mistake

Question Type of proof Mistake
Occurrence
in # in %

Question 1 Direct proof

Arguing from example 7 in 28 25
Jumping to conclusion 10 in 28 36
Wrong (no) conclusion 8 in 28 29
Solving for unknown 1 in 28 3.6
Begging the question 2 in 28 7.1

Question 2 Vacuous proof
Intuitive proof 24 in 30 80

Wrong (no) conclusion 6 in 30 20

Question 3 Trivial proof

Begging the question 1 in 20 5
Intuitive proof 1 in 20 5

Arguing from example 5 in 20 25
Wrong (no) conclusion 13 in 20 65

On the other hand, if a student made a small computational errors, but

other than that his proof would be correct we have counted that as a correct

answer but recorded an error as well. This is another reason why the numbers in

two tables, results and results per mistake, do not add up to total number of

responses.

5.3 Post-teaching questionnaire

There were four problems in the second questionnaire.

(1) Prove that there exists an integer n such that 2n2 − 21n + 40 is prime.
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(2) Prove that for all integers a and b if a|b then an|bn for all n ∈ N.

(3) Is this true or false? Answer:

For all integers n, 6n + 1 is not divisible by 3.

Justify your answer.

(4) Pythagorean theorem In a right triangle with c representing the

length of the hypotenuse, and a and b representing the lengths of the

other two sides it holds that: a2 + b2 = c2.

State the converse of the Pythagorean Theorem: (we know that the

converse of Pythagorean Theorem is also true)

Can a = 13, b = 84, c = 85 be lengths of the sides of a right triangle?

Justify your answer.

The post-teaching questionnaire was completed by 29 students and the

results are shown in Table 5.4.

Table 5.4: Post-teaching questionnaire results

Question 1 Question 2 Question 3 Question 4 Total
Correct in # 10 10 26 21

% 34.4 34.4 89.6 72.4 57.8

The mistakes students made on the second questionnaire and their

occurrence are recorded in Table 5.5. Also, we have noticed that students

provided correct answers but still made proving mistakes, for example in the

third question there were only 13 incorrect answers but 17 mistakes.

In the two figures 5.9 and 5.10 are examples of begging the question and

intuitive proof mistakes, the first recorded in the pre-teaching, and the latter in

the post-teaching questionnaire.
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Figure 5.9: Example of begging the question mistake in pre-teaching questionnaire,
by student “ ”

Figure 5.10: Example of intuitive proof mistake in post-teaching questionnaire, by
student “Jillian”
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Table 5.5: Post-teaching questionnaire results per mistake

Question Type of proof Mistake
Occurrence
in # in %

Question 1
Existential proof

Computational mistakes 1 in 18 5.5
Jumping to a conclusion 1 in 18 5.5

(constructive) Wrong (no) conclusion 16 in 18 89

Question 2 Direct proof

Intuitive proof 2 in 19 10.5
Computational mistakes 2 in 19 10.5
Arguing from example 2 in 19 10.5
Wrong (no) conclusion 13 in 19 68.5

Question 3 Direct proof

Begging the question 5 in 17 29.4
Intuitive proof 8 in 17 47

Computational mistakes 1 in 17 5.9
Arguing from example 2 in 17 11.8
Wrong (no) conclusion 1 in 17 5.9

Question 4 Direct proof
Computational mistakes 2 in 13 15
Wrong (no) conclusion 11 in 13 85

5.4 Quizzes

Immediately at the end of the first teaching session students were presented

with the first quiz. The quiz was very short, it consisted of only one question and

its purpose was to see if students were able to prove a problem almost identical

to what they just saw on the blackboard. In total 31 students participated in the

first quiz.

On the other hand, the second quiz was given to students at the beginning

of the third session. It was also a one question test. The rationale for giving

students a two day period before the second quiz was that they were introduced

to a new topic, floor function, and they were told that the quiz was going to be

about that topic. With the additional time we were hoping that students would

understand and accept the new definition and therefore achieve better results on

the quiz. There were 30 students engaged in the second quiz. Results for both
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quizzes are presented in Table 5.6.

The question in quiz 1 was:

(1) Prove: If n is an odd integer then n2 + 1 is even.

and in the second quiz the question was:

(1) For n an odd integer prove that bn
2
c =

n− 1

2
.

Table 5.6: Quiz 1 and quiz 2 results

Quiz 1 Quiz 2
# of students 31 30
Correct in # 11 7
Correct in % 35.4 23.3

In the first quiz we have counted 24 mistakes categorized accordingly to

Table 5.1 in six mistake types. While for the second quiz 23 out of 30 students

were unable to provide a correct proof. In Tables 5.7 and 5.8 we have

documented mistakes for both tests.

Table 5.7: Quiz 1 results per mistake

Type of the proof Mistake Occurrence in # in %

Direct proof

Jumping to conclusion 8 in 24 33.3
Argue from example 3 in 24 12.5

Computational mistakes 1 in 24 4.3
Solving for the unknown 5 in 24 21
Wrong (no) conclusion 4 in 24 16.6

Same identifier 3 in 24 12.5
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Table 5.8: Quiz 2 results per mistake

Type of the proof Mistake Occurrence in # in %

Direct proof
Jumping to conclusion 13 in 23 56.5

Computational mistakes 1 in 23 4.4
Wrong (no) conclusion 7 in 23 30.4

Same identifier 2 in 23 8.7

Figure 5.11: Example of solving for the unknown mistake in quiz 1, by student
“mathmathmath”

In the figures 5.11 and 5.12 we can see the two mistakes made by the same

student in the two quizzes. In Figure 5.11 “mathmathmath” student’s mistake is

categorized as solve for the unknown mistake. S/he states the problem in an

equation form. But the last line in her/his proof is a contradiction line, meaning

that the student believed s/he reached a contradiction and hence believes that
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Figure 5.12: Example of jumping to conclusion mistake in quiz 2, by student
“mathmathmath”

the statement to be proved is actually wrong. Also, student uses the same

identifier for both general numbers (2k + 1 for an odd number and 2k for an even

number). Thus, there are at least three mistakes involved: solve for unknown,

same identifier and wrong (no) conclusion. Using the hierarchy of the mistakes

as in Figure 5.8 the final classification of the mistake goes in the favor of solve for

unknown.

Furthermore, in Figure 5.12 the same student makes another set of

mistakes. The most obvious one is jump to conclusion. In the first line s/he

assumes what needs to be proved. If s/he did not try to elaborate her/his

conclusions we would classify the mistake to be begging the question.

Unfortunately, her/his work following the first line has no value in validating the

statement.



66

5.5 Midterm

The final data document in this case study is the midterm (see Appendix A

pg. 114). The midterm, as described in Section 4.4.4, was an extensive test of

students’ performance and we have collected data from 31 midterm tests. Even

though the midterm consisted of nine questions we are considering only five that

are proof related. In these five questions there were subproblems and when these

five problems were broken down to single questions we have ended with ten

questions listed later in the section. To discourage cheating and to be sure of

individual work Dr. G introduced two sets of questions. One set was labelled as

“group E” and the other as “group O”. Furthermore, the type of proof required

(expected) was identical per question so we are combining results for both

groups. The only exception are questions 3b) and 3c). These two questions are

the same in both groups but they appear in inverted order, i.e. 3b) in E equals

3c) in O group. Accordingly we have combined answers so that the unique result

can be obtained per question.

In Table 5.9 we have documented the results students achieved on the

midterm exam. In total, data from 31 midterm exams were collected and results

were reported as number and percentage of correct answers per question.

The underlying reasons for the huge discrepancies between certain

questions are new or unrelated mathematical topics. We discuss each of these in

Chapter 6. Furthermore, the midterm mistakes per each question together with

their occurrence are documented in the tables: 5.10, 5.11 and 5.12. The tables

are organized by the question topic. For example the first three questions are one

question in the midterm with three subproblems.

To gain a better understanding of Table 5.10 we should notice that in the
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Table 5.9: Midterm results

Question # of correct % of correct answers
1 29 94
2 23 74
3 14 45
4 17 55
5 25 81
6 16 52
7 9 29
8 5 16
9 17 55
10 10 32

Total 53

second question, or question 1b), students used two types of proof: direct proof

and proof by cases. More precisely, nine out of 31 students made attempts to

provide a direct proof while 22 students employed proof by cases.

In the following sections, the proof questions from the midterm are

analyzed for mistakes. To make it easier to examine the mistakes, the 10

questions are analyzed in three groups, based on the problem subject. The

questions appear first, then the tables showing mistakes.

(1) (E) Prove for n integer: If n is even, then n3 + 2 is even.

(O) (If n is odd, then n2 is odd.)

(2) (E) Prove for n integer: 2 does not divide n2 + (n + 1)2.

(O) (2 divides n2 + (n + 2)2.)

(3) (E) Prove for n integer: 4 divides n2 + (n + 2)2 if and only if n is even.

(O) (4 divides n2 + (n + 2)2 if and only if n is even.)

The fifth and sixth questions, 3b) and 3c) in the two versions of the original

exam, are the same questions in both problem sets but in inverse order. Thus we
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Table 5.10: Midterm results per mistake for questions 1 – 3

Question Type of the proof Mistake
Occurrence
in # in %

1 Direct proof Computational mistakes 2 in 2 100

2
Direct proof

Argue from example 1 in 3 33.3
Wrong (no) conclusions 2 in 3 66.7

Proof by cases
Same identifier 1 in 5 20

Jumping to conclusion 4 in 5 80

3 Proof by cases

Argue from example 1 in 19 5.3
Wrong (no) conclusions 1 in 19 5.3
Computational mistakes 2 in 19 10.5
Jumping to conclusion 15 in 19 78.9

are reporting combined results.

(4) (E) Prove or disprove, for a, b, c, d integers. If a|b and b|c and c|d then

a|d. (in both groups)

(5) (E) Prove or disprove, for a, b, c, d integers. If 2a|b then b is even.

(O) (If a|2b then a is even.)

(6) (E) Prove or disprove, for a, b, c, d integers. If a|2b then a is even.

(O) (If 2a|b then b is even.)

(7) (E) Prove or disprove, for a, b, c, d integers. If a|b then a2|4b4.

(O) (If a|b then a2|5b3).

Finally, the three last problems are individual problems on three different

topics and their results are recorded in Table 5.12.

(8) (E) Prove or disprove that b4x− 4c = b4xc − 4, where x is a real number.

(O) (b3x− 3c = b3xc − 3)
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Table 5.11: Midterm results per mistake for questions 4 – 7

Question Type of the proof Mistake
Occurrence
in # in %

4 Direct proof

Jumping to conclusion 1 in 13 7.7
Wrong conclusion 5 in 13 38.5

Intuitive proof 3 in 13 23
Argue from example 1 in 13 7.7

Same identifier 3 in 13 23

5 Direct proof
Intuitive proof 2 in 6 33.3

Wrong (no) conclusions 4 in 6 66.7

6
Proof by Wrong (no) conclusions 15 in 16 93.7

counterexample Computational mistakes 1 in 16 6.3

7
Direct proof

Wrong (no) conclusions 20 in 22 91
Computational mistakes 1 in 22 4.5

Argue from example 1 in 22 4.5

(9) (E) Prove that 3 divides n3 + 3n2 + 5n for all integers n.

(O) (3 divides n3 + 3n2 + 2n)

(10) (E) Prove the Pythagorean Theorem. (in both groups)

Table 5.12: Midterm results per mistake for questions 8 – 10

Question Type of the proof Mistake
Occurrence
in # in %

8 Direct proof

Wrong (no) conclusion 21 in 26 81
Begging the question 1 in 26 3.7
Argue from example 3 in 26 11.5

Trying to solve
1 in 26 3.7

for unknown

9 Proof by cases
Computational mistakes 2 in 13 15
Wrong (no) conclusions 11 in 13 85

10 Direct proof
Argue from example 1 in 19 5.3

Wrong conclusion 18 in 19 94.7
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The floor function problem, problem eight in the report, has a high

percentage of wrong (no) conclusion mistake type, but it is important to add that

the large portion of the students who made that mistake actually were unable to

manipulate with the definition of the floor function. More preciously, seven out of

21 students did not understand how to use the definition even though they stated

the floor function definition clearly. Three more students were unable to state the

definition itself. We can see in the figures 5.13 and 5.14 two examples of

students’ inability to state and use the definition. In Figure 5.13 student known

as “3.1415” was unable to state the definition correctly. Thus, any further

attempts yielded wrong conclusions. On the other hand, student “mnguy” started

with an almost correct definition of the floor function but aside from stating the

definition his proving attempt was unsuccessful. Since he does not use words and

sentences to explain his work we had to assume that the first line represents the

definition, but the rest of her/his work is mathematically false and even illogical.

Figure 5.13: Example of wrong (no) conclusion mistake in midterm, 8th problem,
by student “3.1415”

The last midterm problem, Pythagorean Theorem, is a well known problem
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Figure 5.14: Example of wrong (no) conclusion mistake in midterm, 8th problem,
by student “mnguy”

and numerous proofs are available. Earlier in the semester students were

introduced to a few different proofs. The topic itself was not re-introduced during

methods of proof sessions but a similar question was included in the

post-questionnaire. Two thirds of students were unable to provide any type of

proof. What is more interesting is that students were either able to mimic the

complete proof as seen earlier or they did not even know where and how to start.

There were no other mistakes in the proving process.

5.6 Summary

In this chapter we presented an extended table of common mistakes,

Table 5.1, and their hierarchy, Figure 5.8, that allowed us to analyze students’

work from the case study. Both, mistake categories and the mistake hierarchy,

have been constructed by the researcher based on the observations of the lessons,

collected data from the case study and students’ textbook (Epp, 2003).
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Results for each data instrument are presented in this chapter. We have

presented results with two tables per each data instrument; the first table

consists of numbers and percentages of correct answers while the second table is

a list of mistakes per questions together with mistake occurrence in percentages.

Furthermore, there are scanned samples of students’ unsuccessful proving

attempts, such as Figure 5.11 representing a typical solving for the unknown

mistake. For each mistake category we have provided at least one student

example. Midterm results occupy the largest part of this chapter since the

Midterm itself is the most extensive data instrument.



73

CHAPTER 6

DISCUSSION

In this chapter, we discuss the results presented in the previous Chapter 5.

We provide analysis of each data instrument and conclude the chapter with

comments on how students progressed and how their perceptions changed during

the sessions.

6.1 Pre-teaching questionnaire

The pre-teaching questionnaire served as the introduction to students’

understanding of mathematical proof before being introduced to different

methods in the college curriculum. Since the methods of proof were not formally

introduced we were hoping to gain an insight in to whether students understand

when a proof is needed. From Table 5.4 we can see that students did very well on

giving the correct answer, but from the following table 5.5 we realized that

recognizing the conditions of the claim is the most difficult part of justifying their

answer.

The pre-teaching questionnaire shows that students have good intuition,

and based on previous mathematical experience they are able to provide correct

answers. On the other hand, they did not demonstrate an understanding of the

need for formal mathematical proof, and they based their mathematical beliefs
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on their intuitive understanding and previous mathematical experiences. Most

students did not provide any justification, or they provided wrong arguments

irrelevant to the claim; 34.6% of all mistakes were wrong (no) conclusion

mistakes. The next most popular mistakes were: intuitive proof, (32%), and

arguing from the example (15.4%), both characteristic of earlier mathematical

education. Examples for both mistakes are extracted from the first quiz: Prove

that if an integer n is odd then n2 + 1 is even. The three examples shown in

figures 6.1, 6.2 and 6.3 are work from three students with pseudonyms “1244,”

“v193r” and “prince.” As mentioned before, students chose the pseudonyms

themselves and only through the researcher’s database it is possible to connect

an individual student to her/his work.

Example 6.1.1 (student 1244). 1

Figure 6.1: Intuitive proof mistake, made by student “1244” on the first quiz

1 This is a scanned figure of actual student’s work. Due to the scanning partially erased
writing is slightly visible in the figure. This should be ignored while reading.
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Example 6.1.2 (student v193r).

Figure 6.2: Argue from example mistake, made by student “v193r” on the first
quiz

Example 6.1.3 (student prince). 2

Figure 6.3: Argue from example mistake, made by student “prince” on the first
quiz

2 This is a scanned figure of actual student’s work. Due to the scanning partially erased
writing is slightly visible in the figure. This should be ignored while reading.
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Student 1244 takes the simplest example possible and he finds it convincing

that if it works for the first choice in natural numbers it should work for every

one. The second student, v193r, looks into all odd natural numbers (each number

individually not as generally defined n = 2k + 1 for some k ∈ Z) and picks 5 as a

random example that provides the basis for his conclusion that it should work for

every odd number. Finally the last student, prince as he calls himself, states a

general conjecture that he does not prove but decides to justify with an example.

It is interesting to note that student 1244 provided an intuitive proof using

symbolic notation, while prince combines intuitive justification supported by an

example and v193r gives us validation using a numerical example.

It is clear that all three examples are flawed and, though similar in error,

each exhibits a different reasoning about generalization. None of the students in

these examples uses a general definition of what being odd or even means and all

three provide justification by one example. This way of justification is very

common in middle school but should be completely abandoned in high school

and rare in college. In the later data sources, we see that arguing from an

example appears less often.

6.2 Quizzes

The two quizzes consisted of only one question and their significance was

only to see if students were able to recognize and employ important proving steps

as described in Section 3.3. On both, the most common mistake was jumping to

the conclusion, 33.3% on the first and 56.5% on the second quiz, indicating that

students did not hesitate to state a definition and employ one to argue about the

claim. The difference between jumping to the conclusion and wrong (no)
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conclusion, which mostly occurs in the midterm and post-teaching questionnaire,

lies in the students’ confidence about how to start the proof. Such results

indicate that if students are familiar with the subject they have no problem

starting the proof while at the same time they feel almost presumptuous in

believing that the claim is true, mostly based on the results seen in the teaching

sessions and/or homework problems. As their teaching sessions progress and they

learn about new topics they become less confident and jumping to conclusion is

replaced by the wrong (no) conclusion mistake category.

6.3 Post-teaching questionnaire

An interesting result we got from the questionnaire 2 is that the majority

of undergraduate college students in this case study failed to prove the first

problem in the questionnaire: Prove that there exists an integer n such that

2n2 − 21n + 40 is prime, because they were unable to factor the binomial. The

problem is very similar to a couple of problems they saw during the previous

class session, and most of the students tried to use the same method. More

students would succeed if their algebraic skills were a little more developed. Also,

the problem is solvable using the quadratic formula but none of the students

remembered to implement such basic knowledge to prove the statement.

Another problem that arose from the same questionnaire is that students

did not know the meaning of “state the converse of the Theorem.” Surprisingly,

almost all students answered the corresponding question correctly without

realizing that the proof for that answer is in the converse they were supposed to

state rather than in the given theorem.

Similar to the results from the pre-teaching questionnaire, students showed
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that on the intuitive level they can provide correct answers but are unable to

prove or explain them mathematically. This conclusion is derived from the high

percentage of intuitive proof mistakes (15%) which has the second highest rank

in mistakes on the test, right after the wrong (no) conclusion. As opposed to the

pre-teaching questionnaire where students based their intuition on the examples,

on the second questionnaire arguing from example had no significant percentage,

6% only, and it was the lowest ranked mistake in the test. We are inclined to

believe that students used previous experiences and what they remembered to be

true from textbooks or high school mathematics rather then from numerical

examples.

Such behavior implies that students do not realize the importance and

power of mathematical proof in order to believe mathematical statements, but

they did evolve from arguing from example which is the most basic level of

understanding mathematical claims.

6.4 Midterm

The last and the most extensive data source is the Midterm exam where

students were asked to provide proofs in different topics using different proving

methods. The results, due to the mistakes and percentage of correct answers,

were mostly as expected. Students obtained almost perfect scores on the two

initial problems and the fifth problem, as can be seen in Table 5.9. Looking at

the questions we should not be surprised about these results; the first two

problems, see page 67, were very well known to the students from the first

instruction session and they had many opportunities to see or even solve almost

identical tasks. Also, the fifth problem, within the division topic, was very
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straightforward from the definition and almost all students proved it correctly

from the definition and division properties.

Results on problems three, four, six and nine, where approximately half of

the students failed to provide a formal mathematical proof, indicate that

students are lacking the technical abilities to manipulate with the definitions and

properties in order to reason deductively in more than two steps. Even though all

of the problems were within the same topics as those three where they

accomplished excellent results, these four problems required more sophisticated

and complex use of definitions. To the experienced mathematician all eight

problems would be the most simple and basic problems in the topic, but to the

novice in this field these problems belong to the two different levels.

Finally, the remaining three problems, seven, eight and ten, show different

difficulties students encountered when solving slightly more complicated

mathematical assignments. The second of the two, problem number eight, dealt

with the floor function, which we have already seen poses great difficulties to the

students. The poor results indicate that students were still struggling with the

definition and floor function properties. Also, a very high percentage of wrong

(no) conclusion mistakes (81%) supports the idea that students need to affirm

the new topic as the basic knowledge in order to be able to prove any further

properties using the definitions and fundamental characteristics of the new

mathematical material. On the other hand, the third of the problematic

assignments, more precisely the poor results when proving the Pythagorean

Theorem, combined with the high percentage of wrong (no) conclusion results,

indicate that students got irritated when asked to think “out of the box,” in

other words to prove the theorem that was not covered in the most recent

sessions but was introduced to students together with numerous proofs just
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before entering the methods of proof sessions. The difference between the

different approaches to problems eight and ten can be seen in Figures 6.4 and

6.5. In the first one, most students, as the one in the example in Figure 6.4, at

least stated the definition and tried, albeit unsuccessfully, to deduce the claim,

while in the second problem most of the students did not even bother to explain

their pictures, or even try to write down the intuitive proof, or to provide just

partial work when they realized that they were unable to provide a full proof.

Figure 6.4: Floor function solution example

Problem number seven in the Midterm exam was surprisingly low in

number correct. Only 29% of students provided a correct mathematical proof.

The topic of that assignment was divisibility and it required a direct proof; it

should have been a fairly simple, straightforward proof following from the

definition. The background of poor results on this problem might be in students’

lack of confidence when asked to combine different mathematical topics, as in

this case: divisibility and properties of exponential algebra. As we can see in

Figure 6.6, the student had no problem constructing the direct proof for problem

six, c), but at the same time he was unable to follow the same protocol in order
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Figure 6.5: Pythagorean theorem solution example

to prove the divisibility property for just slightly complicated mathematical

expressions.

Figure 6.6: Example of problematic divisibility assignment solution

6.5 Cross data comparison

Having all five data instruments in mind we can see the progress students

made in terms of mistakes. The first thing that comes to mind is to notice how
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much better students did on quizzes compared to the post-teaching questionnaire

and midterm exam. One significant and obvious reason is that in quizzes they

were asked to prove a claim that was discussed earlier in the teaching session, or

the previous session, and a similar problem was given on the blackboard and/or

for homework. Not only had students memorized the results and methods used

to prove the quiz problems, but they were also more confident about the

definitions and how to use them to start the proof itself. The topic of the first

quiz problem, odd and even numbers, was common and they just needed to

employ the definition, while on the other quiz they had to manipulate with the

definition of the floor-function which was new to them. Having in mind the new

topic we expected to have a slightly higher percentage of wrong (no) conclusion

mistakes, since knowing and manipulating with the definition is integrated in

that category. What is surprising is the extremely high percentage of the same

mistake, namely 81%, on the midterm question similar to the quiz question (quiz

#2). The increase in this mistake indicates that the new definition and the new

topic were still unclear and confusing to the students. Clearly, students needed

more time and practice with the new problems.

Each problem individually usually dictates the method of proof but

sometimes students might have successfully opted for a different approach. That

especially applies when the proof requires observations of different cases. The

most typical proving method is the direct proof, and thereby it occupied the

largest part of our case study. In other words, in 13 out of 20 questions given on

all the assessments we expected to see direct proof, and in one problem students

could choose between direct and proof by cases. Chronologically, the percentage

of mistakes when constructing a direct proof decreased except in the case of the

newly introduced topic, floor function. Also, when asked to prove a claim from
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number theory, which was the underlying content area for the unit, students

preformed better as opposed to problems in geometry, e.g., Pythagorean

Theorem. All the changes in the percentages of mistakes indicate that students

had grown familiar with the method over time.

For other proving methods we have only one or two examples so it is

difficult to discuss how well students accepted those methods. Table 6.1 lists

desired proofs per tests and in the last column we have a total occurrence for

each proving method. What can be said about students’ work and other methods

is that proof by cases seemed to be well accepted. The most common mistake

that followed proving by cases is jumping to conclusion. In the context of proof

by cases jumping to a conclusion usually stands for omitting certain cases. As the

first step in the proving process students noted possible cases but after reaching a

satisfactory conclusion in one case some decided to jump to the final claim.

Table 6.1: Type of desired proving method per test

Proof type
Test Occurrence

Quest 1 Quiz 1 Quiz 2 Quest 2 Midterm in %
Direct 1 1 1 3 7 65

Vacuous 1 0 0 0 0 5
Trivial 1 0 0 0 0 5

Existential 0 0 0 1 0 5
By cases 0 0 0 0 3 15

By counterexample 0 0 0 0 1 5

From Table 5.3 we can see that an extremely high percentage of students

had difficulties producing a vacuous proof; in other words they intuitively knew

the correct answer but were unable to explain why there is nothing to be proved

since the example stepped outside the claim’s conditions.
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Three other mistakes that appear in the study were: computational

mistakes ; same identifier ; and solving for the unknown. Computational mistakes

appear in very low percentages and the researcher finds no significant role of that

mistake even though it is present in almost every problem. On the other hand,

same identifier, appears only in four out of 19 problems, but the importance of

such a mistake is in understanding the difficulties students encounter when

constructing a proof. Even if a student understands the methods of proof and

knows the steps, and even intuitively understands what needs to be proved and

where to start, s/he still is not able to provide a correct mathematical proof due

to the inability to translate his thoughts into formal mathematical language.

Lastly, solving for the unknown appears only in two out of 19 instances. Since it

appears in a such low percentage in both cases it would be unreasonable to

discuss its significance.

In Table 6.2 we can see how often each mistake occurs per proving method,

and in the last column are percentages of how often each mistake occurs in

general throughout all the tests. As expected, wrong (no) conclusion mistake,

has the highest occurrence in general, but that is not the case per each proving

method. For example, we associate a much higher occurrence of jumping to

conclusion with proof by cases method than wrong (no) conclusion.

6.6 Students’ comments

During the second questionnaire students were very open to the researcher

and they looked for hints or help in order to solve the problem. Since the

researcher entered the study in a non-participant role, they were left to figure out
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Table 6.2: Mistakes per proving method recorded in percentages

Mistake

Proof type

Direct
By

Vacuous Trivial Exis-
By

Occur.
cases

tential
counter-

in %
example

Arguing
9.77 2.7 0 25 0 0 8.04

from example
Same

3.72 2.7 0 0 0 0 2.68
identifier
Jumping

14.88 51.3 0 0 5.5 0 15.48
to conclusion

Begging
3.72 0 0 5 0 0 2.68

the question
Intuitive

6.98 0 80 3.33 0 0 11.9
proof

Solving for
3.26 0 0 0 0 0 2.08

the unknown
Wrong (no)

53.02 32.4 20 65 88.9 93.75 52.38
conclusion

Computational
4.65 10.8 0 0 5.88 5.88 4.76

mistakes

the problem on their own. On the other hand, to gain a better understanding of

students’ difficulties they were asked to write in plain English about the problems

they were facing, or frustrations they had with the assignment, maybe to put

down speculations about how to solve the problem if they were unsure of the

solution, or had no solution at all. We list all the comments sorted by problems.

Problems can be found on page 59.

Problem 1 (1) This is probably wrong, isn’t it?

(2) don’t know.

(3) I forgot the Def of a prime and I would not know what to do with it

even if I had it.

(4) I don’t know where to continue.
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(5) don’t know

(6) Can’t do this because factoring is hard!

(7) Can’t seem to factor, seems so simple, but I can’t find the factors.

Problem 2 (1) What is pipe? {pipe = symbol |}

(2) ... because it makes sense but I can’t remember how to prove it

though.

(3) don’t remember the definitions

(4) I cannot find the right words to prove the statement.

(5) I need more time to master these problems.

(6) I have no clue where to start.

(7) ? n ∈ N

(8) I don’t know how to do it because I forgot.

Problem 3 (1) I can’t remember how I solved these problems on HW. I need more

practice.

Problem 4 (1) What is converse?

(2) Not sure what the converse is.

(3) No idea.

(4) Don’t remember what converse is.

(5) I don’t know the converse.

(6) don’t know the converse.

(7) these are probably wrong. But I decided to do it anyway.

(8) Do not remember the converse.
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(9) I forgot what a converse is.

(10) Don’t know the converse.

(11) The converse of Pythagorean Theorem is (wrong formula). I forgot.

(12) Forgot what the converse is.

(13) ? Converse?

(14) ?huh?

(15) I can’t recall what a converse of an algebraic expression is.

(16) I don’t remember what the word “converse” means in this scenario

so I’m not sure how to answer.

Comments that students left on their questionnaires just support the

conclusions we have reached based on the mistake types and their occurrence. On

the first problem students either proved (or almost proved) the statement or they

where unable to start because of their lack of basic knowledge about binomials

and how to factor one. On the other hand, problem number four confused most

of them because almost half of the group did not know the meaning of the word

“converse.” Knowing the meaning and how to state the converse of a theorem

does not depend on the proving methods and usually is taught separately much

earlier in the high school curriculum. Furthermore, at the beginning of the course

students were reintroduced to mathematical language, symbols and logic

statements. The other half of the group did not provide a correct answer to that

problem either, but they tried to state the converse, though unsuccessfully.

Obviously, students need to be reminded more often about converses, how to

state them and their meanings. Also, in addition to the first part of the problem

where they were asked to state the converse, in the second part it was expected
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that students would implement their knowledge about the converse in order to

draw a conclusion about the triplet given in the test. None of the students

explained their answer using the converse, but they argued their answer

incorrectly using the Pythagorean Theorem. Such practice indicates that students

have none or very limited understanding of how the theorems can and should be

used to support their answers. Algebraically they are capable of giving the right

answer but they do not understand the theory behind the algebraic work.

6.7 Was there any progress?

Direct proof is the most employed proving method in the case study while

other proving methods appeared only once or twice. As a consequence, direct

proof is the only method that provides sufficient data for discussing students’

progress. Overall, direct proof appears in 13 out of 19 problems. We have

recorded six problems in the quizzes and questionnaires, and seven in the

midterm, that were solvable using direct proof. The pre-teaching questionnaire

and two quizzes were introduced before or during the teaching sessions while the

post-teaching questionnaire and midterm were given to students after the

instruction ended. Hence, the progress is discussed based on two categories:

pre/intermediate assessments and final assessment. Both quizzes and the

pre-teaching questionnaire constitute a pre/intermediate category and the

post-teaching questionnaire and the midterm test form the final category.

Pre/intermediate In this category, we distinguish two groups of students; the

first group consists of students who achieved one or fewer correct direct

proofs (≤ 50%) in pre/intermediate tests, while the rest form the second

group who scored over 50%.
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Final In this category we record how many correct direct proofs students

accomplished in the post-teaching questionnaire and the midterm test.

Combined, both categories provide a ground for discussing students’

progress in constructing a mathematical proof. We also need to note that some

students missed one or more tests. In order to have more accurate results we

exclude partial scores. Thus, only 24 results remained. Interestingly, half of the

group (12 out of 24 students) scored 50% or less on pre/intermediate tests.

In Table 6.3 we can see the progress students made within pre/intermediate

category. The progress is measured as a difference between percentages of correct

answers before and during, and after instructions. In other words we have

constructed the following formula to explain the progress:

( final score

# final direct proofs
− pre/intermediate score

# pre/intermediate direct proofs

)
× 100

for students who opted to use direct proof in the second midterm problem, where

the number of final direct proof problems is 10, and the number of

pre/intermediate direct proof problems is three. On the other hand, we used

formula

( final score

# final direct proofs
− pre/intermediate score

# pre/intermediate direct proofs

)
× 100

for those who employed proof by cases in the second midterm problem. Thus, in

this case there were nine final direct proof problems. If the obtained number is

non-negative we say that the student showed progress while for a student whose

number is negative we say s/he showed no progress.
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Table 6.3: Students’ progress in constructing direct proof; results for 24 students

Pre/intermediate ≤ 50% Pre/intermediate > 50%
Progress No progress Progress No progress

# students 12 0 8 4

Based on Table 6.3 we can say that in general instructions facilitated

students’ understanding and employment of direct proof as a proving tool; 83%

of students improved their scores over time. But, there is a more significant

difference between lower and higher scored pre/intermediate groups; 100% of low

scored students advanced during teaching sessions vs 67% students with higher

scores. In both cases the sample is too small to make final conclusions, but with

a larger group size our results might be more conclusive.

6.8 Summary

In Chapter 5 we have discussed case study results based on students’

answers on five data instruments: two questionnaires; two quizzes; and the

midterm. Furthermore, a more detailed analysis of students’ understanding of

mathematical proof is based on mistakes students made, their occurrence and

difficulties represented by each mistake category.

A comparison of students’ achievement between different data instruments

is provided in Section 6.5. We used that comparison to gain a better

understanding of a relation between mistakes and proving methods. Furthermore,

students’ comments listed in Section 6.6 provided additional explanation of

difficulties students encounter while constructing a mathematical proof. Finally,

at the end of the chapter we have analyzed students’ progress based on their test
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scores. Considering direct proof being the most employed proving method,

students’ progress was estimated only on problems requiring that method. To

our satisfaction we can say that teaching had considerable impact on students’

understanding and utilization of direct proof as a proving tool.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In the previous chapter, we discussed mistakes and their occurrence on each

data instrument as well as mistakes through all data sources combined. Some of

the mistakes, such as computational mistakes and solving for the unknown, gave

us no proper ground for discussion. On the other hand, arguing from the

example, wrong (no) conclusion and jumping to conclusion provided better

insight into how students understand mathematical proof. Arguing from the

example was very common in the first data source, but it became less relevant

later in the study indicating that students in a very short period of time realized

that one or finitely many examples can not be taken as the proof but serve only

to illustrate what is happening in individual cases and might happen in general.

Looking at examples should be part of students’ mathematical reasoning but

they need to understand that while examples might serve as the foundation for

generalization they never suffice as the formal proof.

Even though students should be able to use various types of reasoning and

methods of proof by the end of high school (NCTM, 2000b), it seems that the

majority of students hardly manage to manipulate with general mathematical

conjectures and they leave proofs to textbooks, teachers and other mathematical

authorities. The transition to college level mathematics, more precisely, to college
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level mathematical rigor, can be painful to some students and proof is one of the

leading difficulties students have.

7.1 Answers to the research questions

At this point we can provide answers to the research questions proposed at

the beginning of Chapter 4.

• What type of proof do students accept as the most practical?

In most problems, students were expected to provide a direct proof, and

the instructions were centered around the method, but we have noticed

that even when students had an opportunity to prove the claim using

another proving method most of them opted for the direct proof. Thus,

we can say that the direct proof, as the proving method, is a primary

type of proof. Also, most of the problems solved during teaching lessons

were proved using direct proof, which might be the reason student were

most comfortable using this method. Another reason to have the direct

proof as the main proving method lays in the fact that the direct proof is

a natural way of deducing what needs to be proved. One naturally starts

with true statements and using logical reasoning comes to the desired

conclusion.

• What proving method do students find most complicated to use?

We are unable to answer this question with any certainty since our data

sources are not extensive enough to cover all the methods. But we can

notice from the first questionnaire that vacuous proof has no meaning to

students. Vacuous proof is an argument that no proof is needed i.e. the
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statement to be shown is trivial. Students were asked how does the fact:

“For n = 0 we have (2 · 0 + 1)(20 + 1) = 2 and 2 is even” relates to the

previous problem “For all natural numbers n in the set N = {1, 2, 3, . . .},

(2n + 1)(2n + 1) is ODD.” None of the students realized that n = 0 was

not part of the statement to be proved, hence for n = 0 no proof is

needed. Such realization would be a vacuous proof.

• What common mistakes students do make?

The most common mistake as discussed in Chapter 6 and drawn from

Table 6.2 are:

(1) Wrong (no) conclusions

There are many subcategories and we have discussed all in the

previous chapters. The most important facts to emphasize in this

category are students’ inability to state and manipulate definitions

needed to prove the statement, and lack of the basic mathematical

knowledge such as the meaning of the symbols and mathematical

expressions.

(2) Jumping to the conclusion

We have seen this mistake in two different methods: direct proof

and proof by cases. The mistake has a different meaning and

background in each type of proof. When it occurs in a direct proof,

usually it comes from students’ misunderstanding of what needs to

be proved and inability to understand the process of deduction. On

the other hand, when we have seen the mistake as part of a proof by

cases, its significance was in the students’ ignorance of all possible
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cases. Most students were satisfied with the positive conclusion in

one of the cases but omitted the importance of other case(s).

• Which mistakes exhibit a tendency to increase/decrease during and after

the teaching sessions?

Two out of the six mistakes exhibited increasing/decreasing behavior

during the study.

(1) Arguing from example

As mentioned earlier in Chapter 6, we have noticed that arguing

from the example was a very common mistake before and at the

beginning of the teaching sessions but students developed more

abstract reasoning about examples quickly and abandoned such an

approach. Some students still looked at the example(s) first just to

be at ease with the assignment but proceeded with the general and

formal proof as can be seen in Figure 7.1, (the proof in the example

is almost correct, a student mixed identifiers in the last line.).

Figure 7.1: Numerical example followed by formal proof

(2) Wrong (no) conclusion

On the other hand wrong (no) conclusion showed increasing

behavior toward the end of the study. We have discussed this
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increase in Chapter 6. If wrong conclusions were separated from no

conclusions we might have gained better insight of where students

failed to state the definitions and basic statements and when

students had difficulties to manipulate with such statements and

definitions. The reason we kept those two together was in the size of

the sample. The study itself serves as the basis for future studies

targeting more specific questions, listed on page 99, and in such we

should be separating these two subcategories.

• Which difficulties do students encounter when attempting to construct a

valid mathematical proof in the early college curriculum?

The most important difficulty students face is the inability to manipulate

with the definitions and basic claims that were proved earlier in the

teaching sessions. Another troublesome point is students’ insecurity in

their mathematical knowledge from earlier education. The consequence

of their insecurity is the inability to prove even a simple statement unless

the proof can be conducted using the same principles and methods from

the previous sessions and/or assignments. The best example of such

behavior can be seen in Figure 7.2 about the post-teaching questionnaire

problem solvable using the quadratic formula; only one out of 29 students

remembered to employ the formula when they could not factor the

trinomial. The third most prominent difficulty students faced during the

study was the lack of basic mathematical knowledge when it comes to

definitions, axioms and common knowledge. Students neglect the

importance of definitions and axioms, taking them as theoretical

knowledge that has no significant value in practice. They remember the
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definitions as the part of the proving process in individual, specific

assignments and are unable to employ the same in a slightly different

type of problem.

Figure 7.2: Student’s inability to factor trinomial resulting in incomplete proof

7.2 Questions kindled by the study

Some of the answers to the research questions, as well as the observations

based on the case study, stimulated other questions whose investigation might

provide even better insight into the topic.

The questions that arise from observing behavior of arguing from example

are:

“Should the role of examples be discussed more often in high school?”,

“Should teachers provide more problems where finitely many examples hold

a certain property but not all numbers do?”

“How early in mathematical education can students accept examples only

for what they are: examples, not a method of proof?”

On the other hand, wrong (no) conclusion appears much more often in the

problems where new topics, or assignments from different subjects, are

introduced. The significance of such a phenomenon is that students need more
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time and practice to master the new topic in order to be able to prove related

claims. Very often this category hides students’ inability to move forward from

the definition itself, either because they do not understand the definition or they

lack the algebraic confidence to investigate the definition and conditions of the

claim. The observed phenomenon raises the question: Should the earlier

mathematical education be more focused on mastering computational skills and

practicing procedures and methods that allow students to do the technical parts of

the problem solving faster?. An even more important dilemma is: How much time

in K-12 mathematics curriculum should be devoted to practicing technical skills vs

focusing on critical thinking and logical reasoning?.

Another interesting observation came from the very low occurrence of

intuitive proof. As the sessions progressed and students gained more knowledge

about different proving methods they abandoned intuitive proof. Also, as the

assignments got complicated students either succeeded in proving or they failed

to build any logical and correct justification. There were no attempts to justify

their reasoning in plain English and then translate such explanation into

mathematical vocabulary.

In order to find the most efficient approach for teaching mathematics, the

balance between practicing mathematical skills through numerous problems

employing mathematical methods and insisting on logical reasoning should be

found. Even if an individual is able to perform any mathematical operation and

employ any mathematical procedure when given mathematical data, that is not

insurance that one is able to construct a proof. To construct a formal

mathematical proof of general statements one should be able to generalize and

think in terms of abstract objects. On the other hand, if one is taught logical

reasoning but lacks in mathematical knowledge, s/he is not able to start and
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continue even simple proofs. As we have seen in the study, the simple problem

solvable using the quadratic equation became difficult to the students and almost

no one even tried to employ such a simple but useful technique. Finally, from the

difficulties we have noticed we can say that students do not realize the importance

of the definitions and axioms. Even though they may have been taught the

science of mathematics using definitions, only later in their education do teachers

emphasize what is a definition and what is an axiom. Therefore, students start to

think about definitions and axioms as a new part of mathematics instead of

looking at them as the basis for any mathematical activity. They learn basic

mathematical operations and take them as a solid grounding for arithmetic

without realizing that such is possible due to the axioms and operation

definitions in sets of numbers. Thus, another question that comes to my mind is:

At which educational level should students be introduced to official mathematical

categorization using the formal language of definitions, axioms, theorems and

such, in order to accept those as basic parts of mathematical procedures?

7.3 Future work

Looking back into the study results we can list open questions that would

be interesting and worthwhile investigating. For example, it would be interesting

to see the results on the same, or similar, problems after approaching the

methods of proof in a different way. There are two suggestions of how to alter the

study to obtain more data.

• Encourage students to intuitively prove the claim and then translate such

proof using mathematical symbols and language.

• After introducing a new topic, such as floor function in this case study,
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solve or assign more homework problems combining the new topic and

topics known to be difficult to students through high school, before

asking them to construct proofs.

Another direction to investigate students’ proving abilities and

understanding the importance and function of proof is to investigate larger

groups, in controlled samples where we could see whether there are differences

between male and female students, younger (< 20 years of age) and older (> 20)

students, or students taking a different number of mathematical courses. As is

clear from Table 7.1 our study sample was too small to exercise inferential

analysis of the data. Another issue with the group is that by gender the

distribution of the group is in favor of male students (27 males vs seven female

students). Another distribution category that exhibits such a gap is one-major

students (29) vs two-major students (three). The complete distribution can be

seen in Table 7.1.

As already mentioned, our sample size and distribution do not allow us to

draw significant statistical conclusions, but they provide a hint of what might be

worthwhile of further investigation. For example, in Table 7.2 we can see that

there are some differences between female and male students. In general, we saw

that, throughout all problems, female students had achieved better; out of all

problems they made proving mistakes in 24.84% of problems vs male students

who failed in 51.46% of the problems. Both groups had close percentages in most

of the mistake categories except in jumping to conclusion and solve for the

unknown. Male students made significantly more jumping to conclusion mistakes,

where female students had a very low occurrence of this mistake. On the other

hand, the solve for the unknown mistake occurred to a much higher percentage,
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Table 7.1: Survey classification

Category Sub-categories # in the sample

Age
< 20 18
≥ 20 16

Gender
Male 27

Female 7

English proficiency
Native 22

Non-native 12

# Majors
1 29
2 3

Major 1

Mathematics 4
Statistics 2

Computer Science 12
Software Engineering 3

Computer Engineering 10
Graphic Design 1
Liberal Studies 1

Math prep for Secondary Teaching 1

# mathematical courses

0 1
1 9
2 7
3 7
4 1
5 6
6 2
7 1
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7.89%, among female students (1.52% for males). It might be interesting to see if

there would be the same or similar effect if our sample size and distribution were

larger and symmetrical. Not only are the sample characteristics questionable in

these observations, but also the low percentage of mistakes of this type might

lead us to the wrong conclusions. Wrong (no) conclusion mistakes appear

frequently in both categories, and there is a notable difference between females

and males, 39.47% vs 51.52%. The grounds for such a gap might be one or more

of the following:

• Female students are more diligent in learning definitions, thus more likely

to start the proof.

• Female students are more confident to start the proof at least an intuitive

one (18.42% intuitive proofs in females’ vs 11.74% intuitive proofs in

males’ tests).

• Male students spend less time on the problems and miss the opportunity

to come up with the solution even when not sure how to do it from the

beginning.

All of the above presents valid research questions to which answers would give us

an opportunity to better understand students’ learning curve.

The third potential direction for future study might be in looking at the

problems that can be proved using more that one method or approach. One

might ask students to provide as many different proofs as they can think of in

order to see which methods students prefer and to discover how to make other

methods more popular or accessible to students. During such study students

might be assisted with hints or help in order to motivate them in different
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Table 7.2: Mistakes made by female vs male students

Mistake % in female tests % in male tests

Begging the question 2.63 3.41
Computational mistakes 7.89 4.17

Argue form Example 13.16 8.71
Intuitive proof 18.42 11.74

Jumping to conclusion 5.26 16.7
Same identifier 5.26 2.27

Solve for the unknown 7.89 1.52
Wrong (no conclusion) 39.47 51.52

directions. Furthermore, in this case study, one method, direct proof, was favored

over others. In further investigations, problems should be altered to cover

different methods equally in order to analyze students’ progress more accurately.

7.4 Summary

In this chapter, five research questions were answered.

• What type of proof do students accept as the most practical? Direct proof.

• What proof method do students find most complicated to use? A vacuous

proof seemed to be the most confusing method.

• What common mistakes do students make? Wrong (no) conclusion and

jumping to the conclusion.

• Which mistakes exhibit the tendency to increase/decrease during and

after the teaching sessions? Arguing from example showed a decreasing,

while wrong (no) conclusion showed an increasing behavior.

• Which difficulties do students encounter when attempting to construct a

valid mathematical proof in the early college curriculum? Inability to



104

manipulate with mathematical definitions, lack of self-confidence and

inability to incorporate old (highschool) knowledge.

Furthermore, the study kindled further questions and we have suggested possible

research directions toward addressing them.
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APPENDIX A

RESEARCH INSTRUMENTS

Survey

Name: Student’s Code:

Age:

Please fill in the following fields.

(1) Gender: M F

(2) English Proficiency: Native speaker Non-native speaker

(3) Major 1:

(4) Major 2 (if applicable):

(5) Please list all college math courses you’ve taken. If at SJSU, please

provide name and number of the course, including ones you are currently

enrolled in. For college math courses taken on another college please

provide only the name of the course.
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(a)

(b)

(c)

(d)

(e)

(f)
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A.1 Questionnaires

Student’s Code:

Questionnaire 1

(1) For all natural numbers n in the set N = {1, 2, 3, . . .},

(2n + 1)(2n + 1) is ODD.

The statement is:

(a) True

(b) False

Answer:

Please explain you answer.

(2) For n = 0 we have (2 · 0 + 1)(20 + 1) = 1 · 2 = 2 and 2 is even.

How does this fact relate to the previous problem?

(a) It is irrelevant to the previous problem.

(b) It is a counterexample we can use to prove that the statement in 1.

is not true.

(c) It is a special case of the previous problem.

Answer:

Please explain your answer.



110

(3) For all positive real numbers a and b, the following is true:

√
a + b <

√
a +
√
b.

Which of the following statements can be deduced:

(a) There exist a, b > 0 such that
√
a + b =

√
a +
√
b.

(b) There are no a, b > 0 such that
√
a + b =

√
a +
√
b.

(c) For all a, b ∈ R
√
a + b =

√
a +
√
b.

(d) None of the above.

Answer:

Please explain your answer.
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Student’s Code:

Questionnaire 2

(1) Prove that there exist an integer n such that 2n2 − 21n + 40 is prime.

Proof :

(2) Prove that for all integers a and b if a|b then an|bn for all n ∈ N.

Proof :

(3) Is this true or false? Answer:

For all integers n, 6n + 1 is not divisible by 3.

Justify your answer.

(4) Pythagorean theorem

In a right triangle with c representing the length of the hypotenuse, and

a and b representing the lengths of the other two sides it holds that:

a2 + b2 = c2.

State the converse of the Pythagorean Theorem: (we know that the

converse of Pythagorean Theorem is also true)
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Can a = 13, b = 84, c = 85 be lengths of the sides of a right triangle?

Justify your answer.
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A.2 Quizzes

Name:

Quiz 1

Prove: If n is an odd integer then n2 + 1 is even.

Name:

Quiz 2

For n an odd integer prove that

bn
2
c =

n− 1

2
.
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A.3 Midterm

Student’s Code:

Midterm E

Show all work.

(1) Prove the following where n is an integer.

(a) If n is even, then n3 + 2 is even.

(b) 2 does not divide n2 + (n + 1)2.

(c) 4 divides n2 + (n + 2)2 if and only if n is even.

(3) Prove or disprove, where a, b, c, d are integers.

(a) If a|b and b|c and c|d then a|d.

(b) If 2a|b then b is even.

(c) If a|2b then a is even.

(d) If a|b then a2|4b4.

(6) Prove or disprove that b4x− 4c = b4xc − 4, where x is a real number.

(7) Prove that 3 divides n3 + 3n2 + 5n for all integers n.

(9) Prove the Pythagorean Theorem.
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Student’s Code:

Midterm O

Show all work.

(1) Prove the following where n is an integer.

(a) If n is odd, then n2 is odd.

(b) 2 divides n2 + (n + 2)2.

(c) 4 divides n2 + (n + 2)2 if and only if n is even.

(3) Prove or disprove, where a, b, c, d are integers.

(a) If a|b and b|c and c|d then a|d.

(b) If a|2b then a is even.

(c) If 2a|b then b is even.

(d) If a|b then a2|5b3.

(6) Prove or disprove that b3x− 3c = b3xc − 3, where x is a real number.

(7) Prove that 3 divides n3 + 3n2 + 2n for all integers n.

(9) Prove the Pythagorean Theorem.
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