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ABSTRACT 

DEVELOPMENT OF A CHEMICALLY REACTING FLOW SOLVER ON THE 

GRAPHIC PROCESSING UNITS 

 

by 

Hai Phuoc Le 

 

The focus of the current research is to develop a numerical framework on the 

Graphic Processing Units (GPU) capable of modeling chemically reacting flow.  The 

framework incorporates a high-order finite volume method coupled with an implicit 

solver for the chemical kinetics.  Both the fluid solver and the kinetics solver are 

designed to take advantage of the GPU architecture to achieve high performance.  The 

structure of the numerical framework is shown, detailing different aspects of the 

optimization implemented on the solver.  The mathematical formulation of the core 

algorithms is presented along with a series of standard test cases, including both non-

reactive and reactive flows, in order to validate the capability of the numerical solver.  

The performance results obtained with the current framework show the parallelization 

efficiency of the solver and emphasize the capability of the GPU in performing scientific 

calculations. 
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CHAPTER 1:  INTRODUCTION 

 

1.1 Background and Motivation 

Computational Fluid Dynamics (CFD) has been used widely as the main tool for 

engineering design and analysis in the area of fluid mechanics.  CFD refers to the study 

of fluid flow by numerically solving the fluid dynamical equations such as the Euler and 

Navier-Stokes equations.  Numerical simulation of fluid flow can be performed for a 

wide range of flow conditions and complex geometry.  The fundamental difference which 

constitutes the modeling process is the physics associated with the flow.  One 

representative example can be found in the modeling of re-entry flow where the 

combination of low density and high temperature give rise to different physical processes 

that occurred within the flow such as chemical reaction, ionization and radiation.  The 

governing equations have to be extended to accommodate the non-equilibrium aspect of 

the flow.  The results of these extensions are the two-temperature (2-T), three-

temperature (3-T), and multiple-temperature (Multi-T) models (Cambier & Menees, 

1989; Candler & MacCormack, 1991) for a gas mixture with multiple species.  These 

models have been used extensively in the hypersonic community to characterize thermo-

chemical non-equilibrium flow.  In addition, all the physical processes such as chemical 

and ionization kinetics, internal energies relaxation or radiation must be coupled to the 

conservative quantities to accurately resolve the flow properties.  The coupling between 

these physical models is critical for an accurate solution.  
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The complexity of the physics and the fidelity required for these simulations 

results in intensive computational workload on the computer.  Therefore, CFD codes are 

designed to take advantage of high-performance computing (HPC) capability to speed up 

the calculation.  HPC platforms typically consist of hundreds of processing units 

connected through a local area network (LAN).  The calculation is divided across the 

number of available processors, making the run time effectively reduced.  Unfortunately, 

traditional HPC platforms are not always readily available due to their cost and storage 

size.  The limitation and restrictions of the traditional HPC platforms have accentuated a 

need for a compact and low-cost HPC solution where a numerical solver can still be 

effectively implemented. 

 

1.2 Overview of Parallel Computing 

Traditional parallel computing architectures come in three standard forms: shared 

memory, distributed memory, or hybrid distributed-shared memory.  Shared memory 

architecture denotes a system of many processors that share the same memory bank, as 

illustrated in Figure 1.1.  All the processors are accessing the same memory storage, so 

the data transfer is almost trivial.  Parallelization in shared memory architecture is 

achieved by making use of multi-threading techniques. 
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Figure 1.1: Shared Memory Architecture 

 

In contrast, distributed memory architecture (Figure 1.2) is made up of an array of 

processors (computing nodes) where each processor can have its own memory storage.  

Parallelization of this kind requires communication between the nodes due to boundary 

exchange (e.g., “ghost” cells).  The overhead due to the boundary exchange needs to be 

minimized for an effective implementation of a numerical solver.  All the nodes can be 

connected through a standard network protocol. 

 

 

Figure 1.2: Distributed Memory Architecture 
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Hybrid distributed-shared memory simply refers to the combination of the two former 

architectures.  The schematic diagram for this type is shown in Figure 1.3.  Most of the 

current HPC platforms nowadays fall into this category.  

 

 

Figure 1.3: Hybrid Shared-Distributed Memory Architecture 

 

Parallelization in shared memory architecture is achieved by constructing multiple 

threads that can process data simultaneously to reduce computing time.  Each thread 

represents one available processing unit, and the maximum number of parallel threads 

can be as high as the number of available processors.  Multi-threading is readily 

supported in Java and can be implemented in C/C++ and FORTRAN using OpenMP 

(Chapman, Jost, van der Pas, & Kuck, 2007).  In the context of distributed memory 

architecture, the work is parallelized by creating multiple processes.  One distributed 

node can be responsible for one or more processes.  The communication between the 

nodes through the network is accomplished using Remote Method Invocation (RMI) in 

Java (Grosso, 2001) or Message Passing Interface (MPI) in C/C++ and FORTRAN 

(Gropp, Lusk, & Skjellum, 1999). 
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1.3 Graphic Processing Unit Computing 

 During the last seven years, the Graphic Processing Unit (GPU) has been 

introduced as a promising alternative to high-cost HPC platforms.  Within this period, the 

GPU has evolved into a highly capable and low-cost computing solution for scientific 

research.  Table 1.1 lists the computing power of several models of NVIDIA and AMD 

GPUs and their memory bandwidth.  The theoretical floating-point capability of the GPU 

is clearly superior to the traditional Central Processing Unit (CPU) due to the fact that 

GPU is designed for graphic rendering, which is a highly parallel process.  Starting from 

2008, the GPU began to support double precision calculation, which is demanded for 

scientific computing.  The newest generation of NVIDIA GPUs called “Fermi” has been 

designed to enhance the performance on double precision calculation over the old 

generation.  

Table 1.1: Double precision floating point capability of several models of GPUs. 

Model Double precision 

Floating-point 

performance 

Memory 

Bandwidth 

NVIDIA Tesla C2050/C2070 515 Gflops 144 GB/sec 

NVIDIA Quadro 6000 515 Gflops 144 GB/sec 

NVIDIA Quadro 5000 359 Gflops 120 GB/sec 

AMD FireStream 9370 528 Gflops 147 GB/sec 

AMD FireStream 9350 400 Gflops 128 GB/sec 

AMD FireStream 9270 240 Gflops 109 GB/sec 

 

Before the first well-established and user-friendly GPU computing framework 

called the Compute Unified Device Architecture (CUDA) was introduced in 2007, 

general purpose GPU computing (GPGPU) had a steep learning curve.  The only way to 
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program on the graphic device was to use specialized application programming interfaces 

(API) designed for graphic rendering such as OpenGL and Direct3D.  In the early 2000’s, 

a research group at Stanford University introduced BrookGPU as a programming 

language for modern graphic hardware in C language syntax; however, the performance 

of BrookGPU was determined to be poorer than directly using the graphical APIs.  

Besides CUDA and BrookGPU, there are other languages which were mainly designed 

for GPGPU computing such as Microsoft’s DirectCompute and the open source OpenCL.  

CUDA is believed to be the most mature programming framework for general purpose 

computing on the GPU.  CUDA has been very attractive to the scientific community due 

to its capability to perform massive parallel computation with a performance gain of 1-2 

orders of magnitude.  At the time of writing this thesis, the CUDA programming 

framework had undergone several development phases and reached a certain level of 

maturity, which is essential for the design of advanced numerical solvers.  All the 

features are briefly discussed in Chapter 5 of this report. 

 CUDA has been well received in the areas of scientific and medical research, 

video processing and financial modeling.  One of the early attempts in developing 

numerical solvers in the field of fluid dynamics on the GPU system had shown very 

promising performance speed-up.  There are also numerous efforts in porting legacy 

codes into the GPU in order to achieve performance increases.  Elsen et al. (2008) re-

wrote part of the Navier-Stokes Stanford University solver (NSSUS) to model hypersonic 

flow on the GPU.  The performance of their code ranges from 15 to 40 times speed-up 

compared to the original solver.  At around the same time, Brandvik and Pullan (2008) 
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also completed porting a two- and three-dimensional Euler code for modeling inviscid 

flow onto the GPU.  The resultant solver ran 30 times faster for a two-dimensional case 

and 15 times faster for a three-dimensional case.  Adaptive mesh refinement (AMR) 

techniques for finite volume method have also been implemented on the GPU by Schive 

et al. (2010).  The outcome of their work is the GAMER code for astrophysical 

simulation.  Thibault and Senocak (2009) implemented a Navier-Stokes solver for 

incompressible fluid flow on the GPU.  Most of their recent works have concentrated on 

extending the code to run on a GPU cluster to obtain high scalability.  In addition to the 

finite volume method, the Discontinuous Galerkin (DG) method has also been 

implemented on the GPU by Klockner et al. (2009).  All the past and recent works in 

writing CFD solvers on the GPU have shown encouraging results.  Further performance 

increases are expected along with the growth of the GPU capability.  The remaining 

challenge in writing a numerical solver on the GPU comes from obtaining the peak-

optimized performance.  One needs to understand how the data are structured in order to 

maximize the use of the GPU.  Different optimization techniques have been suggested by 

numerous sources (NVIDIA Corporation, 2010; Kirk & Hwu, 2010), but these techniques 

are not always pertinent for all the problems.  Optimization strategies for GPU computing 

are discussed in Chapter 5 of this report.  It is clear that optimization plays an important 

role in GPU programming. 
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1.4 Objectives of the Current Research 

The objective of the current research is to implement an advanced CFD 

framework capable of modeling high-speed fluid flow with high order of accuracy both 

in the spatial and temporal scale.  The solver is designed so that it can easily couple 

different physical models into the fluid solver.  The focus of this work is on the 

development of an Euler solver for reactive gas coupled with detailed chemical kinetics.  

The solver takes advantage of the current GPU architecture to achieve high performance 

and efficient parallelization.  Different optimization strategies are considered to improve 

the performance of the code.  In addition, the numerical solver is designed to benefit from 

the flexibility of Object-Oriented (OO) programming.  
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CHAPTER 2:  COMPUTATIONAL FLUID DYNAMICS 

 

2.1 Introduction 

CFD methods assume the flow to be a continuum fluid at various levels of 

thermo-chemical non-equilibrium.  The assumption of a continuum fluid allows the use 

of conservation laws to model the fluid dynamics.  This chapter presents the set of 

governing equations and the associated physics embedded in the code.  The solver 

utilizes a standard finite volume technique in solving non-linear hyperbolic problems.  

Several key assumptions have been made in order to simplify the model.  The set of 

model equations discussed herein is applied for an inviscid type of flow field.  The flow 

is also assumed to be in thermal equilibrium such that all the energy modes (translational, 

rotational, vibrational, and electronic) of all the species are equilibrated with each other.  

This assumption allows using only one equation for the conservation of energy.  In 

addition, we assume there is no species diffusion, so all the species are convected at the 

same velocity.  

 

2.2 Governing Equations 

The set of Euler equations for a reactive gas flow can be written as 

 

















 
z
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G

x

F

t

Q
 (2.1) 

where Q is the vector of conserved variables and F, G, and H are the flux vectors.  The 

right hand side (RHS) of equation (2.1) denotes the vector of source terms.  In general, 
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the source terms can be composed of exchange terms from different physical processes 

that occurred in the flow such as chemical reactions, diffusion, ionization and internal 

energy relaxation.  In this work, the source terms represent the exchange process due to 

chemical reactions.  The detailed form of these vectors is given as 
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where N is the number of species used in the simulation and E is the total energy per unit 

volume.  

  222

int
2

1
wvuEE    (2.3) 

 Operator-splitting technique is employed here to treat the source term.  This 

technique allows the convective terms and the source terms to be solved independently of 

each other.  At the end of each time step, the total contribution to the change in the 

conserved variables due to the two processes is added before moving to the next time 

step.  

 
chemconv t

Q

t

Q

t

Q














 (2.4) 

One advantage of using an operator-splitting technique is that each physical 

process can be decoupled and resolved separately from the others.  For example, while 

the convective term can be solved using an explicit method, the source term is solved 
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using an implicit method to ensure stability.  The time step for the convection equation is 

restricted based on the Courant-Friedrichs-Levy (CFL) condition.  The time step for the 

chemical kinetics is imposed only to ensure accuracy since the stability is guaranteed by 

the use of an implicit time integration.  For chemically reacting flow, the time step is 

usually dominated by the chemistry time step ( CFLchem tt  ), resulting in long 

computing time for the simulation. 

The hyperbolic terms due to convection are solved using a standard finite volume 

technique where the domain is discretized into small computational cells.  Assuming the 

flow solution is continuous in time, the Euler equations can be written in the integral 

form.  The integration is carried at each volumetric cell inside the domain as follows. 

  









VSV

dV
t

dSFnQdV
t

ˆ  (2.5) 

In equation (2.5), the volume integration of the divergence of the flux has been replaced 

with a surface integration of the net flux by Gauss’s theorem.  The flux integration can be 

approximated by the summation of all the fluxes around the cell interfaces.  

  









 V

N

n

nn

V

dV
t

SFQdV
t

s


1

 (2.6) 

The integral form of the Euler equations is solved at each discretized cell where the 

volume-average quantities are introduced. 

  
VV

dV
V

QdV
V

Q  1
           ;

1
 (2.7) 

Equation (2.6) now becomes 
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t
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Q sN

n

nn



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







1

1
 (2.8) 

From now on, the volume-average quantities are used for simplification purpose.  The 

convective and source terms can now be simplified as: 

 





 sN

s

ss

conv

SF
Vt

Q

1

1
 (2.9) 

 


 

chemt

Q
 (2.10) 

Equation (2.9) and (2.10) are the two governing equations used in the solver.  Numerical 

techniques for approximating the solution of these equations are discussed in chapter 3 

and 4 of this report.  

 

2.3 Thermodynamics 

Assuming there are several species present in the flow, the total pressure of the 

gas mixture can be computed from Dalton’s law of partial pressure.  The pressure of each 

individual species is determined from the ideal gas relation.  

 



N

s

ss

N

s

s TRPP
11

  (2.11) 

The total density can be computed as the summation of all the species densities. 

 



N

s

s

1

  (2.12) 

For convenience, the mass fraction of each species is also defined as 
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

 s

sY   (2.13) 

which results in 

 1
1




N

s

sY  (2.14) 

Assume the gas is thermally perfect, the internal energy and enthalpy of each species can 

be expressed as a function of only temperature.  

  dTTce vsis )(  (2.15) 

  dTTch pss )(  (2.16) 

For simplification purpose, we define the gas constant of the mixture to be 

 




 
N

s

ss

N

s

s
s

N

s

ss

RYR
T

TR

T

P
R

11

1










 (2.17) 

where Ys is the mass fraction and Rs is the gas constant of each species. 

We also define 

 
v

N

s

vss

N

s

ss

C

R

cY

RY











1

11  (2.18) 

where   can be defined as the ratio of specific heat of the gas mixture.  In order to 

construct the eigensystem for the Euler equations which is necessary for the flux 

calculation and linearization, we also define the pressure derivatives with respect to all 

the conserved variables.  The derivation is straight forward starting with the definition of 

total pressure.  By differentiating both sides of equation (2.11), 
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 



N

s

ss

N

s

ss dRTRdTdP
11

  (2.19) 

an expression for the differential pressure is obtained.  The differential temperature can 

be derived by realizing that energy is the summation of kinetic energy and internal 

energy. 

 



2

1 2

1 m
eE

N

s

iss 


 (2.20) 

where m  represents the momentum of the fluid ( Vm  ).  Differentiating equation 

(2.20),  

 dmVdVdededE
N

s

iss

N

s

sis  


 2

11 2

1
 (2.21) 

and inserting equation (2.15) for the differential energy of each species, 

 dmVdVdTcdedE
N

s

vss

N

s

sis  


 2

11 2

1
 (2.22) 

dT now can be expressed as 

 







 

 



dmVdVdedE

c

dT
N

s

sisN

s

vss





2

1

1

2

11
 (2.23) 

Inserting equation (2.23) to equation (2.19), the final expression for the differential 

pressure is given as 
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1
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



 (2.24) 

where 

 



N

s

sdd
1

  (2.25) 

All the pressure derivatives term now can be derived as: 

   iii

Emi

TRVe
P

P

j

i


















 2

,,
2

1
1





 (2.26) 
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
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 1

2

1,
2

11
 (2.27) 

  V
m

P
P

E

m

s

1
,









 



 (2.28) 

 1
,









 

 m

E

s
E

P
P  (2.29) 

We define the total enthalpy H as follows. 

 


EP
H


  (2.30) 

The speed of sound can also be defined 
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 (2.31) 

where 

 
2222 wvuV   (2.32) 

 

2.4 Eigensystem 

In order to solve the multi-dimensional Euler equations (convective terms), a 

dimensional splitting method (Toro E. F., 2009) was used to decompose the system into 

multiple one-dimensional sweeps.  This approach can effectively lower the amount of 

flux data stored on the machine.  Since each sweep is independent of the others, the flux 

storage can be effectively reduced by one-third.  Also, dimensional splitting allows a 

straight forward implementation of the Riemann solver for the non-linear hyperbolic 

problems (Toro E. F., 2009).  For each sweep, the non-linear set of governing equations 

takes the form: 

 0









n

F

t

Q
 (2.33) 
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where n is the direction of sweeping.  By applying the chain rule on the spatial derivative, 

one could obtain  

 0











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
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
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






n

Q
A

t

Q

n

Q

Q

F

t

Q
 (2.34) 

The system of equations (2.33) can be classified as a hyperbolic system of partial 

differential equations (PDE) since the Jacobian matrix A can be diagonalized and all the 

eigenvalues of the resultant diagonalization are real. 

 LRA   (2.35) 

The eigensystem used in this work are similar to the one given by Cambier et al. (1989) 

and Gnoffo et al. (1989).  The real eigenvalues of the system are 
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 (2.36) 

The set of left eigenvectors is written as 
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 (2.37) 

where ek is the specific kinetic energy and U
~

, V
~

, and W
~

 are the velocity components 

normal and tangential to the interface.  

  222

2

1
wvuek   (2.38) 

 zyx wvuU  
~

 (2.39) 

 zyx wvuV  
~

 (2.40) 

 zyx wvuW  
~

 (2.41) 

The set of right eigenvectors is defined as 



19 

 

 














































































2222222

2222222

2222222

22222222222222

21212121212121

22222

~

2

~

2

~

0
~~~

0
~~~

22222

~

2

~

2

~

1

1

1

21

21

21

21

21

c

P

c

wPc

c

vPc

c

uPc

c

UcP

c

UcP

c

UcP

WWW

VVV

c

P

c

wPc

c

vPc

c

uPc

c

UcP

c

UcP

c

UcP
c

P
Y

c

P
wY

c

P
vY

c

P
uY

c

P
Y

c

P
Y

c

P
Y

c

P
Y

c

P
wY

c

P
vY

c

P
uY

c

P
Y

c

P
Y

c

P
Y

c

P
Y

c

P
wY

c

P
vY

c

P
uY

c

P
Y

c

P
Y

c

P
Y

R

EEzEyEx

zyx

zyx

EEzEyEx

E
N

E
N

E
N

E
NNNN

EEEE

EEEE

N

N

N

N

N



































 

 (2.42) 

The left and right eigenvectors can be used to project equation (2.33) from the physical 

space to the characteristic space. 

 
   

0









n

LQ

t

LQ
 (2.43) 

By introducing the characteristic variable, 

 LQW   (2.44) 

equation (2.43) now becomes  

 0









n

W

t

W
 (2.45) 

The system of PDEs now has been linearized and decoupled from the original system 

resulting in a linear system of ordinary differential equations (ODE).  It must be noted 

that the original set of PDEs is non-linear in nature, so the transformation is only valid 
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when the Jacobian matrix can be assumed to be constant.  The linearization procedures 

are performed using Roe-average values of the conserved variables.  The Roe-average 

values are defined as follows: 

 
RL ~  (2.46) 

 

RL

RRLL uu
u








~  (2.47) 

 

RL

RRLL hh
h










~
 (2.48) 

The Euler equations can now be solved using the approximate Riemann Solver.  In order 

to archive high-order spatial accuracy, the interface values are reconstructed using high-

order polynomial approximation.  The reconstructed values are then limited to prevent 

non-physical oscillation in the solution. 
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CHAPTER 3:  NUMERICAL FORMULATION 

 

3.1 Introduction 

The typical solution procedure for solving the Euler equations includes 

discretization of the domain into cells and solving the integral form of the Euler equations 

at each cell.  For simplification, consider the Euler equations in one dimension with no 

source terms; the discretized form of the equations at each cell can be written as 

  
2

1

2

1

1



 





ii

n

i

n

i FF
x

t
QQ  (3.1) 

where 
2
1i

F  and 
2
1i

F  are the flux vectors at the left and right interfaces of cell i.  

Evaluation of the flux at each interface depends solely on the values of the neighboring 

cells. 

High-order spatial accuracy is obtained by using high-order polynomial to 

reconstruct the interface data from a stencil of cell-averages.  This process typically 

consists of two steps: reconstruction and limiting.  Several approaches have been 

considered in this work namely the Monotonicity-Preserving (MP) scheme (Suresh & 

Huynh, 1997) and the weighted essentially non-oscillatory (WENO) scheme (Liu, Osher, 

& Chan, 1994; Jiang & Shu, 1996).  Detailed derivation of these schemes can be found 

from the cited references and will not be repeated here.  This chapter only summarizes 

the derived formula of these schemes. 
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3.2 Data Reconstruction 

3.2.1 Monotonicity Preserving (MP) Schemes 

We present two versions of the MP schemes so-called MP3 and MP5.  The former 

is reconstructed using a quadratic polynomial resulting in a third-order scheme (Kapper, 

2009).  The numerical approach in reconstructing the high-order term is discussed in 

Huynh (1993) and will not be repeated here.  The MP3 scheme can be written as 

   11

3 52
6

1
  jjj

MP

L uuuu  (3.2) 

where uL is the left state of cell j.  The corresponding value of the right state can be 

determined from symmetry.  While the MP3 scheme utilizes a stencil of three cell-

averages, the fifth-order MP scheme (MP5) uses a stencil of 5 cell-averages as 

  2112

5 32747132
60

1
  jjjjj

MP

L uuuuuu  (3.3) 

The reconstructed values for these schemes yield high-order accuracy in region where the 

flow solution is smooth.  However, these values cannot be used near a discontinuity in 

the flow due to the unphysical oscillation in the solution.  In order to prevent oscillation 

near the shock or the contact discontinuity, the reconstructed values are limited following 

a monotonicity-preserving procedure as discussed in Suresh and Huynh (1997) .  

  MP

j

L

j

L

j uuuu ,,median 2/12/1    (3.4) 

   11 ,modmin   jjjjj

MP uuuuuu   (3.5) 

The diagram illustrating the stencil used for both MP schemes is shown in Figure 3.1. 
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Figure 3.1: Diagram of the stencil used in MP scheme 

 

The value of  in equation (3.15) is typically 2 or 4.  The MP schemes have been 

determined to hold some CFL restriction based on the value of  .  It is recommended to 

use a CFL number close to 0.33 for a stable solution.  In addition, the original MP5 

scheme of Suresh and Huynh also contains an additional accuracy-preserving constraint 

to avoid the loss of accuracy near the shock.  The detail of the constraint is discussed in 

their paper (Suresh & Huynh, 1997). 

 

3.2.2 Weighted Essentially Non-Oscillatory Schemes 

Weighted Essentially Non-Oscillatory (WENO) schemes, developed by Liu et al. 

(1994) and Jiang and Shu (1996) are based on the Essentially Non-Oscillatory (ENO) 

schemes developed by Harten et al. (1987) in the form of cell-averages.  The WENO 

schemes utilize an adaptive-stencil approach as in ENO scheme except that all the 

contribution of the stencils is taken into account as a convex combination.  The WENO 

schemes preserve the essentially non-oscillatory property of the original ENO scheme, 

but yield one order higher in the accuracy of the smooth solution of the flow.  The fifth-

order WENO scheme is given as follows. 

 )3(

3

)2(

2

)1(

1 LLLL uuuu    (3.6) 

i-2 i+2 i+1 i-1 i 

uL,j-1/2 
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Three stencils are utilized herein with the non-linear weights . 

 jjjL uuuu
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)1(    (3.7) 

 11

)2(

3

1

6

5

6

1
  jjjL uuuu  (3.8) 

 21
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  jjjL uuuu  (3.9) 

The non-linear weights in this case are adapted to the smoothness of the stencil to 

preserve the essentially non-oscillatory properties of the scheme.  The weight of a 

discontinuous stencil is effectively reduced to zero.  The formulation of the non-linear 

weights is given as 
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In equation (3.10),   is placed in the denominator to avoid it to be zero.  Numerical 

experiments suggest   being in the range of 10
-5

 to 10
-7

.  The optimal weights are given 

by 
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 (3.11) 

and the smoothness indicators IS are 
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The WENO schemes have been determined to work well with the total-variation-

diminishing (TVD) Runge-Kutta (RK) methods.  The TVD RK methods are discussed in 

section 3.4.2.  Recently, Balsara and Shu (2000) have introduced another variation of the 

WENO schemes called the Monotonicity-Preserving Weighted Non-Oscillatory 

(MPWENO) schemes.  This scheme is different than the WENO version in a sense that 

the smooth solution following the WENO reconstruction procedure is limited using the 

MP constraint discussed in section 3.2.1.  The resulting scheme yields slightly higher 

accuracy than the original WENO scheme and more efficient than the MP schemes in 

terms of the CFL restriction. 

 

3.3  Flux Calculation 

The solver utilizes two standard flux splitting techniques: Roe flux-difference 

splitting and Harten-van Leer-Lax-Einfeldt flux.  Both of the fluxes have been tested for 

several test cases and are also performed well for chemically reacting flow with multiple 

species.  However, an entropy fix is required for the Roe flux-difference splitting when 

trying to resolve flow with strong rarefaction. 
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3.3.1 Roe Flux-Difference Splitting 

Roe flux-difference splitting is a standard flux splitting technique for the fluid 

dynamics equations.  The idea of Roe flux is to split the flux based on the characteristic 

wave speed so that the flux is purely upwinding.  
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The flux presented in equation (3.15) is written in form of a characteristic flux.  

Transformation between the conservative and characteristic variables can be performed 

via the transformation matrices mentioned in chapter 2 (equation (2.36) and (2.42)).  The 

Roe flux splitting, however, contains issues when trying to resolve the flow with sonic or 

transonic rarefactions.  An entropy fix needs to be applied for such cases. 

 

3.3.2 Harten-Lax-van Leer-Einfeldt (HLLE) Flux 

Another flux formulation implemented in this framework is the Harten-Lax-van 

Leer-Einfeldt Riemann (HLLE) flux.  Details of the derivation are given in Harten 

(1997).  The HLLE flux can be summarized as 
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where 
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and 
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with 

 





2

1
  (3.19) 

The HLLE flux is known to be more diffusive than the other fluxes due to the large 

bound of the numerical signal velocities: b
+
, b

-
. 

 

3.4 Time Marching Methods 

3.4.1 Explicit Euler 

The Explicit Euler method serves as the most basic kind of time integration 

method.  It is given as 

  nnn QtLQQ 1
 (3.20) 

where the spatial operator is  

    ss AF
V

QL
1

 (3.21) 

Although the implementation of the Explicit Euler is straight forward, it is not stable and 

would result in oscillation in the solution especially when coupled with a high-order 

scheme for the spatial derivatives.  High-order time integration methods are needed to 

ensure stability and accuracy of the solver. 
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3.4.2 Total-Variation-Diminishing Runge-Kutta 

The high-order time integration method used in this work is the total-variation-

diminishing (TVD) Runge-Kutta (RK) method.  The third-order version of the RK 

methods (RK3) is implemented for most of the high-order simulation.  The formulation 

of the RK3 method is given as 

  nnn QtLQQ  3/1
 (3.22) 
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3   nnnn QtLQQQ  (3.23) 

  3/23/21

3

2

3

1   nnnn QtLQQQ  (3.24) 

Since the RK3 method is a multi-stage integration method, the solution is going through a 

series of predictor-corrector steps for every iteration.  One disadvantage of the RK3 

scheme is the overhead caused by storing the old solution of the Q vector at every RK 

step.  In addition, boundary conditions need to be enforced at every time step, which 

makes the method less efficient for domain decomposition. 

 

3.5 Arbitrary Derivative Riemann Solver (ADER) 

Recently, a new approach for implementing high-order Riemann solver has been 

introduced by Titarev and Toro (2005).  This new class of Riemann solver is called the 

Arbitrary Derivative Riemann (ADER) solver.  The unique feature of the ADER schemes 

is that they can accomplish high-order accuracy in time without using multi-stage time 

integration methods.  This feature is very advantageous for parallel computing because 

the overhead due to boundary exchange can be reduced to the minimum. 
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At each interface we seek the solution of the generalized Riemann problem as 

follows. 
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The approximated solution of equation (3.25) can be given in terms of a Taylor series 

expansion in time. 
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The first term on the right-hand-side of equation (3.26) can be found by solving the 

classical Riemann problem at the interface.  The high-order terms can be determined by 

using the Cauchy-Kowalewski procedure which relates all the time derivatives to the 

spatial derivatives. 
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The solution of the generalized Riemann is then used to compute the numerical flux at 

the interface.  There are two ways of evaluating the flux: state-expansion and flux-

expansion.  In this work, we use the state-expansion version in which the flux is directly 

evaluated from the solution of the generalized Riemann problem (equation 3.26).  The 
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flux-expansion approach (Toro & Titarev, 2005), on the other hand, evaluates the flux as 

the Taylor time expansion of the physical flux.  
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The high-order terms of the fluxes can also be expressed in terms of the time derivatives 

of the interface state.  The solution of the cell can now be updated using a one-step 

formula similar to the standard Euler explicit method in equation (3.20). 
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CHAPTER 4:  CHEMICAL KINETICS 

 

4.1 Introduction 

This chapter introduces the chemistry model used in the solver.  When the 

temperature of the flow is high enough, all the species present in the gas will begin to 

react at different rates.  Each species now has to be tracked because of their fundamental 

differences in the thermodynamic properties.  For example, the internal energy and the 

heat capacity of a reacting flow change rapidly depending on the temperature of the flow 

and the mixture composition.  In order to capture the chemical reactions and their effects 

to the flow properties, one could either use a one-step kinetics model or a detailed 

kinetics model.  The detailed kinetics model is implemented in this work to model all the 

elementary reactions and their reverse processes. 

 

4.2 Chemistry Model 

An elementary reaction takes the form 

    



N

s

sr

K

K

N

s

sr XX
fr

br 1

''

1

'   (4.1) 

where 
'

r  and 
''

r  are the molar stoichiometric coefficients of the reactants and products of 

each reaction.  [Xs] is defined as the molar concentration of the s
th

 species.  
frK  and brK  

are defined as the forward and backward rates of each reaction.  The rate constant can be 

estimated using the empirical Arrhenius law 
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where frA  is the pre-exponential factor, r  is the temperature exponent, and Er is the 

activation energy.  If a reaction is assumed to reach equilibrium, the forward and 

backward rates are related by the equilibrium constant 
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where 1aP  bar and 
0G is the change in Gibb’s free energy for each reaction.  

For each reaction, the progression rate can be written as 
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In case of a three-body reaction, the progression rate can be modified as 
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where rs  is the third-body efficiency of the s
th

 species.  The rate of production for each 

species can be determined from 
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N

r

rs

N

r

rss Q
rr





11

   (4.6) 

where Ms is the mean molecular weight of the s
th

 species. 

By conservation of mass, sum of all the species production rates should be equal to zero 

which yields the following expression. 
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In order to solve for the change in the species concentration through production and loss 

rate, one needs to know all the changes in the thermodynamics for each reaction as well 

as their rates.  In practice, the backward rate can also be computed using curve-fitting 

technique with the temperature as an input, but to be more rigorous, it is recomputed 

using the equilibrium constant.  From the numerical point of view, all these quantities are 

read from separated data files which contain all the species information used for the 

computation along with the elementary reactions. 

 

4.3 Implicit Formulation 

The change in the species density due to chemical reaction is solved by using 

Equation (2.10).  Since this is a stiff ODE, an implicit method is chosen to ensure the 

stability of the solution.  The implicit formulation is given as 
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dQ   (4.8) 

Using a Taylor series expansion in time, equation (4.8) can be written as 
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where the time derivative has been replaced by applying the chain rule.  The 
dt

dQ
 term 

can be computed as: 
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For simplification, instead of computing 
dt

dQ
 where Q consists of all the conserved 

variables, we use the change of molar concentration of each species while keeping the 

change in total energy the same.  This is referred as Qchem and can be defined as 
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The source terms now express the change in the molar concentration of each species and 

the change in energy.  
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In equation (4.12), s  represents the total change in molar concentration of the s
th

 species 

and se0  represents the formation energy of the s
th

 species.  The change in the conserved 

variables can be easily recomputed using the following transformation matrix. 
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The resultant matrix 
Q

 
 can be written as 
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with all the derivatives expressed as 
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With all the derivatives term computed, equation (4.9) is reduced to a linear system of 

algebraic equations 

 BAX   (4.19) 

which can be solved using a direct Gaussian elimination method.  

It must be noted that as the number of the species increases, the size of these 

matrices is also increased by N
2
 and the Gaussian Elimination step scales as N

3
.  Solving 

the chemical kinetics at every cell is very computationally intensive.  The implementation 
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of the chemical kinetics solver is very efficient by making use of the GPU architecture. 

The performance of the kinetics solver is discussed in Chapter 7 of this report. 
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CHAPTER 5:  PARALLEL FRAMEWORK 

 

5.1 Introduction 

As introduced in chapter 1, the GPU has shown to be very capable of performing 

scientific computing especially in the area of CFD.  CUDA is the programming language 

of choice for general purpose programming on the GPU.  CUDA is an extension from the 

traditional C language with additional API calls to perform data transfer to the graphic 

device as well as instructing the device to do work.  Recently, CUDA has begun to 

support C++ language with Object-Oriented features like classes and templates.  This 

capability offers the flexibility in writing code on the GPU.  This chapter covers the 

basics of GPU computing as well as the standard optimization techniques. 

 

5.2 Memory Architecture 

The fundamental difference between the GPU and the CPU is that the GPU is 

designed to maximize the floating-point calculation capability by reducing the control 

logic for each execution thread.  The design philosophy of the GPU is driven by the game 

industry which aims at the capability to perform massive floating-point operations 

required for fast graphic rendering.  Each graphic device has a set of streaming multi-

processors (SM) which also contains an array of streaming processors (SP).  These 

processors can perform massively parallel calculation, and the data can be accessed at 

different levels of the memory hierarchy.  The CUDA memory structure can be 
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categorized into four different types: global memory, constant memory, shared memory 

and registers.  

Global memory is implemented as dynamic random-access memory (DRAM) 

which holds the maximum size on the device.  Table 5.1 lists several models of the 

NVIDIA GPUs in terms of the number of CUDA cores, the DRAM size and memory 

bandwidth.  

Table 5.1: Comparison of several models of NVIDIA GPUs 

Model Number of 

Cores 

Memory Memory 

Bandwidth 

GTX 480 480 1.5 GB GDDR5 177 GB/sec 

GTX 580 512 1.5 GB GDDR5 192 GB/sec 

Quadro 5000 352 2.5 GB GDDR5 120 GB/sec 

Quadro 6000 448 3.0 GB GDDR5 144 GB/sec 

Tesla C2050/C2070 448 3GB/6GB GDDR5 144 GB/sec 

 

Data resided on the global memory can be accessed by any processor at any given time.  

Global memory can also be communicated with the host by calling API functions.  

Although the size of the DRAM is large, directly accessing the global memory results in 

high memory latency which can significantly reduce the data parallelism of the program.  

Constant memory allows read-only access so it is faster than global memory.  Constant 

memory is cached for efficient memory access so its size is very limited.  Shared memory 

is the on-chip memory space for each SM which can provide fast and efficient access 

pattern (100-150 times faster than global memory).  Register is the fastest form of 

memory on the device but it can only be accessed by each SP.  The sizes of shared 

memory and registers are very small compared to the global memory.  One has to be 

careful not to exceed the size of shared memory and registers.  In addition to the four 
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basic types of memory, there is also another type of memory which is designed for 

graphic rendering known as texture memory. Texture memory is read-only and also 

provides fast memory access. Texture memory can also be utilized for calculation on the 

GPU.  

 

5.3 GPU Programming 

Parallel calculation on the GPU is initiated by invoking a kernel function from the 

host.  A kernel function acts as an instruction issued from the host to be executed on the 

device.  Parallelization on the GPU is accomplished by sizing a virtual space on the 

device which is referred as a grid.  A grid consists of multiple blocks and each block 

contains a number of threads which is handled by the graphic processors.  Both the grid 

and block can be one, two or three-dimensional.  The dimensions of the grid and block 

are independent of the global memory size.  The execution order is scheduled based on 

the available number of SMs available on the device.  Table 5.2 indicates all the memory 

types in CUDA and their scopes.  For example, shared memory allocated within a block 

can only be accessed by the threads of that block. 

Table 5.2: CUDA memory hierarchy and their scope 

Memory Type Scope Life time 

Global Grid, block, thread Application 

Constant Grid, block, thread Application 

Shared Block kernel 

Register Thread kernel 

Texture memory Grid, block, thread Application 
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Once a kernel is launched, each block is typically handled by 2 SMs.  All the 

threads in each block are organized into “warps” and each warp is executed in a single-

instruction multiple-data (SIMD) manner.  All the warps within a block can be executed 

in any order to maximize the computational resources.  An example of a CUDA program 

is given below. 

 

 

Figure 5.1: An example CUDA program 

  

__global__ void kernel (float* dA) { 
int index = blockIdx.x * blockDim.x + threadIdx.x; 
dA[index]  *= 2.f; 

} 
int main() { 

float *hA;   //pointer to host memory 
float *dA;   //pointer to device memory 
 
hA = (float*) malloc (100*sizeof(float));     // allocate memory on host 
cudaMalloc((void**)&dA,100*sizeof(float)); // allocate memory on device 
for (int i=0;i<10;i++) hA[i] = (float) drand48(); // initialize the array 

 
// transfer memory to device 
cudaMemcpy(dA,hA,100*sizeof(float),cudaMemcpyHostToDevice); 
 
int gridsize = 10; int blocksize = 10; 
 
// invoke CUDA kernel 
kernel <<< gridsize, blocksize >>> (dA); 
 
// transfer memory back to host 
cudaMemcpy(hA,dA,100*sizeof(float),cudaMemcpyDeviceToHost); 
 
// free memory on host and device 
free (hA); cudaFree (dA); 

 
return 0; 

} 
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 The example shown in Figure 5.1 demonstrates how to write a parallel program in 

CUDA.  The program starts with a kernel definition which is very similar to a regular C-

function.  Each thread is assigned to an element of array A.  All the threads and blocks 

are identified by built-in indices called blockIdx and threadIdx.  In this example, all the 

threads are instructed to double the current value of the array element.  This is very 

similar to a for-loop in C with all the entries being executed in parallel.  The main 

program highlights all the steps required to allocate memory on the device as well as 

transferring data to the device.  The sizes of the grid and block must be specified before 

invoking the kernel.  In this example, both sizes are specified as 10, and we only consider 

one-dimensional block and one-dimensional grid.  Similarly, in order to construct a two- 

or three-dimensional block, one must also specify the dimension in other directions.  The 

data is transferred back to the host after exiting the kernel.  This is the standard procedure 

for CUDA programming.   

 

5.4 Optimization Consideration 

Optimization plays an important role in CUDA programming.  The general 

approach for maximizing the performance of the GPU is to ensure efficient parallelism in 

the calculation and fast memory access pattern.  It has been shown in the previous chapter 

that the global memory holds the largest size of memory storage on the device, but 

accessing this type of memory can result in poor performance due to memory latency.  

Some optimization techniques have been suggested (NVIDIA Corporation, 2010; Kirk & 

Hwu, 2010) to maximize the potential of the GPU.  Some of these techniques require 
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performing experimental performance tuning.  In general, optimization can consume 

much more time than writing the code.  The programmer needs to be selective when 

considering these optimization techniques.  

 

5.4.1 Memory Access Efficiency 

Global memory is known as the slowest type of memory on the device.  Thus, one 

should try to avoid using global memory whenever possible.  However, this is the form of 

memory with maximum storage size, so for calculation which requires a large amount of 

data, global memory usage cannot be avoided.  In the case where global memory access 

is required, it is desired to achieve the memory bandwidth close to the theoretical peak.  

In order to achieve this bandwidth, the memory access pattern needs to be coalesced 

which means that all the threads in a warp must access consecutive memory locations.  It 

is, therefore, important to understand how the data array is mapped into the memory 

address space.  Since global memory consists of a linear addressed memory space, multi-

dimensional array is placed into the global memory following the conventional row-

major order.  For a two-dimensional array, all the elements of the array are placed into 

the linear memory such that the column index is the fastest varying index.  This is 

illustrated in Figure 5.2 below. 
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Figure 5.2: Storing multi-dimensional array into linear memory 

 

In order to achieve a coalesced memory access pattern, it is desired to have the 

thread index associated with the column index and the block index associated with the 

row index.  An example of both memory access patterns is given in Figure 5.3.  While the 

left side of the figure shows a coalesced memory access pattern, the right side shows an 

uncoalesced access pattern.  On the left side of Figure 5.3, since each block handles one 

row of the matrix, all the threads can access all the elements of that row which are 

contiguous in the memory. 

 

             

Figure 5.3: Coalesced (left) and uncoalesced (right) memory access pattern. 

 

Memory coalescing allows the DRAM to supply data at high rate close to the 

theoretical bandwidth.  However, this is not necessarily an easy task given that the data 
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for the calculation can possibly be at random location as in the case of a CFD solver for 

unstructured grid.  In that case, the data of each element can be stored in any location 

since the grid connectivity is established separately. 

In the case where the calculation does not require a sufficiently large amount of 

data, it is recommended to utilize shared memory in order to avoid global memory 

access.  One effective strategy for using shared memory has been suggested by Kirk and 

Hwu (2010); the strategy had been tested on a matrix multiplication algorithm with 

outstanding performance gain.  The main idea is to partition the data into tiles which can 

be fitted into shared memory (This is sometimes referred as memory padding technique).  

By loading data into shared memory, extra global memory access is eliminated.  In 

addition, accessing data from shared memory is much faster than global memory (100-

150 times) resulting in a more efficient parallelization of the calculation.  Shared memory 

in CUDA can be declared inside the kernel as shown below: 

__shared__ float A[10][20]; 

__shared__ double A[10]; 

One important step in using shared memory is that all the threads within the block need to 

be synchronized before starting the calculation.  The synchronization ensures that all the 

global memory has been copied into shared memory.  This can be done via the 

__syncthreads() call.  This call serves as a barrier to make all threads within a block to 

wait until other threads has completed the same task. 

The disadvantage of shared memory is its limitation in size which makes it not 

useful for computing large amount of data.  For example, the problem of interest in this 
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thesis is a simulation of a multiple-species gas where each vector of conservative variable 

can be large depending on the reaction mechanism used in the simulation.  For the 

simulation of an ionized gas, one also has to keep track of different excited levels of the 

ions which results in a very large size array.  In addition, characterization of a gas/plasma 

in thermal non-equilibrium requires the use of multiple temperature models (2-T, 3-T, 

multi-T) which also increases the size of the vector of the conservative variables.  The 

effects of having to compute a large set of data are the reduction in the tile size used for 

shared memory and excessive global memory access. 

The other fast memory access that could be utilized to reduce global memory 

traffic is texture cache.  Texture memory is a special form of memory designed for 

graphic rendering.  The advantage of using texture memory is that the coalesced memory 

access can be bypassed since texture memory is cached on the device to achieve high 

memory bandwidth.  Texture memory is extremely useful in the case where un-coalesced 

memory access cannot be avoided.  In addition, accessing data from texture memory can 

possibly result in exceeding the theoretical bandwidth of the global memory.  

 

5.4.2 Thread Execution 

Another important aspect of optimizing CUDA code is based on the thread 

execution model.  Once a kernel is launched, each block will be assigned to 2 SMs which 

contain a number of SPs.  All the threads within the block will be organized into warps 

and all the SPs are automatically scheduled to perform the calculation.  Since the 

scheduler is designed to maximize the performance of the kernel, each thread in a block 
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can execute in any order. Thread synchronization is required for the case of transferring 

data from global memory to shared memory. More importantly, one needs to avoid 

having all the threads within a warp to execute different instructions. This will cause the 

issue of thread divergence and those instructions will be executed in a serial manner. One 

should avoid using an if statement based on the thread index unless the condition of that 

statement still allows all the threads in the warp to follow the same path. 

Since memory access is very time consuming, all the threads within a block 

should be kept busy at all time in order to make up for the memory latency. In order to 

achieve this goal, all the blocks need to be sized appropriately to maximize the 

occupancy which is defined as the ratio of the number of the active warps per SM with 

the actual number of warps. For example, if all the warps of a block are active at all time, 

the block is determined to have an occupancy factor of 1. The estimated values of the 

grid and block size can be determined from the CUDA occupancy calculator (NVIDIA 

Corporation, 2007) provided by NVIDIA. In general, the size of a block should be 

multiple of the warp size, so all the available SPs can be utilized. Experimental 

performance tuning can be useful in determining the optimal value of the block size. 

However, it has been shown by Volkov (2010) that small block can also lead to high 

performance. This issue will be illustrated further in chapter 7 of this report as part of the 

optimization study done on the fluid solver. 
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5.5 Object-Oriented Programming 

The fluid solver is designed to utilize the concept of Object-Oriented (OO) 

programming.  OO design provides a flexible way of writing scientific codes that can be 

easily debugged and maintained.  Earlier attempts in writing CFD solvers in an OO 

framework (Kapper, 2009; Cambier, Carroll, & Kapper, 2004) had shown improvement 

both in terms of flexibility and extensibility.  The OO framework implemented here is 

coupled with the use of the GPU for the purpose of flexibility and robustness.  Although 

CUDA (version 3.0 and above) has begun to supported several OO features (in C++) 

such as templates, classes and inheritance, the level of maturity of the compiler is still 

questionable.  However, OO design still gives more flexibility in writing code and allows 

more complex software architecture as compared to a procedural-based framework. 

The fluid solver holds a very basic architecture and is ready to be expanded to 

incorporate more complex features.  All the data of the fluid solver are grouped into 

objects which can be transferred to the device for processing.  For example, all the 

geometric data such as the cell, node and face are contained within a class called mesh.  

This provides a quick and easy way of accessing the data inside a kernel without having 

to pass each individual pointer.  Making use of class in packing data does not necessarily 

affect the memory access pattern since the class only holds a pointer to the data.  The 

actual data can still be allocated in a linear fashion to coalesce the memory access pattern.  

In addition, some solver modules can also be packed inside a class as a method.  This is 

very convenient due to the fact that the same method can be used both on the host and the 
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device.  This also allows a quicker way of comparing the performance between the CPU 

and GPU since both are calling the same version of the function. 

 

5.6 Visualization Capability 

One of the most unique features of CUDA is the graphic interoperability which 

can ultimately lead to the so-called "real-time" visualization.  Since most of the 

computation is performed on the graphic device, it is not necessary to transfer data back 

and forth between host and device for visualization.  CUDA provides a unique feature to 

allow programmer to directly access the graphic resource on the device both in pixel or 

vertex format.  

CUDA supports visualization in OpenGL and Direct3D.  The visualization 

attempted in this work is done via OpenGL (Shreiner, Woo, Neider, & Davis, 2008).  The 

overall process of accessing and manipulating graphic data (either pixel or vertex buffer) 

is highlighted in Figure 5.4. 
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Figure 5.4: Graphic interoperability in CUDA programming. 

 

The cudaGraphicsMapResources call retrieves the pointer to the graphic resource 

which can be edited by a kernel.  Upon completion of the kernel, the buffer needs to be 

unmapped.  The data mapped to the graphic resource gets updated quickly allowing a fast 

and efficient renderization pipeline.  It must be noted that since the data transfer between 

host and device is reduced, the run time is also kept at the minimum.  

// Register buffer 

cudaGraphicsGLRegisterBuffer(…) 

// Mapbuffer 

cudaGraphicsMapResources(…) 

// run kernel to edit buffer 

Map_texture_kernel <<< ...,… >>> (…); 

// Unmapbuffer 

cudaGraphicsUnmapResources(…) 
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CHAPTER 6:  BENCHMARK 

 

6.1 Introduction 

This chapter presents a series of test cases for the solver including non-reactive 

and reactive flows both in one and two-dimension.  The solver utilizes all the numerical 

schemes mentioned in Chapter 3.  The variety of solutions is presented here to 

demonstrate the capability of the solver and to determine which scheme is the most 

efficient and capable in terms of being able to reproduce the correct flow features. 

 

6.2 Non-reactive Flows 

6.2.1 One-Dimensional Flows 

6.2.1.1 Sod Shock Tube Problem 

One of the most basic test problems for CFD benchmarking is the Sod shock tube 

problem.  The problem is described as a standard Riemann problem with the initial 

conditions given as 
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 (6.1) 

 Figures 6.1-6.3 show the solution of the problem at t = 0.2.  The contact 

discontinuity and the shock are well-resolved by all schemes.  Both MP schemes seem to 

perform better in terms of resolving the discontinuity of the flow.  It must be noted that 

the solution of the WENO scheme matches almost exactly point-by-point with the 

solution of the ADERWENO scheme.  This is expected since both schemes utilize the 
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same reconstruction procedure and are at the same order of accuracy both in space and 

time. 

 

 

  

Figure 6.1: Density plot of the Sod shock tube problem with 100 points. 

 

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

X



MP3

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

X


MP5

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

X



WENO

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

X



ADERWENO



52 

 

 

  

  

Figure 6.2: Velocity plot of the Sod shock tube problem with 100 points. 
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Figure 6.3: Pressure plot of the Sod shock tube problem with 100 points. 

 

6.2.1.2 Lax Problem 

The next problem in the 1-D test cases is the Lax problem.  The Lax problem is 

initiated similar to the Sod problem.  The difference between the two problems is that the 

density of the right state is now slightly higher than the left state, and the left state is 

initiated with some positive velocity.  The initial conditions for the Lax problem are 

given as bellow. 
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 (6.2) 

The numerical solution of the Lax problem is shown in Figures 6.4-6.6.  The MP5 

scheme is outperforming the others with excellent capability in resolving the contact 

discontinuity.  This is clearly shown in the density plot. 

 

  

  

Figure 6.4: Density plot of the Lax problem with 100 points. 
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Figure 6.5: Velocity plot of the Lax problem with 100 points. 
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Figure 6.6: Pressure plot of the Lax problem with 100 points. 

 

6.2.1.3 Shu-Osher Problem 

The Shu-Osher problem is presented here to model the interaction of a moving shock 

wave with an entropy disturbance given in a sinusoidal form.  Since there is no exact 

solution to this problem, the reference solution is computed using the MP5 scheme with 

1600 points.  The initial conditions are given as follows. 
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The results of the Shu-Osher problem utilizing all four schemes are shown in Figures 6.7-

6.9 using 300 points.  The MP5 scheme results in the best solution with all the local 

minimum and maximum well-resolved. 

 

 

 

Figure 6.7: Density plot of the Shu-Osher problem with 300 points. 
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Figure 6.8: Velocity plot of the Shu-Osher problem with 300 points. 
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Figure 6.9: Pressure plot of the Shu-Osher problem with 300 points. 
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solution for the blast waves problem, the reference solution is computed using the MP5 

scheme with 10,000 points.  The initial conditions of the problem are given below.  The 

domain is separated by three different regions in which the flow variables are specified. 
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Figures 6.10-6.12 show the numerical solution of the blast waves problem with 

600 points.  All schemes are performing well in terms of resolving the contact 

discontinuity.  However, the contact discontinuity computed from the MP3 scheme is not 

as sharp as the others.  This is due to the fact that the MP3 scheme is only third order.  It 

has been shown again that both the WENO and ADERWENO schemes provide identical 

results.  It must be noted that the small pressure region in the middle region may yield 

negative values for pressure and density during the reconstruction.  In order to remedy 

this, we have utilized a flattening algorithm similar to the one given by Balsara et al. 

(2009).  The flattening algorithm is only effective in the vicinity of a strong shock or 

rarefaction.  
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Figure 6.10: Density plot of the blast waves problem with 600 points. 
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Figure 6.11: Velocity plot of the blast waves problem with 600 points. 
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Figure 6.12: Pressure plot of the blast waves problem with 600 points. 
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The numerical solution of the Einfeldt’s problem is shown in Figures 6.13-15.  The 

solution to this problem makes use of the HLLE flux instead of the standard Roe Flux-

Difference Splitting (FDS).  The Roe FDS requires an artificial entropy fix to ensure that 

there is no non-physical solution of the density and energy during the computation.  

 

 

 

Figure 6.13: Density plot of the Einfeldt’s problem with 100 points. 
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Figure 6.14: Velocity plot of the Einfeldt’s problem with 100 points. 
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Figure 6.15: Pressure plot of the Einfeldt’s problem with 100 points. 
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(a) MP3 (b) MP5 

   

(c) WENO (d) ADERWENO 

Color map: 

min max

 
 

Figure 6.16: Density for of the 2-D Sod problem computed on a 256 x 256 grid. 
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The density of the center line is extracted and plotted in Figure 6.17.  The contact 

discontinuity and the shock are well-resolved, and there is no significant difference 

between all the schemes.  

 

 

(a) MP3 (b) MP5 

 

(c) WENO (d) ADERWENO 

Figure 6.17: Density plot of the 2-D Sod problem computed on a 256 x 256 grid. 
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6.2.2.2 Mach-3 Wind Tunnel Problem 

 The next test problem is the Mach 3 wind tunnel with a step also known as the 

Emery problem.  This problem had been utilized by Woodward and Colella (1984) to test 

a variety of numerical schemes.  The whole domain is initialized with Mach-3 flow. 

Reflective boundary condition is enforced on the step.  We also set the upper part of the 

domain to be reflective.  The left and the right boundary conditions are set as in-flow and 

out-flow, respectively.  Special attention is required at the corner of the step since this is a 

singular point of the flow.  The numerical error generated in this region creates a 

numerical boundary layer which can affect the structure of the flow.  Treatment to the 

problem was given by Woodward and Colella by assuming the flow near the corner is 

nearly steady.  However, this fix was not used in this simulation since we want to test the 

robustness of the solver in the case of strong shock and how it handles the singularity. 

Results of the simulation are shown in Figure 6.18 using a 125 x 375 grid.  The 

density contours obtained by four schemes are consistent with each other.  The solution 

computed by ADERWENO scheme shows some oscillation in the contour because the 

ADER scheme used in this work is not TVD.  It can be seen in all the contours that the 

boundary layer generated at the corner is a direct consequence of the Mach stem on the 

upper surface of the step.  However, this problem does not affect the overall structure of 

the flow and can be eliminated simply by increasing the resolution of the grid. 
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(a) MP3 

 

(b) MP5 

 

(c) WENO 
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(d) ADERWENO 

Figure 6.18: Density contour of the Mach 3 wind tunnel problem 

 

6.2.2.3 Shock Diffraction Down a Step 

This test problem is described as the diffraction of a shock wave (M = 2.4) down a 

step (Van Dyke, 1982).  The diffraction results in a strong rarefaction generated at the 

corner of the step which can cause problem of having negative density when performing 

the reconstruction.  The problem is modeled using 27,000 cells with the MP5 scheme.  

The numerical simulation is shown in pair with the experimental images in Figure 6.19.  

The numerical solution is presented as numerical schlieren images which are ideal for 

comparison with experimental images.  It has been shown that the solver was able to 

reproduce the correct flow features in the region of the rarefaction fan. 
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Figure 6.19: Diffraction of a Mach 2.4 shock wave down a step. Comparison between 

numerical schlieren and experimental images 

 

Figure 6.20 demonstrates the numerical solutions obtained from all schemes.  It 

can be shown that the contact discontinuity and several flow features are well-resolved by 

the MP5 scheme resulting in a sharp rarefaction fan at an angle of 60
0
 from the corner of 
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the step.  The solution computed using the ADERWENO scheme also shows instabilities 

in the solution near the region behind the shock which is likely due to the non-TVD 

behavior of the scheme. 

 

    

 (a) MP3  (b) MP5 

    

 (c) WENO  (d) ADERWENO 

Figure 6.20: Numerical solution of the shock diffraction problem. 
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6.3 Reactive Flows 

All the test cases presented in the previous section indicate the superior 

performance of the MP5 scheme over the other schemes.  However, when using the MP5 

scheme, RK time integration is required to obtain a TVD solution.  The performance 

difference between the RK time integration versus ADER method is discussed in chapter 

7.  From now on, all the simulations are performed using the MP5 scheme.  The flow 

solver now is coupled with the kinetics solver in order to model reactive flow. 

6.3.1 One-dimensional Detonation Wave 

The first test case for simulation of reactive flows is the 1-D simulation of a 

detonation wave.  The detonation is started by applying a spark ignition which can be 

described as a high pressure and high temperature region spanning several cells from the 

left side of the domain.  As shown by He (2004), the temperature, pressure and input 

energy of the spark must be sufficient in order to initiate the detonation.  The parameter 

of the spark is taken from He (2004), and the mixture used in this simulation is composed 

of nine species: H2, O2, H, O, OH, HO2, H2O2, H2O and N2 with thirty-eight elementary 

reactions.  The reaction mechanism used for this simulation is given in Appendix A. 

The numerical set-up of the problem is fairly simple.  A 1-D domain of length 30 

cm was used with a simulated spark ignition source of 0.5 cm in length.  The spark 

ignition source has the pressure and temperature of 40 atm and 1500 K, respectively.  

Figure 6.21 shows the pressure profile at five different times: 50, 75, 100, 125 and 150 

micro-seconds.  It can be seen that the peak pressure varies as the detonation wave travels 

downstream as a result of the instability.  The time history of the peak pressure, shown in 



75 

 

 

Figure 6.22, demonstrates the evolution of the oscillatory galloping instability which 

starts at about 20 micro-seconds after the ignition.  Investigation of the instability is an 

on-going research effort (Cole, 2010), and the high-order schemes such as the MP 

schemes presented in this work has proven to be capable of resolving such complex 

phenomenon. 

 

 

Figure 6.21: Pressure profile at five different times of a one-dimensional detonation wave 

computed using MP5 scheme ( mx 10 ). 
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Figure 6.22: Time history of the peak pressure of a one-dimensional detonation wave. 

 

6.3.2 Two-Dimensional Detonation Wave 

The simulation of the detonation wave is extended to two-dimension to test the 

capability of the solver.  One interesting feature observed in this simulation is the 

development of the cellular structure emanated from the detonation wave as a result of 

the chemical reactions.  The 2-D problem is initiated similarly to the 1-D case.  However, 

the spark ignition source is now arranged to introduce a small perturbation to the flow 

field at the initiation of the detonation wave.  

Figure 6.23 shows the numerical schlieren images of the detonation wave at five 

different times.  It can be seen that the cellular structure composed of multiple triple 

points connecting the Mach stem emanated from the shock starts to develop as the shock 

propagates further downstream.  Similar structure has been observed both in experiments 

and numerical simulations and is referred as detonation cells.  
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Figure 6.23: Two dimensional simulation of a detonation wave using MP5 schemes.  



78 

 

 

CHAPTER 7:  PARALLEL PERFORMANCE AND OPTIMIZATION STUDY 

 

7.1 Introduction 

The fluid solver and the kinetics solver have gone through several optimization 

stages.  The optimization strategies implemented in the fluid solver and the kinetics 

solver are detailed with the achieved parallel performance.  Since the fluid solver and the 

kinetics solver are decoupled as a result of operator splitting, different optimization 

strategies have been employed for each solver in order to maximize the performance.  

The performance of the fluid solver and the kinetics solver are presented separately to 

illustrate the efficiency of the optimization.  The overall performance of the solver which 

includes coupling of both the fluid solver and the kinetics solver is also reported.  All the 

results presented in this section are based on double precision calculation.  The 

comparison is made between a NVIDIA Tesla C2050 with one core of an Intel Xeon 

X5650 CPU. 

 

7.2 Optimization the Fluid Solver 

7.2.1 Kernel Types 

In general, there are two types of kernels required for the CFD calculation: cell-

based and face-based.  The cell-based kernels mostly involve solving the equation of state 

(EOS) at each cell as well as updating the flow variables at each cell from the surface 

fluxes.  The face-based kernels are responsible for the reconstruction process and flux 

calculation.  Most of the computationally intensive calculations are placed on the face-
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based kernels.  For example, the reconstruction process requires projecting the 

conservative variables into characteristic space which is done by computing the left and 

the right eigenvectors of the Euler equations. 

The parallelization is done by directly mapping the computational domain to the 

CUDA grid as illustrated in Figure 7.1.  The face values can be mapped the same way 

with a larger grid since the number of faces in each direction is always 1 greater than  the 

number of cells in that direction.  Each CUDA thread can be associated with one cell/face 

inside the computational domain. 

 

 

 

Figure 7.1: Mapping of the computational domain to the CUDA Memory 

 

7.2.2 Domain Decomposition 

 In order to maximize the memory access efficiency, the domain is decomposed 

into one-dimensional stencils of cells/faces where each stencil can be assigned to one 

CUDA block.  Since the computational domain can be up to three-dimensional, one can 

Computational Domain CUDA Grid 
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split the stencil along different directions.  However, since the storage array is always 

placed into linear addressed memory, it is desired to split the stencil so that all the 

components of a stencil are located in contiguous memory space.  For example, if x is the 

fastest varying index of a two-dimensional data array, the stencil is created by splitting 

the domain along the y direction.  As illustrated in Figure 7.2, each stencil is fitted into a 

block and each component of the stencil is associated with a thread.  Since all the threads 

within a block are accessing consecutive memory address, the access pattern is coalesced 

resulting in high memory bandwidth.  The calculation inside the kernel requires a certain 

amount of registers especially for high-order schemes, so the size of the stencil is only 

constrained by the size of the available registers in each warp.  However, within that 

constraint, the size of the block can have an impact on the performance of the kernel. 

 

  

Figure 7.2: Decomposing of the CUDA memory into one-dimensional stencils 

 

7.2.3 Thread-level Parallelism (TLP) and Instruction-level Parallelism (ILP) 

Although coalesced access pattern is very efficient in terms of maximizing the 

memory bandwidth, global memory still remains to be a bottleneck due to high DRAM 

latency.  The most effective way of reducing DRAM latency is to make use of the 
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available shared memory on the SM.  Although this approach is highly recommended 

(Kirk & Hwu, 2010; NVIDIA Corporation, 2010), there are several drawbacks to this 

approach for the problem of modeling a gas/plasma with multiple species/components.  

The number of the components can be quite large for the case of a plasma which results 

in small size stencils due to the constraint of the registers.  If shared memory is utilized, 

the size of the stencil must be further reduced to accommodate the shared memory 

constraint.  This is not an ideal solution for the current problem since the software 

framework is designed to be able to incorporate more complex physics and high-order 

schemes which ultimately increase the size of the problem.  For the current optimization 

study, we attempt to reduce the DRAM latency by exploring two different types of 

parallelisms so-called thread-level parallelism (TLP) and instruction-level parallelism 

(ILP).  Their effects on the performance of the kernel are also examined.  

TLP is obtained by making using of multi-threading to execute an instruction in 

parallel.  This is the core of any HPC platform including CUDA. ILP, on the other hand, 

is measured by the number of independent operations performed within one single thread.   

An example is given below to illustrate the difference between the two. 
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(a) 

 

      

(b) 

Figure 7.3: Examples of TLP and ILP: (a) TLP with no ILP, (b) TLP with ILP 

 

In Figure 7.3a, all the instructions within one thread is dependent, because the 

completion of the previous operation is required before starting the next operation.  This 

is not the case in Figure 7.3b where all the operations can be performed independently of 

each other.  It is usually recommended to maximize the block occupancy in order to hide 

memory latency.  Maximizing the block occupancy also increases the level of TLP within 

a block.  However, as shown by Volkov (2010), ILP can also be used in conjunction with 

TLP to hide memory latency.  Several test cases done by Volkov have confirmed that it is 

sometimes preferred to maximize the ILP instead of the TLP in order to achieve high 

performance.  The general strategy for approaching the optimized block size for each 

problem is based on the balance of both of the ILP and TLP.  For kernels with low ILP 

instructions, the occupancy should be increased to maximize the TLP.  In contrast, 
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kernels with high ILP should have a low occupancy in order for the thread to maximize 

the use of the registers to cover for the memory latency.  Figure 7.4 below further 

illustrates this point by showing the two representative kernels of the fluid solver in terms 

of their performance and the block size.  The normalized kernel time is measured using 

the CUDA profiling tool. 

 

 

Figure 7.4: Normalized kernel time for two representative kernels. 
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reconstruction procedure can be performed independently for each characteristic variable.  

This reflects a high amount of ILP which explains why this kernel is performing better at 

low occupancy.  The ResetDivergence kernel, on the other hand, determines the 

divergence factor of each face and reduces the face values to first-order solution if the 

flow is in a vicinity of a strong shock or rarefaction.  This can also be seen as an ILP 

type; however, the number of independent instructions in this case is low, so maximizing 

the TLP will improve the performance of the kernel.  This is shown in Figure 7.4 where 

the best performance of this kernel corresponds to the maximum occupancy factor. 

To further demonstrate the importance of selecting the block size, Figure 7.5 

below shows the computational speed-up achieved using different configurations of block 

size for a 2-D simulation.  It can be shown that neither low nor high occupancy level 

would result in the peak performance.  The optimized performance comes about the 

balance of the TLP and ILP in each kernel to yield the optimal block size.  It must be 

noted that for most of the cases presented here, the low occupancy set of block size 

performs slightly better than the high occupancy one, because most of the kernels used in 

the solver have more ILP than TLP types of operations.  

 

 



85 

 

 

 

Figure 7.5: Performance of a 2-D fluid solver utilizing different sets of block size. 

 

Figure 7.6 shows the performance comparison of a 2-D simulation of an ideal gas 

utilizing two different time integration methods.  The first method is to use the TVD RK 

time integration, and the second one is to utilize the state expansion version of the ADER 

method to achieve the same order of accuracy.  Both schemes are 5
th

 order in space and 

3
rd

 order in time.  The maximum speed-up obtained for the fluid solver using RK method 

is about 30 times faster than the CPU version.  It is clearly shown that the ADER method 

outperforms the RK method (56 times faster than CPU).  The reason for the difference is 

based on the fact that the RK integration has a sufficient amount of overhead due to the 

memory transfer and application of the boundary conditions at every RK step. 
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Figure 7.6: Performance of the fluid solver utilizing the RK time integration method and 

ADER method. 
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Jacobian matrix and the right-hand-side vector.  After the reduction, the solution can be 

obtained from backward substitution. 

The solution of the kinetics problem must be computed at each cell for each time 

iteration associated with the flow solver.  This is clearly a computational intensive 

calculation which can be benefited from the GPU.  The kinetics solver is implemented to 

take advantage of the shared memory to avoid global memory access.  There are several 

advantages in utilizing the shared memory in this case.  The reduction and substitution 

are considered serial operations since they can only be done at one row of the Jacobian 

matrix at a time.  In addition to the arithmetic operations, the reduction process also 

requires multiple read and write operations to modify all the entries of the Jacobian 

matrix.  Computing the Jacobian matrix directly on global memory would significantly 

affect the parallelism of the kernel due to the high amount of DRAM access especially in 

the case of a large size matrix.  In order to avoid this situation, we store all the entries of 

the Jacobian matrix and the right-hand-side (RHS) vector in shared memory.  The 

memory traffic can be effectively reduced in this case; however, the size of the matrix is 

now restricted by the size of shared memory.  In order to maximize the use of shared 

memory, the domain is now mapped to the CUDA grid such that each block is 

responsible for one system.  This is similar to the mapping procedure shown in Figure 7.1 

except that each entry of the CUDA grid now represents a block.  The performance of the 

kinetics solver is shown in Figure 7.7. 
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Figure 7.7: Performance of the kinetics solver utilizing shared memory.  

 

The kinetics solver is tested with different domain sizes.  It is shown in the figure 
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7.4 Overall Performance of the Solver 

The overall performance of the fluid solver when coupling to the kinetics solver is 

very promising as demonstrated in Figure 7.8.  It must be noted that the computation time 

in this simulation is dominated by the kinetics solver, so the overall performance of the 

solver should be close to the performance of the kinetics solver.  The simulation done in 

this case is for a thermally perfect gas consisting of 9 species.  The reaction mechanism 

used for the chemical kinetics includes a total of 19 elementary reactions and their 

reverse processes.  Detail of the mechanism is listed in Appendix A.  The simulation was 

done using both the RK time integration and ADER methods.  The performance of the 

kinetics solver is also shown in the graph for comparison purpose.  

 

 

Figure 7.8: Performance of a 2-D simulation of chemically reacting flow on the GPU.  
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The result of the reactive flow simulation is consistent with the ideal gas case.  

Since ADER scheme only requires single-stage time integration, the overhead associated 

with the memory transfer between host and device is eliminated.  The speed-ups obtained 

in both methods are consistent with each other.  Result obtained from the simulation 

using ADER scheme is about 20% faster than RK method.  The performance of the 

reactive flow simulation is lower than in the case of an ideal gas since the computation 

time is dominated by the chemical kinetics.  It must be noted that the simulation 

performed here only consists of 9 species, so the size of the matrix in the kinetics 

calculation is only 10.  Better performance of the solver can be expected for simulation 

with a larger reaction mechanism (e.g., large number of species and reactions). 
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CHAPTER 8:  CONCLUSION 

 

8.1 Conclusion and Accomplishments 

A numerical framework for modeling reactive flow phenomena has been 

developed utilizing modern GPU architecture.  The solver incorporates several high-order 

numerical schemes for finite volume method and is coupled with an implicit solver for 

the chemical kinetics.  The fluid solver and the kinetics solver are optimized for parallel 

performance and efficiency.  Performance tests show that the current solver is 10 times 

faster than the CPU for the simulation of a 9-species gas mixture, and could possibly be 

higher for larger test problems. 

The solver is benchmarked with a variety of standard test cases and has shown to 

be very capable of simulating both reactive and non-reactive fluid flows.  The design of 

the solver is based on an object-oriented framework, which provides certain advantages 

in flexibility and extensibility.  The solver can be easily extended to incorporate more 

physical processes as well as simulating problems with large data structure (e.g., ionized 

gas/plasma). 

 

8.2 Recommendation for Future Work 

The solver can be improved both in terms of capability and performance.  The 

object-oriented design offers an easy way of incorporating new modules to the solver.  

For instance, since the basic structure for the kinetics solver has been established, 

extension from chemical kinetics to ionization kinetics should be achievable.  In addition, 
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it is also possible to couple the current fluid solver with a particle solver (Particle-in-Cell, 

Direct Simulation Monte-Carlo) to perform hybrid modeling.  

The performance of the solver can also be improved by extending the solver to 

support multiple GPU which requires the use of MPI to perform boundary exchange 

between the GPUs.  The extension should be straight forward since most optimization 

issues have already been resolved.  
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APPENDIX A – REACTION MECHANISM FOR THE REACTIVE FLOW TEST 

 

Reaction 

number 

Reaction 

1 H + O2        => O + OH 

2 O + H2        => H + OH 

3 H2 + OH       => H + H2O 

4 OH + OH    => HO + O 

5 H + OH   + M   => H2O     + M 

6 H + H    + M   => H2      + M 

7 H + O    + M     => OH      +  M 

8 2O    + M        => O2      + M 

9 H2 + O2        => HO2 + H 

10 H + O2   + M => HO2  + M 

11 H + HO2        => OH + OH 

12 H + HO2      => O + H2O 

13 O + HO2      => O2 + OH 

14 OH + HO2    => O2 + H2O 

15      H2O2   +   M   => OH + OH + M 

16 HO2 + HO2    => H2O2 + O2 

17 H + H2O2     => H2 + HO2 

18 O + H2O2      => OH + HO2 

19 OH + H2O2     => H2O + HO2 
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