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ABSTRACT 

FLOW CYTOMETRIC ANALYSIS OF PHYTOPLANKTON VIABILITY IN 
ELKHORN SLOUGH, CALIFORNIA 

by Sarah R. Smith 

The phytoplankton community structure of Elkhorn Slough was characterized 

flow cytometrically and found to be dominated in the upper reaches by small 

cryptophytes (< 5 jxm) and picoeukaryotic phytoplankton (< 3 urn). Cell-specific 

viability of the small cryptophyte population was quantified along a 5 km transect from 

the mouth to the shallow upper reaches of Elkhom Slough using fluorescein diacetate 

(FDA). Corroborative viability techniques, including SYTOX Green stain and cell 

digestion assay, were determined to be inappropriate for use in Elkhorn Slough due to 

indiscriminate staining of suspended particulates and incompatibility with cell target 

material. Viability analysis with FDA revealed a higher fraction of active cryptophyte 

cells in the upper reaches, the area of their dominance, and a lower fraction of active cells 

in the lower slough. It was concluded that cell death (as defined by a lack of FDA-linked 

esterase enzyme activity) is an important force structuring the phytoplankton community 

of Elkhorn Slough. 
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INTRODUCTION 

Planktonic, photosynthetic microorganisms fuel food webs, affect global climate 

through production of oxygen and consumption of carbon dioxide, and influence 

biogeochemical cycling of elements such as nitrogen, phosphorus, and silica. Because of 

this important role in both marine and freshwater systems, much research attention has 

been focused on studying rates of microalgal growth, production and mortality 

(Kirchman 1999, Bidle and Falkowski 2004, Franklin et al. 2006). 

Until recently, the only major sources of phytoplankton loss were considered to 

be grazing and sinking and it was otherwise assumed that cells would divide indefinitely 

(Kirchman 1999). However, the paradoxical observation of "crashing" algal cultures and 

the inability of researchers to balance the algal growth equation with losses from grazing 

and downward flux alone have long suggested that there may be additional sources of 

phytoplankton mortality (Walsh 1983, Franklin et al. 2006). 

Recent advances in understanding phytoplankton loss include the discovery of an 

auto-mortality pathway in phytoplankton and of high loss rates due to viral lysis (Agusti 

et al. 1998, Berges and Falkowski 1998). These studies confirm that grazing and 

downward flux are not the only significant loss terms for phytoplankton and highlights 

cell death as a force in controlling population dynamics of phytoplankton. A complete 

awareness of the forces structuring phytoplankton communities in the ocean must 

incorporate an assessment of in-situ physiology if we are to truly appreciate the role of 

phytoplankton in these systems. Unfortunately, there are relatively few studies that 
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measure the magnitude of cell death or prevalence of dead cells in nature (Hayakawa et 

al. 2008). There is increased recognition that quantifying and understanding unicellular 

viability in nature is important to understand environmental processes, yet it is practically 

challenging for several reasons (Porter et al. 1997, Joux & Lebaron 2000, Veal et al. 

2000). 

Microorganism viability is generally defined by both the ability to divide and be 

metabolically active (Nebe-von Caron and Badley 1995, Joux and Lebaron 2000). 

However, traditional methods designed to estimate the quantity of live cells in a given 

population rely solely on laboratory incubations of cells in growth medium, e.g., most 

probable number (MPN) technique (Rowe et al. 1977, Woomer et al. 1990). This growth 

approach is often inadequate since the cells that proliferate under typical laboratory 

conditions may not be representative of the community or its in-situ activity. 

For example, in marine systems only 0.1-1% of total bacteria typically grow and 

form colonies on agar plates, a phenomenon which is described as the "great plate count 

anomaly" (Staley & Konopka 1985). The most simple explanation as to why the 

remaining 99-99.9% of bacterial cells do not form colonies is that the cells are dead. 

However, more rigorous and careful culturing methods have allowed up to 60% of total 

marine bacterial cells to be cultivated suggesting that rather than dead, these cells don't 

grow under the conditions provided in the laboratory (Connon and Giovannoni 2002, 

Button et al. 1993). Since culture methods introduce a bias that skews the interpretation 

of the physiological activity of cells in nature, assays of other vital characteristics that can 

be quantified in-situ are more desirable. 
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Metabolic activity or "vigor" of natural phytoplankton communities is most often 

measured through indicators of photosynthetic activity such as oxygen evolution or I4C 

incorporation (Peterson 1980). These measurements are bulk rates and have formed the 

basis of much of what we know about ocean function, yet they lack specificity to any 

functional group within the autotrophic fraction of the plankton. More specificity can be 

obtained by measuring the rate of 14C incorporation into taxonomically significant 

pigments (Goericke and Welschmeyer 1993). While these measurements are specific and 

can yield valuable information about how communities and ecosystems are structured, 

obtaining the measurements can be complicated and requires a high level of expertise. 

Furthermore these pigment-specific rates contain no information on heterogeneity within 

a given population since the rate is integrated for the whole community containing a 

given pigment. 

Achieving taxonomic specificity for physiological measurements such as growth 

rate, production, activity and death remains a challenge in environmental microbiology. 

Single cell analyses, through the use of the microscope or with flow cytometry provide a 

direct way to make inferences about physiology at the cellular level (Collier 2000). 

Though many potential single-cell in-situ physiological assays exist such as 

autoradiography, estimates of RNA: DNA ratios, resistance to enzymatic digestion, and 

vital dyes, none is entirely straightforward, universal nor well accepted (Veal et al. 2000). 

Currently, the most frequently used method and arguably most direct method is the use of 

vital stains. 
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Vital stains are dyes that discriminate live and dead cells in a given population 

based on a variety of proxies of viability such as membrane integrity or metabolic activity 

(esterase enzyme activity; respiration). Vital stains have been primarily developed for 

use in human health-related research on cell cultures maintained in stable laboratory 

conditions where tests verifying the performance and validity of the live/dead score are 

easily conducted. Unfortunately, environmental variability in natural types of 

microorganisms in addition to complex physical and chemical environments renders 

many vital dyes unsuitable (Agusti & Sanchez 2002). In addition, many vital stains are 

not suitable for use with phytoplankton due to interference with chlorophyll 

autofluorescence (Table 1). 

No comprehensive studies have been conducted that systematically test the 

performance of the variety of vital stains on phytoplankton viability, yet these assays are 

beginning to be used routinely in toxicological and other applied studies (Gilbert et al. 

1992, Franklin et al. 2001, Regel et al. 2002). The most commonly employed vital stains 

for viability detection in phytoplankton are fluorescein diacetate (FDA) and SYTOX 

Green (Figure 1). FDA is a non-fluorescent enzyme substrate that diffuses across the 

cellular membranes of both live and dead cells. In the cytoplasm of active cells, non

specific esterase enzymes cleave the FDA molecule into a green fluorescent product, 

allowing for the discrimination of esterase active and inactive cells. Inactive cells, those 

without enzymatic activity, remain non-fluorescent. SYTOX Green is a fluorescent polar 

molecule that is impermeant to live cells. It penetrates the compromised cell membrane 

4 
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of dead cells and binds to double-stranded DNA, causing the nucleus of dead cells to 

fluoresce green (Roth 1997, Veldhuis 2001). 

Out of 61 studies published since 1988 measuring phytoplankton viability, only 

seven measure viability of environmental populations where variables such as particle 

load, cell diversity, culture age and stain conditions (pH, temperature, salinity) cannot be 

easily controlled (Table 2). These factors are known to alter the performance of some 

vital stains and as a result only one of these field studies used a stain method (SYTOX 

Green, Veldhuis et al. 2001). The remaining six studies used the cell digestion assay, a 

non-stain method that involves the exposure of cells to a cocktail of enzymes that digests 

and removes dead cells with compromised outer membranes (Darzynkiewicz et al. 1994, 

Agusti and Sanchez 2002). One of the principal advantages of the cell digestion assay is 

the ease of data interpretation due to limited background staining, rendering it more 

useful in environments with high particle loads. 

Table 2. Studies quantifying viability of natural phytoplankton communities. 
Source Title 

Cell death in phytoplankton: correlation between changes in 
Veldhuis et al. 2001 membrane permeability, photosynthetic activity, pigmentation 

and growth 
Agusti & Sanchez Cell viability in natural phytoplankton communities quantified 
2002 by a membrane permeability probe 

t ' 1(\(\A Viability and niche segregation of Prochlorococcus and 
° Synechococcus cells across the Central Atlantic Ocean 

Agusti et al. 2006 Cell death in lake phytoplankton communities 
Llabres and Agusti Picoplankton cell death induced by UV radiation: Evidence for 
2006 oceanic Atlantic communities 
Alonso-Laita and Contrasting patterns of phytoplankton viability in the 
Agusti 2007 subtropical NE Atlantic Ocean 
Hayakawa et al. Differences in cell viabilities of phytoplankton between spring 
2008 and late summer in the northwest Pacific Ocean 
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Flow cytometers are ideal instruments to detect vital staining since they are used 

to quantitatively analyze light scatter and fluorescence properties of individual cells in 

suspension (Collier 2000, Veal et al. 2000). Flow cytometers hydrodynamically focus a 

sample stream with sheath fluid allowing data to be obtained for a single cell. When the 

data are plotted, generally biparametrically, similar cell types cluster together distinctly 

allowing for discrimination of optically discrete populations. In environmental samples it 

cannot be assumed that optically discrete populations are composed of a single taxon 

since it is possible that several taxa may be of the same type and will cluster together. 

This occurrence must be taken under consideration during experimental design and data 

interpretation especially when analyzing field data. These instruments are optimized to 

count particles at a maximum rate of 800 events s"1 or in the range of 105 - 107 cells ml"1 

and the minimum cell concentration required is approximately 500 cells ml"1 (Collier 

2000, Marie et al. 2005). In complex environmental samples where particulates and 

sample diversity can be high, higher minimum cell densities (~2xl04 cells ml"1) may be 

necessary to visually discriminate a population cluster from background noise. 

Flow cytometry allows for accurate determination of cell concentration of a wide 

variety of cell types and has been frequently used in oceanography since the 1980s 

(Legendre et al. 2001). The most important discovery involving the use of flow 

cytometry in oceanography to date is the detection of the globally abundant and 

significant cyanobacterium Prochlorococcus (Chisholm et al. 1988). Characterizing the 

distribution and abundance of microorganisms has been the main focus of oceanographic 

studies utilizing flow cytometry thus far. Unfortunately these data ignore the functional 
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role of these cells and assume that presence indicates some degree of health and growth. 

It is currently unknown whether dead cells comprise a large fraction of the observed 

abundance profiles in many environmental populations, yet there is evidence that a large 

fraction (up to 88%) of cells in nature may be dead (Veldhuis et al. 2001, Agusti 2004, 

Hayakawa et al. 2008). 

To understand the role of cell death in phytoplankton dynamics, viability must be 

quantified over a temporal or spatial gradient in which the phytoplankton community is 

variably structured. Unfortunately there are very few environments in which 

phytoplankton communities are structured so predictably as to allow investigation of the 

relationship between abundance and viability. Elkhorn Slough (central California) is 

characterized by a predictable and persistent phytoplankton community structure gradient 

that was discovered and characterized during a 5-year monitoring study funded by the 

Sanctuary Integrated Monitoring Network (SIMoN). The upper reaches of Elkhorn 

Slough were revealed to be nearly completely dominated by cryptophyte algae as 

evidenced by high ratios of their signature carotenoid pigment alloxanthin to total 

chlorophyll a (Chi a; Figure 2; Welschmeyer and Younan unpubl. ). The relative 

contribution of alloxanthin to the total photosynthetic biomass (Chi a) decreases towards 

the slough mouth. The opposite pattern was documented for the diatom carotenoid 

fucoxanthin, indicating a shift in community structure from diatom-dominated coastal 

lower reaches towards a cryptophyte dominated inland regions. 

Cryptophytes are eukaryotes that range in size from 3 to >50 urn and are found in 

freshwater, brackish and marine environments (Klaveness 1989). They are thought to be 

9 
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most dominant and successful in areas of attenuated light and high dissolved organic 

matter (DOM) since they are physiologically adapted to these conditions (Bergmann 

2004). Cryptomonads are exceedingly complex in their evolutionary history and are 

considered to be chimaeras of a red alga and an unidentified host eukaryote (Cerino & 

Zingone 2007). Most of the research attention paid to cryptophyte algae has focused on 

understanding their evolutionary significance and the process of the secondary 

endosymbioses that have resulted in the strains present today. Cryptophytes or "hidden" 

algae are difficult to preserve, are often not abundant and are difficult to identify due to a 

variety of morphological characteristics (Gieskes and Kraay 1983, Cerino and Zingone 

2007). Consequently there is a dearth of research on the role of cryptophytes in microbial 

ecology and a lack of understanding about the forces structuring their abundance 

(Bergmann 2004). 

In Elkhorn Slough, the pattern in cryptophyte abundance and distribution was 

found to be seasonally persistent yet discrepant with regard to variability in nitrate, 

temperature and salinity (Welschmeyer and Younan unpubl.). The upper Elkhorn Slough 

is characterized by low light levels and high levels of DOM which are the environmental 

conditions under which cryptophytes are expected to thrive (Bergmann 2004). It was 

hypothesized that these environmental conditions present in upper Elkhorn Slough 

promote optimal growth of cryptophyte algae thereby allowing them to outcompete other 

phytoplankton. Further, it was expected that healthy and vital cryptophytes would be 

found in the upper reaches of Elkhorn Slough and that the transition away from these 

conditions would be marked by an increase in cell death (decreased viability) thus 

11 



allowing successful competition from other autotrophs. The principal objective of this 

thesis is to quantify population-level viability across a gradient in cryptophyte abundance 

to determine if the upper Elkhorn Slough phytoplankton community is structured by 

factors influencing cell death. 

In order to quantify viability of a specific taxonomic fraction, population-specific 

measures such as the use of vital stains are imperative. Single cell specific vital assays 

(vital stains, cell digestion) are the most direct methods available to discriminate live and 

dead cells. Flow cytometry was chosen for use in Elkhorn Slough since the high particle 

load and sensitivity of the vital assays and cryptophyte cells to fixation and filtration 

render microscopy inappropriate. First, the target populations whose patterns in cell 

density are concomitant with the observed pigment pattern were located flow 

cytometrically. Second, a suitable viability assay protocol was established for the natural 

target populations. Lastly, patterns in viability of the identified target population were 

quantified to determine the extent of cell death as a structuring force in the Elkhorn 

Slough. 
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MATERIALS AND METHODS 

I. Sampling 

Surface water samples were collected in darkened 1.0 L polycarbonate bottles 

(rinsed three times at each station before filling) at ten sites in the main channel of the 

Elkhorn Slough (Figure 3); stations were distanced approximately 1 km from one another 

(Table 3). 

Figure 3. Sanctuary Integrated Monitoring Network (SIMoN) sampling stations (1-
10) in Elkhorn Slough. Sampling stations were established by the Monterey Bay 
National Marine Sanctuary funded SIMoN program (2002-2007). 

Temperature, salinity, and photosynthetically active radiation (PAR) were 

measured at each station using a SBE 19 SEACAT Profiler CTD (Sea-Bird Electronics, 

Inc.) equipped with a 47t-quantum sensor (LI 193, Li-Cor). Flow cytometric analysis of 

phytoplankton community composition and viability was conducted on fresh samples. 
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Table 3. Sampling coordinates. Samples were stored until analysis at 

13°C. Algal pigment samples and nutrient 

samples were prepared and archived, though 

not analyzed for this study. Within 24 

hours, water samples were filtered onto 

Whatman GF/F filters and stored in liquid 

N2 for pigment analysis. Filtrate from GF/F 

filters was stored at -20°C for nutrient 

analysis. Aliquots from the nutrient 

samples were removed for DOM analysis 

using fluorometric technique; specifically, 

using marine shallow transitional 

excitation/emission DOM maxima (310/423 nm) as described by Coble (1996). 

Additional samples were collected occasionally from the dock at Kirby Park (N 36° 

50.430' W 121° 44.894') for size fractionated chlorophyll a (Chi a), flow cytometric and 

microscopic analysis. See Table 4 for sampling dates and analyses conducted. 

Station 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Coordinates: WGS84 
N 36° 48.558' 
W 121° 47.155* 
N 36° 48.749' 
W 121° 46.462' 
N 36° 48.872' 
W 121° 45.951' 
N 36° 48.809' 
W 121° 45.449' 
N 36° 48.975' 
W 121° 44.892' 
N 36° 49.337' 
W 121° 44.744' 
N 36° 49.753' 
W 121° 44.587' 
N 36° 50.178' 
W 121° 44.505' 
N 36° 50.430' 
W 121° 44.894' 
N 36° 50.641' 
W 121° 45.234' 

II. Flow cytometric analysis 

A Becton-Dickinson FACSort flow cytometer equipped with a 488 nm argon-ion 

laser was used for all flow cytometric analysis. Barnstead NANOpure water was used as 

sheath fluid. All seawater samples were prefiltered with 73 um Nitex mesh to prevent 

clogging of the sample intake. Data were acquired with CellQuest software. Typical 
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settings for larger phytoplankton cells were FSC: E-01, SSC: 200, FL1: 500, FL2: 400, 

FL3: 300 and were all collected in logarithmic mode with threshold set on FL3 at 52 

(identified as A settings; Table 5). Smaller cells were enumerated and characterized at 

FSC: E00, SSC: 300, FL1: 500, FL2: 750, FL3: 450 and were also collected in 

logarithmic mode with threshold set on FL3 at 52 (B settings). Settings were adjusted 

slightly if necessary. 

Table 5. Commonly used flow cytometer settings. The A settings were used for large 
phytoplankton cells and B settings for smaller cells. All channels set in log mode. 

FSC 
SSC 
FL1 

FL2 

FL3 

Detector 
Forward (180°) light scatter 
Side (90°) light scatter 
Green Fluorescence 
530/30 nm 
Orange Fluorescence 
575/26 nm 
Red Fluorescence 
Long Pass 650 nm 

A Settings 
Voltage 

E-l 
200 

500 

400 

300 

Threshold 
-
-

-

-

52 

B Settings 
Voltage 

EOO 
300 

500 

750 

450 

Threshold 
-
-

-

-

52 

To ensure the coincidence threshold was not crossed the event rate was kept under 

800 cells s"1 (Marie et al. 2005). Flow rate was adjusted depending on the particle 

concentration and both the low flow setting (approx. 12 p.1 min1) and the high flow 

setting (approx. 60 ul min"1) were used as deemed appropriate. Flow rate was calibrated 

by the liquid-volume procedure outlined in (Marie et al. 2005) to eliminate the need for 

calibration with fluorescent microspheres. Data analysis was conducted with CellQuest, 

CYTOWIN (version 4.31) and FCS Express V3 software. 
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Elkhorn slough phytoplankton populations were gated and counted on the basis of 

chlorophyll autofluorescence (FL3) and orange phycobilin autofluorescence (FL2). 

Large cells could easily be discriminated from other particles on the basis of forward 

scatter, side scatter, chlorophyll fluorescence and orange fluorescence. In the two 

populations of small cells present in Elkhorn Slough, identified as small cryptophytes and 

picoeukaryotes, only the small cryptophytes were easily discriminated using forward 

scatter and side scatter, and chlorophyll and orange fluorescence signals. Picoeukaryotes 

and Synechococcus could only be discriminated on the bases of orange fluorescence 

(FL2) having otherwise identical chlorophyll fluorescence and forward scatter and side 

scatter signals (Figure 4). 

o 
a &> o 
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o 

ir 
a 2 o 
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~i—I I \ ,....r-.1-1—|—|—!—|—|—|—|—i—,—i—|—|—!—j—i-

Picoeukaryotes ..;. ' 
and Synechococcus. - - -=-- -_ _ '-

'.••••'[• ^Sf j igp l sV ' ' / • ' . ; - : ! - ' : / : " • .•.'••. 

^ _ J I 1—1 I—I—I—L_l- • • I 

Forward Scatter 
J _ I 

r_ Synechococcus 

~1—r-i—I—I—|—pi—n—i—i—r. | i 1 i I i i i i (. 
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Chlorophyll Fluorescence 

Figure 4. Discrimination of picoeukaryotes and Synechococcus using phycobilin 
fluorescence. Data represent a single file plotted in to depict 1) a single population and 
2) separate populations discriminated on the basis of phycobilin fluorescence. Axes are 
arbitrary fluorescence or light scatter units depicted on a log scale. Chlorophyll 
fluorescence determined from the red emission detector (FL3); phycobilin fluorescence 
determined from the orange emission detector (FL2). 
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III. Size fractionation analyses 

a. Chlorophyll a (Chi a) analysis 

Seawater was filtered onto Whatman GF/F filters (nominal pore size 0.7-um) and 

polycarbonate filters with 10-um, 5-um, and 3-um pore sizes. Filtration was non

sequential meaning that the filtrate from each filter was discarded rather than analyzed 

and raw water was filtered onto each size filter. Pigments were extracted in 1.2 ml of 

90% acetone and stored at -20°C for a minimum of 24 hours. The extract was analyzed 

with a TD-700 fluorometer (Turner Designs). Chi a content of each size fraction was 

calculated by subtracting the measured Chi a concentrations [chla] in the larger fractions. 

Equations are shown below. 

[chla]i0(im= [chlajioum (1) 

[ C h i a s m ^ 10nm = [ C h i a s m - [Chlfl]lOum (2) 

[ch la ] .^ ^ 5^m = [chla]3tlII1 - [chla]5(im - [chlajioum (3) 

[chla]0 

•7nm -> 3nm [chla]GF/F- [chiasm - [chiasm - [chiasm (4) 

b. Flow cytometric and microscopic analysis 

Seawater was filtered through the following filter sizes (73-um, 10-um, 5-um, 3-

um and 1-um). The filtrate was then characterized and enumerated flow cytometrically 

to determine what size filter excluded each population present in the sample. The same 

filtrate was then fixed with glutaraldehyde (2%) and filtered onto 0.4-um polycarbonate 
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filters for epifluorescent microscopic visualization and identification of phytoplankton in 

each size class. 

IV. Vital assays 

a. Cell digestion 

Stock solutions of DNAse I (800 ug ml'1 in HBSS without phenol red) and trypsin 

(2% in HBSS without phenol red) were made following Agusti and Sanchez (2002) and 

kept frozen at -20°C until use. The cell digestion method was applied by adding 200 ul 

of DNAse I to 1 ml of sample and incubating for 15 min at 37°C. Then 200 ul of the 

trypsin solution was added to the sample tube and incubated for another 30 min. The 

enzymatic digestion was stopped by placing samples on ice. Enzymes were obtained 

from Sigma-Aldrich (DNAse I: DN25-100mg, trypsin T9201-500mg, HBSS H-1347). 

Fractions viable were determined from counts of digested samples divided by counts of 

undigested replicate samples. 

b. SYTOX Green 

SYTOX Green commercial stock is available in 5 mM concentration in DMSO 

(S7020, Invitrogen). A working stock (50 uM in DMSO) was made and stored at -20°C. 

SYTOX Green was added to a final concentration of 0.5 uM (10 ul working stock to 990 

ul sample) and incubated in the dark at room temperature for approximately 15 min 

(Timmermans et al. 2007, Veldhuis et al. 2001). SYTOX Green is proprietary and the 

cost at the time of writing is published as $174 for 250 ul. At the final concentration of 
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0.5 uM and 1 ml samples, this translates to a cost of $0.07 sample" . Populations were 

gated on the basis of forward scatter and chlorophyll fluorescence and staining was 

quantified in the green fluorescence channel. 

c. Fluorescein Diacetate (FDA) 

FDA can be obtained in small gram quantities from a variety of sources (MW = 

416.39). A concentrated working stock was made (50 mM) by adding 0.1041 g to 5 ml 

of DMSO. Then, 20 ul of this working stock was added to 980 ul of DMSO to make a 1 

mM final working stock. This final working stock was added to a sample for a final 

concentration of 10 uM. Samples were incubated at room temperature and light 

conditions, though bright light was avoided. Various incubation times were tested and 

optimal incubation time for natural samples was determined to be a 3-7 min. The effect 

of working stock age was tested on staining ability and it was determined that there were 

no differences between the staining ability of fresh 1 mM final working stocks and 6 

month-old stocks (data not shown). The cost of FDA at the time of writing ranged from 

$18.08 g"1 (Fisher Scientific) to $64 g"1 (Invitrogen). At the final concentrations used of 

10 uM with 1 ml samples, the cost is $0.02 to $0.06 per 100 samples. 

Only small cells were measured for vital stain uptake due to limited densities of 

large cells during viability analysis. For stain uptake analysis, small cells were gated on 

the basis of forward scatter (FSC) and chlorophyll autofluorescence (FL3) as the spectral 

overlap from the increase in green fluorescence (FL1) impaired the gating of the target 

population on the preferred plot (FL3 vs. FL2; Figure 4). This precluded the stain uptake 
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analysis of picoeukaryotes, as FL2 was the only parameter allowing for the distinction of 

picoeukaryotes and Synechococcus. 

V. Vital stain protocols, performance and verification 

There are relatively few instances where vital assays have been used with 

phytoplankton and even fewer instances in which the result they yield (fraction live and 

dead) has been verified with measures of either growth or metabolism. Therefore a series 

of experiments were devised to test and optimize assay protocols. 

a. Killed phytoplankton experiments 

Cultures of Dunaliella sp. (obtained from J. Smith, Moss Landing Marine 

Laboratories) were killed by exposure to ultraviolet light (16 J m"2 or 5,000 uJoulesxlOO 

for a 20 cm diameter dish) from a Stratagene Stratalinker UV Crosslinker 2400. The UV-

killed cells were used to serially dilute fresh culture to yield variable fractions of live and 

dead cells. In two experiments, the fractions live and dead were assessed with SYTOX 

Green and then simultaneously assessed for photosynthetic activity as measured by 14C 

incorporation (Peterson 1980). In a third experiment, fractions live and dead were 

assessed only with SYTOX Green and the cell digestion assay in order to compare the 

results obtained with each. 
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b. Natural cell death: Senescent culture experiments 

Three cultures of Dunaliella sp., Phaeodacytulum sp. (obtained from J. Smith, 

MLML) and Cryptomonas sp. (UTEX; LB2423) were sampled in batch culture stationary 

growth phase and analyzed with the cell digestion assay and SYTOX Green to compare 

the results obtained with both assays under a "realistic" scenario of cell death. 

Presumably all three cultures had high fraction dead cells due to nutrient starvation. The 

cell digestion assay requires a 45 min incubation at 37°C and a subsequent termination on 

ice. Agusti and Sanchez (2002) note that this element of the assay alone may be stressful 

on cells as the heat and ice element of the protocol may lyse cells independent of 

digestion artificially increasing the numbers of dead cells. Therefore samples analyzed 

for cell digestion included an undigested control, a heat treated control and a digested 

sample. 

Batch culture experiments were also conducted. The cryptomonad, Chroomonas 

sp. (CCMP269), was seeded into K medium and grown on a 12:12h L:D cycle under 

continuous stirring. It was monitored flow cytometrically every 2-4 days over the growth 

cycle for cell concentration and viability as determined with SYTOX Green and FDA. 

c. Environmental samples 

SYTOX Green, FDA and cell digestion were all applied to environmental samples 

to assess potential unforeseen complications such as non-specific background staining or 

signal interference. Use of the cell digestion assay was evaluated on environmental 

samples to determine if there were adverse effects of the 37°C incubation on cell 
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concentration independent of digestion. SYTOX Green and FDA were also applied to 

Tetraselmis sp. culture (Reed Mariculture) that had been inoculated with test dust 

(Powder Technology Inc. course and medium test dust) which is routinely used to mimic 

ballast water and obscure detection of organic particles and was used here to determine 

the level of non-specific background staining with SYTOX Green. 
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RESULTS 

I. Characterization of physico-chemical conditions 

Temperature, salinity, dissolved organic matter (DOM) levels and light intensity 

measured during the sampling period from 21 February 2007 - 25 June 2008 are 

summarized in Figures 5, 6, 7 and 8. For sampling dates refer to Table 4. Temperature 

varied from a low of 9.8°C (Station 1, 10 June 2008) to a high of 21.8°C (Station 10, 19 

May 2008). The average temperature was 12.87 (±SD 1.91) and 16.85 (±SD 2.67) at 

stations 1 and 10 respectively (n=16). Horizontal temperature stratification was 

seasonally variable and was stronger in the non-winter (March - October) months (Figure 

5). Salinity varied from 26.6 PSU (Station 10, 25 February 2008) to 37.1 PSU (Station 

10, 10 June 2008). The average salinity was 33.97 (±SD 0.53) and 33.47 (±SD 2.90) at 

stations 1 and 10 respectively (n=16). Horizontal stratification (from stations 1-10) was 

generally moderate (average maximum observed difference minus minimum observed 

difference = 2.0) except following rainfall in which the upper slough became hyposaline 

relative to the lower slough (Figure 6). In the summer months, the upper slough became 

hypersaline. 

DOM was on average 6.98 times higher (± SD 2.11, n = 14) in the upper slough 

than the lower slough (calculated as the maximum observed value minus the minimum 

observed value within a cruise). The maximum observed ratio of upper slough DOM to 

lower slough DOM was 10.02 (19 May 2008, between stations 2 and 9) and the minimum 
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Figure 5. Temperature (°C) at each station for all sampling dates (2/21/2007 -
6/25/2008). 
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Figure 6. Salinity (PSU) at each station for aU sampling dates (2/21/2007 
6/25/2008). 

25 



u a 
a 

u 

o 

o 
Q 

4.00E+03 n 

3.50E+03 

3.00E+03 

2.50E+03 

2.00E+03 

1.50E+03 H 

1.00E+03 

5.00E+02 

0.00E+00 

y=139805x+112548 
R2= 0.3682 

5 

Station 

10 
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ratio was 3.06 (13 May 2008, between stations 2 and 9). Measurements of DOM are 

summarized in Figure 7. 

The depth at which light was attenuated to 1% of surface irradiance (1% light 

level) was calculated for each station (n = 17) and is shown in Figure 8. The average 1% 

light level is considered to be the compensation depth at which the metabolic demands 

match photosynthesis. The 1% light level was always deeper than the bottom depth at all 

10 stations indicating no light limitation for photosynthetic organisms throughout 

Elkhorn Slough. 

II. Phytoplankton community structure of upper Elkhorn Slough 

Upper Elkhorn Slough is characterized by several distinct populations of 

phytoplankton. Using flow cytometric settings tuned to detect cultures of the 

cryptophytes Chroomonas sp. (4-6 urn wide x 6-14 urn long) and Cryptomonas sp. (5 um 

wide x 10 urn long), three distinct populations (called cryp 1, cryp 2 and cryp 3) were 

detected. These populations were concluded to be cryptophytes due to their large size 

and characteristic phycobilin fluorescence (Figure 9a). While these populations may be 

constitutively present in Elkhorn Slough, they were often below concentrations detected 

optimally with flow cytometry. When cells were present in sufficient densities to allow 

for flow cytometric detection, the abundance of these three populations increased 

concomitantly with the ratio of alloxanthin to chlorophyll a (Chi a) pigment pattern (data 

not shown). 
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Figure 9. Cytograms showing locations of A) large phytoplankton populations (A 
instrument settings; Table 5) and B) small phytoplankton populations (B 
instrument settings). Populations are identified as cryp 1, cryp 2, cryp 3, small cryp 
and picoeuk on plots 1 and are gated and colored on plot 2. Axes are arbitrary 
fluorescence or light scatter units depicted on a log scale. 

28 



Two populations of much smaller cells enumerated with more sensitive 

instrument settings (B settings; Table 5) were persistently detected in upper Elkhorn 

Slough (figure 9b). One population was identified as small cryptophytes (due to 

phycobilin fluorescence) and the other was categorized as picophytoplankton 

(autofluorescent small cells). The small cryptophyte and picophytoplankton populations 

were abundant in the upper reaches of the slough and were routinely measured at 

concentrations of 5xl04 cells ml"1 and 5xl05 cells ml"1 respectively (Figure 10). Absolute 

maximum abundance was variable and data likely represent the effect of tidal height at 

time of sampling rather than true seasonal abundance. Though total abundance varied, 

when the abundance is normalized to the maximum value within a cruise, it is evident 

that both populations are structured in a pattern consistent with the observed pigment 

gradient (Figures 2, 11). 

III. Size fractionation of upper Elkhorn Slough phytoplankton 

The cryp 1, cryp 2 and cryp 3 populations present in Elkhorn Slough were 

relatively large as detected with flow cytometry, but size fractionation analysis was 

conducted to quantitatively constrain the size classes. The cryp 3 population was larger 

than 10 urn in all dimensions since it was removed entirely from the filtrate by the 10- um 

prefiltration. The cryp 2 and cryp 3 populations were reduced to less than 20% of the 

initial concentration by the 3-urn prefiltration and completely by the 1-um prefiltration 

indicating that the mean size of both of these populations are between 3-10 urn The 3-

um filtration reduced the small cryptophyte population by only 39%, therefore the 
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Figure 10. Cell concentrations of A) small cryptophytes and B) picoeukaryotes at 
10 stations in Elkhorn Slough throughout sampling period. 
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Figure 11. Cell density pattern of A) small cryptophytes and B) picoeukaryotes in 
Elkhorn Slough. Data represent measurements of cell concentration at each station 
(n=15) normalized to maximum density within sampling date. 
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majority of the cells passed through the 3-um filter and are smaller than 3 urn in at least 

one dimension. The majority of the small cryptophytes are less than 5 um since 74% of 

the cells passed through. Finally, cells in the small picophytoplankton category were 

only reduced significantly by the 1-um prefilter indicating these cells fall in the range of 

1-3 um (Figure 12). 

Initial 10 um 5 (xm 3 |am 1 (im 

Pre-filter size 

Figure 12. Flow cytometric analysis of Elkhorn Slough phytoplankton 
populations after size fractionation. Cell concentration is expressed as the fraction 
of cells in the filtrate of four pre-filter sizes (10, 5, 3 and 1 um) relative to the initial. 
Data represent an n = 6 and are shown ± SD. 

Size fractionated Chi a concentrations indicate that the photosynthetic biomass of 

Elkhorn Slough is dominated by the small size classes. Of the total Chi a, 81-88% is in 

the <3 um size class and 4-10% is in the 3-5 um size class (Figure 13). 

Epi-fluorescent microscopic analysis detected the presence of large cryptophytes, 

however the three populations observed with flow cytometry were visually 
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Figure 14. Epifluorescence micrographs of Elkhorn Slough A) large cryptophytes 
and B) small cryptophytes and picoeukaryotes. 
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indistinguishable though some variability in size was noted (Figure 14a). Microscopic 

analysis of the 5-um filtrate showed abundant small picophytoplankton largely comprised 

of prymnesiophte and prasinophyte eukaryotes. The small cryptophytes were also visible 

under epi-fluorescence and were discriminated by their orange fluorescence and larger 

size (Figure 14b). 

IV. Vital stain protocols, performance and verification 

a. Killed phvtoplankton experiments 

/. C incorporation experiments 

Dilutions of phytoplankton with low fractions of ultraviolet light-killed dead cells 

(high fraction live cells) as determined with SYTOX Green corresponded to high levels 

of production per cell. As 

fraction dead cells increased, 

production per cell rate 

decreased in a tight linear 

relationship for two separate 

experiments (Figure 15). In this 

experimental setup with 

contrived fractions of live and 

dead cells, SYTOX Green 

accurately tracked dead cells as 

verified by photosynthetic rate. 
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Figure 15. Verification of SYTOX Green 
fraction dead in Dunaliella sp. with cell-specific 
production rate. Data represent two experiments 
each with two replicates shown as individual points. 
When only one replicate is visible they are 
overlapping. 
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ii. Cell digestion vs. SYTOX Green: Ultraviolet light killed cells 

The fractions of viable cells as determined by the cell digestion assay and 

SYTOX Green were compared in freshly killed (with ultraviolet light) fractions of 

Dunaliella sp. SYTOX Green staining showed a clear relationship with the expected dead 

fraction (slope = 0.83, R2 = 0.98). It was expected that membrane-permeable cells as 

determined by SYTOX Green would be permeable to digestion, however the cell 

digestion assay did not reduce cell counts relative to the control in any of the five 

fractions examined. The heat treatment alone (without digestive enzymes) also did not 

reduce total cell counts. 

b. Natural cell death: Senescent culture experiments 

i. Cell Digestion vs. SYTOX Green: natural cell death 

Three senescent cultures {Dunaliella sp., Phaeodactylum sp., Cryptomonas sp.) 

were assayed for viable and non-viable cells with cell digestion and SYTOX Green. 

There was reasonable agreement between both assays when estimating fraction live cells 

in senescent cultures (Table 6). The cryptomonad culture had very few dead cells as 

determined by both methods. 

Table 6. Comparison of estimates of dead cells in senescent algal cultures obtained 
with the cell digestion assay and SYTOX Green. 

Culture 

Cryptomonas sp. 
Dunaliella sp. 
Phaeodactylum sp. 

Total 
Counts 

(cells mlA)_ 
3.6xl05 

7.8xl05 

4.1xl06 

Cell Digest 
Counts 

(cells ml"1) 
3.9xl05 

6.8xl05 

2.4x106 

% Dead Cells 
Cell Digestion Assay 

-11%* 
12% 
42% 

% Dead Cells 
SYTOX Green 

1% 
2% 
50% 

*Resulting from variability in cytometric counts 

35 



4. i i i i I • • • • I • i i • I i i i i I • i ' i_ 

v! 
33U30S3J0THJ U99JQ 

33U93S3J01HJ U99J£) 

u o 
S3 
<u 
o 
CO u !-. 
O 

E 

O 

43 
U 

T3 

'3 
C 

a 

as e s a 
0 

sousossionij ijAqdoiojiQ 

1 ' ' ' i ' ' ' ' i ' ' ' ' i ' • • • i ' 

o 
S3 
<a 
o 
CO 

u 
o 

E 

..: ;•?=••! e x 

o 

1 • ' • • ' • • • • * • • • • 

4= 

u 90U9DS9JOTHJ U99JQ 

M i i i iT|i i ITI | i i i i | iii i i | 

m a o 

• J gs 

,:,M o 

30U30S9J01HJ U99.IQ 

u> " ' r 1 1 1 1 MI 1 1 1 1 1 • 1 1 1 1 • •• 

e 
<u 
cu 
s -

o 
o 
H 

I 

d 
V) 

3 
as 

} • • • ' • :l- '• 

*teii 

% ] 

l-i 
<D 

- * - » - * - » cS 
o 

{/3 

T3 
! - i 

ca 
£ 
o b 

99U90S9aonj -j ijAqdoiojiQ 
• • 1 1 • 1 1 1 1 1 

CQ 
1/3 

^ .a 

S3 T 3 

3 2 
to Ml 
S « «i 
^ b "* 
e g o 

"5 8 « 
-S a ° 
»J 2 "S 
B f i S 
e -3 -a 
2 §>•§ 
. M c 

o< .5 3 
«B - B j _ 
a * u 
S •- ~ 
ted" 
s a <u so 

CO — 

CO S -
• - O 

£ > <D 
• — o 
23 S3 
S3 u 

1 ) 

J9JJB0S 3P!S J9HB0S 9p iS 

C4 S3 

„ fl O 

|"3cg 

1 s & 
s .2 ê 
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Interpretation of staining in both Dunaliella and Phaeodactylum cultures was 

difficult as there were complex patterns in stain uptake (Figures 16, 17). Since SYTOX 

Green is a DNA stain, complex staining patterns may result from variable degradation in 

DNA and chlorophyll content of otherwise intact cells or incomplete permeability of cell 

membranes. With the cell digestion assay, there were no ambiguities in interpretation of 

stain intensity and the heat treatment alone did not significantly reduce cell counts in 

senescent cultures (data not shown). The cell digestion treatment and heat treatment 

control did however alter the orange fluorescence signal of the cryptomonad (Figure 18). 

If this were to happen in a natural sample, the target cells may no longer have an optical 

signature allowing for clear detection which would obscure interpretation of vital data. 

A) Control B) Heat Treatment C) Cell Digestion 

Forward Scatter Forward Scatter Forward Scatter 

Figure 18. The effect of cell digestion and heat treatment on the optical properties of 
Chroomonas sp. phytoplankton cells. The control exhibits normal phycobilin 
fluorescence whereas a fraction of the population shows a lOOx increase due to B) heat 
treatment and C) cell digestion as indicated with arrows. Note the presence of partially 
digested cells. Axes are arbitrary fluorescence or light scatter units depicted on a log scale. 

c. Vital assay performance on environmental samples 

All three vital assays were tested in environmental samples to identify any 

potential complications. The cell digestion assay was determined to be inappropriate for 
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use in Elkhorn Slough on the target population of cryptophytes as the heat treatment 

alone (without digestive enzymes) reduced cell counts by 16-36%. Furthermore, natural 

samples exposed to lethal levels of ultraviolet light were incompletely digested while the 

expectation is they would be digested completely. SYTOX Green was determined to be 

inappropriate for use in Elkhorn Slough due to high levels of non-specific staining that 

increased the event count beyond the optimal threshold (>1000 events s"1; Figure 19). 

Cells remaining in the unstained target location after SYTOX Green addition, presumably 

live cells, exceeded the total count in unstained samples by sometimes two times. 

SYTOX Green was tested in algal cultures inoculated with test dust particles to determine 

if abiotic particulates in Elkhorn Slough are responsible for the high background staining. 

It was found that unstained cells were counted without interference in the presence of test 

dust, however when SYTOX stain was added, the event rate increased beyond the 

detection limit and inhibited accurate counting of the target cells. Fluorescein diacetate 

(FDA) showed no non-specific background staining and was deemed appropriate for use 

in turbid, sediment-laden environments. 

For vital staining with FDA, small cryptophytes were gated on the basis of 

forward scatter and chlorophyll fluorescence as the spectral overlap of the green 

fluorescence into the orange channel inhibited clean gating and detection with the ideal 

parameters (FL3, FL2). On the basis of forward scatter and chlorophyll fluorescence 

alone, the picoeukaryote cluster was non homogenous and contained Synechococcus sp. 

cells, a population showing the opposite pattern in distribution and abundance (Figure 4). 

Because of this, staining patterns of picoeukaryotes could not be interpreted. Small 
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Figure 20. FDA response of small cryptophyte algae in Elkhorn Slough. The small 
cryptophyte population is gated in an unstained control sample from station 10 (Al) and 
is shown with green autofluorescence (A2) which is then plotted as a histogram (A3). 
Station 10 small cryptophytes are gated on the basis of autofluorescence (Bl) and shown 
with green FDA fluorescence (B2) which is presented as histogram (B3) where three 
distinct metabolic responses are labeled. Small cryptophytes from station 5 are plotted 
based on autofluorescence (CI) and with FDA stain added (C2). Finally, a histogram of 
station 5 cells illustrates a decrease in the relative abundance of FDA++ cells. Axes are 
arbitrary fluorescence or light scatter units depicted on a log scale. 
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cryptophytes were however able to be gated on the basis of forward scatter and 

chlorophyll alone, and were therefore suitable for FDA uptake analysis. 

Three distinct FDA fluorescence responses were seen in the small cryptophyte 

population. A subset became highly fluorescent green (FDA++, approximately 1000-fold 

increase in FL1), an additional subset became moderately fluorescent (FDA+, 

approximately 100-fold increase in FL1) and a subset remained non-fluorescent (FDA-, 

no or little increase in FL1; Figure 20). 

Since there are widely variable incubation times reported in the literature for 

FDA, optimal stain time was determined through monitoring FL1 of the target cells 

throughout a two hour period. Within 30 s, detection of the three FDA fluorescence 

responses was possible with fluorescence saturation in the FDA++ fraction occurring 

after 10 min. The average value for each particle in the three response categories was 

measured over a period of 2 hours (Figure 21a). Cells in the FDA- category exhibited a 

slow increase in green FDA fluorescence over the first 40 min of incubation at which 

time they became indistinguishable from the FDA+ category, which had been slowly 

losing green fluorescence. The FDA++ cells maintained a steady level of green 

fluorescence throughout the incubation. The cell concentration throughout the 2 hour 

stain incubation period did not stay constant (Figure 21b). There was a steep decline in 

the cell concentration in the FDA++ category within the first 20 min (3.5xl04 cells ml"1 

to 2.5x104 cells ml"1) that continued throughout the incubation, and at the end of 2 hours 

the total cell concentration was 35% of the initial concentration. Neither cell 

concentration nor calculated fraction in each category significantly changed during the 
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first 10 min of incubation, and since stain uptake and conversion were rapid, an 

incubation time of 3-7 min was deemed suitable for vital analysis of environmental 

phytoplankton. 

V. Environmental viability patterns 

Small cryptophyte viability was measured with fluorescein diacetate (FDA) at all 

ten stations where cell concentrations were high enough to be detected. All three 

metabolic responses (FDA++, FDA+, FDA-) were quantified at each station (Figure 22). 

Generally, the highly active fraction was higher at the inland stations. The pattern in 

viability was not necessarily correlated with abundance. For example, on cruise 155 the 

abundance of cells peaked at station 8 and decreased at stations 9 and 10 while the 

fraction FDA++ steadily increased up to station 10 (Figure 22 D, I). High fractions of 

FDA++ (or viable) are sometimes observed in the lower slough, but the highest fractions 

observed within a single cruise are always observed in the upper slough region as is seen 

when the fraction FDA++ is normalized to the maximum value within a cruise (Figure 

23). 
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DISCUSSION 

I. Phytoplankton community structure of upper Elkhorn Slough 

Flow cytometric and size fractionation analyses reveal that the upper Elkhorn 

Slough is constitutively dominated by small (<5 um) cryptophytes and 

picophytoplankton. Large cryptophyte cells (8-12 urn) are periodically abundant in 

Elkhorn Slough, though not persistent; it was therefore concluded they were not a major 

constituent of the upper slough phytoplankton community. At times large cells may 

constitute a significant fraction of the biomass, however during the spring and early 

summer, small cells (<5 um) made up over 85% of the chlorophyll a (Chi a) biomass. 

It was unexpected to find small cells (<5 um) dominating the Chi a biomass of a 

resource rich environment such as Elkhorn Slough. In coastal environments, estimates of 

the small phytoplankton contribution (1-8 um) to total Chi a biomass range from 5-40% 

(Iriarte 1993, Gin et al. 2000). Small phytoplankton size classes are more often 

considered to important constituents of the open ocean, oligotrophic environments than 

they are of nutrient-rich coastal environments (Irwin et al. 2006). The success of small 

cells in these environments is largely attributed to their characteristic high surface area to 

volume ratios resulting in higher rates of nutrient uptake as well as lower minimum 

metabolic requirements (Eppley and Thomas 1969, Grover 1991). These features allow 

them to thrive in low nutrient environments where large cells cannot. 

This paradigm does not explain why small cells dominate the nutrient-rich 

environment of Elkhorn Slough. There are several other potential physiological and 

47 



ecological consequences of cell size beyond inorganic nutrient acquisition and metabolic 

activity. Cell size has implications for light absorption, motility, susceptibility to grazing 

and sinking, and perhaps for dissolved organic nutrient uptake (Finkel 2001, Finkel et al. 

2004, De Troch et al. 2006, Waite et al. 1997, Sommer 1988). The upper slough 

dissolved organic matter (DOM) concentrations are on average 7 times higher than what 

is found in the lower slough. The correlation between the upper slough phytoplankton 

population abundance and the DOM pattern suggests that DOM availability may play an 

important role in structuring the observed phytoplankton gradient. Whether DOM 

availability has a direct or indirect role in structuring this community is unclear. 

Large cryptophytes (8-12 urn) are periodically abundant in the upper Elkhorn 

Slough and are thought to live mixotrophically, doing performing photosynthetically with 

pigments adapted for low light levels and phagotrophically ingesting bacterial cells 

(Bergmann 2004). In this way, the large cryptophytes may benefit indirectly through 

high DOM levels. The small cryptophytes or picoeukaryotes found to be constitutively 

important in the upper Elkhorn Slough may survive on DOM as osmotrophs for which 

small cell size may confer an ecological advantage (Bergmann 2004). 

Phytoplankton community structures characterized by omnipresent small 

cryptophytes and periodically appearing large cryptophyte cells have been documented in 

lakes where it is suggested that the small cells may be important for organic matter 

cycling (Somner 1987, Rott 1988). Furthermore, a small cryptophyte-microflagellate 

community complex was documented to increase in abundance during periods of 

decomposition (e.g., following a bloom) and was suggested to act as an internally 
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stabilizing component of the planktonic community (Stewart and Wetzel 1986). These 

findings, along with the documented pattern in DOM suggest that the Elkhorn Slough 

small cryptophytes and picoeukaryotes may inhabit a similar ecological niche, and may 

be osmotrophic. 

There are no consistent patterns in available nitrate temperature, salinity and light 

availability throughout the slough (Welschmeyer & Younan unpubl). Therefore these 

parameters likely play a minor role if any in structuring the phytoplankton community. 

Though it was determined that the slough is not light-limited, the spectral characteristics 

of the available light were not characterized. This may potentially be an important 

structuring force for all upper slough phytoplankton communities with implications for 

trophic strategies (photosynthetic activity vs. heterotrophic metabolism). 

The function of aquatic ecosystems is strongly influenced by the size structure of 

phytoplankton communities (Irwin et al. 2006). Trophic structure is affected by primary 

producer cell size since large phytoplankton are generally grazed by zooplankton and 

pass energy to higher trophic levels more efficiently than small cells which are grazed by 

protists and direct energy towards the microbial loop (Ryther 1969, Azam 1983). 

Understanding which forces structure the natural communities of the upper Elkhorn 

Slough will help to predict how perturbations to this system (such as erosion) will affect 

the phytoplankton and subsequently their effects on elemental cycling and trophic 

structure. 
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II. Analysis of viability in natural samples: Assay selection and significance 

The three vital assays chosen for this study, SYTOX Green, cell digestion and 

fluorescein diacetate (FDA), were selected because they have been used to estimate 

viability in natural phytoplankton populations (Veldhuis et al. 2001, Agusti and Sanchez 

2002). Out of these three vital assays tested, only FDA was determined to be suitable 

assay to measure viability of the small cryptophyte population. 

SYTOX Green performed well in experiments with known fractions of live and 

killed phytoplankton as verified by photosynthetic activity (Figure 15). However, in 

realistic scenarios of cell death such as nutrient limitation during culture senescence 

interpretation of staining patterns was difficult. In senescent cultures there is a gradient 

in cell morphology where the distinction between intact and degraded cells is no longer 

clear leading to difficulty in interpreting cytometric data. Additionally, DNA degradation 

in senescent cells can lead to reduced DNA fluorescence and variable staining that can be 

difficult to interpret (Lebaron et al. 1998). Therefore while interpreting SYTOX Green 

data in controlled and intact fractions of live and dead cells is straightforward, it cannot 

be expected that cell death scenarios encountered in nature would be this uncomplicated. 

Finally, SYTOX Green performed poorly in turbid samples where non-specific 

background staining was high and made detection of the target cells impossible. This is 

likely due to the polarity of the molecule and the affinity of the stain for charged particles 

regardless of DNA content (Klauth et al. 2004). 

Environmental estimates of cell viability with SYTOX Green were obtained using 

samples from the oligotrophic ocean where terrigenous particulate matter loading would 
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be less problematic than was experienced in this study (Veldhuis 2001). Therefore, under 

certain circumstances, S YTOX Green seems to be a robust and accurate measure of cell 

viability. However drawbacks such as difficulty interpreting complex staining patterns, 

ambiguous significance of membrane permeability in defining cell death and problems 

associated with non-specific background staining make it unsuitable for use in natural 

environments such as Elkhorn Slough. 

The cell digestion assay is the most frequently used vital assay in field studies of 

phytoplankton viability (Figure 1). It has several advantages over stains including 

elimination of background staining, ambiguities in data interpretation and allows for the 

possibility of sample fixation rather than requiring analysis of live samples. The cell 

digestion assay may be suitable for many cell types and seemed to work reasonably well 

for the chlorophyte and diatoms tested in this study. However the 37°C incubation alone 

(no enzymes) caused an increase in orange fluorescence of laboratory cryptophyte 

cultures and dramatically reduced cell counts of natural populations making this method 

unsuitable for obtaining viability estimates in this study. It is possible that modifications 

to this method, such as altered incubation time and enzyme concentrations may 

ultimately render this method useful in this system, but the method as published was 

determined to be inappropriate for these target populations in Elkhorn Slough (Agusti and 

Sanchez 2002). 

FDA was the most suitable fluorophore tested for vital analysis in the Elkhorn 

Slough environmental populations. There were no issues with background staining and 

discrimination of three distinct fluorescence responses (FDA++, FDA+, FDA-) was 
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detected in the target cryptophyte population (Figure 22). In this system, a short (3-7 

min) incubation was found to be ideal since this was found to both minimize potentially 

negative effects of the stain on cell concentration and to maximize discrimination of the 

three distinct FDA fluorescence responses. 

The FDA assay is considered a valid assay of metabolic activity and thus vitality 

in phytoplankton. The non-fluorescent FDA substrate readily permeates cell membranes 

and is hydrolyzed by non-specific esterase enzymes into fluorescein. This fluorescein is 

then retained and can be detected by cells with intact cell membranes, but leaks from 

cells with compromised membranes (Rotman and Papermaster 1966). This assay has 

been shown to work with a variety of algal types and has been verified against measures 

of metabolic activity like 14C photosynthesis (Dorsey et al. 1989, Onji et al. 2000). 

However, variability in the stain response has been reported for a variety of 

microorganisms and may be a function of inter- or intra-specific variability in factors 

such as cell wall structure, internal pH, temperature, uptake kinetics, efflux rate, 

fluorescence quenching (Diaper et al. 1992, Breeuwer et al. 1995). Therefore, 

interpreting FDA data in environmental samples is not straightforward. It is for these 

reasons that FDA and other vital stains have not been routinely employed in ecological 

studies of microorganisms (Garvey et al. 2007). 

Despite the potential drawbacks of all vital assays, there are several studies that 

suggest FDA is a valid indicator for general metabolic activity. It has been proposed that 

the degree of fluorescein accumulation is indicative of the strength of metabolic vigor 

(Bentley-Mowat 1982, Geary et al. 1998). Furthermore, the FDA assay is sensitive 
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enough to reflect metabolic shifts in phytoplankton populations experiencing subtle 

environmental differences in light, nutrient regime, or other stressors (Jochem 1999, 

Brookes et al. 2000b). 

Assays of intracellular enzyme activity can be a more sensitive indicator of death 

than assays of membrane integrity, since a decline in metabolic activity is thought to 

precede permeabilization of the cell membrane during the cell death process (Brussaard 

et al. 2001). When interpreting viability data, it is important to consider however that the 

degree of fluorescein accumulation reflects both the level of intracellular enzyme activity 

and the degree of fluorescein efflux due to membrane permeability (Rotman and 

Papermaster 1966, Breeuwer et al. 1995). 

In Elkhorn Slough, the small cryptophyte population exhibited three distinct 

fluorescence responses characterized by no increase of green fluorescence (FDA-), a 

moderate (10-fold) increase in green fluorescence (FDA+) and large (100-fold) increase 

in green fluorescence (Figure 20). The FDA++ group of small cryptophytes was 

interpreted to be highly metabolically active as they rapidly became fluorescent and 

sustained a high degree of fluorescence throughout the incubation period (Figure 21). 

Curiously, the cell concentrations of this highly active fraction declined dramatically 

within the first 40 min of the incubation and continued to decline throughout the 2 hour 

period. It is possible that cell lysis is an artifact of high fluorescein loading. 

Nonetheless, the cell losses within the first 3-7 min were negligible and it was possible to 

obtain an estimate of highly active cells prior to the onset of cell concentration loss. 
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The FDA- group was determined to have no or low metabolic activity. Over the 

course of the incubation, some increased green fluorescence of this group was noted and 

was concluded to be the result of very low metabolic activity. After 40 min, the 

fluorescence of this group was indistinguishable from the fluorescence of the moderate 

fluorescence (FDA+) group. Initially, the FDA+ group displays a 10-fold increase in 

fluorescence relative to the control but begins to lose fluorescence after approximately 15 

min. This suggests that though these cells maintain elevated esterase activity relative to 

the FDA- group, they may have some permeability of the cell membrane allowing for 

efflux of the fluorescein product. 

The tri-modal metabolic response observed for a single population is interesting 

and could be attributed to a variety of factors (Figure 20). First, it cannot be excluded 

that the single group designated as small cryptophytes may actually consist of several 

groups displaying individual FDA stain characteristics. The degree of population 

heterogeneity could be determined by flow-sorting this population of interest and 

characterizing its diversity with microscopy or molecular techniques (18S sequence 

diversity). However, without the capability to conduct these types of analyses, it was 

assumed that the population was taxonomically homogenous. 

If the target population is taxonomically homogeneous as assumed, the tri-modal 

esterase activity response may be reflective of a step-wise regulation of metabolic 

activity, perhaps as the result of a programmed metabolic cascade. The observation of 

three discrete metabolic activity levels is not unprecedented in phytoplankton. Regel et 

al. (2002) characterized three metabolic (FDA) activity states in cultures of cyanobacteria 
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and green algae. Metabolism may be regulated in a step-wise fashion to allow 

coordination or synchronization with other members of a given population. It has been 

shown that some phytoplankton (diatoms) possess a cellular mechanism allowing them to 

detect chemical signals originating from stressed neighbor cells which ultimately affects 

their physiology and subsequent population dynamics (Vardi et al. 2006). The extent to 

which these types of strategies persist and their functional role in populations of 

unicellular organisms is unclear though it has been speculated that it is likely more 

important than previously acknowledged (Bidle & Falkowski 2004). Further 

characterizing natural patterns in population viability (or metabolic activity) such as the 

pattern characterized in this study will be instrumental in understanding the physiology, 

ecology, population dynamics and evolution of microorganisms in nature. 

Vital assays such as FDA, cell digestion and SYTOX Green measure proxies for 

cell viability such as enzyme activity and membrane permeability, but the validity of 

these proxies as true indicators of a definite live or dead state is unclear. For example, 

phytoplankton cells exposed to copper do not exhibit esterase enzyme activity, yet upon 

restoration to ideal conditions, esterase enzyme activity resumes (Vasconcelos et al. 

2000). In this scenario, the cells are not dead but are temporarily metabolically inactive. 

Also, SYTOX Green is expected to be excluded from cells with intact membranes and it 

is generally assumed that membrane permeability is a valid proxy for cellular death, yet it 

was observed in this study that some cells in batch culture stained "dead" with SYTOX 

Green yet simultaneously maintained metabolic activity as determined with FDA (Roth et 

al. 1997, Veldhuis et al. 1997, Veldhuis et al. 2001, personal observation). Furthermore, 

55 



motile (and therefore live) cells have been reported to stain with SYTOX Green 

indicating that the assumption that membrane permeability is an accurate proxy for 

cellular death may be incorrect (Franklin and Berges 2004). While the utility of these 

vital assay proxies as absolute indicators of live or dead status is unclear, it is certain that 

they are useful indicators of general in-situ physiological status. 

In conclusion, robust assays that work in complex and unpredictable 

environments must be identified to successfully obtain estimates of natural population 

viability. In Elkhorn Slough, the FDA assay proved to be free from issues with 

background staining that rendered SYTOX Green inappropriate. Interpreting the 

significance of these natural population viability estimates is less straightforward. 

Ideally, the natural population of interest would be isolated in culture so that 

experimental conditions can be controlled, and estimates of viability verified with other 

known measures of metabolic activity such as photosynthesis. However, few 

microorganisms in nature are amenable to cultivation, nor is a cultured strain 

representative of the physiology expected in nature. Therefore, investigating patterns of 

viability in natural populations may work to inform our interpretation of the significance 

of these results. 

III. Vitality of phytoplankton in Elkhorn Slough 

There are few published studies that have addressed whether dead, dying or 

metabolically compromised phytoplankton comprise a significant fraction of 

phytoplankton communities in nature (Table 2). The amount of dead cells at a given time 
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in nature can be highly variable, for example the percentage of non-viable cells within a 

given population ranged from 5-60% in the North Atlantic as determined with SYTOX 

Green (Veldhuis et al. 2001). Understanding the significance of phytoplankton viability 

requires putting this variability into context. Hayakawa et al. (2008) reported viabilities 

of >70% for eukaryotic phytoplankton in the spring, a season in which these 

phytoplankton were numerically dominant. The viability of these cells decreased to 26-

41% by the late summer when they were no longer dominant. These data suggest that 

these cells were structured by forces causing physiological stress, a trend that may have 

been predicted by abundance data alone. In contrast, Synechococcus surveyed during 

these seasons exhibited major abundance changes, but the viability of the remaining cells 

remained high suggesting these cells are not physiologically compromised under 

conditions of low abundance. 

Investigating the relationship between cell abundance and viability informs how a 

given population is responding to the conditions at that moment. Based on abundance 

alone, Hayakawa et al. (2008) may have erroneously concluded that Synechococcus was 

stressed or physiologically compromised during the spring when they were sparse. 

In Elkhorn Slough it was hypothesized that the environment in the upper reaches 

is ideal for cryptophyte growth and was where they were expected to be most vital or 

active. The highest fraction of highly active cells within a given sampling date was 

indeed on average observed in the ideal upper slough environment (Figure 23). This 

finding suggests that the upper slough phytoplankton community is structured by 

environmental forces such as light quality or DOM and that deviation from these 
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conditions towards the lower slough causes stress, reduced activity and subsequently 

death. However, cell abundance and viability were not always well correlated. 

As previously discussed, it cannot be assumed that high population abundance is 

necessarily indicative of healthy cells. For example, during analysis of samples 

collected from cruise 155 it was observed that small cryptophyte densities peaked at 

station 8 and then declined at stations 9 and 10 whereas the fraction of the population that 

was highly metabolically active continued to increase to nearly 80% (Figure 22). Though 

cells at these stations are active and presumably growing quickly, this is not reflected in 

the total abundance. This could be attributed to heightened grazing pressure at these 

stations. 

In summary, characterizing the in-situ physiological state of individual cells 

within specific populations with high spatial or temporal resolution is valuable when 

trying to understand how phytoplankton communities are structured in response to their 

physical environment and how their dynamics influence biogeochemistry and trophic 

structure. There is no single ideal assay to measure viability of phytoplankton or any 

natural unicellular microorganism and any investigation of natural microorganism 

viability must take both methodological and technical considerations into account. 

Significant consideration must be given to the design of the sampling scheme. Virtually 

all studies conducted on natural phytoplankton assemblage viability exploit well-

documented community structure transitions such as the spatial transition from the 

oligotrophic open ocean to the eutrophic coastal zone or the temporal transition from 

summer to winter communities (Alonso-Laita and Agusti 2006, Hayakawa et al. 2006). 
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The Elkhorn Slough provided an ideal and accessible environment to examine how 

patterns in physiological state may structure the abundant and persistent population of 

small cryptophyte algae. 

59 



REFERENCES 

Abalde, J., A. Cid, S. Reiriz, E. Torres, and C. Herrero. 1995. Response of the marine 
microalga Dunaliella tertiolecta (Chlorophyceae) to copper toxicity in short time 
experiments. Bull. Environ. Contam. Toxicol. 54: 317-324. 

Agusti, S., M. P. Satta, M. P. Mura, and E. Benavent. 1998. Dissolved esterase activity as 
a tracer of phytoplankton lysis: Evidence of high phytoplankton lysis rates in the 
northwestern Mediterranean. Limnol. Oceanogr. 43: 1836-1849. 

Agusti, S., and M. C. Sanchez. 2002. Cell viability in natural phytoplankton communities 
quantified by a membrane permeability probe. Limnol. Oceanogr. 47: 818-828. 

Agusti, S. 2004. Viability and niche segregation of Prochlorococcus and Synechococcus 
cells across the central Atlantic Ocean. Aquat. Microb. Ecol. 36: 53-59. 

Agusti, S, E. Alou, M. V. Hoyer, T. K. Frazer, and D. E. Canfield. 2006. Cell death in 
lake phytoplankton communities. Freshwater Biol. 51: 1496-1506. 

Alonso-Laita, P., and S. Agusti. 2006. Contrasting patterns of phytoplankton viability in 
the subtropical NE Atlantic Ocean. Aquat. Microb. Ecol. 43: 67-78. 

Anderson, J. T., D. K. Stoecker, and R. R. Hood. 2003. Formation of two types of cysts 
by a mixotrophic dinoflagellate, Pfiesteriapiscicida. Mar. Ecol. Prog. Ser. 246: 
95-104. 

Arsenault, G., A. D. Cvetkovic, and R. Popovic. 1993. Toxic effects of copper on 
Selenastrum capricornutum measured by a flow cytometry-based method. Water 
Pollut. Res. J. Can. 28: 757-765. 

Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil, and F. Thingstad. 1983. 
The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 
10: 257-263. 

Bidle, K. D., and P. G. Falkowski. 2004. Cell death in planktonic, photosynthetic 
microorganisms. Nat. Rev. Microbiol. 2: 643-655. 

Binet, M. T., and J. L. Stauber. 2006. Rapid flow cytometric method for the assessment 
of toxic dinoflagellate cyst viability. Mar. Environ. Res. 62: 247-260. 

Bentley-Mowat, J. A. 1982. Application of fluorescence microscopy to pollution studies 
on marine phytoplankton. Bot. Mar. 25: 203-204. 

60 



Berdalet, E., and Q. Dortch. 1991. New double-staining technique for RNA and DNA 
measurement in marine phytoplankton. Mar. Ecol. Prog. Ser. 73: 295-305. 

Berges, J. A., and P. G. Falkowski. 1998. Physiological stress and cell death in marine 
phytoplankton: Induction of proteases in response to nitrogen or light limitation. 
Limnol. Oceanogr. 43: 129-135. 

Berglund, D. L., and S. Eversman. 1988. Flow cytometric measurement of pollutant 
stresses on algal cells. Cytometry. 9: 150-155. 

Bergmann, T. I. 2004. The physiological ecology and natural distribution patterns of 
cryptomonad algae in coastal aquatic ecosystems. Ph.D. thesis. Rutgers. 

Berman-Frank, I., K. D. Bidle, L. Haramaty, and P. G. Falkowski. 2004. The demise of 
the marine cyanobacterium, Trichodesmium spp., via an autocatalyzed cell death 
pathway. Limnol. Oceanogr. 49: 997-1005. 

Breeuwer, P., J. L. Drocourt, N. Bunschoten, M. H. Zwietering, F. M. Rombouts, T. 
Abee (1995). Characterization of uptake and hydrolysis of fluorescein diacetate 
and carboxyfluorescein diacetate by intracellular esterases in Saccharomyces 
cerevisiae, which result in accumulation of fluorescent product. Appl. Environ. 
Microbiol. 61: 1614-1619. 

Brookes, J. D., G. G. Ganf, R. L. Oliver. 2000a. Heterogeneity of cyanobacterial gas-
vesicle volume and metabolic activity. J. Plank. Res. 22: 1579-1589. 

Brookes, J. D., S. M. Geary, G. G. Ganf, M. D. Burch. 2000b. The use of FDA and flow 
cytometry to assess metabolic activity as an indicator of nutrient status in 
phytoplankton. Mar. Freshwater Res. 51: 817-823. 

Brussaard, C. P. D., D. Marie, R. Thyrhaug, and G. Bratbak. 2001. Flow cytometric 
analysis of phytoplankton viability following viral infection. Aquat. Microb. Ecol. 
26: 157-166. 

Button, D. K., R. Schut, P. Quang, R. Martin, and B.R. Robertson. 1993. Viability and 
isolation of marine bacteria by dilution culture: Theory, procedures and initial 
results. Appl. Environ. Microbiol. 59: 881-891. 

Casotti, R., S. Mazza, C. Brunet, V. Vantrepotte, A. Ianora, and A. Miralto. 2005. 
Growth inhibition and toxicity of the diatom aldehyde l-trcmsA-trans-decadierml 
on Thalassisira weissflogii (Bacillariophyceae). J. Phycol. 41: 7-20. 

Cerino, F. and A. Zingone. 2007. Decrypting cryptomonads: a challenge for molecular 
taxonomy. In J. Brodie and J. Lewis [eds.], Unravelling the algae: The past, 
present and future of algal systematics. CRC Press. 

61 



Chisholm, S. W., R. J. Olson, E. R. Zettler, R. Goericke, J. B. Waterbury, and N. A. 
Welschmeyer. 1988. A novel free-living prochlorophyte abundant in the oceanic 
euphotic zone. Nature. 334: 340-343. 

Coble, P. G. 1996. Characterization of marine and terrestrial DOM in seawater using 
excitation - emission matrix spectroscopy. Mar. Chem. 51: 325-346. 

Collier, J. L. 2000. Flow cytometry and the single cell in phycology. J. Phycol. 36: 628-
644. 

Connon, S. A., and S. J. Giovannoni. 2002. High-throughput methods for culturing 
microorganisms in very-low-nutrient media yield diverse new marine isolates. 
Appl. Env. Microbiol. 68: 3878-3885. 

Crippen, R. W., and J. L. Perrier. 1974. The use of neutral red and Evans blue for live-
dead determinations of marine plankton. Stain Technol. 49: 97-103. 

Darzynkiewicz, Z., X. Li, and J. Gong. 1994. Assays of cell viability: Discrimination of 
cells dying by apoptosis. In Z. Darzynkiewicz, J. P. Robinson, and H. A. 
Crissman [eds.], Methods in cell biology. Academic. 

De Troch, M., V. Chepurnov, H. Gheerardyn, A. Vanreusel, and E. Olafsson. 2006. Is 
diatom size selection by harpactacoid copepods related to grazer body size? J. 
Exp. Mar. Biol. Ecol. 332: 1-11. 

Descolas-Gros, C. 1980. Use of track autoradiography in oceanography: Evaluation of 
phytoplankton species productivity. J. Plankton Res. 2: 23-32. 

Diaper, J. P., K. Tither, and C. Edwards. 1992. Rapid assessment of bacterial viability by 
flow cytometry. Appl. Microbiol. And Biotechnol. 38: 268-272. 

Dorsey, J., C. M. Yentsch, S. Mayo, and C. McKenna. 1989. Rapid analytical technique 
for the assessment of cell metabolic activity in marine microalgae. Cytometry. 10: 
622-628. 

Eppley, R. W., and W. H. Thomas. 1969. Comparison of half-saturation constants for 
growth and nitrate uptake of marine phytoplankton. J. Phycol. 5: 374-379. 

Faber, M. J., L. M. J. Smith, H. J. Boermans, G. R. Stephenson, D. G. Thompson, and K. 
R. Solomon. Cryopreservation of fluorescent marker-labeled algae {Selenastrum 
capricornutum) for toxicity testing using flow cytometry. Environ. Toxicol. 
Chem. 16: 1059-1067. 

62 



Faust, M. A., and D. L. Correll. 1977. Autoradiographic study to detect metabolically 
active phytoplankton and bacteria in the Rhode River estuary. Mar. Biol. 41: 293-
305. 

Finkel, Z. V. 2001. Light absorption and size scaling of light-limited metabolism in 
marine diatoms. Limnol. Oceanogr. 46: 86-94. 

Finkel, Z. V., A. J. Irwin, and O. Schofield. 2004. Resource limitation alters the 3A size 
scaling of metabolic rates in phytoplankton. Mar. Ecol. Prog. Ser. 273: 269-279. 

Franklin, D. J., C. P. D. Brussaard, and J. A. Berges. 2006. What is the role and nature of 
programmed cell death in phytoplankton ecology? Eur. J. Phycol. 41: 1-14. 

Franklin, D. J., C. M. M. Cedres, and O. Hoegh-Guldberg. 2006. Increased mortality and 
photoinhibition in the symbiotic dinoflagellates of the Indo-Pacific coral 
Stylophorapistillata (Esper) after summer bleaching. Mar. Biol. 149: 633-642. 

Franklin, D. J., and J. A. Berges. 2004. Mortality in cultures of the dinoflagellate 
Amphidinium carterae during culture senescence and darkness. Proc. R. Soc. 
Lond. 6.271:2099-2107. 

Franklin, D. J., O. Hoegh-Guldberg, R. J. Jones, and J. A. Berges. 2004. Cell death and 
degeneration in the symbiotic dinoflagellates of the coral Stylophora pistillata 
during bleaching. Mar. Ecol. Prog. Ser. 272: 117-130. 

Franklin, N. M., M. S. Adams, J. L. Stauber, and R. P. Lim. 2001. Development of an 
improved rapid enzyme inhibition bioassay with marine and freshwater 
microalgae using flow cytometry. Arch. Environ. Contam. Toxicol. 40: 469-480. 

Gala, W. R., and J. P. Giesy. 1994. Flow cytometric determination of the photoinduced 
toxicity of anthracene to the green alga Selenastrum capricornutum. Environ. 
Toxicol. Chem. 13: 831-840. 

Gallagher, J. C. 1984. Patterns of cell viability in the diatom, Skeletonema costatum, in 
batch culture and in natural populations. Estuaries. 7: 98-101. 

Garvey, M., B. Moriceau, and U. Passow. 2007. Applicability of the FDA assay to 
determine the viability of marine phytoplankton under different environmental 
conditions. Mar. Ecol. Prog. Ser. 352: 17-26. 

Geary, S., G. Ganf, J. Brookes. 1997. The use of FDA and flow cytometry to measure the 
metabolic activity of the cyanobacteria, Microcystis aeruginosa. Verh. Int. 
Verein. Limnol. 4: 1-3. 

63 



Gieskes, W., and G. Kraay. 1983. Dominance of Cryptophyceae during the 
phytoplankton spring bloom in the Central North Sea detected by HPLC analysis 
of pigments. Mar. Biol. 75: 179-185. 

Gilbert, F., F. Galgani, and Y. Cadiou. 1992. Rapid assessment of metabolic activity in 
marine microalgae: Application in ecotoxicological tests and evaluation of water 
quality. Mar. Biol. 112: 199-205. 

Gin, K. Y., X. Lin, and S. Zhang. 2000. Dynamics and size structure of phytoplankton in 
the coastal waters of Singapore. J. Plankton Res. 22: 1465-1484. 

Goericke, R., andN. A. Welschmeyer. 1993. The carotenoid-labeling method: measuring 
specific rates of carotenoid synthesis in natural phytoplankton communities. Mar. 
Ecol. Prog. Ser. 98: 157-171. 

Gregg, M. D., and G. M. Hallegraeff. 2007. Efficacy of three commercially available 
ballast water biocides against vegetative microalgae, dinoflagellate cysts and 
bacteria. Harmful Algae. 6: 567-584. 

Grover, J. P. 1991. Resource competition in a variable environment: Phytoplankton 
growing according to the variable-internal-stores model. Am. Nat. 138: 811-835. 

Hayakawa, M., K. Suzuki, H. Saito, K. Takahashi, and S. Ito. 2008. Differences in cell 
viabilities of phytoplankton between spring and late summer in the northwest 
Pacific Ocean. J. Exp. Mar. Biol. Ecol. 360: 63-70. 

Holm, E. R., D. M. Stamper, R. A. Brizzolara, L. Barnes, N. Deamer and J. M. 
Burkholder. 2008. Sonication of bacteria, phytoplankton and zooplankton: 
Application to treatment of ballast water. Mar. Pollut. Bull. 56: 1201-1208. 

Iriarte, A. 1993. Size-fractionated chlorophyll a biomass and picophytoplankton cell 
density along a longitudinal axis of a temperate estuary (Southampton Water). J. 
Plankton Res. 15: 485-500. 

Irwin, A. J., Z. V. Finkel, O. M. E. Schofield, and P. G. Falkowski. 2006. Scaling-up 
from nutrient physiology to the size-structure of phytoplankton communities. J. 
Plankton Res. 28:459-471. 

Jansen, S., and U. Bathmann. 2007. Algae viability within copepod faecal pellets: 
Evidence from microscopic examinations. Mar. Ecol. Prog. Ser. 337: 145-153. 

Jochem, F. J. 1999. Dark survival strategies in marine phytoplankton assessed by 
cytometric measurement of metabolic activity with fluorescein diacetate. Mar. 
Biol. 135: 721-728. 

64 



Joux, F., and P. Lebaron. 2000. Use of fluorescent probes to assess physiological 
functions of bacteria at single-cell level. Microb. Infect. 2: 1523-1535. 

Kirchman, D. L. 1999. Phytoplankton death in the sea. Nature. 398: 293-204. 

Klauth, P., R. Wilhelm, E. Klumpp, L. Poschen, and J. Groeneweg. 2004. Enumeration of 
soil bacteria with the green fluorescent nucleic acid dye Sytox green in the 
presence of soil particles. J. Microbiol. Meth. 59: 189-198. 

Klaveness, D. 1989. Biology and ecology of the Cryptophyceae: Status and challenges. 
Biol. Oceanogr. 6: 257-270 . 

Latour, D., O. Sabido, M. Salecon, and H. Giraudet. 2004. Dynamics and metabolic 
activity of the benthic cyanobacterium Microcystis aeruginosa in the Grangent 
reservoir (France). J. Plankton Res. 26: 719-726. 

Lawrence, J. E., C. P. D. Brussaard, and C. A. Suttle. 2006. Virus-specific responses of 
Heterosigma akashiwo to infection. Appl. Env. Microbiol. 72: 7829-7834. 

Lebaron, P., P. Catala, and N. Parthuisot. 1998. Effectiveness of SYTOX Green stain for 
bacterial viability assessment. Appl. Environ. Microbiol. 64: 2697-2700. 

Lee, D. Y., and G. Y. Rhee. 1997. Kinetics of cell death in the cyanobacterium 
Anabaena flos-aquae and the production of dissolved organic carbon. J. Phycol. 
33: 991-998. 

Lee, D. Y., and G. Y. Rhee. 1999. Kinetics of growth and death in Anabaena flos-aquae 
(Cyanobacteria) under light limitation and supersaturation. J. Phycol. 35: 700-
709. 

Legendre, L., C. Courties, and M. Troussellier. 2001. Flow cytometry in oceanography 
1989 - 1999: Environmental challenges and research trends. Cytometry. 44: 164-
172. 

Llabres, M., and S. Agusti. 2006. Picophytoplankton cell death induced by UV radiation: 
Evidence for oceanic Atlantic communities. Limnol. Oceanogr. 51: 21-29. 

Marie, D., N. Simon, and D. Vaulot. 2005. Phytoplankton cell counting by flow 
cytometry. In R. A. Andersen [ed.], Algal culturing techniques. Elsevier. 

Minier, C , F. Galgani, and J. M. Robert. 1993. In vivo characterization of esterase 
activity in calothrix PCC 7601, Haslea ostrearia and Prorocentrum micans. Bot. 
Mar. 36: 245-252. 

Moharikar, S., J. S. D'Souza, A. B. Kulkarni, and B. J. Rao. 2006. Apoptotic-like cell 
death pathway is induced in unicellular chlorophyte Chlamydomonas reinhardtii 

65 



(Chlorophyceae) cells following UV irradiation: Detection and functional 
analyses. J. Phycol. 42: 423-433. 

Murphy, A. M., and T. J. Cowles. 1997. Effects of darkness on multi-excitation in vivo 
fluorescence and survival in a marine diatom. Limnol. Oceanogr. 42: 1444-1453. 

Nebe-von Caron, G., and R. A. Badley. 1995. Viability assessment of bacteria in mixed 
populations using flow cytometry. J. Microsc. 179: 55-66. 

Okochi, M., T. Taguchi, M. Tsuboi, N. Nakamura, and T. Matsunaga. 1999. Fluorometric 
observation of viable and dead adhering diatoms using TO-PRO-1 iodide and its 
application to the estimation of electrochemical treatment. Appl. Microbiol. 
Biotechnol. 51: 364-369. 

Onji, M., T. Sawabe, and Y. Ezura. 2000. An evaluation of viable staining dyes suitable 
for marine phytoplankton. Bull. Fac. Fish. Hokkaido Univ. 51: 153-157. 

Paerl, H. W. 1978. Effectiveness of various counting methods in detecting viable 
phytoplankton. N. Z. J. Mar. Fresh. Res. 12: 67-72. 

Peterson, B. J. 1980. Aquatic primary productivity and the 14C-CC>2 method: A history of 
the productivity problem. Ann. Rev. Ecol. Syst. 11: 359-85. 

Porter, J., D. Deere, M. Hardman, C. Edwards, and R. Pickup. 1997. Go with the flow -
use of flow cytometry in environmental microbiology. FEMS Microbiol. Ecol. 
24:93-101. 

Pouneva, I. 1997. Evaluation of algal culture viability and physiological state by 
fluorescence microscopic methods. Bulg. J. Plant Physiol. 23: 67-76. 

Prince, E. K., T. L. Myers, and J. Kubanek. 2008. Effects of harmful algal blooms on 
competitors: Allelopathic mechanisms of the red tide dinoflagellate Karenia 
brevis. Limnol. Oceanogr. 53: 531-541. 

Reiriz, S., C. Cid, E. Torres, J. Abalde, C. Herrero. 1994. Different responses of the 
marine diatom P. tricornutum to copper toxicity. Microbiologic. 10: 263-272. 

Regel, R. H. 1997. The response of Microcystis aeruginosa (Cyanophyceae) to heavy 
metals and stormwater. Honors thesis, University of Adelaide, SA, Australia. 

Regel, R. H., J. M. Ferris, G. G. Ganf, and J. D. Brookes. 2002. Algal esterase activity as 
a biomeasure of environmental degradation in a freshwater creek. Aquat. Toxicol. 
59: 209-223. 

66 



Regel, R. H., J. D. Brookes, G. G. Ganf, R. W. Griffiths. 2004. The influence of 
experimentally generated turbulence on the MashOl unicellular Microcystis 
aeruginosa strain. Hydrobiologia. 517: 107-120. 

Reynolds, A. E., G. B. Mackiernan, and S. D. van Valkenburg. 1978. Vital and mortal 
staining of algae in the presence of chlorine-produced oxidants. Estuaries. 1: 192-
196. 

Ribalet, F., J. A. Berges, A. Ianora, and R. Casotti. 2007. Growth inhibition of cultured 
marine phytoplankton by toxic algal-derived polyunsaturated aldehydes. Aquat. 
Toxicol. 85:219-227. 

Roth, B. L., M. Poot, S. T. Yue, and P. J. Millard. 1997. Bacterial viability and antibiotic 
susceptibility testing with SYTOX Green Nucleic Acid Stain. Appl. Environ. 
Microbiol. 63:2421-2431. 

Rotman, B., and B. W. Papermaster. 1966. Membrane properties of living mammalian 
cells as studied by enzymatic hydrolysis of fluorogenic esters. Proc. Nat. Acad. 
Sci. 55: 134-141. 

Rott, E. 1988. Some aspects of the seasonal distribution of flagellates in mountain lakes. 
Hydrobiologia. 161: 203-209. 

Rowe, R., R. Todd, and J. Waide. 1977. Microtechnique for most-probable-number 
analysis. Appl. Environ. Microbiol. 33: 675-680. 

Ryther, J. H. 1969. Photosynthesis and fish production in the sea. Science. 166: 72-76. 

Selvin, R., B. Reguera, I. Bravo, and C. M. Yentsch. 1988. Use of fluorescein diacetate 
(FDA) as a single-cell probe of metabolic activity in dinoflagellate cultures. Biol. 
Oceanogr. 6: 505-511. 

Segovia, M., L. Haramaty, J. A. Berges, and P. G. Falkowski. 2003. Cell death in the 
unicellular chlorophyte Dunaliella tertiolecta. A hypothesis on the evolution on 
apoptosis in higher plants and metazoans. Plant Phys. 132: 99-105. 

Sommer, U. 1987. Factors controlling the seasonal variation in phytoplankton species 
composition: A case study for a deep, nutrient rich lake. Progr. Phycol. Res. 5: 
123-178. 

Sommer, U. 1988. Some size relationships in phytoflagellate motility. Hydrobiologia 
161: 125-131. 

67 



Staley, J. T., and A. Konopka. 1985. Measurement of in situ activities of 
nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Ann. Rev. 
Microbiol. 39: 321-346. 

Stewart, A. J., and R. G. Wetzel. 1986. Cryptophytes and other microflagellates as 
couplers in plankton community dynamics. Arch. Hydrobiol. 106: 1-19. 

Timmermans, K. R., M. J. W. Veldhuis, and C. P. D. Brussaard. 2007. Cell death in three 
marine diatom species in response to different irradiance levels, silicate, or iron 
concentrations. Aquat. Microb. Ecol. 46: 253-261. 

van de Poll, W., M. A. van Leeuwe, J. Roggeveld, and A. G. J. Buma. 2005. Nutrient 
limitation and high irradiance acclimation reduce PAR and UV-induced viability 
loss in the antarctic diatom Chaetocerous brevis (Bacillariophyceae). J. Phycol. 
41: 840-850. 

van de Poll, W. H., A. Alderkamp, P. J. Janknegt, J. Roggeveld, and A. G. J. Buma. 
2006. Photoacclimation modulates excessive photosynthetically active and 
ultraviolet radiation effects in a temperate and an Antarctic marine diatom. 
Limnol. Oceanogr. 51: 1239-1248. 

Vardi, A., I. Berman-Frank, T. Rozenberg, O. Hadas, A. Kaplan, and A. Levine. 1999. 
Programmed cell death of the dinoflagellate Peridinium gatunense is mediated by 
CO2 limitation and oxidative stress. Curr. Biol. 9: 1061-1064. 

Vardi, A., F. Formiggini, R. Casotti, A. De Martino, F. Ribalet, A. Miralto, and C. 
Bowler. 2006. A stress surveillance system based on calcium and nitric oxide in 
marine diatoms. PLOS Biol. 4: 411-419. 

Vasconcelos, M. T. S. D., C. M. R. Almeida, O. M. Lage, and F. Sansonetty. 2000. 
Influence of zwitterionic pH buffers on the bioavailability and toxicity of copper 
to the alga Amphidinium carterae. Environ. Toxicol. Chem. 19: 2542-2550. 

Veal, D. A., D. Deere, B. Ferrari, J. Piper, and P. V. Attfield. 2000. Fluorescence staining 
and flow cytometry for monitoring microbial cells. J. Immunol. Methods. 243: 
191-210. 

Veldhuis, M. J. W., T. L. Cucci, and M. E. Sieracki. 1997. Cellular DNA content of 
marine phytoplankton using two new fluorochromes: Taxonomic and ecological 
implications. J. Phycol. 33: 527-541. 

Veldhuis, M. J. W., G. W. Kraay, and K. R. Timmermans. 2001. Cell death in 
phytoplankton: correlation between changes in membrane permeabiligy, 
photosynthetic activity, pigmentation and growth. Eur. J. Phycol. 36: 167-177. 

68 



Waite, A., A. Fisher., P. A. Thomspon, and P. J. Harrison. 1997. Sinking rate versus cell 
volume relationships illuminate sinking rate control mechanisms in marine 
diatoms. Mar. Ecol. Prog. Ser. 157: 97-108. 

Walsh, J. J. 1983. Death in the sea: Enigmatic phytoplankton losses. Prog. Oceanogr. 12: 
1-86. 

Watt, W. D. 1971. Measuring primary production rates of individual phytoplankton 
species in natural mixed populations. Deep-sea Research. 18: 329-339. 

Wigglesworth-Cooksey, B., K. E. Cooksey, and R. Long. 2006. Antibiotic from the 
marine environment with antimicrobial fouling activity. Env. Toxicol. 22: 275-
280. 

Woomer, P., J. Bennett, and R. Yost. 1990. Overcoming the inflexibility of most-
probable-number procedures. Agron. J. 82: 349-353. 

69 


	Flow cytometric analysis of phytoplankton viability in Elkhorn Slough, California.
	Recommended Citation

	ProQuest Dissertations

