
San Jose State University San Jose State University 

SJSU ScholarWorks SJSU ScholarWorks 

Master's Theses Master's Theses and Graduate Research 

Fall 2009 

Active vibration control of a flexible beam. Active vibration control of a flexible beam. 

Shawn Le 
San Jose State University 

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses 

Recommended Citation Recommended Citation 
Le, Shawn, "Active vibration control of a flexible beam." (2009). Master's Theses. 3983. 
DOI: https://doi.org/10.31979/etd.r8xg-waar 
https://scholarworks.sjsu.edu/etd_theses/3983 

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU 
ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU 
ScholarWorks. For more information, please contact scholarworks@sjsu.edu. 

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_theses
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3983&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/3983?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3983&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu


ACTIVE VIBRATION CONTROL OF A FLEXIBLE BEAM 

A Thesis 

Presented To 

The Faculty of the Department of Mechanical and Aerospace Engineering 

San Jose State University 

In Partial Fulfillment 

of the Requirement for the Degree 

Master of Science 

by 

Shawn Le 

December 2009 



UMI Number: 1484309 

All rights reserved 

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted. 

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion. 

UMT 
Dissertation Publishing 

UMI 1484309 
Copyright 2010 by ProQuest LLC. 

All rights reserved. This edition of the work is protected against 
unauthorized copying under Title 17, United States Code. 

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346 



©2009 

Shawn Thanhson Le 

ALL RIGHTS RESERVED 



SAN JOSE STATE UNIVERSITY 

The Undersigned Thesis Committee Approves the Thesis Titled 

ACTIVE VIBRATION CONTROL OF A FLEXIBLE BEAM 

by 
Shawn Thanhson Le 

APPROVED FOR THE DEPARMENT OF 
MECHANICAL AND AEROSPACE ENGINEERING 

cruy OlS* 

Departeft^itof Mechanical and 
Aerospace Engineering 

Dr. Neyram Hemati, Department of Mechanical and 
Aerospace Engineering 

^ 1 
Dr. Winncy Du. Department of Mechanical and 

Aerospace Engineering 

ta/oS /0*f 

Date 

lojte/ol 
Date 

/0/o8/o? 

Date 

APPROVED FOR THE UNIVERSITY 

Associate Dean, Office of Graduate Studies and Research Date 



ABSTRACT 

ACTIVE VIBRATION CONTROL OF A FLEXIBLE BEAM 

by Shawn Le 

There has been tremendous growth in the study of vibration suppression of smart 

material structures with lead zironate titanate (PZT) material by the control engineering 

community. This thesis considers a cantilever beam with bonded piezoceramic actuators 

and a sensor for the study of vibration control. The flexible beam dynamic model is first 

derived analytically according to the Euler Bernoulli Beam Theory. The first three mode 

shapes and natural frequencies of the beam are constructed analytically and verified with 

finite element analysis. The validity of the smart structure was experimentally verified. 

The natural frequencies and damping parameters for each mode were experimentally 

verified and adjusted. In this study, a transfer function consisting of the first three modes 

is constructed to implement both classical derivative (D) and proportional and derivative 

(PD) control. Then a state space model consisting of the first two modes of the beam is 

constructed to design and implement the modern linear quadratic regulator (LQR) state 

feedback control algorithm. A smart-structure beam station was built according to the 

instruction of Steven Griffin [6]. The Griffin's analog circuit was modified to integrate 

with the Matlab-Quanser real-time control unit. In the analytical and experimental study, 

the D, PD, and LQR state-feedback controller provided significant vibration suppression. 



ACKNOWLEDGEMENTS 

First and foremost I would like to thank my committee chair and advisor, 

Professor Ji Wang, for his guidance and support for making this work possible. I would 

like to thank Professor Winncy Du and Professor Neyram Hemati for taking the time and 

interest in serving as my committee members. I would like to thank my two close 

electrical engineering friends from San Diego, Khang Nguyen and Lam Tran. They have 

been great in helping me understand the electrical circuit of this work. I would especially 

like to thank my friend and classmate Howlit Ch'ng for keeping me company while 

working on this thesis in the San Jose State University Control Lab. In addition, I would 

like to thank him for helping me set up and use the Matlab-Quanser real-time control 

system. 

v 



TABLE OF CONTENTS 

LIST OF FIGURES viii 

LIST OF TABLES xi 

1. Introduction 1 

2. Modeling of the Beam 2 

2.2 Piezoceramic Actuator Model 6 

2.3 Piezoceramic Sensor Model 8 

2.4 Derivation of the Transfer Function with Actuator 9 

2.5 Derivation of the Transfer Function with Actuator-Sensor 10 

2.6 Mode Shapes of the Beam 12 

2.7 Impulse Response and Bode Plot of the Transfer Function 14 

2.8 Parameters of the Piezoceramic Laminate Beam 17 

3. Experimental Setup 18 

3.1 Real-Time Experimental Setup with Simulink and Quanser 20 

3.1.1 Real-Time Hardware Setup 21 

3.2 Experimental Identification 24 

4. Vibration Control Method 27 

vi 



4.1 Method 1: Derivative Control 28 

4.2 Method 2: Proportional and Derivative Control, PD Controller 29 

4.2.1 PD Controller Simulation 30 

4.2.2 PD Real-Time Control 33 

4.3 Method 3: LQR State Feedback with Observer Design- LQR Controller 35 

4.3.1 State Space Dynamic Model Derivation 35 

4.3.2 Observability and Controllabilty 36 

4.3.3 Observer Design 38 

4.3.4 LQR State Feedback Gain 39 

4.3.5 LQR State Feedback Controller Simulation 39 

4.3.6 LQR Real-Time Control 47 

5. Results and Discussion 52 

6. Conclusion and Recommendations 54 

BIBLIOGRAPHY 56 

Appendix A Mathcad Analysis 57 

Appendix B Matlab M Files 72 

vn 



LIST OF FIGURES 

Figure 1. Cantilever Beam with Bonded PZT Actuators and Sensor 3 

Figure 2. Bending Moment of Actuator 6 

Figure 3. Charge Amplifier and PZT Sensor 8 

Figure 4. Mode Shape of Beam Derived Theoretically 12 

Figure 5. Mode 1 and Mode 2 Respectively with Pro-Mechanica 13 

Figure 6. Mode 3 of the Beam with Pro-Mechanica 13 

Figure 7. Impulse Reponse of Beam Deflection at the Tip of the Beam Simulated in 

Simulink 15 

Figure 8. Bode Plot of the Transfer Function of Equation (20) 16 

Figure 9. The Impulse Response of the Voltage Sense by the Piezoceramic Material. ... 16 

Figure 10. Bode Plot of the Transfer Function Equation (27) 17 

Figure 11. Beam Circuit Detail of LM324 Operational Amplifier 19 

Figure 12. Beam Circuit Interfacing to Quanser between Griffin's Analog Circuit with 

the Maltab-Quanser System 20 

Figure 13. Experimental Beam Station Connected to Simulink-Quanser 21 

Figure 14. View of Beam Station and Circuit 22 

Figure 15. Close Up Top View of Beam Station Showing Piezoceramic Actuator and 

Sensor 22 

Figure 16. Close Up Bottom View of Beam Station Showing Piezoceramic Actuator ... 23 

Figure 17. Quanser DAQ Board with Analog 23 

viii 



Figure 18. Real-Time Implementation of Open Loop Actuation at the Beam Natural 

Frequency 25 

Figure 19. Plot of Open Loop Actuation at Resonant Frequency of 97.5 rad/s 26 

Figure 20. Open Loop Reponse of Beam Deflected at Approximately 1 inch 26 

Figure 21. Plot to Calculate Damping Coefficient of First Mode Open Loop Response. 27 

Figure 22. Derivative Controller of Make Analog Circuit 29 

Figure 23. Simulink Open Loop Response Simulation of Transfer Function for First 

Three Modes 30 

Figure 24. Plot of Simulink Open Loop Response Simulation 30 

Figure 25. PD Controller Simulation of Beam Vibration Suppression 31 

Figure 26. PD Vibration Suppression Simulation, P=40, D=1.5 32 

Figure 27. PD Vibration Suppression Simulation, P=17, D=0.01 32 

Figure 28. Real-Time PD Controller Implementation Block Diagram Simulink 33 

Figure 29. Real-Time Plot of PD Vibration Suppression, P=17, D=0.01 34 

Figure 30. Real-Time Plot of Control Voltage 34 

Figure 31. State Space Open Loop Response with Initial Condition 40 

Figure 32. Plot of State Space Open Loop Response with Initial Condition 40 

Figure 33. State Space with Observer and LQR State Feedback 41 

Figure 34. Voltage Sense of LQR Controller at a=\, p=\ 42 

Figure 35. LQR Control Voltage at a=\, (3=\ 42 

Figure 36. Voltage Sense of LQR Controller at «r=10, /?=1 43 

Figure 37. LQR Control Voltage at or = 10, p-\ 43 

ix 



Figure 38. Voltage Sense of LQR Controller at «r=100, /?=1 44 

Figure 39. LQR Control Voltage at «r = 100, ft = 1 44 

Figure 40. Voltage Sense of LQR Controller at a=l, /? =0.001 45 

Figure 41. LQR Control Voltage at a=l, f3 =0.001 45 

Figure 42. Voltage Sense of LQR Controller at a=\, /3 =0.005 46 

Figure 43. Real-Time Control of LQR Controller with Observer and State Feedback in 

Simulink 48 

Figure 44. Real-Time Voltage Sense Plot of LQR Control at a=\, fi=\ 49 

Figure 45. Real-Time Voltage Sense Plot of LQR Control at a=10, /3=\ 49 

Figure 46. Real-Time Control Voltage of LQR Controller at a=10, (3=\ 50 

Figure 47. Real-Time Voltage Sense Plot LQR Control at or=100, fi=\ 50 

Figure 48. Real-Time Control Voltage of LQR Controller at a=100, /?=1. This data 

shows the control voltage before the ±36V limitation of the hardware 51 

x 



LIST OF TABLES 

Table 1. Constant Values for A. 5 

Table 2. Comparison of the 3 Mode Shape Between Pro-Mechanica and Theoretical 

Method 14 

Table 3. Parameters of Aluminum 6064 Beam 17 

Table 4. Parameters of PZT PSI-4A4E 18 

Table 5. Comparison Controller Performance Based on Settling Time 53 

XI 



1. Introduction 

The interest of this study is active vibration damping in a flexible structure 

bonded with piezoelectric materials such as piezoelectric ceramic material (PZT). 

Piezoceramic layers bonded to the surface of or into a manufactured flexible structure 

member can act as either control actuator or sensor [6]. The piezoelectric effect consists 

of the ability to strain when the crystalline material is exposed to voltage. Oppositely, it 

produces electrical charge when strained [1]. A flexible structure with the piezoelectric 

elements bonded on it becomes what is called a smart structure. Application of smart 

structures range from K2 skis to space structures, where minimal vibration is highly 

desirable [6]. This smart material technology may be applied to the construction of high-

rise buildings to counter the devastating effects of vibration from an earthquake [4]. 

In this study, a cantilever beam with the smart material (PZT) bonded on it was 

modeled with the Euler Bernoulli Beam theory [6]. With the model derived, different 

controllers could be designed and simulated in Simulink and implemented in real-time to 

study the improvement of the dampening effect on the beam. 

1 



2. Modeling of the Beam 

A flexible aluminum cantilever beam with a pair of PZT actuators and a single 

PZT sensor was modeled with the Euler-Bernoulli Beam theory. There was a derivation 

of the transfer function of the system relating the elastic deflection of the beam to a 

voltage applied to the piezoceramic actuator [1]. There was also a derivation of the 

transfer function of the relationship between the voltage applied to the actuator and the 

voltage induced in the piezoceramic sensor. The transfer function derived was verified 

by comparing the first three mode shapes and natural frequencies of the beam to the finite 

element analysis result in Pro-Mechanica [1]. 

2.1 Derivation of the Flexible Beam Mode Shape 

A piezoceramic laminate cantilevered beam is illustrated in Figure 1. The beam is 

fixed at one end and free at the other end. Two piezoceramic actuators patches and one 

piezoceramic sensor (PZT) are used as shown in Figure 1. The parameters in Figure 1 

are given in Table 4 . The Euler Bernoulli Beam theory gives the partial differential 

beam equation in Equation (1) [1, 8]. 

2 
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Figure 1. Cantilever Beam with Bonded PZT Actuators and Sensor. 

The partial differential equation describing the dynamic of the flexible beam without 

damping force is: 

PuAi 
d2w 

+ E , r ^ = M 9 2 / ? W 

bbd2t bbd4
x 

a dx2 
(1) 

where: 
p, = mass density of material of beam 

A, = cross sectional area of beam 
b 

E, = Young's Modulus of beam 
b 

b /z3 

/ . = first moment of inertia, /, = a h of beam 
b b 3 

h, = thickness of beam 

b = width of beam 

w = beam transverse displacement 

M = bending moment acting on beam. 
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where R is the generalized location function 

R(x) = H(x-x ,)-H{x-x . ) (2) 
a\ al 

and H is the Heaviside function, x , and x ^ are locations of the actuators [81. 
al al 

The transverse displacement is expressed in terms of infinite series 

w(x,t)= S <f»Xx)riAt) (3) 
i = l 

where 0,(x) is the /' mode shape for the cantilever beam and rj.(t) is the corresponding 

generalized displacement. The homogeneous solution to the partial differential Equation 

(l)is 

Fh ( JC) = A cos fix + B sin fix + C cosh fix + D sinh fix (4) 

For a clamp-free cantilever beam, the boundary conditions are: 

w(0,t) = 0 (4a) 

Bw(0,t) 

dx 

d2w(l,t) 

dx2 

dw\l,t) 

dx' 

= 0 (4b) 

= 0 (4c) 

= 0 (4d) 

where / is the length of the beam. The boundary conditions applied to Equation (4) give 

the following 4 equations: 
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A + C = 0 

B + D = Q 

- A cos pi - B sin J3l + C cosh pi + D sinh J3l = 0 

Acospi -fisin pi + Ccosh pi + Dsinh/?/ = 0 

The substitution of the first three equations into the last equation results in 

(cos pi + cosh pi)2 

1 + -
(sin2yfl/ + sinh2y#/) 

= 0 

To satisfy the boundary conditions, A=0 is to a trivial solution and B = C = D = 0. 

This result to 

This equation is reduced to 

(cos pi + cosh pif 

(sin2 pi + sinh2 pi) 

(cos pi cosh pl) = -\ 

= -1 

(5) 

(5a) 

(5b) 

(5c) 

(6) 

(7) 

(7a) 

The equation is solved with an infinite number constant of Ptl 's. The first three values 

are given in Table 1. Note that (/?/ = A.). 

Table 1. Constant Values for X. 

i 

1 
2 
3 

x = P! 
1.875104069 
4.694091133 

7.85475743 



The mode shape, <f>. (JC) is 

0.(*) = C, 
' / L ^ 

cos -cosh U^ 
COS r^i+ 

V l J 

\ I 
cosh 

(4* 
/ 

v i y sin I —— | + sinh 
v I J 

f lx^ 
sin 

V \ l J 
-sinhf^ 

where the constant, Ci, can be determined from the orthogonality expression: 

\</>.2(x)dx = l 

(8) 

(9) 

and 

| $.</> .dx — 0 if i ^ j (9a) 

2.2 Piezoceramic Actuator Model 

Two PZT patches are laminated to the top and the bottom of the beam structure 

with epoxy glue as shown in Figure 2. The PZT patches have an actuating capability, 

which is governed by the piezoelectric constant (d3 1) . 

Ma=Ca-Va 
w 

PZT ACTUATOR 

BEAM — X 

PZT ACTUATOR 

Figure 2. Bending Moment of Actuator. 
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The 3 in the d3i implies that the charge is collected on the polarized surfaces or along the 

w-axis as shown in Figure 1, and the 1 implies that the force is generated along the 

longitudinal x-axis. When a voltage (Va) is applied in the same direction as the 

polarization of the piezoceramic electric material, the material is elongated along the x-

axis. The bending moment (Ma) is shown in Figure 2 [2]. When an opposite Va is 

applied to the polarized direction, the material is contracted along the x-axis [2]. The 

moment induced by the voltage is given in the form of 

Ma{t) = CaVa(t) (10) 

where the constant, Ca, is given as 

C -Ead3lba(hh+hJ (10a) 

where 

Ea - Young's modulus of the piezoceramic actuator 

d3i = electric charge constant (isotropic plane) 

b - width of the actuator 

hb = thickness of the beam 

h, = thickness of the actuator 

The total distributed load, qa(x,t), in Equation 1 is given in the form of 

2 
M JL*&. = qa(Xtt) (11) 
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2.3 Piezoceramic Sensor Model 

A PZT sensor is laminated on the top surface of the beam as shown in Figure 3. It 

also shows the PZT sensor connected to a charge amplifier. 

C2=4.7nf 

Figure 3. Charge Amplifier and PZT Sensor. 

The structural deformation of the beam induces strain to the laminar sensor. The electric 

charge of the piezoceramic sensor (Qs (t)) is equal to the integral of the electric charge 

distribution over the entire length of the piezoceramic materials multiplied by the sensor 

width (bs) [1]. The electric charge distribution (q(x,t)) is given as 

q(x,t) = 
#31 , 

£c(x,t) (11a) 

where /c31 is the coupling coefficient, g31 denotes the piezoelectric voltage coefficient, 

and ec (x,t) is the strain in the sensor patch. The strain (£c (x,t)) is related to the 

curvature of the beam in the form of 

8 



ec(x,t) = -vt+S 
^^2 

w 
dx2 (12) 

The total charge accumulated on the sensing layer can by found by integrating q(x,t) 

over the entire area of the piezoelectric sensing element. 

**2 

Qs(t) = -bs \q(x,t)dx = -bs 

%i 

b- + t 
V^ J 

f ^ 

V ^ 3 i y 

d2w(x,t) 

dx2 

xs2 

*.5 l 

2.4 Derivation of the Transfer Function with Actuator 

From [1], the substitution of the Equation (2) into (1) results to Equation (14). 

z 
1 = 1 

9 

dx 

(13) 

(14) 

Because \0.2(x)dx = 1, Equation (14) is integrated by w. (x)dx to yield 
o 

Pb\\^
2Mdx 

V o 

ijt(t) + EbIh U2(x)0"{x)dx W(t) = M (t) \<L*£l0(x)dx (15) 
V 0 J 0 OX 

where 

*:{X)=M.{X) (15a) 

Equation (15) becomes 

(pbAb)fJi(t) + EJ^rJi(t) = Mjt)\^-^-^(x)dx 
o dx 2

 Ti 
(15b) 

9 



which simplifies Equation (15) to the second order Equation (1) 

fj.{t) + (foiXt) = ka[4(xa2)-4i(xal)]Va(t) i = l,2,3... 

where 

6£!=ML# 
PA bixb 

k = 

-Ead3lba(hh+ha) 
± I 

PaK 

To include damping, £ , the Equation (16) becomes 

fj. (0 + 2£<ym77. (0 + 0)2
mTj. (t) = ka [#' (xa2)- ft (xal )]va 

Take Laplace transformation of Equation (19) and substitute into Equation (3) 

Va(s) ~h s2+2C,conis + co2
m 

2.5 Derivation of the Transfer Function with Actuator-Sensor 

The total charge of the sensor in Equation (13) 
xs2 ( 

Qs(t) = -bs \q(x,t)dx = -bs • + t„ 

%i V 

' * 3 ^ 

^ 3 1 J 

d2w(x,t) 

dx2 

*s2 

*s\ 

evaluated at the position of the sensor, xs2 and xs] give 

d2w(x,t) 

dx 

xs2 

Ksl 

= I ^(Ot^)-^,,)] 
1 = 1 

10 



results to 

Qs(t) = K Z Tj.(t)W(xs2)-t(xsl)] 
1 = 1 

(22) 

where 

*,="A \2 aj 
*31 

§ 3 1 , 

(23) 

The relationship between the voltage, Vs(t), and the total charge, Q(t), is given [1] as 

vs(t) = G,(0 
c A ( * * 2 - * , i ) 

where 

C is the capacitance per unit area of the piezoelectric sensor 

bs (xs2 - xsl) is the surface area of the piezoelectric sensor 

Substituting Qs(t) into Vs(t) yields: 

(24) 

Vs(t) = i' = l 
C A ( * , 2 - * 5 l ) 

(25) 

From Equation (19) 

(26) 

Substitute Equation (26) into Equation (25) yield Equation (27), the transfer function 

relating the input voltage of the actuator to the voltage induced by the piezoelectric 

sensor. 

11 



V,(S) = y KK [<Pi (Xs2 ) ~ <Pi (Xsl )] [#' (*„2 ) ~ J (XaS\ 

Va(s)~h Csbs{xs2-xsl)(s
2
+2Zl(oms + CDl) 

(27) 

2.6 Mode Shapes of the Beam 

The first 3 bending mode shapes were plotted from Equation (8) as shown in 

Figure 4 and verified with Pro-Mechanica finite element analysis as shown in Figure 5 

and Figure 6. The analytical mode shapes analysis agrees well with the finite element 

analysis. Table 1 shows a comparison of the 3 natural frequencies of the first 3 modes of 

the beam. The analytical natural frequencies of the cantilever beam are obtained from 

Equation (17). The natural frequencies of both methods are very close to one another. 

1 

0.5 

1 4>Kx) 0 

| <l>2(x) 
u 

1 ^ 0 . 5 
Q 

-1 

"1.5 

Mode Shape 1,2,3 

.,..""'"-' --r7^~~ __^ 

Length of Beam 0-11.8in 

Figure 4. Mode Shape of Beam Derived Theoretically. 
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Figure 5. Mode 1 and Mode 2 Respectively with Pro-Mechanica. 

Figure 6. Mode 3 of the Beam with Pro-Mechanica. 
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Table 2. Comparison of the 3 Mode Shape Between Pro-Mechanica and Theoretical 
Method. 

Pro-Mechanica 
Theoretical (Euler 
Bernoulli) 

Model (rad/s) 
95.3618 
92.677 

Mode 2 (rad/s) 
597.5569 
580.79 

Mode 3 (rad/s) 
1714 
1626 

2.7 Impulse Response and Bode Plot of the Transfer Function 

The impulse response for two cases was simulated in Simulink per Equation (20) 

and (27). The impulse response of the first case is a tip deflection (x = I) of the beam 

and is shown in Figure 7. The second case is the impulse response of the sensor voltage 

and is shown in Figure 9. The Bode plots of the two cases are shown in Figure 8 and 

Figure 10. Both Bode plots show the resonant peaks to be at the same location. The 

damping coefficient is assumed to be £", 2 3 = 0.01. 

14 



w(l,t) 

Time (s) 

Figure 7. Impulse Reponse of Beam Deflection at the Tip of the Beam Simulated in 
Simulink. 
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Figure 8. Bode Plot of the Transfer Function of Equation (20). 

Voltage 

Time (s) 

Figure 9. The Impulse Response of the Voltage Sense by the Piezoceramic Material. 
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Figure 10. Bode Plot of the Transfer Function Equation (27). 

2.8 Parameters of the Piezoceramic Laminate Beam 

Table 3 shows the parameters of the aluminum cantilever beam. The properties 

and locations of the PZT actuators and sensor are shown in Table 4. 

Table 3. Parameters of Aluminum 6064 Beam. 

Properties 
E (Young Modulus) 
p (density 
w (width) 
t (thickness) 
1 (Length) 

Units 
lb/inA2 
lb/inA3 
in 
in 
in 

Beam 
1.09E+07 

0.0975 
0.6 

0.065 
11.8 

17 



Table 4. Parameters of PZT PSI-4A4E. 

Properties 
d31 (Charge constant) 
g31 (Voltage constant 
k31 (coupling coef.) 
ba (width) 
t (thickness) 
L (Length) 
x1 (location on Beam) 
x2(location on Beam) 

Units 
m/V 
Vm/N 

in 
in 
in 
in 
in 

Sensor 
-1.90E-10 
-1.16E-02 

0.35 
0.4 

0.0105 
0.5 
1.5 

2 

Actuator 
-1.90E-10 
-1.16E-02 

0.35 
0.4 

0.0105 
1 
0 
1 

3. Experimental Setup 

The first beam station is constructed based on Griffin's station from Make [6]. 

Griffin's beam station suppressed the vibration of the beam without a microcontroller. A 

LM324 quad amplifier chip is used for signal processing, derivative control, and as a 

bridge amplifier. Figure 11 shows a detail circuit schematic of Griffin's beam station. 

First the charge signal from the piezoceramic sensor is passed through a charge 

amplifier in the first operational amplifier circuit. The second operational amplifier in the 

LM324 serves as a low-pass filter that boosts the input voltage of the first vibration 

mode. The potentiometer resistance, R2 in Figure 11, is adjusted to match the resonance 

frequency of the beam. The last two sets of operational amplifiers power the two 

actuators in tandem. The two bridge amplifiers are then connected to a double pole 

double throw (DPDT) phase switch. The phase switch can be switched to the up position 

to suppress the beam vibration or to the down position to excite the beam resonant 

18 



vibration. The principle of the up position of the phase switch is to have the actuator 

function in a 180 degree phase shift to counteract the vibration of the beam [6]. 

^^ iM'M'Hi l i r - f f1 

Figure 11. Beam Circuit Detail of LM324 Operational Amplifier. 
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3.1 Real-Time Experimental Setup with Simulink and Quanser 

Four 9V 
Batteries 

^^iltJilhJilHilb-fT 

Figure 12. Beam Circuit Interfacing to Quanser between Griffin's Analog Circuit 
with the Maltab-Quanser System. 

Figure 12 shows the connection between Griffin's beam station and real-time with 

the Matlab-Quanser system. Figure 12 shows the second amplifier with a gain of 0.1 

which replaces the low pass filter, as shown in Figure 11. The 0.1 gain amplifier 

attenuates the input voltage and its output voltage is sent to Simulink-Quanser data 

acquisition board. The output signal from the Simulink control block unit is multiplied 

by a gain of 10 from the amplifier. 

20 



3.1.1 Real-Time Hardware Setup 

The real-time experimental setup of the beam station is shown in Figure 13. 

Figure 14-16 show a close-up view of the cantilevered beam along with actual PZT 

actuators and sensor. Figure 17 shows the analog input and output signal connection to 

the Quanser DAQ board. 

Figure 13. Experimental Beam Station Connected to Simulink-Quanser. 
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Figure 14. View of Beam Station and Circuit. 

IMP 

ri * i m 
i i i i i 

' - ! / • ' 

N t y i 
• iHB 

111 **»&.,. ^» #ff->. i3& ' i | § l l l 

Figure 15. Close Up Top View of Beam Station Showing Piezoceramic Actuator and 
Sensor. 
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3.2 Experimental Identification 

The first experimental study was to examine the open loop beam vibrations. The 

experimental setup is shown in Figure 12. The beam was manually deflected by the 

operator at the free end of the beam with a tip deflection of approximately 1 inch. With 

the PZT sensor and the charge amplifier connected to the Quanser DAQ board, the open 

loop response of the beam was examined. The damping parameter was identified to be 

£, = 0.005 in Equation (27). The damping parameters for £2 3 was approximated to be 

0.001 in this study. 

It takes approximately 40s for the beam to settle without the lamination of sensor 

and actuators on the beam. The lamination of the PZTs significantly decreases the 

settling time of the beam to approximately 7.7s as shown in Figure 20. Due to the 

inconsistency of tip deflection of the beam from using a finger, the vibration response 

peak voltage is not the same in each measurement in real-time control implementation. 

Therefore, a method is imposed to measure the settling time of each vibration response 

case without bias. The settling time in this study is defined as 

* settling ~ *V=0.\ ~ *V=\0 (27a) 

where TV=Q, is the time where the vibration level will be less than 0. IV for t > Tv=0,. 

Figure 20 shows a visual detail for Tsettli . 

The natural frequency of the first mode matched well with the experimental and 

analytical results. The sampling time of the Quanser DAQ board is limited to 100 Hz. 

Therefore only the first two modes of the beam vibration could be evaluated for system 
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identification and vibration control. An experimental method to verify the first two 

modal frequencies of the beam is to excite the structure and examine its resonance 

response, as seen in Figure 19. For the first mode, the resonant frequency was observed 

to be at 97.5 rad/s. Similarly, the second mode was observed to be 589.7 rad/s. 
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Figure 18. Real-Time Implementation of Open Loop Actuation at the Beam Natural 
Frequency. 
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The damping parameter for the first mode is calculated in Equation (27.2) from [5]. 

Figure 21 is a close up view of Figure 20 and it provides the data points to calculate the 

damping parameter in Equation (27.2). 

£ = 
1 

2M0 
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2M0 
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2.848 
= 0.0052 (27.2) 
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Figure 21. Plot to Calculate Damping Coefficient of First Mode Open Loop 
Response. 

4. Vibration Control Method 

Three control methods that have been successfully implemented to suppress the 

vibration of the beam in this study. The first method of active control comes from 
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Griffin's analog circuit. The second method of active control is the Proportional and 

Derivative (PD) control with the modified Griffin's circuit. Simulink in PD simulation 

and real-time control was implemented. The third method of active control is the state 

feedback with a full state observer. A linear quadratic regulator (LQR) optimal control 

method was implemented for vibration suppression in simulation study and real-time 

control. 

4.1 Method 1: Derivative Control 

The derivative control method uses the low pass filter as shown in Figure 11 to 

filter the high frequency vibration of the beam, allowing only the first modal vibration of 

15.5 Hz to pass through. In addition to low pass filtering, this filter also provides the 

derivative of the input signal for derivative control action. This control method is in the 

form of 

dV 
V=-K—'- (27.3) 

dt 

dV 
where K is the control gain, and — L is the derivative of the voltage signal from the 

dt 

sensor. 

Figure 22 shows the result of the active derivative control of the beam. From 
Figure 22, the vibration observed (Vs(t)) is considerably reduced within the first 1.5s. 

After 1.5s, there is still some minimal vibration that lasts for another 2s until the beam 

completely settles to OV. 
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Figure 22. Derivative Controller of Make Analog Circuit. 

4.2 Method 2: Proportional and Derivative Control, PD Controller 

An impulse open loop response is simulated as seen in Figure 23 and plotted in 

Figure 24. Then the PD beam vibration control system is investigated. The PD 

controller provides good damping in the beam vibration, resulting in Is settling time in 

the simulation study with P=40 and D=1.5, and 2.25s settling time for real-time control 

with P=17 and D=0.01. 
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4.2.1 PD Controller Simulation 

Figure 23 shows the Simulink diagram for the open loop response. Figure 24 

shows the simulated open loop response. 
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Figure 23. Simulink Open Loop Response Simulation of Transfer Function for First 
Three Modes. 

Figure 24. Plot of Simulink Open Loop Response Simulation. 
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The PD control Simulink simulation is shown in Figure 25. The low pass filter with 

bandwidth of 100 rad/s passes only the first mode of beam vibration to the feedback loop. 

Essentially, the PD controller is only damping the first mode of vibration. If there is no 

low pass filter, the noise and the higher frequency modal vibration are amplified with the 

derivative action, causing instability in the beam vibration. The best PD controller gains 

were found to be at P=40, and D=1.5, as shown in Figure 26. Figure 27 shows the 

simulation case with P=17 and D=0.01. The best settling time for PD control simulation 

is Is. 
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Figure 25. PD Controller Simulation of Beam Vibration Suppression. 
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4.2.2 PD Real-Time Control 

A simulation implementation of the real-time digital PD control in Simulink is 

shown in Figure 28. The sensor voltage is connected to the Quanser analog input box. 

The signal goes through a series of signal conditioning units: first a low pass filter, an 

offset constant unit and then an amplifier with the gain of 10. Then the signal is fed back 

for PD control. Figure 29 and Figure 30 show the real-time PD control beam vibration 

and the control voltage with P=17 and D=0.01 with a settling time of 2.25s. The 

maximum sensor voltage in Figure 29 is much less than that of the PD simulation in 

Figure 26 due to real-time hardware limitation. 
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Figure 28. Real-Time PD Controller Implementation Block Diagram Simulink. 
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4.3 Method 3: LQR State Feedback with Observer Design- LQR Controller 

4.3.1 State Space Dynamic Model Derivation 

From Equation (27), the transfer function is transformed to a state space vector 

dynamic equation for state feedback control system design. Since the first two modes are 

dominant, and due to the limitation of sampling rate of the Quanser DAQ board of 100 

Hz, only the first two modes of the transfer function in Equation (27) will be considered 

for state space base optimal control. A second order transfer function for each mode 

requires two state variables. There are two modes and one input, so a 4 by 4 system A 

matrix and a 4 by 1 system input matrix is needed. The output y matrix is the sensor 

voltage, and is a combination of the state from the first mode and second mode of the 

beam bending vibration. The state variables are in the form 

X,=T]2(t) 

*4=#2(0 = * 5 

where the state space matrix dynamic model is in the form 

x = Ax + BVa 

y = Cx 

The details of the A, B, and C matrices are in Equation (28a) and shown as 
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*, 0 1 0 

-aj -2£>Bl 0 
0 0 0 

0 0 -co. nl 

0 

0 

1 

\ 

+ k„ 
0 

^ ( • * f l 2 ) - & ( * f l i ) 

0 

K(0 

y = 
Csbs{Xs2-Xsl) 

[ti(xs2)-tiM ° ^(^2)-^2(^,1) °] 

(28b) 

4.3.2 Observability and Controllabilty 

Observability and controllability of the state space dynamic model are examined 

to prove whether the system is state controllable and state observable. The following 

relationships give the controllability matrix Co 

Co = (B,AB,AzB,...,An-lB) 

where A and B are the state space matrices of the system. The matrix Co must be full 

rank to be state controllable. Controllability is calculated in Matlab with the obsv and 

rank command. 

(29) 

Co = obsv(A,B) 

Controllability = rank{Co) 

The observability matrix is given by 

0 = (CT,ATCT,...,(AT)"~lCT) 

(30) 

(31) 

where C is the output state space matrix of the system. Observability is calculated in 

Matlab with the following command 
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ob = obsv(A, C) 
(31a) 

observability = rank(ob) 

The duality between the observer design and the state feedback regulator design 

allows for an observer design with the transpose of the A and the C matrix. In this study, 

the observability and controllability matrix are full rank. Full rank is the maximum 

number of linearly independent columns of the matrix A. The observer design was based 

on the pole placement method. The observer gain is calculated with the Matlab 

command in Equation (32) and Equation (32a). 

Ke=place(A',C',po) (32) 

where, 

po = the desired poles location (32a) 
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4.3.3 Observer Design 

An observer design is required since all 4 states cannot be individually measured. 

The separation principle allows the design of the observer to be independent from the 

design of the state feedback regulator. The full state observer is in the form of Equation 

(33) 

where 

x = Ax + Bu + Ke (y - y) 

y = Cx 

y = Cx 

u=V„ 

(33) 

(34) 

x = (A-Kec)x + Bu + Key 

x = Aobx + [B Ke] 

x = Aohx + Bob 

(35) 

where X is the estimated state, and y is the estimated output. For this flexible beam 

system, the eigenvalues of the observer matrix are assigned as 

-5.0000 + 2.0000i, -5.0000 - 2.0000i, -1.0000 + l.OOOOi, -1.0000 - l.OOOOi 

with observer gain (Ke) of 

[0.0007, -0.6349, -0.0120, 405.723 if 
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4.3.4 LQR State Feedback Gain 

Similar to the observer design, the separation and the duality principle applies to 

the LQR design. The state space system in Equation (28a) is controllable. Therefore, 

there is a linear state feedback gain (k) that can be found such that the quadratic cost 

function (J) is minimized. 

J = $(xTQx + v'RVa)dt (36) 

where 

Q = a 

' l 0 0 0^ 

0 1 0 0 

0 0 1 0 

0 0 0 1 

R = P 

where a and /? are scalar value. 

The Matlab command in Equation (39) is used to compute the LQR gain matrix. 

[k,S,E) = lqr(A,B,Q,R) 

The control voltage (Va ) is generated in the form of 

V, = -kx 

(37) 

(38) 

(39) 

4.3.5 LQR State Feedback Controller Simulation 

The open loop response (Figure 32) is simulated in Simulink (Figure 31) to verify 

that the model is close to the experimental open loop response. With the observer 
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designed separately, the LQR feedback controller gain matrix was calculated via Matlab 

command with Equation (39). Different combinations of a and /? in the Q and R 

weighting matrices were evaluated to find the response with the best settling time. Figure 

33 shows the complete LQR base control system in Simulink form. 
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Figure 31. State Space Open Loop Response with Initial Condition. 
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Figure 32. Plot of State Space Open Loop Response with Initial Condition 

[.01 0 .01 0]. 
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Figure 33. State Space with Observer and LQR State Feedback 

Simulink Simulation. 

Some of the Simulink simulation results of the LQR control system are shown in Figures 

34-42. 
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Figure 38. Voltage Sense of LQR Controller at a =100, p =1. 
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The increase of a in the Q matrix from a = 10 in Figure 36 to a = 100 in Figure 38 

significantly dampens the beam vibration from 4.5s to 1.5s settling time with low control 

voltage of 8V. The decrease of ft from 1 to 0.001 also significantly dampens the beam 

vibration from 6s settling time to 0.7s. However, there is an increase in the maximum 

control voltage from 5V volt to 175V. In real-time implementation 175V is not feasible. 

The maximum voltage could be applied to the PZT actuator is ±90V. The actual 

hardware configuration shown in Figure 12 has a limited control output voltage (Va) of 

±36V. 
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4.3.6 LQR Real-Time Control 

The LQR controller implementation setup in real-time is shown in Figure 43. It is 

important to note that the sensor voltage signal is signal conditioned by a first order low 

pass filter with the time constant of T = 0.0109s. The voltage signal is offset to 0V and 

multiplied by a gain of 10 because there is an operational amplified signal with a gain of 

0.1 before the signal goes to the DAQ board. Similar to the simulation in Figure 33, the 

sensor voltage and the actuator control voltage input to the state observer. The observer 

estimated states vector is multiplied by the computed LQR full state feedback gain (k) for 

control action. 
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Figure 43. Real-Time Control of LQR Controller with Observer and State Feedback 

in Simulink. 

The plots in Figure 44-48 show the vibration response with real-time control 

implementation of the LQR controller. Note that the settling time in real-time control is 

calculated using Equation (27a). For the real-time LQR control, the best control 

performance is shown in Figure 47 with a settling time of 1.8s, where a = 100 and (3 = \. 

The control voltage calculated by Simulink is about 100V, but the feasible maximum 

control voltage is limited to ±36V. The control voltage in Figures 46 and 48 is the 

calculated voltage before the ±36V cutoff of the hardware. 
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5. Results and Discussion 

Table 5 summarizes the performance results of the open loop and close loop response 

with different controllers. It indicates that the LQR controller with a = 100 and (5 = 1 

provided the best vibration suppression with a settling time of 0.5s. As mentioned in 

Section 4.1, the classical control method such as the derivative control from [6] provided 

good damping in the first 1.5s. However, there was a small sustaining vibration that was 

not quickly suppressed after 1.5s. This resulted in a longer settling time of 2.5s. PD real­

time control also provided a fast settling time of 1.75s. In this study, both classical 

control and modern control theory were successfully applied for vibration suppression of 

the smart structure. 

The PD simulation controller 4 and real-time PD controller 5 in Table 5 have the 

same P and D gain, but the real-time PD gain provides better settling time performance. 

Thus a more aggressive controller gain, such as P = 40 and D = 1.5, is needed for faster 

settling time response. 
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Table 5. Comparison Controller Performance Based on Settling Time. 
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4 
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6 

7 

8 
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Note: Real-time settling time calculated using Equation 
(27a). 

Control 
Method 

Open Loop 
(Real-Time) 

Open Loop 
(Simulation) 

D (Make) 
PD 
(Simulation) 

PD 
(Simulation) 
PD (Real-
Time) 

LQR 
(Simulation) 

LQR 
(Simulation) 

LQR 
(Simulation) 

LQR 
(Simulation) 

LQR (Real-
Time) 

LQR (Real-
Time) 

LQR (Real-
Time) 

Control 
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P = 17 
D=0.01 
a = 10 

a = 1 
P = 0.005 

a = 100 

a = 1 
f3 =0.001 

a = 1 

a = 10 
/?=1 

a = 100 

Settling 
Time 
Response 
(s) 

8.75 

10 

2.5 

1 

<6 

2.25 

3.5 

1 

1.2 
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2.5 

0.5 

Control 
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25 max 

12 max 
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6. Conclusion and Recommendations 

First a dynamic model of a flexible beam was investigated in this thesis. The 

derived model obtained was based on the mode shapes, natural frequencies of the beam 

vibration, and the experimental damping parameter of the flexible beam. The response of 

the analytical beam model did not exactly fit with that of the experimental model of the 

beam. However, the model parameters were adjusted to match closely to the 

experimental data. The adjusted model provided a good understanding of the vibration of 

the beam. The damping coefficient for the 2nd and 3rd mode vibration was best estimated 

from the open loop response data. Because of the limitation of the hardware sampling 

rate, the experimental frequency response of the system was not obtained. Therefore the 

damping coefficient parameters also could not be obtained. 

In future work, a frequency response experiment should be conducted to obtain a 

closer fit of the analytical model to the experimental data. Having a closer fit model, a 

more accurate and realistic controllers can be designed. 

Other control approaches such as the H controller [8] and the sliding mode 

method [10] could also be implemented. The sliding mode has distinct advantages over 

the conventional PD approach. The sliding mode method provides robustness, and 

improves transient response and control accuracy [10]. This sliding method is worth 

studying because of its applicability in wind and seismic structure control. 
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In this study, the LQR state feedback method provided the best vibration 

suppression compared to the derivative control and PD control. Vibration suppression 

could be better improved by changing the Q and R weighting matrices. For future work, 

the maximum output voltage of the operational amplifiers powering the PZT actuators 

can be upgraded from ±36V to ±90V. Doing so will increase the vibration suppression 

effectiveness. 
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Appendix A Mathcad Analysis 
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Active Vibration Control of a Flexible Beam 

1. Beam Dimension and Properties for Aluminum 6061 

1:= ll.Sin 

Length of the beam 

t := .065m 

Thickness 

w := .6in 

Width 

P-.W75™ 
. 3 
in 

Density 

E:= 1.0878107 — 
. 2 
in 

Young Modulus 

h:=l 
2 

wz := .0285iti 

Lz := 0.0765m 

pz := 7650 - ^ 
3 

m 

a := t- w 

a =0.039 in2 

Cross sectional Area 
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Az := wz-Ls 

3 w 

I :=t 
3 

- 3 4 
I = 4.68 x 10 in 

Moment of Inertia 

tz := .0005m 

Iz := 2-
f 3 2 ^ 

tz tz 2 tz 
— + t + t — 

U 2 4 / 

2. Composite Material constant 

d 3 1 : = - 1 9 0 1 0 - 1 2 ^ -
volt 

-9 in 
d31 = -7.4S x 10 

volt 

Electric Charge Constant 

ha := .0105in 

Length of actuator 

la := lin 

Length of sensor 

Is := .5in 

Thickness of PZT actuator 

Ea:=6.61010 — 
2 

m 

Ea = 9.572 x 10 psi 

Young Modulus 
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ba:= .4in 

width of actuator 

-9 in 

d31 = -7.48x 10 
volt 

_ Ead31ba( t+ha) 

Ca=-1.222 x 10 4 C 

Ea 
Cacheck := ba( t + ha) 

2 

Cacheck = 1.445 x 105 lbf 

Ca=-1.081 x 10 3lbf- — 
volt 

C is lbf*in/volt 

Cacheckl := Cacheck-7.43-10" 9 — 
volt 

1.445 x 105 lbf—7.4S10 9— = -1.221 x 10 4 

volt 

Va := 100V 

Max:=2Ca-Va 

Max =-0.018 lbfft 

k31 := 0.35 

Electromagnetic coupling constant 

2 
g31 :=-11.6-10 • — 

C 

s31 = -2.031 volt — 
lbf 



. 2 

g31 = -17.98 — 
C 

Mode Shape of Beam 

Az := wz-Lz 

XI := 1.875104069 

E b : = 7 5 . 1 0 1 0 i i 
2 

m 

12 := 4.694091133 

X3 := 7.85475743 

cl := .292 

c2 := .292 

c3 := .292 

Mode Shape 1 

t = 0.065 in 

<|>l(x) := cl cos| XI — cosh X\-
x\ COS(M) + cosh(j.l) 

1 J sin(A-l) + sinh(xi) 
sin XI-

y i 

h = 8.255 x 10 4m 

|1Q = -0.584 

1 

(j)l(x) dx = 1.006 in 
0 

Mode Shape 2 

<j]2(x) := c2 cos| X2- cosh £2 
cos(&2) + cosh(&2) ( . ( xN 

sin(X2) + sinh(32) I, I. \j 
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(j»2(r) = 0.584 

1 

>(i2(x) dx = 1.006 in 

0 

Mode Shape 3 

f3(x) := c3- cos| X3-- - cosh J 3 - -
U I 1 

cosfcj) + coriifc) ( . { x\ . { x̂  
; ; ; T~ \ Sin X5 - \ - Sintl A 3 -

sin(X3) + sinh(A3) V V U V 1> 

46(11.Sin) =-0.584 

1 

J0 
(|>3(x) dx= 1.006 in 

Natural Frequency of the first 3 modes 

" - T 

61 = 1.907 -
ft 

Ql := 

•1 

*l(x)- " *l(x) dx 
dx 

J0 

Ql = 6.415 x 10 4 — 
. 3 
in 

P:=T 

S2 = 4.774 -
ft 

63:= 
A3 
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63 = 7.988 -
ft 

r 
Q2 

A 
<(i2(x)- ® <(i2(x) dx 

dx 

Q2 = 0.025 — 
. 3 
in 

r1 

Q3:= 
A 

^(x)- " *3(x)dx 
dx 

0 

Q3 = 0.198 — 
. 3 
in 

1 

H f̂ 
wl = 9 2.677rad 

I = 2.257 x 10 ? ft4 

4 
EI-61 

wcheck := 
p a 

wcheck= 1.024 x 10 -
ft 

_1_ 

, E I Q 2 " 2 

w2 
p a 

w2 = 580.799rad 
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„ ( E I Q 3 
w3 := 

^ p a 

w3 = 1.626 x 103rad 

i ' ' i " 

w(x,s) i;kaKx)i!Kxa2) - K x a l ) 

'<• r -2 + 2& 1 ^ T i l *• T i l ' 

2 

Ca=-1.222 x 10 4 C 

ka:= 

N01 

ka = 

p a = 

Ca 

p a 

rE: A 

-8.321 

= 1.468 

is ampere 

x 10" 

lb 

2 
s 

3 
• 5 s A 

lb 

Vs(s) [ i V V ^ ' ' ^ x s 9 -Kxs l) !'Kxa2) -Kxal) 
Va(s) w 2 _ , T,T . , . 2 

„ 2 . 
- 4 s in 

ka=-9.985 x 10 — C—• 
ft lb 

Location of Actuator 

Position of Actuator 

xal := Oin 

Position of Actuator 

xa2 := xal + la 
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xa2 = 1 in 

Find the numerator of the Laplace transform of the system describing the beam tip 

deflection 

input. 

kd:= 1 

numlb := kd(j)l(I) 

numlb = -0.584 

num2b := kdiJSQ 

num2b = 0.584 

num3b := kdiJGQ 

num2b = 0.584 

numlb + num2b + num3b = -0.584 

3 

ka = -8.321 x 10~ 5 ^ - ^ 
lb 

Find the numerator of the Laplace transform of the system describing the elastic 

deflection 

of the flexible beam due to a voltage applied by actuating the piezoelectric. 

The Laplace transform of Vs(s)/Va(s). The is the relation between 

the voltage applied to the actuator and the voltage induced in the piezoelectric sensor. 

numl := -—<fil(xa2) I - ( -—$l(xal) 
dxa2 J \ dxal 

•ka-^lQ 

bs := ba 

Width of the sensor is equal to width of the actuator 
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numl = -8.098 x 10 
- 6 s A 

lb-ft 

hs := ha 

Thickness of the sensor is equal to the width of the actuator. 

t= 0.065 in 

ks := —bs I hs + -
2J g31 

ks= 1.172 x 10 4 C 

(Gustavo) 

num2 := -—«|*2(xa2) I - ( -—(PCxal) 
dxa2 I \ dxal 

ka-^CI) 

num2 

xsl := 

xsl = 

= 4.299 x 10" 

xa2 + 0.5in 

1.5 in 

• 5 s3-A 

lb-ft 

Location of the sensor base 

xs2 := xsl + Is 

xs2 = 2 in 

Location of sensor end 

num3 := -—<(G(xa2) I - I -—<P(xal) 
dxa2 } \ dxal 

ka-^Q 

num3 = 1.009 x 10 
- 4 s A 

lb-ft 

ks = 1.172 x 10 4 C 
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Find the denominator of the transfer function 

numsl -—<|.l(xs2) I - [ -—$l(xsl) 
dxs2 } kdxsl 

ks 

Numerator of TF for sensor 1 

Q. := .007 

Damping Coefficient for mode 1 

Damping Coefficient for mode 2 

- 6 s-A 
numsl = -8.255 x 10 

ft 

- 7 C 
numsl = -6.879 x 10 — 

in 

Q := .007 

Damping Coefficient for mode 3 

Q := .007 

nums2 := -—<|i2(xs2) I - [ -—42(xsl) 
dxs2 J Idxsl 

ks 

2-Q-wl = 1.297 

w 1 is the natural frequency for mode 1 

wl = 92.677 

wl2 = 8.589 x 103 

nums2 =-1.947 x 10 

nums2 = -1.623 x 10 

• 5 s-A 

ft 

•6C 

2-^2-^2 = 8.131 
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w2 is the natural frequency for mode 2 

w22 = 3.373 x 105 

nums3 -—<|G(xs2) 1 - f -—(f3(xsl) 
dxs2 / Idxsl 

ks 

w2 = 580.799 

2 £ w 3 = 22.768 

nums3 = 1.876 x 10 
•5 £^A 

ft 

- 6 C 
nums3= 1.564 x 10 — 

in 

w3 is the natural frequency for mode 3 

w32 = 2.645 x 106 

For calculation of state space use for m file 

w(x,s) ik
aKx)i- Kxa2) -Kxa l ) 

V<S) ^ S
2 + 2 ^ W - s + i W . V 

1 ^ ni nr 

numslss := -—<t>l(xs2) I - I -—<|>l(xsl) 
dxs2 } Idxsl 

ks-(|>10 

nums2ss := -—<|»2(xs2) | - (-—(|>2(xsl) 
dxs2 J \6xs\ 

ks$\Q) 

numl num2 num3 

V,s2 + 2^1wl + wl2 s2 + 2-g2w2+w22 s2 + 2Q-w3 + w32 J 

nums3ss 
(. 

-—<|»3(xs2) 
^dxs2 dxsl 

-(PCxsl) ks-4>i(rj 

numslss = 4.821 x 10 
• 6 s-A 

ft 
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nums2ss = 1.137 x 10 
- 5 s_A 

ft 

The Transfer function for mode 1,2, and 3 respectively calculated from Matlab 

•5 s-A 
nums3ss = -1.096 x 10 

ft 

for State Space B matrix 

phil -—$l(xa2) I - f -—«t)l(xal) 
dxa2 } \ dxal 

phil = -0.014 — 
in 

phi2 := 'U 
\dxa2 

(J2(xa2) - -—«f2(xal) 
dxal / 

phi2 = -0.074— 
in 

phi3:= -—(|3(xa2) J - (-—(f3(xal) 
dxa2 J \ dxal 

phi3 =-0.173 — 
in 

for State space C matrix 

philxs : -—(fil(xs2) - f -—if.l(xsl) 
dxs2 I Idxsl /J 

philxs = -5.87 x 10 3 — 
in 

Combine the numerator for the sensor and actutator to find the overall numerator of the 

transfer 

function. 
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phi2xs := -—<t»2(xs2) j - f-—<j*2(xsl) 
dxs2 ) Idxsl 

phi2xs = -0.014 — 
in 

Numl overall := 
numlnumsl 

m 

Numl overall = -2.716 x 10 F 

phi3xs : 
dxs2 

-<fG(xs2) 
dxsl 

P^xsl) 

phi3xs = 0.013 — 
in 

Num2 overall: 
num2nums2 

Num2overall = -3.402 x 10 F 

philpxs 

Nurti3 overall := 
num3nums3 

Numl overall = -2.716 x 10 F 

phi2pxs 

2 2 
-19 s 7 A 

Numl overall = -9.539 x 10 — s • -
ft lbin 

philxa: -—<(>l(xa2) 1 - -—(fil(xal) 
\dxa2 J ^dxal 

philxa = -0.014-
1 

phi2xa := | (Jx2(xa2) - <f(2(xal) 
,dxa2 ) \dxz\ 
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phi2xa = -0.074 — 
in 

phCxa := I —<J3(xaZ) - —<f<3(xal) 
.dxa2 } Idxal 

phi3xa = -0.173 — 
in 
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Appendix B Matlab M Files 
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%Properties of Aluminum 6061 

1= 11.8; %i n length of beam 

t=0.05; %in thickness of beam 

w=0.6; %in width of beam 

ro=0.0975; %lb/inA3 

E= 1.0878E7; %lb/inA2 

a=t*w; %inA2 

I=t*wA3/3 %Morrient of Inertia 

% Properties of PZT 

d31=-7.48E-9 %m/voit 

ha=.0105 %in height of actuator 

hs=ha; %in height of sensor 

la=l ' %in, length of actuator 

ls=.5 %in, length of sensor 

Ea=9.572E6 %lb/inA2 

ba=.4 %in, width of actuator 

bs=ba %in, width of sensor 

Cs=.008E-6; %capacitance per unit area 

xsl=3.8; %location of sensor 

xs2=4.3; %location of sensor 

Ca=Ea*d31*ba*(t+ha)/2; %lb*in/volt Geometry coefficient 
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Ca=2*Ca %two collocated actuator 

k31=.35; %coupling coefficient 

g31=(-11.6E-3)*(39.368)A2 %inA2/C 

omegal=6.415E-4; % I/inA3 

omega2=0.025; %]/inA3 

omega3=0.198; % l/inA3 

wl=(E*I*omegal/(ro*a))A.5; %1st natural freq rad 

w2=(E*I*omega2/(ro*a))A.5; %2nd natural freq rad 

w3=(E*I*omega3/(ro*a))A.5; %3rd natural freq rad 

wla=97.5; 

w2a=589.5; 

z 1=0.0052; %damping coefficient 

z2=0.001; 

z3=0.001; 

%actuator and sensor constant. 

ka=Ca/(ro*a) % inA2/volt 

ks=-bs*(hs+t/2)*(k31A2/g31) %Coulomb or can be in*lb/volt 

philxa=-0.014; %derivative of mode shape 1 of actuator at location 2 - location 1 

phi2xa=-.074; ^derivative of mode shape 2 of actuator at location 2 - location 1 
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phi3xa=-.173; %derivadve of mode shape 3 of actuator at location 2 - location I 

philxs=-5.87E-3; ^derivative of mode shape 1 of sensor at location 2 - location 1 

phi2xs=-0.014; %derivative of mode shape 2 of sensor at location 2 - location 1 

phi3xs=.013; %derivative of mode shape 3 of sensor at location 2 - location 1 

% Transfer function of Vs/Va 

numsl=ks*ka*philxs*philxa/(Cs*bs*(xs2-xsl)); Enumerator of transfer funciton. first 

mode 

nums2=ks*ka*phi2xs*phi2xa/(Cs*bs*(xs2-xsl)); 

nums3=ks*ka*phi3xs*phi3xa/(Cs*bs*(xs2-xsl)); 

denl=[l 2*zl*wla wlaA2]; %denominator of transfer function, first mode 

den2=[l 2*z2*w2a w2aA2]; %denominator of transfer function, 2nd mode 

den3=[l 2*z3*w3 w3A2]; %denominator of transfer function, 2nd mode 

tf_model=tf(numsl,denl); ^transfer function of first mode. 

tf_mode2=tf(nums2,den2); 

tf_mode3=tf(nums3,den3); 

t=0:.01:5; 

Tf_mode=tf_model+tf_mode2+0; % add the transfer for first 3 mode 

[numoverall,denoverall] = TFDATA(Tf_mode,V) 

damp(conv(conv(den 1 ,den2),den3)); 
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^calculate state space 

Al=[0 10 0; 

-wlA2-(wl)*2*zlOO; 

0 0 0 1 ; 

0 0-w2A2-(w2)*2*z2]; 

Bl=ka*[philxa 0 phi2xa 0]'; 

Cl=(ks/(Cs*bs*(xs2-xsl)))*[philxs 0 phi2xs 0]; 

D1=[0]; 

D2=[0 0 0 0]'; 

%step(Al,Bl,Cl,Dl) 

p=[-100+j*100 -100-j*100 -500+j*2000 -500-j*2000] 

pc=. 1 *p 

kl=place(Al,Bl,pc) 

%Bode( A1 ,B 1 ,C 1 ,D 1 );grtd; 

AC=A1-Bl*kl; 

%step(Al,BUCl,Dl) 

%step(AC.Bl,Cl,Dl) 

C2=[10 0 0; 

0 100; 

0 0 10; 

0 0 0 1 ] ; 
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po=[-l+li-l-li-5+2i-5-2i]'; 

pob=l*po 

ke=place(Al',Cl',po); 

ke=ke' 

Aob=Al-ke*Cl; 

Bob=[Bl ke] 

%Contxollabitity and Observability 

co=ctrb(Al,Bl) 

ob=obsv(Al,Cl) 

observability=rank(co) 

controllability=rank(ob) 

%Iqr 

Q=l*[10 0 0 0; 

0 100; 

0 0 10 0; 

0 0 0 1 ] ; 

R=.001; %R=.00I works 

[ke2,S,E]=lqr(Al,Bl,Q,R); 
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