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ABSTRACT

ACTIVE VIBRATION CONTROL OF A FLEXIBLE BEAM
by Shawn Le

There has been tremendous growth in the study of vibration suppression of smart
material structures with lead zironate titanate (PZT) material by the control engineering
community. This thesis considers a cantilever beam with bonded piezoceramic actuators
and a sensor for the study of vibration control. The flexible beam dynamic model is first
derived analytically according to the Euler Bernoulli Beam Theory. The first three mode
shapes and natural frequencies of the beam are constructed analytically and verified with
finite element analysis. The validity of the smart structure was experimentally verified.
The natural frequencies and damping parameters for each mode were experimentally
verified and adjuéted. In this study, a transfer function consisting of the first three modes
is constructed to implement both classical derivative (D) and proportional and derivative
(PD) control. Then a state space model consisting of the first two modes of the beam\is
constructed to design and implement the modern linear quadratic regulator (LQR) state
feedback control algorithm. A smart-structure beam station was built according to the
instruction of Steven Griffin [6]. The Griffin’s analog circuit was modified to integrate
with the Matlab-Quanser real-time control unit. In the analytical and experimental study,

the D, PD, and LQR state-feedback controller provided significant vibration suppression.
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1. Introduction

The interest of this study is active vibration damping in a flexible structure
bonded with piezoelectric materials such as piezoelectric ceramic material (PZT).
Piezoceramic layers bonded to the surface of or into a manufactured flexible structure
member can act as either control actuator or sensor [6]. The piezoelectric effect consists
of the ability to strain when the crystalline material is exposed to voltage. Oppositely, it
produces electrical charge when strained [1]. A flexible structure with the piezoelectric
elements bonded on it becomes what is called a smart structure. Application of smart
structures range from K2 skis to space structures, where minimal vibration is highly
desirable [6]. This smart material technology may be applied to the construction of high-
rise buildings to counter the devastating effects of vibration from an earthquake [4].

In this study, a cantilever beam with the smart material (PZT) bonded on it was
modeled with the Euler Bernoulli Beam theory [6]. With the model derived, different
controllers could be designed and simulated in Simulink and implemented in real-time to

study the improvement of the dampening effect on the beam.



2. Modeling of the Beam

A flexible aluminum cantilever beam with a pair of PZT actuators and a single
PZT sensor was modeled with the Euler-Bernoulli Beam theory. There was a derivation
of the transfer function of the system relating the elastic deflection of the beam to a
voltage applied to the piezoceramic actuator [1]. There was also a derivation of the
transfer function of the relationship between the voltage applied to the actuator and the
voltage induced in the piezoceramic sensor. The transfer function derived was verified
by comparing the first three mode shapes and natural frequencies of the beam to the finite

element analysis result in Pro-Mechanica [1].

2.1 Derivation of the Flexible Beam Mode Shape

A piezoceramic laminate cantilevered beam is illustrated in Figure 1. The beam is
fixed at one end and free at the other end. Two piezoceramic actuators patches and one
piezoceramic sensor (PZT) are used as shown in Figure 1. The parameters in Figure 1
are given in Table 4 . The Euler Bernoulli Beam theory gives the partial differential

beam equation in Equation (1) [1, 8].
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Figure 1. Cantilever Beam with Bonded PZT Actuators and Sensor.

ANNNANAN

The partial differential equation describing the dynamic of the flexible beam without

damping force is:

32w otw 32R(x)
P A S+ E, I -M

92t bady a2 W

where:
Py, = mass density of material of beam

Ab = cross sectional area of beam

Eb = Young’s Modulus of beam

3
I b= first moment of inertia, [ b= ab_ of beam
h, = thickness of beam

b
b, = width of beam
w = beam transverse displacement

M 0= bending moment acting on beam.



where R is the generalized location function

R(x):H(x-xal)—H(x—xaz)

and H is the Heaviside function. xa and xa

1 2

The transverse displacement is expressed in terms of infinite series

wxn= % 4.7, 0)
i=1

are locations of the actuators [8].

(2)

3)

where 8.(x) is the i" mode shape for the cantilever beam and 1, (¢) is the corresponding

generalized displacement. The homogeneous solution to the partial differential Equation

(D is

F, (x) = Acos fx+ Bsin Sx+ C cosh fx+ Dsinh fx

For a clamp-free cantilever beam, the boundary conditions are:

w(0,2)=0

ow(0,1) _

0
0x

*w(l, 1) _

ox* 0

ow'(l,1) _

ox’ 0

4

(4a)

(4b)

(4c)

(4d)

where [ is the length of the beam. The boundary conditions applied to Equation (4) give

the following 4 equations:



A+C=0 (5)

B+D=0 (5a)
—Acos fl—Bsin Sl + Ccosh Sl +Dsinh Sl =0 (5b)
Acos fl— Bsin 1+ C cosh Sl + Dsinh Sl =0 (5¢)

The substitution of the first three equations into the last equation results in

A[l-f— (C.OSZ,BI +C(.)Sh 2,81)2 j} =0 (6)
(sin Bl +sinh” Bl)

To satisfy the boundary conditions, A=0 is to a trivial solutionand B=C =D =0.

This result to

(cos Bl +cosh ) | _ 7
(sin® Bl +sinh’® BI)
This equation is reduced to
(cos Blcosh fl) =—1 (7a)

The equation is solved with an infinite number constant of 1’s. The first three values

are given in Table 1. Note that ( £/ =4,).

Table 1. Constant Values for .

A= Bl
1875104069
4694091133
7.85475743

W DY | | e




The mode shape, ¢i (x) is

cos(ﬂj+cosh (ﬂj
¢i (x)=C;| cos (%) —cosh [%) - /1l.x ] ,1,lx -(sin (f%ﬁj—sinh (%1}) ®)
sin (?) +sinh (#]

where the constant, C,, can be determined from the orthogonality expression:

!
[67dx=1 ©)
0

and

li
j¢i¢jdx=0 if Q% (9a)
0

2.2 Piezoceramic Actuator Model

Two PZT patches are laminated to the top and the bottom of the beam structure

with epoxy glue as shown in Figure 2. The PZT patches have an actuating capability,

which is governed by the piezoelectric constant ( d,, ).

Ma=Ca'Va
N N

Dy TW
Va \\4 PZT ACTUATOR ~— 5
BEAM / X
_\\

o

4
& 3 PZT ACTUATOR \) L

Figure 2. Bending Moment of Actuator.




The 3 in the d,, implies that the charge is collected on the polarized surfaces or along the

w-axis as shown in Figure 1, and the 1 implies that the force is generated along the

longitudinal x-axis. When a voltage (V) is applied in the same direction as the

polarization of the piezoceramic electric material, the material is elongated along the x-

axis. The bending moment (M, ) is shown in Figure 2 [2]. When an opposite V, is

applied to the polarized direction, the material is contracted along the x-axis [2]. The

moment induced by the voltage is given in the form of
M, (1)=CY, (1) (10)

where the constant, C_, is given as
1
C, —-:(5 E d.,b, (h +ha)j (10a)

where

E, = Young's modulus of the piezoceramic actuator

d,, = electric charge constant (isotropic plane)

b, = width of the actuator
h, = thickness of the beam
h = thickness of the actuator

The total distributed load, g,(x,t), in Equation 1 is given in the form of

32R(x) _

a ax2

q.(x,1) (11)



2.3 Piezoceramic Sensor Model

A PZT sensor is laminated on the top surface of the beam as shown in Figure 3. It
also shows the PZT sensor connected to a charge amplifier.

C2=4.7nf
!
11
R3=10Mo
—\—

+36V

Vs

\ | PZT SENSOR \B =
/ \ BEAM / *%‘
AN
Figure 3. Charge Amplifier and PZT Sensor.

The structural deformation of the beam induces strain to the laminar sensor. The electric
charge of the piezoceramic sensor (@ (¢)) is equal to the integral of the electric charge
distribution over the entire length of the piezoceramic materials multiplied by the sensor
width (b,) [1]. The electric charge distribution (g(x,?)) is given as

2

q(x,t)=(l€—31—)ec (x,1) (11a)
81

where £, is the coupling coefficient, g, denotes the piezoelectric voltage coefficient,
and €, (x,1) is the strain in the sensor patch. The strain (&, (x,7)) is related to the

curvature of the beam in the form of



t, 9w
H)=—| s, |22 12
g (x,1) (2+t[1]ax2 (12)

The total charge accumulated on the sensing layer can by found by integrating g(x,r)

over the entire area of the piezoelectric sensing element.

Xs2

t k2 \92w(x,t)
t)=-b x,t)dx=—b | L+ || 2L 2
Xs1 Xs1
(13)
2.4 Derivation of the Transfer Function with Actuator
From [1], the substitution of the Equation (2) into (1) results to Equation (14).
5 [, A0, 04 B Com 0] = (2R
& | Pplp 0 vl v (O a 2
i=1 ox
(14)

! !
Because I¢i2 (x)dx =1, Equation (14) is integrated by I¢i (x)dx to yield
0

0

( pLA, ;j¢l.2 (x)de 7.0+ (Eblb ;[¢i2 (09, () dx) n.(=M_(1) ; azaféx) g,(0dx  (15)
where
¢ (x)=4'¢.(x) (15a)
Equation (15) becomes
(24 O+ E 1 Alm 0= M (1) ;Iazfé") (i (15b)



which simplifies Equation (15) to the second order Equation (1)

7.+ &l () =k, [d )-8 )]V, ()  i=123. (16)
where
o, =2k g (17)
P4,

(%Eadﬂba (hb +ha)j
k, = (18)
paA[l

To include damping, ¢, the Equation (16) becomes
7.0 +260,07,(0+ &, () =k, [ 4 (x) -8 () |V, (19)
Take Laplace transformation of Equation (19) and substitute into Equation (3) yields

W) < k80 8(x,) - 8(x,) ]
V.(s) s’ +20 w5+ @,

i=] £ nt

(20)

2.5 Derivation of the Transfer Function with Actuator-Sensor

The total charge of the sensor in Equation (13)

Xs2 2 )
O, (1) = =D, I q(x,t)dx = —b, (%’Hﬂ)[ﬁjm

ox?
Xs1 831

Xs2

Xs1

evaluated at the position of the sensor, x,, and x;; give

x
s2 )

= 3 1,000p,(x) 9, (x,)] 1)

Xs1 l=1

*w(x,1)

ox*

10



results to

O, =k, T 1,(0[8,(x2) =9, (x,)] (22)
i=1

2
k,=—b, [’iﬂa)[ﬁj 23)
2 831

The relationship between the voltage, V. (), and the total charge, O(¢) , is given [1] as

where

Q@

V()=
S() Csbs(xSZ_xsl)

(24)
where

C. is the capacitance per unit area of the piezoelectric sensor

b, (x,, — x,,) is the surface area of the piezoelectric sensor

Substituting Q. () into V. (¢) yields:

ke X 1,008, (x2) =, (x,)]

Ve _i=l 2
S(t) Csbs(xSZ_xsl) ( 5)

From Equation (19)

k,[8,(x,) -9 (x,) ]

(s*+2 0,5+ a])

nt

n.(t) = v, (@) (26)

Substitute Equation (26) into Equation (25) yield Equation (27), the transfer function
relating the input voltage of the actuator to the voltage induced by the piezoelectric

sensor.

11



ADIES k[ 80680 [ () - 8(x,) ] o
V.s) T Cb(x,-x, )(s2 +2{ @, s+ a),f,.)

2.6 Mode Shapes of the Beam

The first 3 bending mode shapes were plotted from Equation (8) as shown in
Figure 4 and verified with Pro-Mechanica finite element analysis as shown in Figure 5
and Figure 6. The analytical mode shapes analysis agrees well with the finite element
analysis. Table 1 shows a comparison of the 3 natural frequencies of the first 3 modes of
the beam. The analytical natural frequencies of the cantilever beam are obtained from

Equation (17). The natural frequencies of both methods are very close to one another.

Mode Shape 1, 2, 3

0.5

01X o

Deflection (in)

X

Length of Beam 0-11.8in

Figure 4. Mode Shape of Beam Derived Theoretically.
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Table 2. Comparison of the 3 Mode Shape Between Pro-Mechanica and Theoretical

Method.

Model (rad/s) Mode 2 (rad/s) Mode 3 (rad/s)
Pro-Mechanica 95.3618 597.5569 1714
Theoretical (Euler 92.677 580.79 1626

Bernoulli)

2.7 Impulse Response and Bode Plot of the Transfer Function

The impulse response for two cases was simulated in Simulink per Equation (20)

and (27). The impulse response of the first case is a tip deflection (x =1) of the beam

and is shown in Figure 7. The second case is the impulse response of the sensor voltage

and is shown in Figure 9. The Bode plots of the two cases are shown in Figure 8 and

Figure 10. Both Bode plots show the resonant peaks to be at the same location. The

damping coefficient is assumed to be {;, , =0.01.

14




w(l,t)

Time (s)

Figure 7. Impulse Reponse of Beam Deflection at the Tip of the Beam Simulated in
Simulink.
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Figure 8. Bode Plot of the Transfer Function of Equation (20).

Voltage

Time (s)

Figure 9. The Impulse Response of the Voltage Sense by the Piezoceramic Material.
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Figure 10. Bode Plot of the Transfer Function Equation (27).

2.8 Parameters of the Piezoceramic Laminate Beam

Table 3 shows the parameters of the aluminum cantilever beam. The properties

and locations of the PZT actuators and sensor are shown in Table 4.

Table 3. Parameters of Aluminum 6064 Beam.

Properties Units Beam

E (Young Modulus) Ib/in"2 1.09E+07
(density Ib/in"\3 0.0975

w (width) in 0.6

t (thickness) in 0.065

| (Length) in 11.8

17



Table 4. Parameters of PZT PSI-4A4E.

Properties Units Sensor Actuator

d31 (Charge constant) |m/V -1.90E-10{| -1.90E-10
g31 (Voltage constant |Vm/N -1.16E-02] -1.16E-02
k31 (coupling coef.)  |---------- 0.35 0.35
ba (width) in 0.4 0.4
t (thickness) in 0.0105 0.0105
L (Length) in 0.5 1
x1(location on Beam) [in 1.5 0
x2(location on Beam) [in 2 1

3. Experimental Setup

The first beam station is constructed based on Griffin’s station from Make [6].
Griffin’s beam station suppressed the vibration of the beam without a microcontroller. A
L.M324 quad amplifier chip is used for signal processing, derivative control, and as a
bridge amplifier. Figure 11 shows a detail circuit schematic of Griffin’s beam station.

First the charge signal from the piezoceramic sensor is passed through a charge
amplifier in the first operational amplifier circuit. The second operational amplifier in the
LM324 serves as a low-pass filter that boosts the input voltage of the first vibration
mode. The potentiometer resistance, R2 in Figure 11, is adjusted to match the resonance
frequency of the beam. The last two sets of operational amplifiers power the two
actuators in tandem. The two bridge amplifiers are then connected to a double pole
double throw (DPDT) phase switch. The phase switch can be switched to the up position

to suppress the beam vibration or to the down position to excite the beam resonant
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vibration. The principle of the up position of the phase switch is to have the actuator

function in a 180 degree phase shift to counteract the vibration of the beam [6].

C2=4.7nf
—

R3=10M2

Sonor
Lopul +

e | 222Ka

Charge = =

Amplifier Low Pass Filter
Bridge Amp - Gain 10
Inverting Amplifer

2
L On-Off DPDT Swsiteh
Switch Phase Swich To bpul

FZT ACTLRTOR FZT STNSOR

A\\\Y

Lo

. J FZY ACTUATOR I j
i —
Four 9V : B
Batteries

i Al A1l

Figure 11. Beam Circuit Detail of L.M324 Operational Amplifier.
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3.1 Real-Time Experimental Setup with Simulink and Quanser

SIMULINK
CONTROLLER ‘

QUANSER.
DAQ BOARD RS i

Sanser
Jnput -

Bridge Amp -
Gain 10
Amplifer Inverting
Gain 0.1 Amplifer

Charge =
Amplifier

on-aff DFDT Switch
Phase Siveh

T ATUATR | o SEnsR
L
4 NPT ATuaior 1

Four 9V
Batteries

ﬂ“—»ﬂ'lbﬁ'\jjlk Al—s

Figure 12. Beam Circuit Interfacing to Quanser between Griffin’s Analog Circuit
with the Maltab-Quanser System.

Figure 12 shows the connection between Griffin’s beam station and real-time with
the Matlab-Quanser system. Figure 12 shows the second amplifier with a gain of 0.1
which replaces the low pass filter, as shown in Figure 11. The 0.1 gain amplifier
attenuates the input voltage and its output voltage is sent to Simulink-Quanser data
acquisition board. The output signal from the Simulink control block unit is multiplied

by a gain of 10 from the amplifier.
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3.1.1 Real-Time Hardware Setup

The real-time experimental setup of the beam station is shown in Figure 13.
Figure 14-16 show a close-up view of the cantilevered beam along with actual PZT
actuators and sensor. Figure 17 shows the analog input and output signal connection to

the Quanser DAQ board.

Figure 13. Experimental Beam Station Connected to Simulink-Quanser.
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Figure 14. View of Beam Station and Circuit.

Figure 15. Close Up Top View of Beam Station Showing Piezoceramic Actuator and
Sensor.
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Figure 16. Close Up Bottom View of Beam Station Showing Piezoceramic Actuator .

Analog Qutput
ﬁ I

Figure 17. Quanser DAQ Board with Analog.
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3.2 Experimental Identification

The first experimental study was to examine the open loop beam vibrations. The
experimental setup is shown in Figure 12. The beam was manually deflected by the
operator at the free end of the beam with a tip deflection of approximately 1 inch. With
the PZT sensor and the charge amplifier connected to the Quanser DAQ board, the open

loop response of the beam was examined. The damping parameter was identified to be

¢; =0.005 in Equation (27). The damping parameters for £, ; was approximated to be

0.001 in this study.

It takes approximately 40s for the beam to settle without the lamination of sensor
and actuators on the beam. The lamination of the PZTs significantly decreases the
settling time of the beam to approximately 7.7s as shown in Figure 20. Due to the
inconsistency of tip deflection of the beam from using a finger, the vibration response
peak voltage is not the same in each measurement in real-time control implementation.
Therefore, a method is imposed to measure the settling time of each vibration response

case without bias. The settling time in this study is defined as

T

settling

=Ty.0.~Tyo10 (27a)
where T,_,, is the time where the vibration level will be less than 0.1V for 1 >7,_, .

Figure 20 shows a visual detail for 7, -

The natural frequency of the first mode matched well with the experimental and
analytical results. The sampling time of the Quanser DAQ board is limited to 100 Hz.

Therefore only the first two modes of the beam vibration could be evaluated for system
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identification and vibration control. An experimental method to verify the first two
modal frequencies of the beam is to excite the structure and examine its resonance
response, as seen in Figure 19. For the first mode, the resonant frequency was observed

to be at 97.5 rad/s. Similarly, the second mode was observed to be 589.7 rad/s.

] [
: sign
signl output
975 5395
Quanser
& D@-‘ ] P 24 pac
Sine Wave Gain Saturationl Analeg Outputl
Scope
1 Quan=ex
1 o — Q4 ADC
- ! :l: 0.00169493+1 j
Filter Gainl &naleg Input2
-.2
Constant

Figure 18. Real-Time Implementation of Open Loop Actuation at the Beam Natural
Frequency.
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Figure 19. Plot of Open Loop Actuation at Resonant Frequency of 97.5 rad/s.
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Figure 20. Open Loop Reponse of Beam Deflected at Approximately 1 inch.
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The damping parameter for the first mode is calculated in Equation (27.2) from [5].
Figure 21 is a close up view of Figure 20 and it provides the data points to calculate the

damping parameter in Equation (27.2).

.94
f=— | A 1;{39 6j:o.oosz (27.2)
2710 A, 2710 2.848
T —T T T T T T { ! '
5r X: 4015 |

j: H-qrq{HM e :

Voltage (volt)

! 1 ! ] ! ] ] { 1 ]
38 4 42 4.4 45 48 5 52 5.4 56

Time (s)

Figure 21. Plot to Calculate Damping Coefficient of First Mode Open Loop
Response.

4. Vibration Control Method

Three control methods that have been successfully implemented to suppress the

vibration of the beam in this study. The first method of active control comes from
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Griffin’s analog circuit. The second method of active control is the Proportional and
Derivative (PD) control with the modified Griffin’s circuit. Simulink in PD simulation
and real-time control was implemented. The third method of active control is the state
feedback with a full state observer. A linear quadratic regulator (LQR) optimal control
method was implemented for vibration suppression in simulation study and real-time

control.

4.1 Method 1: Derivative Control

The derivative control method uses the low pass filter as shown in Figure 11 to
filter the high frequency vibration of the beam, allowing only the first modal vibration of
15.5 Hz to pass through. In addition to low pass filtering, this filter also provides the
derivative of the input signal for derivative control action. This control method is in the
form of

v -k s (27.3)
dt

. . dv_. o .
where K is the control gain, and 7 *is the derivative of the voltage signal from the
t

SENSor.

Figure 22 shows the result of the active derivative control of the beam. From

Figure 22, the vibration observed (V. (¢)) is considerably reduced within the first 1.5s.

After 1.5s, there is still some minimal vibration that lasts for another 2s until the beam

completely settles to OV.
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Figure 22. Derivative Controller of Make Analog Circuit.

4.2 Method 2: Proportional and Derivative Control, PD Controller

An impulse open loop response is simulated as seen in Figure 23 and plotted in
Figure 24. Then the PD beam vibration control system is investigated. The PD
controller provides good damping in the beam vibration, resulting in 1s settling time in
the simulation study with P=40 and D=1.5, and 2.25s settling time for real-time control

with P=17 and D=0.01.
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4.2.1 PD Controller Simulation

Figure 23 shows the Simulink diagram for the open loop response. Figure 24

shows the simulated open loop response.

—

Vs
Open Loop

Step start1 I i 1
. numovera ~ I:l
denoverall .01s+1
+
VsiVa Low Pass Filter Scoped

Impulse3

»
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Figure 23. Simulink Open Loop Response Simulation of Transfer Function for First
Three Modes.

. ‘ !
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Figure 24. Plot of Simulink Open Loop Response Simulation.
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The PD control Simulink simulation is shown in Figure 25. The low pass filter with

bandwidth of 100 rad/s passes only the first mode of beam vibration to the feedback loop.

Essentially, the PD controller is only damping the first mode of vibration. If there is no

low pass filter, the noise and the higher frequency modal vibration are amplified with the

derivative action, causing instability in the beam vibration. The best PD controller gains

were found to be at P=40, and D=1.5, as shown in Figure 26. Figure 27 shows the

simulation case with P=17 and D=0.01. The best settling time for PD control simulation

is 1s.

Impulsed

Control Voltage1

numoverall
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—
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h 4

1
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—
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Fitst Order Low Pass
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Figure 25. PD Controller Simulation of Beam Vibration Suppression.
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Figure 27. PD Vibration Suppression Simulation, P=17, D=0.01.
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4.2.2 PD Real-Time Control

A simulation implementation of the real-time digital PD control in Simulink is
shown in Figure 28. The sensor voltage is connected to the Quanser analog input box.
The signal goes through a series of signal conditioning units: first a low pass filter, an
offset constant unit and then an amplifier with the gain of 10. Then the signal is fed back
for PD control. Figure 29 and Figure 30 show the real-time PD control beam vibration
and the control voltage with P=17 and D=0.01 with a settling time of 2.25s. The
maximum sensor voltage in Figure 29 is much less than that of the PD simulation in

Figure 26 due to real-time hardware limitation.

=
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Figure 28. Real-Time PD Controller Implementation Block Diagram Simulink.
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Figure 29. Real-Time Plot of PD Vibration Suppression, P=17, D=0.01.
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Figure 30. Real-Time Plot of Control Voltage.

34



4.3 Method 3: LQR State Feedback with Observer Design- LQR Controller

4.3.1 State Space Dynamic Model Derivation

From Equation (27), the transfer function is transformed to a state space vector
dynamic equation for state feedback control system design. Since the first two modes are
dominant, and due to the limitation of sampling rate of the Quanser DAQ board of 100
Hz, only the first two modes of the transfer function in Equation (27) will be considered
for state space base optimal control. A second order transfer function for each mode
requires two state variables. There are two modes and one input, so a 4 by 4 system A
matrix and a 4 by 1 system input matrix is needed. The output y matrix is the sensor
voltage, and is a combination of the state from the first mode and second mode of the

beam bending vibration. The state variables are in the form

X =T (t)
x,=1,(t)=x

2 =T ( ) 1 (28)
X =1, (t)
x =1, (1) =%

where the state space matrix dynamic model is in the form
x=Ax+BYV,
(28a)

y=Cx

The details of the A, B, and C matrices are in Equation (28a) and shown as
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X 0 1 0 0 X B (x,,)~ ¢ (x,)

Y 2
-, -2, 0 0

{2 — nl (l nl x2 +ka | O | Va(t)

X3 0 0 0 1 X, ¢2(xaz)—¢2(xal)

)'64 0 0 _a)nZ2 _2(20)"2 Xy 0

(28b)
X
k , | | | N

Y e A ) 0 bt —dix) 0]

Xy

4.3.2 Observability and Controllabilty
Observability and controllability of the state space dynamic model are examined
to prove whether the system is state controllable and state observable. The following
relationships give the controllability matrix Co
Co=(B,AB,A’B,...,A""'B) (29)
where A and B are the state space matrices of the system. The matrix Co must be full
rank to be state controllable. Controllability is calculated in Matlab with the obsv and

rank command.

Co =obsv(A,B)

. (30)
Controllability = rank(Co)
The observability matrix is given by
0=(C",A’C",...(AT)" ") 31)

where C is the output state space matrix of the system. Observability is calculated in

Matlab with the following command
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ob=o0bsv(A,C)
observability = rank (ob)

(31a)
The duality between the observer design and the state feedback regulator design

allows for an observer design with the transpose of the A and the C matrix. In this study,
the observability and controllability matrix are full rank. Full rank is the maximum
number of linearly independent columns of the matrix A. The observer design was based
on the pole placement method. The observer gain is calculated with the Matlab
command in Equation (32) and Equation (32a).

K, = place(A",C", po) (32)
where,

po = the desired poles location (32a)
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4.3.3 Observer Design
An observer design is required since all 4 states cannot be individually measured.
The separation principle allows the design of the observer to be independent from the

design of the state feedback regulator. The full state observer is in the form of Equation

(33)
i=A+Bu+K,(y-3) (33)
where
y=Cx
5=Ck (34)
u=V

i=(A-K,c)i+Bu+K,y

$=A,5+[B Ke][”} (35)
y

a R U
xX=A,x+B, { }
y

where X is the estimated state, and Y is the estimated output. For this flexible beam

system, the eigenvalues of the observer matrix are assigned as

-5.0000 + 2.0000i, -5.0000 - 2.0000i, -1.0000 + 1.0000i, -1.0000 - 1.0000i

with observer gain ( K, ) of

[0.0007, -0.6349, -0.0120, 405.7231]'

38



4.3.4 LQR State Feedback Gain

Similar to the observer design, the separation and the duality principle applies to
the LQR design. The state space system in Equation (28a) is controllable. Therefore,
there is a linear state feedback gain (k) that can be found such that the quadratic cost

function (J) is minimized.

J = [(x"Qx+v'RV, Jar (36)
0
where
1 000
0 0100 37)
=a
0 010
0 0 01
R=j (38)
where rand S are scalar value.
The Matlab command in Equation (39) is used to compute the LQR gain matrix.
[k,S,E]=1Iqr(A,B,Q,R) (39)

The control voltage (V, ) is generated in the form of

V =—kx

a

4.3.5 LQR State Feedback Controller Simulation

The open loop response (Figure 32) is simulated in Simulink (Figure 31) to verify

that the model is close to the experimental open loop response. With the observer
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designed separately, the LQR feedback controller gain matrix was calculated via Matlab
command with Equation (39). Different combinations of @ and # in the Q and R

weighting matrices were evaluated to find the response with the best settling time. Figure

33 shows the complete LQR base control system in Simulink form.

| ) ¥ = Axt+Bu ) ‘E:: )
y = Cxt+Du I:——l

Setpoint=0 c Vg
State-Space

Yoltage Sense
QOpen Loop Response

Figure 31. State Space Open Loop Response with Initial Condition.
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Figure 32. Plot of State Space Open Loop Response with Initial Condition

[.01 0.010].
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Simulink Simulation.

Some of the Simulink simulation results of the LQR control system are shown in Figures

34-42.
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Figure 35. LQR Control Voltage at o =1, £/ =1.
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Figure 36. Voltage Sense of LQR Controller at a =10, f=1.
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Figure 37. LQR Control Voltage at o =10, £ =1.
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Figure 38. Voltage Sense of LQR Controller at o =100, 5 =1.

30

20

Voltage Sense, LQR Controller

T T

T T T T

4 5

Time (sec)

Q=100[1 0 00;
0100
0010
00 01]

R=1

I I I !

6 7 8 9

Figure 39. LQR Control Voltage at o =100, /=1.

44



Voltage Sense, LQR Controller

4 T T T T T T T T T

[a=1710 00;

)
)

0
0
1]

(oMol
(=R
Q= O

R=0.001

Voltage

10k

.14 L L 1 | 1 1 L { 1
0 1 2 3 4 5 6 7 8 9

Time (sec)

Figure 40. Voltage Sense of LQR Controller at o =1, 5=0.001.
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Figure 41. LQR Control Voltage at o =1, 5=0.001.
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Figure 42. Voltage Sense of LQR Controller at o =1, £=0.005.

The increase of a in the Q matrix from o = 10 in Figure 36 to a = 100 in Figure 38
significantly dampens the beam vibration from 4.5s to 1.5s settling time with low control
voltage of 8V. The decrease of £ from 1 to 0.001 also significantly dampens the beam
vibration from 6s settling time to 0.7s. However, there is an increase in the maximum
control voltage from 5V volt to 175V. In real-time implementation 175V is not feasible.
The maximum voltage could be applied to the PZT actuator is #90V. The actual

hardware configuration shown in Figure 12 has a limited control output voltage (V) of

+36V.
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4.3.6 LQR Real-Time Control

The LQR controller implementation setup in real-time is shown in Figure 43. 1t is
important to note that the sensor voltage signal is signal conditioned by a first order low
pass filter with the time constant of T = 0.0109s. The voltage signal is offset to OV and
multiplied by a gain of 10 because there is an operational amplified signal with a gain of
0.1 before the signal goes to the DAQ board. Similar to the simulation in Figure 33, the
sensor voltage and the actuator control voltage input to the state observer. The observer
estimated states vector is multiplied by the computed LQR full state feedback gain (k) for

control action.
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Figure 43. Real-Time Control of LQR Controller with Observer and State Feedback
in Simulink.

The plots in Figure 44-48 show the vibration response with real-time control
implementation of the LQR controller. Note that the settling time in real-time control is
calculated using Equation (27a). For the real-time LQR control, the best control
performance is shown in Figure 47 with a settling time of 1.8s, where a = 100 and f#=1.
The control voltage calculated by Simulink is about 100V, but the feasible maximum
control voltage is limited to +£36V. The control voltage in Figures 46 and 48 is the

calculated voltage before the £36V cutoff of the hardware.
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Figure 44. Real-Time Voltage Sense Plot of LQR Control at & =1, f=1.

15 T T T T T

Q=10710 00,

]

oo o
oo —

0
0
1

o —-0o

o
T

3

F

+
I

Voltage {volt)

]

(4]
T
1

15 ] 1 1 1 |
0 2 4 6 8 10 12

Time {s)

Figure 45. Real-Time Voltage Sense Plot of LQR Control at o =10, £/ =1.

49



40 T —T T — T

Q=101 000,
30+ -

]

ooo
oo
o-=0

0
0
1

201 R=1 E

10 E

Volage (volt)
o
1

301 -

40 L 1 1 1 '
0 2 4 6 8 10 12

Time (s)

Figure 46. Real-Time Control Voltage of LQR Controller at o =10, 5 =1.
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Figure 47. Real-Time Voltage Sense Plot LQR Control at o =100, S=1.
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5. Results and Discussion

Table S summarizes the performance results of the open loop and close loop response
with different controllers. It indicates that the LQR controller with a = 100 and § =1
provided the best vibration suppression with a settling time of 0.5s. As mentioned in
Section 4.1, the classical control method such as the derivative control from [6] provided
good damping in the first 1.5s. However, there was a small sustaining vibration that was
not quickly suppressed after 1.5s. This resulted in a longer settling time of 2.5s. PD real-
time control also provided a fast settling time of 1.75s. In this study, both classical
control and modern control theory were successfully applied for vibration suppression of
~ the smart structure.

The PD simulation controller 4 and real-time PD controller 5 in Table 5 have the
same P and D gain, but the real-time PD gain provides better settling time performance.
Thus a more aggressive controller gain, such as P =40 and D = 1.5, is needed for faster

settling time response.
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Table 5. Comparison Controller Performance Based on Settling Time.

Note: Real-time settling time calculated using Equation
27a).
Settling
Time
Control Control Response Control
Method Parameters | (s) Voltage (V)
Open Loop
1 | (Real-Time) 8.75
Open Loop
2 | (Simulation) 10
3 | D (Make) 2.5
PD P =40
4 | (Simulation) D=1.5 1
PD P=17
5 | (Simulation) D=0.01 <6
PD (Real- P=17
6 | Time) D=0.01 2.25
LQR a=10
7 | (Simulation) | B = 35
LQR a=1
8 | (Simulation) | /8 =0.005 1
LQR a= 100
9 | (Simulation) | £ = 1.2
LQR a=1
10 | (Simulation) | B =0.001 0.75
LQR (Real- |97
11 | Time) B = 7.5
LQR (Real- |3=10
12 | Time) B = 2.5 | 25 max
LQR (Real- | =100
13 | Time) B = 0.5 | 12 max

53




6. Conclusion and Recommendations

First a dynamic model of a flexible beam was investigated in this thesis. The
derived model obtained was based on the mode shapes, natural frequencies of the beam
vibration, and the experimental damping parameter of the flexible beam. The response of
the analytical beam model did not exactly fit with that of the experimental model of the
beam. However, the model parameters were adjusted to match closely to the
experimental data. The adjusted model provided a good understanding of the vibration of
the beam. The damping coefficient for the 2™ and 3™ mode vibration was best estimated
from the open loop response data. Because of the limitation of the hardware sampling
rate, the experimental frequency response of the system was not obtained. Therefore the
damping coefficient parameters also could not be obtained.

In future work, a frequency response experiment should be conducted to obtain a
closer fit of the analytical model to the experimental data. Having a closer fit model, a
more accurate and realistic controllers can be designed.

Other control approaches such as the H - controller [8] and the sliding mode

method [10] could also be implemented. The sliding mode has distinct advantages over
the conventional PD approach. The sliding mode method provides robustness, and
improves transient response and control accuracy [10]. This sliding method is worth

studying because of its applicability in wind and seismic structure control.
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In this study, the LQR state feedback method provided the best vibration
suppression compared to the derivative control and PD control. Vibration suppression
could be better improved by changing the Q and R weighting matrices. For future work,
the maximum output voltage of the operational amplifiers powering the PZT actuators
can be upgraded from £36V to +90V. Doing so will increase the vibration suppression

effectiveness.
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Appendix A Mathcad Analysis
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Active Vibration Control of a Flexible Beam

1. Beam Dimension and Properties for Aluminum 6061
1:=118in

Length of the beam

t = 0651n

Thickness

w= 6Binh

Width

Iof
= 0975 —
P .3

imn
Density

E:= 1.[]8'?8-1[]’]l %

imn

Young Modulus

ko | e+

wz = 0285m

Lz .= 0.0765m

pz = 7630 ke

a=0039 i.n2

Cross sectional Area
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Az =wzlz

W3
[=t—
3

I=468x10 3

Moment of Inertia

tz = .0005m

2. Composite Material constant

31 = -190.10" 2
wolt
1= 748 x 1070 2
olt

Electric Charge Constant
ha = 0105in

Length of actuator
la=lin

Length of sensor

ls = Sin

Thickness of PZT actuator

Ea= 6.6-1010%
m

Ea=9572x ID?S psi

Young Modulus
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ba = din
width of actuator

@31 =748 x 10 0 L
volt

Ca e Ea: d31-b;-(t + ha)

Ca=-1222x 10 4

E
Cacheck = ?a-ba-(t + ha)

Cacheck = 1445 x llfl5 Ibf

Ca=-1081 x 10 Ibf -2
wvolt
C is Ibf*in/volt
Cacheck! = Cacheck 74810 —1—
volt
1,445 % 10° 1bf~7.48-10 -2 = 1721 x 10°

volt
Va = 100¥%
Max = 2Ca-Va
Max = -0.018 1bf-ft
kK31 =035
Electromagnetic coupling constant

2

3.m
C

g31 = -11610

in
1 =-2031 volt- —
e Ibf

4

C
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.2

m
1=-1798 —
& C

Mode Shape of Beam
Az = wz-Lz

AR e

Al == 1875104069
Eb = '?'5-1[]IU %
m

Ad = 4694091133

A3 = 785475743

cl = 292
cZ = 292
c3 = 292

Mode Shape 1

t=0065in

wafofo)- o) 4 o) o)

h=8255x%10 -

1D = -0.524

]
j ¢1(x)2 dx = 1.006in
0

Mode Shape 2

el -cofo)- 2 (o) )]
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¢2(D = 0.534

1
J $209° dx = 1.0061n
0

Mode Shape 3

o) enfo ) S (o)l

311 8in) = ~0.584

1
j $303)° dx = 1 0061
0

Natural Frequency of the first 3 modes

al
l=—
P 1
p1 = 1907 !
f
1
d4
Q1 = ¢1(x)-—4¢1(x) dx
i
1]
-4 1
Ql =6415x 10 4l
1113
f )
2= —
P 1
p2 =4774 1
Cf
A3
3= —
P 1
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1
3=7983 —
P ft

1

4
d
Q2= | 20054200
dx
0
1
Q2=0025—
3
1
1
£
Q3= | 300 —44300 &
dx
0
1
Q3 = 0198 —
3
1

1
EIQl 2
wl =
p-a

wl = 92677 rad

1=2257x10° at
4
EI-pl
wcheck = B
p-a
51

wcheck = 1.024 x 10 E

vy [ BTS2
pa

w2 = 580.799 rad
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1

2
wr o [ELQ3
pa

w3 = 1.626 % 103 rad

‘ . o 'y
wng) _ o K b0 HGeD - Kb

Va(s) T 52 + 2§1-Wm-s + g:Wnigz

Ca=-1222x10" %C
C

ka:=——a
pa

NOTE: A is ampere

3
Ka=-8321 x 10> 2
T

b
-a= 1468 —
P 2

S

[qks-kaz-dr(x)]-'e@(xsz) — dixst) ' gicxa) — gigxal) |

1

Va(s) 52 +20;W s+ ngnijz

ka=-0085x 10" 4 2
f b

Location of Actuator
Position of Actuator

xal = Din

Position of Actuator

xa2 = xal + la
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xa2 = lin

Find the numerator of the Laplace transform of the system describing the beam tip
deflection
input.

kd =1

numlb = kd-¢1(])
numlb = -0.584
num2b = kd-§2(0
nunZb = 0.584
num3b = kd-§3(D
numlb = 0.584

numlb + num2b + num3b = -0.584

3
k= -8321 x 1070 S

Find the numerator of the Laplace transform of the system describing the elastic
deflection

of the flexible beam due to a voltage applied by actuating the piezoelectric.

The Laplace transform of Vs(s)/Va(s). The is the relation between

the voltage applied to the actuator and the voltage induced in the piezoelectric sensor.

=|[8— N Ka
numl = [(dxa]lm(xaz)) (dxal dl(xal) Il ka-¢1(D

bs = ba

Width of the sensor is equal to width of the actuator
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] 53-A

b ft

numl = -8098 x 10

hs = ha
Thickness of the sensor is equal to the width of the actuator.

t=00651in

ks=1172x10 " C

(Gustavo)'

=|[ 2= N K-
fnum? = [( ™ azttﬂ(xﬂ)] ( o $2(xal) ﬂ ka-¢2(D

A
Ib-ft

w

5

W

num2 = 4299 x 10

xsl = xa2 + 0.5in

xsl =135in

Location of the sensor base
xs2 = xsl +1s

xs2 = 2in

Location of sensor end

|8 N . Ka
num3 = [( ™ az‘tﬁ(xﬂ)] [ ol f3(xal) ]:| ka-¢2(D

4 53-A

Ib-ft

num3 = 1.009 x 10

ks=1172x 10" 4¢
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Find the denominator of the transfer function

= d—-— _ d__ .
numsl [(dxszttl(xﬂ)) (dxﬂq:l(xsl) Ii ks

Numerator of TF for sensor 1
¢l = 007
Damping Coefficient for mode 1

Damping Coefficient for mode 2

pums] = -2.255 x 107 ° %

mumsl = 62879 x 10 7

B'la

€2 = 007
Damping Coefficient for mode 3

£3 = 007

=|[2— L .
nums2 = [(dxsznﬂ(xﬂjj (dxﬂnﬂ(xsl) Il ks

201wl = 1297
w1l is the natural frequency for mode 1
wl = 92677

le = 8.589 x 1El3

3=

pums? = -1 947 x 107 ° &

|

pums2 = —1.623 x 107 °

Bla

202 w2 = 8.131
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w2 is the natural frequency for mode 2

W22 = 3373 x 105

o | oy .
fums3 = l:(dxszqﬂ(xsZ)) (dx51¢3(xs1) ):] ks

w2 = 580.799

2C3-w3 = 22.768
aums3 = 1876 x 107 ° s—:‘-

nums3 = 1.564 x 10 °

Bla

w3 is the natural frequency for mode 3

w32 = 2645 x 10‘5

For calculation of state space use for m file

. i) B i
wE 1k, 40D (- biCxaD) - ficxal)

Va(s) T 52 + Et;i-Wm-s + injz

numslss = l:(%s—zqal(xﬂ)] - (.ann(xsn)]-ksm@

=2 -8 Ks-
nums2ss = l:(dxszdﬂ(xﬂ)) (dxsl $2(xs1) ]:l ks-$1(D

( numl numz + nun’3 J

+
52 + 201wl + le s2 + 202 w2 + w22 s2 + 203 w3 + w32

=|[¢— . - ks-
nums3ss l:(dxszrtﬁ(xﬂ)j (dxsl $3(xs1) J:l ks-d1(D

6 sA
numslss = 4821 x 10 '55?
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nums2ss = 1.137 x 10 > ﬁ
ft
The Transfer function for mode 1,2, and 3 respectively calculated from Matlab

nums3ss = -1.096 x 10~ > %

for State Space B matrix

it =] 3 i
phil : ,:[dxaz¢1(xa2)] [dxa1¢1(xa1)ﬂ

phit = 0014~
imn
2=|[2_ {2
{42
. 1
phi2 = -0.074 —
imn
i3 = d_ -— L
[ e[
) 1
phi3 = -0.173 —
ik

for State space C matrix

itxs = || & S
philxs [[dxsz¢1(xs2)] (dxsl¢1(XSI)J:I

philzs = -587 x 10 3

1
in
Combine the numerator for the sensor and actutator to find the overall numerator of the

transfer

function.
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file:///dxa2

oxs = || S8
phiZxs : [(dxszqﬂ(xsi{l] [dxs1¢2(xsl)):|

1
phiZxs = -0.014 —
il

1 1

Numloverall = M

1D

Numloverall = ~2716 x 10~ F

Bys = || 4 .
phi3xs [[dxszdﬁ(xsﬁ.‘)] [dxﬂw(xsljﬂ

1
phi3xs = 0013 —
in
NumZoverall = M
$2(D
NumZoverall = -3.402 x 10 8 F
phil pxs
Num3overall = M
$3(D
-9
Numloverall= -2.716 x 10 ~ F
phiZpxs
12 52 2 A2

Numloverall = -9.539 x 10~ — s° ——
. Ibin

ilxa= | 2 -l
philxa (dxa2¢1(xaz)] (dxal¢1(xal:')

1
philxa = ~0.014 —
in

e = |2 Sl
phiZxa : (dxazqﬁ(xa,?)) (dxalqﬁ(xal)J
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file:///dxa2

1
phiZxa = -0074 —
in

fra=| 32— N
phi3xa : ( - ﬂ@(xﬂ)] ( dxal@(xal)j

1
phi3xa = -0.173 —
in
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Appendix B Matlab M Files
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%eProperties of Aluminum 6061
1=11.8; %in length of beam
t=0.05; %in thickness of beam
w=0.6; %in width of beam
ro=0.0975; %Ib/in"3

E = 1.0878E7; %Ib/in"2

a=t*w; Teinh2

I=t*w”3/3  %Moment of Inertia

% Properties of PZT
d31=-7.48E-9 %in/volt

ha=.0105  %in height of actuator

hs=ha; %in height of sensor
la=1 - %in, length of actaator
Is=.5 %in, length of sensor

Ea=9.572E6 %Ib/in"2

ba=.4 %in, width of actuator
bs=ba %in, width of sensor

Cs=.008E-6; “scapacitance per unit area
xs1=3.8;  %location of sensor
xs2=4.3;  %location of sensor

Ca=Ea*d31*ba*(t+ha)/2; %lb*in/volt Geometry coefficient
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Ca=2*Ca %%two collocated actuator
k31=.35;  %coupling coefficient
g31=(-11.6E-3)*(39.368)"2 %in"2/C
omegal=6.415E-4; % 1/in"3
omega2=0.025; %1/in"3

omega3=0.198; %1/in"3

wl=(E*I*omegal/(ro*a))*.5; %% 1st natural freq rad
w2=(E*I*omega2/(ro*a))".5; %?2nd natural freq rad
w3=(E*I*omega3/(ro*a))".5; %3rd natural freq rad
wla=97.5;

w2a=589.5;

z1=0.0052; “%damping coefficient

22=0.001;

z3=0.001;

Yeactuator and sensor constant

ka=Ca/(ro*a) % in"2/volt

ks=-bs*(hs+t/2)*(k3172/g31) %Coulomb or can be in*Ib/volt

philxa=-0.014; %derivative of mode shape 1 of actuator at location 2 - location |

phi2xa=-.074; %derivative of mode shape 2 of actuator at location 2 - location 1
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phi3xa=-.173; %derivative of mode shape 3 of actuator at location 2 - location |
philxs=-5.87E-3; “%derivative of mode shape 1 of sensor at location 2 - location 1
phi2xs=-0.014;  %derivative of mode shape 2 of sensor at location 2 - location 1

phi3xs=.013; %ederivative of mode shape 3 of sensor at location 2 - location |

%% Transfer function of Vs/Va

nums 1=ks*ka*philxs*philxa/(Cs*bs*(xs2-xs1)); %numerator of transfer funciton. first
mode

nums2=ks*ka*phi2xs*phi2xa/(Cs*bs*(xs2-xs1));
nums3=ks*ka*phi3xs*phi3xa/(Cs*bs*(xs2-xs1));

denl=[1 2*z1*wla wla’2]; %denominator of transfer function, first mode
den2=[1 2*z2*w2a w2a’2]; %denominator of transier function, 2Znd mode
den3=[1 2*z3*w3 w3/2]; %denominator of transfer function, 2nd mode
tf_model=tf(numsl,denl); %transfer function of first mode.
tf_mode2=tf(nums2,den2);

tf_mode3=tf(nums3,den3);

t=0:.01:5;

Tf _mode=tf_model+tf mode2+0; % add the transier for first 3 mode
[numoverall,denoverall] = TFDATA(Tf_mode,'v")

damp(conv(conv(denl,den2),den3));
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%ecalculate state space
Al=[0100;

-w1r2 -(w1)*¥2*z1 0 0;

0001;

00 -w2/2 -(w2)*2%z2];
Bl=ka*[philxa O phi2xa O]’;
Cl=(ks/(Cs*bs*(xs2-xs1)))*[philxs O phi2xs 0]; |
D1=[0];

D2=[0 00 0]}
Gostep(A1,B1,C1,DI)
p=[-100+j*100 -100-j*100 -500+j*2000 -500-;*2000]
pc=.1%p
k1=place(Al,B1,pc)
%Bode(A1.B1,C1,DI);grid;
AC=Al1-B1*kl;
Yestep(AL.B1.CI. D)
Tstep(AC.B1L,CLDD)
C2=[1000;

0100;

0010;

00017;
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po=[-1+1i -1-1i -5+2i -5-2i];
pob=1*po
ke=place(A1',C1',po);

ke=ke'

Aob=Al-ke*Cl;

Bob=[B1 ke]

% Controllability and Observability
co=ctrb(A1,B1)

ob=0bsv(A1,C1)
observability=rank(co)

controllability=rank(ob)

olqr
Q=1*[10000;
0100;
00100;
0001];
R=.001; 9%R=.001 works

[ke2,S,E]=Igr(A1,B1,Q,R);

77



	Active vibration control of a flexible beam.
	Recommended Citation

	ProQuest Dissertations

