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ABSTRACT 

RECRUITMENT STRATEGIES OF ULVA AND PORPHYRA IN CENTRAL 
CALIFORNIA 

by Rosemary Romero 

Ephemeral algae are early colonizers of the rocky intertidal zone after a 

disturbance, although the mechanism of early colonization (including benthic 

microscopic stages and waterborne propagules) is poorly known. Recruitment of the 

ephemeral Ulva spp. was studied in two types of disturbance manipulations (partial 

removal of all macroscopic organisms were removed vs. complete removal of all macro-

and microscopic organisms) and an un-manipulated control at two tidal heights (high 

Porphyra zone and low Mazzaella zone). Replicate disturbances were created in August 

2007, November 2007, January 2008, and May 2008 and were monitored until August 

2008 on a rocky bench north of Pigeon Point, California. Ulva colonization by 

waterborne propagules (complete removals) was observed throughout the year, whereas 

Porphyra was restricted to spring recruitment, as expected due to temporal cues (changes 

in photoperiod) regulating propagule availability. Peak Ulva responses varied in 

treatments as a function of timing of clearing, whereas peak Porphyra responses varied in 

locations as a function of timing of clearing. Location and interactions with location 

(heterogeneity among zones) explained most of the variability in early colonization. Fall 

and winter clearings experienced opposing responses by Ulva and Porphyra in each zone. 

Further experimentation is needed to rule out a negative interaction between Ulva and 

Porphyra in fall and winter disturbances. 



"After some time, I realized that heterogeneity and instability must not be considered as 
just a drawback of field data to be neglected ("averaged away" or "seen through by 
intuition") or circumvented by retreating into the laboratory because they are mere 
deviations from the "typical" or "representative" case (or even "noise"). On the contrary, 
heterogeneity and/or instability must be recognized as fundamental features of a natural 
situation." 

-Den Boer (1968) 
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INTRODUCTION 

Disturbance is a driving factor in structuring local patterns of diversity in natural 

communities that are limited by space (Dayton 1971). In the rocky intertidal zone, spatial 

and temporal variability in natural disturbance results in a mosaic of patches dominated 

by organisms with varying life histories (Sousa 1984). Initial recolonization of newly 

available space can occur either from propagules originating beyond the boundaries of 

the disturbed patches (long-range dispersal) or from other individuals in patches within 

the system (short-range dispersal) (Levin 1976). Several studies (Dayton 1973, Paine 

1979, Sousa 1984) have provided evidence of short-range propagule dispersal (l-3m) by 

intertidal macroalgae but few have considered species, usually ephemeral species, with 

the potential for long-range dispersal (Amsler and Searles 1980, Sousa 1984a, Zechman 

and Mathieson 1985). The mechanisms by which ephemeral species colonize bare space, 

(including benthic microscopic stages, vegetative propagation, and water-borne 

propagules) is a critical component to understanding the dynamics of patch colonization. 

Patterns of patch colonization and succession are products of the original 

disturbance and life histories of the colonizing organisms (Sousa 1984b). Members of 

the genera Ulva and Porpkyra are some of the most conspicuous algae colonizing 

disturbed substrate on temperate rocky shores (Northcraft 1948, Cubit 1984, De 

Vogelaere 1991, Kim and DeWreede 1996). These common early colonizers share some 

common characteristics of opportunistic algae (simple thallus form and rapid growth 

(Littler and Littler 1980)), yet they utilize two fundamentally different life histories. 
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Ulva recruitment dynamics 

Macroalgal species of the genus Ulva (Linnaeus) are simple, green, annual blades 

that are two cells thick or hollow cylinders that are one cell thick (Hayden et al. 2003). 

They usually have a perennial holdfast and can live in marine and brackish environments 

(Abbott and Hollenberg 1976, Lee 1999). Ulva species thrive in high nutrient and wave 

exposed environments, and are tolerant of stressful conditions (Lee 1999). 

Representatives of the genus exist worldwide in all oceans; ten species are found on the 

California coast (Abbott and Hollenberg 1976, Druehl 2000). They commonly appear in 

the rocky intertidal zone after disturbance has removed vegetation, creating newly 

available substrate (Emerson and Zedler 1978, Sousa 1979b, a, Dawson and Foster 1982, 

De Vogelaere 1991, Kim and DeWreede 1996). The genus is thus considered an 

opportunistic weed of rocky intertidal communities. Reproductive characteristics unique 

to this genus may be responsible for the alga's efficient recruitment after disturbance 

(Connell 1972, Connell and Slatyer 1977, Littler and Littler 1980). 

The life history of Ulva spp. consists of an alternation of two morphologically 

identical macroscopic generations (Figure 1). These generations consist of blades 

attached to the substrate by a discoid holdfast and differ in ploidy: the gametophyte 

generation is haploid, whereas the sporophyte generation is diploid. Each cell in the 

thallus of both generations can become reproductive and release microscopic, flagellated, 

unicellular propagules. Twenty to sixty percent of overall biomass is allocated monthly 

to reproduction depending upon the season (Smith 1947, Niesenbaum 1988) and the 

allocation of biomass to the formation and release of propagules can be greatest when 
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temperatures reach 21°C (Nordby 1977, Nordby and Hoxmark. 1972). Release of 

propagules, known as fruiting, is often driven by tidal/lunar cycles in intertidal species, 

with the most conspicuous release occurring within three days of a new or full moon 

(Smith 1947, Christie and Evans 1962), when temperatures reach seasonal highs 

(Niesenbaum 1988), and during spring tides (Smith 1947). 

Ulva microscopic propagules released from the haploid generation are called 

gametes, which have an eyespot and two flagella. As reviewed by Smith (1947), Ulva 

gamete eyespots are positively phototactic, therefore both types (+ and -) are attracted to 

light and gather at the surface, making it easier for + and - gametes to find each other and 

fuse to form a zygote. Five species of Ulva common in the intertidal zone of central 

California are heterothallic (self-incompatible) but unfertilized gametes can develop into 

gametophytes parthenogenetically in culture (Smith 1947, L0vlie and Bryhni 1978). 

Once fertilization takes place, the zygote becomes negatively phototactic, settles to the 

substrate, and grows into a diploid sporophyte (Graham and Wilcox 2000). Ulva 

zoospores, the microscopic stage released from diploid sporophytes, have four flagella 

and an eyespot that is negatively phototactic. Zoospores do not undergo fertilization; 

zoospores must find the substrate and, once attached, grow into a haploid gametophyte. 

So for Ulva, it takes two gametes to make a sporophyte and one zoospore to make a 

gametophyte (Graham and Wilcox 2000), and both macroscopic stages release 

propagules into the watercolumn. 



w 
Zygote (2N) Syngamy 

Figure 1. Isomorphic life history of all members of the genus Ulva. 

Cultures of water samples collected 30 km off the coast of North Carolina 

resulted in germlings from the "enteromorpha" form of Ulva spp. (Amsler and Searles 

1980). The genus represented 35% of cultured germlings from samples collected in 

summer (Amsler and Searles 1980). In another study, propagules of the "enteromorpha" 

form of Ulva spp. were present in water samples collected in estuaries, coastally, and 8 to 

24 km offshore in the Gulf of Maine (Zechman and Mathieson 1985). Considering that 

Ulva macrothalli were rarely found offshore, the presence of propagules offshore 

indicates the potential for long-range dispersal (Amsler and Searles 1980, Zechman and 
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Mathieson 1985). A proposed explanation for the evolution of biphasic life histories is 

that the sporophytic generation and zoospores are adapted for dispersal in turbulent 

environments, whereas the gametophytic generation and gametes are adapted for genetic 

recombination under calmer conditions (Neushul 1972, Bell 1997). Gordon and Brawley 

(2004) found that Ulva lactuca zoospore and gamete release was stimulated by turbulent 

conditions, and suggested that the ability for unfertilized Ulva gametes to develop 

parthenogenetically was a way for the genus to increase dispersal potential in conditions 

unfavorable to fertilization. Positive phototaxis possibly increases the chances of 

resuspension in the water column (Amsler et al. 1992). The ability of both generations to 

fruit during periods of increased turbulence and the documented presence of propagules 

in the water column at great distances offshore, indicate this alga's life history is well 

suited for post-disturbance recruitment and may partially explain its appearance in areas 

lacking macrothalli. 

In addition to Ulva's potential for long-range propagule dispersal, the ability of 

holdfasts to persist once blades have been removed may explain its swift recruitment of 

disturbed substrate (Abbott and Hollenberg 1976). The importance of overwintering 

microscopic stages to the recruitment of macroscopic stages has been documented in 

recent years (Blanchette 1996, Edwards 2000, Worm et al. 2001). Microscopic 

gametophytes of the annual macroalga Desmarestia ligulata overwinter when the 

macroscopic thalli are absent, and are the sole source of sporophyte recruitment (Edwards 

2000). These microscopic gametophytes can enhance sporophyte recruitment more than 

a year after their settlement (Edwards 2000). Similarly, recruitment of sporophytes of the 
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annual kelp Postelsia palmeformis in mid summer and spring is the result of 

overwintering under the protection of Mytilus californianus (Blanchette 1996). 

Microscopic gametophytes that settle on rocks beneath M. californianus have a greater 

chance of escaping grazers, leading to greater sporophyte recruitment than settlement to 

mussel valves (Blanchette 1996). Non-motile cells of Ulva lactuca sloughed from 

senescing plants give rise to new plants in culture (Bonneau 1978), and the presence of 

the "enteromorpha" form of Ulva spp. in the Baltic Sea during spring has been attributed 

to overwintering microscopic stages (Lotze et al. 1999, Worm et al. 2001). 

Porphyra recruitment dynamics 

Macroalgae of the genus Porphyra are widely distributed annual intertidal 

seaweeds found in temperate and polar waters (Lee 1999) and utilize a perennial 

microscopic generation in their life history (Drew 1954). Porphyra perforata (from here 

forward, Porphyra) is a member of the genus ranging from Alaska to Baja California that 

is seasonally abundant in the high intertidal of the California coast (Abbott and 

Hollenberg 1976, Foster et al. 1988). This species is extremely tolerant to desiccation, 

and the alga can withstand the loss of up to 90% of its wet weight during emersion (Dring 

and Brown 1982, Smith 1983). Additionally, this alga is able to persist in a wide range of 

salinities and thrives in eutrophic waters (Dixon 1973). These abiotic factors combined 

with seasonal variations in ambient temperature and photoperiod are crucial to the 

completion of this Porphyra's life history. 
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Porphyra also exhibits a heteromorphic life history, alternating between simple 

haploid blades (one to two cells thick) and shell-boring microscopic diploid filaments 

referred to as 'conchocelis' (Figure 2) (Drew 1954, Abbott and Hollenberg 1976, van den 

Hoek et al. 1995). This alternation of generations is timed to changes in photoperiod 

with investment in sexual reproduction/conchocelis production during longer 

photoperiods and investment in gametophyte production during shorter photoperiods 

(Figure 2) (Waaland et al. 1987, Dring 1988, van den Hoek et al. 1995). Both generations 

produce non-motile propagules in localized regions of the thallus (Dixon 1973). Release 

of carpospores by Porphyra perforata occurs when photoperiods exceed 12 hrs and at 

low temperatures coinciding with upwelling periods (Pacheco-Ruiz et al. 2005). 

Carpospores are the result of sexual fertilization and germinate to produce the diploid 

filaments of conchocelis. Conchocelis is perennial, continually producing monospores; 

that give rise to more conchocelis (Conway 1967, Chen et al. 1970). When photoperiods 

lessen (8-12 hrs of daylight), the production and release of conchospores is triggered at 

low temperatures (approx. 5°C) (Dring 1967, Chen et al. 1970, Waaland et al. 1987). 

Conchospores settle, germinate, and become the foliar macrothallus of Porphyra, 

completing the life cycle (Drew 1954, Chen et al. 1970). The macroscopic thallus is 

rapid growing, ephemeral, and often appears opportunistically in intertidal succession 

(Northcraft 1948, Dayton 1971, Lubchenco and Menge 1978, De Vogelaere 1991). 
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SpermatangiaON) 

Figure 2. Heteromorphic life history of members of the genus Porphyra. 

All three types of Porphyra microscopic propagules (gametes, carpospores, and 

conchospores) are non-motile, making them completely dependent on water motion for 

resuspension, settlement, and mate location (Amsler et al. 1992). Sheath and Hambrook 

(1990) proposed that turbulance resulting in eddy formation downstream of rocks in 

freshwater streams increases the probability of gamete fusion in red algae. Propagules of 

other members of the Bangiophycidae subclass, undergoing the same life history, were 

observed in summer months throughout the water column (0-20 m), 30 km off shore 

(Amsler and Searles 1980). The turbulent environment created as tides cycle, waves 
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crash, and presence of propagules in offshore waters combined with a perennial life 

history stage may explain the colonization success of this alga on intertidal rocky shores. 

Several hypotheses exist that explain the evolutionary retention of alternation of 

generations. In many cases heteromorphic alternation of generations is considered an 

adaptation to grazing pressure or temporally or spatially fluctuating environments 

(Lubchenco and Cubit 1980, Littler and Littler 1983, Zupan and West 1988). 

Conchocelis may provide a perennial seed bank within the substrate awaiting the proper 

conditions for macrothallus production and ensure the persistence of local populations 

regardless of dispersal potential. 

Ulva vs. Porphyra disturbance response 

Ulva and Porphyra are rapidly growing ephemeral seaweeds with very different 

life histories utilizing microscopic stages in similar ways. For an alga (such as Ulva) that 

can produce a vast amount of motile propagules and leave behind a perennial holdfast 

(post-fruiting), macroscopic recruitment to disturbed substrate can arise from two major 

sources. The first is recruitment from microscopic stages present on the substrate before 

the disturbance (fugitives) whose survival is contingent on the increase of available light 

caused by the removal of competing individuals. This includes propagules that have 

settled pre-disturbance and holdfasts that have been left behind by senescent thalli. The 

second is recruitment from microscopic stages in the water column. Similarly, Porphyra 

can recruit from conchocelis, which act as perennial fugitives awaiting shorter 

photoperiods for the investment in macrothalli. Whereas Porphyra does not invest the 



10 

entire thallus in the production of propagules, and produce non-motile propagules, 

conchocelis is present and propagating itself year-round. As such, presence of 

macrothalli is independent of sexual reproduction. Disturbances that coincide in timing 

with seasonal releases of conchospores can provide opportunities for short-range 

dispersal of Porphyra. Ulva recruits throughout the intertidal zone and into the subtidal, 

whereas Porphyra perforata is limited to higher intertidal heights (Cubit 1984, Foster et 

al. 1988). Thus Ulva is capable of long and short-range dispersal throughout the 

intertidal zone, explaining its blooming potential whereas Porphyra is seasonal and may 

be limited to higher tidal heights and short-range dispersal. 

Independent of dispersal potential, the major factors affecting patch colonization 

include timing of disturbance (in relation to reproductive timing of colonizers) and 

location of a disturbance (tidal exposure at time of settlement). The resulting 

heterogeneity of natural assemblages is the product of the diversity of life histories and 

responses to disturbance regimes (Sousa 1984a). Temporal variation in photoperiod and 

temperature regulate many seaweed life histories and can dictate propagule availability 

and survival. This may explain why previous researchers observed different early 

colonists depending on the timing of experimental clearings (Emerson and Zedler 1978, 

Hawkins 1981). High intertidal communities experience harsh environmental conditions 

because they experience the greatest emersion time (with the exception of terrestrial 

communities). These conditions are magnified by temporal changes in the time of day 

the substrate is exposed. For this reason, macroalgae in the higher intertidal zone are 

more regulated by dynamic physical factors (ecophysiology) than biological factors 
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(herbivory, competition) (Cubit 1984). Lower intertidal communities are more diverse 

(sessile and motile assemblages) and experience less emersion time than high intertidal 

communities resulting in greater regulation by biological factors than physical factors 

(MacGinitie and MacGinitie 1949, Denely and Underwood 1979). Differences in 

submersion and emersion time between intertidal zones can control propagule dispersal, 

settlement, and survival. 

Many studies have examined dispersal potential and abundance of macroalgal 

propagules present in water samples, but none have directly linked their findings to 

patterns of recruitment observed on rocky reefs. As such, this is the first study to directly 

test the contribution of waterborne propagules to recruitment. The contribution of two 

recruitment strategies, (1) microscopic overwintering stages and (2) waterborne 

propagules, to post disturbance recruitment of these ephemeral macroalgae were 

investigated in this study. The responses of these algae to a series of complete and partial 

removals created in the high and mid-intertidal at a rocky open coast location were 

compared. Removals were repeated four times in one year to assess temporal variation in 

responses. A better understanding of how ephemeral algae recruit to disturbed substrate 

will help elucidate a mechanism of early colonization and recruitment in dynamic 

environments. 
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OBJECTIVES 

The objective of this study was to test the effect of timing and location of a 

disturbance on the recruitment mechanism of opportunistic macroalgae. More 

specifically, I compared recruitment of Ulva and Porphyra from microscopic stages in 

the water column to that of microscopic stages left behind after a disturbance (1) four 

times during the course of one year (August 2007, November 2007, January 2008, and 

May), and (2) at two different intertidal heights (mid: Mazzaella flaccida dominant zone 

and high: Porphyra perforata dominant zone). To test the availability of waterborne 

propagules to recruitment in space and time I manipulated disturbance severity. I created 

two types of removals: partial removals in which all macroscopic organisms were 

removed, leaving microscopic stages on the substrate; and complete removals that 

included the aforementioned manipulation followed by sterilization of the substrate 

removing all macroscopic and microscopic stages from the substrate. A third plot type 

was established (un-manipulated control) in which plots were marked in the same fashion 

as the removals (see methods section for details on plot marking) but no organisms were 

removed. 

Availability of waterborne microscopic stages was inferred by the presence or 

absence of recruitment in complete removals. Any recruitment to complete removals 

would indicate the presence of waterborne propagules. Recruitment to partial removals 

would result from either or both waterborne propagules and fragments/"fugitive" 

microscopic stages. Presence of ephemerals in controls would also result from the same 

propagule sources as partial removals and be representative of natural recruitment 
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patterns. The processes affecting recruitment in these three plot types are outlined in 

Table 1. 

Table 1. Processes affecting recruitment in treatment types. 

Treatment Type 
Control Partial Complete 

Recruitment (waterborne + fugitives - (waterborne + fugitives + (waterborne only + severe 
mechanisms manipulation) partial manipulation) manipulation) 

Facilitation Facilitation No competition 
Low herbivory 

High competition Less competition Desiccation (no canopy) 
High herbivory Desiccation (no canopy) 

Additionally, a temporal or spatial patterning of these processes could occur as a 

result of seasonal cycling of physical factors and spatial gradients in biological processes 

(see Table 2 for summary). Treatments were established four times in one year (August 

2007, November 2007, January 2008, and May 2008) to address temporal variability in 

ambient temperatures, oceanographic regimes (upwelling, oceanographic, and Davidson 

as defined for the central California coast by Skogsberg 1936, Skogsberg and Phelps 

1946, and Bolin and Abbott 1963), photoperiod, and timing of low tides that may 

influence the survival and/or availability of propagules. Constant recruitment among 

seasons would indicate that settlement, survival and availability of propagules were 

independent of temporal variation in these factors. Constant recruitment among intertidal 

elevations would indicate that recruitment was independent of intertidal elevation. 

Recruitment differences between zones would indicate that additional processes, 
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biological (grazers, competition) and/or physical (desiccation, emersion) were affecting 

recruitment. The experimental design (see methods for more detail) allowed for 

interactions between these factors and treatment to be further investigated. Any variation 

in treatment effect dependent on either timing or location of the clearing resulted in a 

significant interaction term with treatment. The inherent differences in how physical 

factors affect the two zones (see Table 2) increased the probability of these types of 

interactions. 

Table 2. Additional processes affecting post-disturbance colonization that may explain differences 
associated with spatio-temporal coupling. 

Type of Effect 

Factor Positive Negative 
Space 

Porphyra zone Less competition 

Less herbivory 

Desiccation 

Emersion 

Time 

Mazzaella zone 

temporal patterning of: 

Submersion 

Less desiccation 

Competition 

Herbivory 

Photoperiod 

Temperature 

Transport (propagule supply) 

Tidal cycle 
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METHODS 

Study Site 

The study site was located on an exposed rocky shore north of Pigeon Point, 

California (N37 10.93 W122 24.08) (Figure 3). The natural system of the study site 

consisted of three main biological zones (High: Porphyra dominant, mid: Mazzaella 

dominant, and low: PhyllospadixlLaminaria dominant). Only the high and mid-intertidal 

zones were of interest in this study. At the onset of the experiment the higher intertidal 

consisted of flat sandstone and was dominated by Porphyra perforata whereas the mid to 

low intertidal consisted of sandstone outcroppings dominated by Mazzaella flaccida. 

Experimental plots in the Porphyra zone were exposed when the tidal height dropped 

below +2ft above mean lower low water (MLLW) and those in the Mazzaella zone were 

exposed when the tidal height dropped below +lft above MLLW. This site was exposed 

to waves (Figure 4) and influenced by seasonal sand inundation. The greatest amount of 

sand inundation occurred in fall with the Porphyra zone experiencing the greatest amount 

of inundation (x = 75.0 ± 25.0 SE % cover) and the Mazzaella zone never experiencing 

more than 17.8 ± 8.20 average % cover (Figure 5). 

Experimental Design 

In this study, I manipulated disturbance severity to test the effect of timing and 

location of a disturbance on response and recruitment strategy of opportunistic algae. In 

July 2007, ninety-six 0.5m-diameter circular plots (area = 0.196 m2) were marked in the 

center with numbered stainless steal washers affixed to the substrate using a concrete 
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wall anchor and plumbers epoxy. A second concrete anchor was used to mark the edge 

of each plot. Forty-eight of the ninety-six plots were located in the higher intertidal zone 

dominated by Porphyraperforata (hereafter Porphyra zone), whereas the remaining 

forty-eight were located in the lower intertidal zone dominated by Mazzaella flaccida 

(hereafter Mazzaella zone). 

Figure 3. Location of study site, north of Pigeon Point, California at N37 10.93, W122 24.08. Inset is 
a close up of study site in relation to CA highway 1 and Pigeon Point Rd (Photo Courtesy of Google Earth). 

Twelve plots in each zone were randomly assigned one of four clearing dates: August 

2007, November 2007, January 2008, or May 2008. Date of clearing and plot types were 

assigned randomly to the 12 plots in each zone on each date, assuring spatial 

interspersion (3 plot types x 4 replicates x 2 intertidal zones x 4 dates = 96 plots). All 
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manipulated plots (partial and complete) were removed of all macroscopic organisms by 

using a wire brush and putty knife. Encrusting red, brown, and non-geniculate coralline 

algae were scraped and abraded. Complete removal plots were then sterilized with a 

portable blowtorch to remove any fragments or sporelings left behind by the scraping. 

Bordering organisms were covered with wet towels to protect them from the flame. The 

substrate was heated to the point of fracturing and pools to the point of boiling. 

a. Maximum Daily Wave Height 

A 6 6 N j *? ivi F 
Time (months) 

ITT in> 
2007 2008 

Figure 4. Temporal variability in wave height and hours of daylight. A. Maximum daily offshore 
wave height from NOAA buoy# 46042 (Monterey Bay). Data from this buoy was used in lue of the closer, 
Halfmoon Bay buoy (#46012) due to missing data from November 2007 to mid January 2008. Data from 
the Monterey buoy was correlated to that collected by the Halfmoon Bay buoy (P=0.000000). B. Mean 
weekly air temperature (°C) offshore from NOAA buoy# 46042 (Monterey Bay). C. Hours of daylight for 
the duration of the study. Dashed lines denote the timing of each experimental clearing. 
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Figure 5. Temporal variability in sand cover (mean ± SE) in all control plots by zone (M=Porphyra 

zone and *=Mazzaella zone). 

Monthly Sampling 

All plots were sampled before manipulation, in two-week intervals during the first 

month after clearing, and monthly thereafter. Recruitment was never observed two 

weeks after the removals were created; therefore monthly sampling was deemed adequate 

to capture future seasonal changes in recruitment. During each sampling event, 

abundance was estimated by measuring average percentage cover of all attached 

macroalgae (canopy and understory, total cover could be >100%), sessile invertebrates, 

and substrate with a 50-point random point contact (RPC) method (modified from Foster 

et al. 1991). RPC measurements were collected using a circular sampling hoop with 10 

randomly arranged, numbered spokes, each spoke with 5 haphazardly marked points. To 

avoid sampling the same points over time, the hoop was rotated each sampling period so 
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that a different numbered spoke lined up with the permanent edge marker. Each period, 

photoquadrats were taken to verify RPC measurements of percentage cover and were 

used to estimate canopy cover for one plot that was missed on May 20,2008. Counts of 

motile invertebrates within VA of the plot were used to estimate invertebrate density. 

Data Analysis 

Ulva and Porphyra response to experimental manipulations 

To assess temporal and spatial differences in recruitment resulting from 

waterborne propagules, peak total percent cover (mean + SE, n=4) of Ulva and Porphyra 

in each plot was compared using a Model I ANOVA (SPSS 16.0, a=0.10). Factors 

included timing (date of clearing), zone (location of clearing), and treatment (plot type). 

To examine the effect of time and location of a disturbance on Ulva recruitment strategy, 

mean maximum cover per plot for the entire study period (August 2007-August 2008) 

was compared among treatments for each of four clearing events in both zones. The 

magnitude of maximum Ulva recruitment varied as a function of disturbance timing, 

location, and severity (i.e. treatment). The assumptions of normality were evaluated by 

examining residuals, and homogeneity of variances was tested using a Cochran's C test 

of equal variance (C=largest s^/js;2). When appropriate, an arcsine transformation was 

used to normalize the data. With respect to the assumptions of homogeneity of variances, 

the ANOVA is considered to be robust to differences in variances when replication is 

equal (Zar 1999). Planned pairwise comparisons among means were tested using 

Fisher's least significant difference method (Fisher's LSD, SPSS 16.0, a=0.10). 



Variance components were calculated to evaluate magnitude of effects for significant 

factors (P<0.10) (Winer 1971, Graham and Edwards 2001). 
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RESULTS 

Natural variability of system 

The natural system of the study location was dominated by bare space in the high 

intertidal and macroalgae in the mid-intertidal (Figure 6). Un-manipulated controls 

located in the higher intertidal community fluctuated temporally between abundant bare 

rock (October 2007-March 2008) and recruitment pulses of Porphyra perforata (so dense 

a metal detector was needed to locate plot markers) (August 2007 and March 2008-

September 2008) (Figures 6a & 7b). Sparse cover of sessile invertebrates and other algae 

(Figure 6a, see Appendix A for complete list of genera) was observed throughout the 

experiments with a minor Ulva response (% = 2.50 ± 2.22 % cover + SE) in summer 

months (June 2008-July 2008). Ulva was absent from high intertidal control plots at the 

onset of the experiments (August 2007) and was not observed until mid June 2008 

(Figure 7a). 

The mid-intertidal was dominated by intertidal macroalgae (>100%) throughout 

the duration of the study (August 2007-August 2008) (Figure 6b.). Abundance of bare 

rock and sessile invertebrates in control plots located in this zone did not vary greatly 

during the course of the study. Ulva was present in these plots for the duration of the 

study (Figure 7a). Natural abundance of Ulva was greatest during spring and summer 

(August 2007-September 2007, January 2008-September 2008, x = 3.00 ± 1.91 % cover 

± SE), and decreased during winter (November 2007-January 2008). Porphyra was 

present in the mid-intertidal during spring and summer (March 2008-September 2008), 
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though it rarely exceeded a mean 3.00 + 1.77 percent cover; maximum was mean 17.3 + 

1.22 (mean ± SE) percent cover in April 2008 (Figure 7b). Species richness (mean ± 

SD) of biotic cover in the mid-intertidal was almost twice that of the higher intertidal 

(Figure 8, Appendix A). 

a. Porphyra zone 

J F M A 
Time (months) 

2007 2008 

Figure 6. Temporal variability of cover (mean ± SE) in all control plots, August 2007-August 2008, 
for each zone. a. Porphyra zone; b. Mazzaella zone. Values are means from each sampling period 
(•=bare rock, *=sessile invertebrates, A=Porphyra, +=Ulva, and D=other algae). See Appendix A for 
complete list of macroalgae and sessile invertebrate genera. 
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Porphyra zone 

Mazzaella zone 

a. Natural Ulva abundance 

k k k ifr-a 

b. Natural Porphyra abundance 

* • »i • • -
D J F M 

Time (months) 
2007 2008 

Figure 7. Temporal variability in cover (mean ± SE) of: a. Ulva (0<y>6) and b. Porphyra (0<y>100) 
by zone (M=Porphyra zone and *=Mazzaella zone) as captured by un-manipulated control plots. Means 
represent averages of all control plots sampled on a given sampling period and every sampling period of the 
study. 
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Figure 8. Species richness in all treatment types for the duration of each experiment and average 
number of species observed in experimental plots for each zone. Letters represent significant differences in 
average number of species (two-sample t-test, P=0.002). 

Ulva response to experimental manipulations 

Ulva recruitment pulses were observed seasonally in higher intertidal plots and 

year-round in lower intertidal plots (Figures 9-10). Ulva only recruited to Porphyra zone 

plots during summer (September 2007: partial and July 2008: partial and complete, 

Figure 9), the greatest response observed was 12.0 ± 12.0 (mean% ± SE) in July 2008. 

Recruitment pulses were observed year-round in the Mazzaella zone (October 2007: 

complete and partial, December 2007: complete only, April 2008: partial only, and July 

2008-August 2008; Figure 10). 
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Figure 9. Temporal variability of Viva % cover (mean ± SE) by treatment (D=Control, 0=Partial, 

A=Complete) and time of clearing (a. August 2007; b. November 2007; c. January 2008; d. May 2008) for 
plots located in the Porphyra zone. Initial data point for each panel represents pre-cleared values. 
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Figure 10. Temporal variability of Ulva % cover (mean ± SE) by treatment (0=Control, 0=Partial, 
A=Complete) and time of clearing (a. August 2007; b. November 2007; c. January 2008; d. May 2008) for 
plots located in the Mazzaella zone. Initial data point for each panel represents pre-cleared values. 
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Maximum Ulva cover varied among treatments depending on the timing of the 

clearings and as a function of location (Figures 11-12, Table 3, Appendix B, F6 72=2.02, 

P=0.074 and F; 72=13.8, P-0.000401). There was a significant interaction between 

timing of disturbance and treatment effects on Ulva recruitment (Table 3, Figure 12, for 

complete ANOVA tables see Appendix B, F672=2.02, P=0.07) and no significant 

interactions with zone (F372=1.96, P=0.13, F272=0.74, P=0.48, F672=0.67, P=0.67). Thus, 

the type of Ulva response was dependent on the timing of the disturbance. The timing-

treatment interaction explained more of the variability (5.13%) in peak Ulva recruitment 

than the main effects of timing (5.09%) and treatment alone (1.45%) (variance 

components, Appendix B). The main effect of zone explained more variability in Ulva 

recruitment than the other significant factors in the model (6.32%) (Figure 11, Table 3, 

Appendix B, Fl 12= 13.8, P=0.000401). Therefore, the Porphyra zone experienced spring 

and summer Ulva recruitment pulses and the Mazzaella zone year-round recruitment 

pulses. 

Treatment effects were observed for plots established in August 2007 and May 

2008 (Figure 12, Table 3, Appendix B, F6>72= 2.02, P=0.074; Fisher's LSD). Peak Ulva 

recruitment to control plots was constant among experiments (i.e. timing); recruitment to 

manipulations however did vary among experiments. Recruitment to August 2007 

complete removals was greater than November 2007 and January 2008 complete 

removals. Ulva recruitment was constant among August 2007 partial and complete 

removals and greater than controls from that same experiment. Independent of among 

zone variability, recruitment to partial removals established in August 2007 differed from 
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those established in all other experiments (November 2007, January 2008, and May 

2008). Differences also were observed among complete removals and controls 

established in May 2008. These complete removals experienced greater recruitment than 

control plots in general (August 2008, November 2007, and January 2008) (Figure 12). 

Recruitment to partial removals was similar to controls and complete removals (Figure 

12, Appendix B). No treatment differences were observed in November 2007 and 

January 2008; however, recruitment was observed in complete removals created in both 

of these experiments. 

Table 3. Analysis of variance results for maximum Ulva and Porphyra cover in 
both zones. P values for two-way, model I ANOVA results, timing=time of 
clearing and treatment. P values correspond to panels in Figures 10 & 13; 
complete ANOVA tables and variance component analyses in Appendix B; post-
hoc comparisons are given in the text. 

Response Variable 

Factor 

TIMING 

ZONE 

TREAT 

TIMING*ZONE 

TIMING*TREAT 

ZONE*TREAT 

TIMING*ZONE*TREAT 

Maximum 

Ulva 

Cover 

(Fig.11) 

0.006 

0.000 

0.092 

0.128 

0.074 

0.480 

0.672 

Maximum 

Porphyra 

Cover 

(Fig. 15) 

0.000 

0.000 

0.292 

0.000 

0.254 

0.230 

0.839 
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1. Variability in maximum Ulva % cover (mean ± SE) in each treatment compared with un-
controls for all clearing experiments, a. Porphyra zone; b. Mazzaella zone. These data are not 
however, statistical analyses were performed on arcsine-transformed data. 
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Figure 12. Temporal trends in maximum percent cover (mean ± SE) of Ulva in treatments when 
averaged across zones. No significant interactions with zone were observed. Letters represent significant 
differences according to the timing-treatment interaction (F672=2.02, P=0.074). There was a general effect 
of zone (F : 72=13.8, P=0.0004) not represented in this figure. These data are not transformed, however, 
statistical analyses were performed on arcsine-transformed data. 

Porphyra response to experimental manipulations 

Temporal variability of Porphyra cover was constant among treatments and 

varied depending on the timing of clearing as a function of location (Figures 13 & 14,). 

All Porphyra recruitment was observed from late winter through summer (September 

2007 and February 2008-September 2008, Figures 13 & 14), the greatest response was 

observed in summer months (June2008 and July 2008; % = 81.0 ± 8.35% cover ± SE; 

Figure 13). 
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While no significant treatment effect was observed, there was a significant 

interaction between timing of clearing and zone (location) (Figures 15 & 16, Table 3, 

Appendix B, F372= 7.41, P=0.000; Fisher's LSD). This indicates that peak Porphyra 

recruitment in the different experiments (timing of clearing) was dependent on the 

location (zone) of the clearing. Specifically, maximum Porphyra recruitment only 

differed among zones for August 2007 and May 2008 experiments (Figure 16). Spring 

and summer plots located in the Porphyra zone experienced greater maximum cover than 

Mazzaella zone plots cleared at the same time. The timing-location interaction explained 

9.42% of the variability in peak Porphyra recruitment (variance components, see 

Appendix B). The main effect of location explained slightly less of the variability in 

peak recruitment than the interaction (7.44%) and timing alone only explained 4.48% of 

the variability. 

Maximum Porphyra recruitment to Porphyra zone plots established in August 

2007 was greater than maximum recruitment to all other experiments (November 2007, 

January 2008, and May 2008) (Figure 16, Appendix B for Fisher's LSD results). 

Maximum recruitment to Mazzaella zone plots was greatest for plots established in 

January 2008 (Figures 15 &16). Sparse Porphyra recruitment through time occurred in 

August 2007 (x = 20.0 ± 8.40% cover ± SE) and May 2008 Mazzaella experiments (x = 

7.00 ± 4.73% cover ± SE; Figure 13). 
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Figure 13. Temporal variability of Porphyra % cover (mean ± SE) by treatment (0=Control, 
0=Partial, A=Complete) and time of clearing (a. August 2007; b. November 2007; c. January 2008; d. 
May 2008) for plots located in the Porphyra zone. Initial data point for each panel represents pre-cleared 
values. 
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Figure 14. Temporal variability of Porphyra % cover (mean ± SE) by treatment (0=Control, 

0=Partial, A=Complete) and time of clearing (a. August 2007; b. November 2007; c. January 2008; d. 
May 2008) for plots located in the Mazzaella zone. Initial data point for each panel represents pre-cleared 
values. 
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Figure 15. Variability in maximum Porphyra % cover (mean ± SE) in each treatment compared with 
un-manipulated controls for all clearing experiments, a. Porphyra zone; b. Mazzaella zone. These data are 
not transformed, however, statistical analyses were performed on arcsine-transformed data. No treatment 
differences were observed in any particular date or zone. 
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Figure 16. Effect of timing-zone interaction on maximum Porphyra percentage cover (mean ± SE). 
Letters represent significant differences according to the timing-zone interaction (F372=7.40, P=0.000). 
Values are averaged across treatment as no treatment effect was observed (F272=l .25, P=0.292). 

Potential interaction between early colonizers 

I observed small amounts of Ulva cover in high intertidal plots whereas Porphyra 

was a seasonal dominant in the Porphyra zone and did well in fall and winter Mazzaella 

zone plots. Additionally, Mazzaella zone clearings with the greatest Porphyra 

recruitment experienced the least Ulva recruitment whereas those with the greatest Ulva 

recruitment experienced the least Porphyra recruitment (Figures 1 lb & 15b). These 

opposing responses in recruitment indicated the potential for a competitive relationship 

between Ulva and Porphyra. To better understand the relationship between these two 

seaweeds, Ulva percent cover was plotted against Porphyra percent cover for every 

incidence in which either or both of these seaweeds were observed in an experimental 

plot (Figure 17). 
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Figure 17. [//va cover (%) as a function of Porphyra cover (%) for all experiments in both zones 
(•=Low zone & 0=High zone). Time of clearing is not indicated as no patterns relating to time of clearing 
were observed. 

The plot clearly shows that in each zone, in clearings created throughout the year, Ulva 

and Porphyra could be found in the same plot. In general, incidences of greatest Ulva 

cover occurred at less than 50% Porphyra cover and incidences of greatest Porphyra 

cover occurred with low levels of Ulva cover (<20%). This pattern holds true for data 

from both intertidal zones. A different experimental design would be necessary to rule 

out competitive interaction between these two seaweeds. 
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DISCUSSION 

I studied the recruitment mechanisms utilized by opportunistic seaweeds within 

the spatio-temporal coupling that regulates patch colonization. In particular, the 

importance of waterborne propagules to patch colonization as demonstrated by the 

presence of both Ulva and Porphyra in sterilized clearings created throughout the year. 

Recruitment strategy only affected the magnitude of Ulva recruitment and this effect 

fluctuated depending on the timing of clearing whereas Porphyra recruited seasonally 

regardless of manipulation. The Ulva responses were generally affected by location, 

however, Porphyra responses to different locations varied depending on the timing of 

clearings. 

While no effect of treatment was observed in the case of maximum Porphyra 

cover, the effect of treatment on maximum Ulva cover varied depending on the timing of 

a clearing. Lotze (1999,2000) examined the role of seed banks in propagating blooms of 

ephemeral seaweeds in the Baltic Sea. She found that overwintering germlings were an 

important mechanism for early colonization of Ulva intestinalis (formerly Enteromorpha 

intestinalis) but that the contribution of this propagule bank varied with season. Seasonal 

variability was attributed to temporal fluctuations in herbivory and nutrient limitation, 

with nutrient enrichment counteracting the effects of herbivory (Lotze et al. 2000). 

Partial clearings created in August 2007 were the only partial clearings that experienced 

maximum Ulva recruitment differing from natural abundances (control plots). The 

August 2007 clearings were created soon after the beginning of the spring-summer 

upwelling regime (Skogsberg 1936, Skogsberg and Phelps 1946, Bolin and Abbott 1963). 
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Increased nutrient availability could have promoted growth from germlings in these 

partial clearings and contributed to recruitment. This indicates a temporal patterning of 

biological processes (competition with fragments, herbivory) regulating recruitment of 

Ulva waterborne propagules. Abundance and activity of intertidal gastropod grazers have 

been correlated with degree of wave action (Lubchenco 1980) with activity greatest in the 

summer (Lubchenco 1986). Temporal alternations in the relative importance of physical 

versus biological controls also have been observed in plankton succession of temperate 

lakes and marine systems (Sommer 1989) and the appearance of spring annuals in 

terrestrial ecosystems (Fenner 1992). 

An Ulva response was observed in all disturbance manipulations, with the greatest 

recruitment occurring in those created in August 2007 and May 2008. Independent of the 

timing-treatment interaction, the Ulva response differed among intertidal zones. 

Although recruitment of Ulva in the Porphyra zone resulting from waterborne propagules 

was only observed in summer, the response of Ulva to plots in the Mazzaella zone at 

different times of the year demonstrated that recruitment failures were not the result of 

seasonal propagule availability (Figures 9 & 10). 

Spatial variability (zone) explained the majority of the variability in Ulva and 

Porphyra recruitment. The major differences between the two zones were location with 

respect to MLLW, amount of sand inundation, and biodiversity. The Porphyra zone is 

located closer to shore and thus farther away from MLLW causing it to be exposed for 

more low tides than the Mazzaella zone. The timing of extreme low tides (day vs night; 

summer vs. winter) varies over the course of a year and among years. Extreme low tides 
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occurred during daytime when increased summer temperatures resulted in abiotic 

controls (desiccation), whereas extreme lows on foggy nights during winter resulted in 

biotic controls (mobile grazer activity). The result is a spatio-temporal gradient in 

exposure time that can lead to fluctuations in the importance of physical vs. biological 

processes regulating settlement and survival of waterborne propagules and sporelings. 

In general, Viva rarely recruited to Porphyra zone plots whereas, the greatest 

Ulva responses were observed in spring and summer Mazzaella zone manipulations. 

Unlike the Mazzaella zone plots, Porphyra zone plots experienced sand inundation 

immediately following these clearings (x =25.5 ±24.8% SE to x =75 ± 25% SE from 

September 2007-October 2007 and x =9.00 ± 6.61 SE to x =49.0 ± 26.2% SE from 

June 2008-August 2008) consequently decreasing the amount of substrate available for 

colonization across all treatments (Figures 18 & 19). 

In the case of Porphyra, differences in maximum cover among zones observed in 

summer and spring clearings (Figure 16) coincided with increasing mean tidal elevations 

during daylight hours (Figure 22). Smith (1983) reported a seasonal alternation in the 

robustness of Porphyra thalli at high and low tidal elevations. When extreme low tides 

occurred at midday in spring; Porphyra thalli at lower tidal elevations were larger, had 

higher rates of photosynthesis, and more thalli were reproductive than those at higher 

tidal elevations. Increasing submergence time during daylight hours in fall led to 

declines in these parameters and eventually in the number of thalli present at lower tidal 

elevations. Smith also observed a higher incidence of pathogens in thalli collected at the 

lowest tidal elevations, and proposed that this species' lower tidal limit is regulated by 



40 

pathogens. This further exemplifies the inherent differences in these two intertidal zones, 

and indicates that processes regulating settlement and post-settlement survival can vary 

temporally across intertidal zones and dictate responses by opportunistic algae. 
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Figure 18. Temporal variability of sand % cover (mean ± SE) by treatment (D=Control, 0=Partial, 
A=Complete) and time of clearing (a. August 2007; b. November 2007; c. January 2008; d. May 2008) for 
plots located in the Porphyra zone. 
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Figure 19. Temporal variability of percentage cover (mean ± SE) of sand by treatment ( D =Control, 
0=Partial, A=Complete) and time of clearing (a. August 2007; b. November 2007; c. January 2008; d. 
May 2008) for plots located in the Mazzaella zone. 
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Porphyra was locally extinct at this site during late fall and most of winter 

(Figures 13 & 14). The absence of macroscopic Porphyra thalli during fall and winter 

indicates that the subsequent appearance of macroscopic thalli was most likely the result 

of settled conchospores. Porphyra recruitment was first observed in January 2008 

(Figure 14b, in November 2007 Mazzaella zone clearings), five months after the August 

2007 clearings were created and two months before photoperiod (hours of daylight) 

reached levels described as optimal for conchospore release by Dring (1967) (Figure 20). 

During this time many other seaweeds (including Viva, and primarily Petrocelis and 

encrusting coralline) had the opportunity to colonize (via propagules or vegetative 

encroachment) the August 2007 clearings before decreases in photoperiod cued the 

release of conchospores (Figure 10a & 21). 

A h 6 A 6 J £ Ivl A M 
Time (months) 

2007 2008 

X 

Figure 20. Hours of daylight for the duration of the study with "optimal photoperiod" (8-12hrs) for 
conchospore release as described by Dring (1967) indicated by the shaded rectangle. Dashed lines 
represent the timing of each experimental clearing. 
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(D=Control, 0=Partial, A=Complete) and time of clearing (a. August 2007; b. November 2007; c. 
January 2008; d. May 2008) for plots located in the Mazzaella zone. 
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Higher intertidal clearings had greater cover of Porphyra than the lower intertidal 

clearings when differences among zones were observed (Figure 16, August 2007 and 

May 2008). In fact, often Porphyra was the only alga observed in these plots. 

Conversely, the Mazzaella zone was more species rich than the Porphyra zone 

throughout study (Figure 8, Appendix A, two sample t-test, P=0.002). A recent study 

documented a positive relationship between diversity and algal cover whereas diversity 

decreased the availability of free space when compared with monocultures (Stachowicz 

et al. 2008). Increased competition for space resulting from accumulating levels of 

diverse cover may have contributed to the differences in Porphyra cover observed in 

summer Mazzaella zone clearings (Figures 10a & 21). 

Photoperiod exceeded the optimal range for conchospore release in March of 

2008 which, should have cued conchocelis to decrease production of conchospores and 

begin propagating more conchocelis (Drew 1954, Dring 1967, Pacheco-Ruiz et al. 2005) 

(Figure 20). The May 2008 clearings were created four months after the earliest 

observed Porphyra response, just before periods of increased mean monthly tidal 

elevation at noon and submergence time during daylight hours (Figure 22). Increased 

submergence during daylight hours has been proposed to increase Porphyra's 

vulnerability to pathogens (Smith 1983) and combined with increased competition and a 

decreasing propagule supply may explain differences observed between zones in spring 

and summer clearings. 

Establishment of November 2007 and January 2008 plots coincided with the 

optimal photoperiod for conchospore release (Figure 20). Fall and winter manipulations 
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in the Mazzaella zone provided ample substrate for colonization when conchospore 

availability should have been at its peak. Additionally, these plots experienced lower 

tidal elevations during daylight hours (Figure 22) when air temperatures are greatest, 

potentially limiting the establishment of pathogens (Smith 1983). The similarity in 

Porphyra response among zones in fall and winter clearings is likely the combined result 

of propagule availability, reduced competition, and increased survivorship. 

- J ~f 1 1 r — ~ i 1 1 1 1 i 1 1 1 1 1 
J A S O N D J F M A M J J A S 

Time (months) 

2007 ' 2008 

Figure 22. Tidal elevations in feet above mean lower low water (MLLW) of the highest and lowest 
tides for each month during the study. Also shown are the mean elevations of tides at noon 
(12:00±0:30min) for each month. Tidal data used to create this figure was obtained from Harbor Master 
5.5.8 by Zihua Software, LLC as local NOAA buoys did not collect tide data for the study period. 

Several investigations have found that the sequence of succession on rocky reefs 

is the result of competitive advantages possessed by opportunistic seaweeds and lacking 

in late successional dominants (Sousa 1979a, Littler and Littler 1980, Connell and Sousa 

1983). These same principles can explain the differences among early colonizers 
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observed in this study as supported by the relationship between Ulva and Porphyra cover 

(Figure 17). Zone explained the greatest amount of the variability in the model for Ulva 

recruitment (Appendix B). A conspicuous difference between the two zones is the 

seasonal dominance of Porphyra in the high intertidal. The presence of the Porphyra 

foliar phase at the onset of this study indicates the potential for a local "seed bank" 

provided by the perennial conchocelis phase and can explain why no treatment effect was 

observed in Porphyra recruitment. Local presence of conchocelis may have allowed for 

Porphyra to recruit faster than Ulva in clearings that coincided with a decrease in 

photoperiod (November 2007 and January 2008). Porphyra recruited on cue in spring 

2008 to all four experiments across both zones. The close proximity of a propagule 

source could have saturated the study site with Porphyra propagules. 

The timing of fall and winter clearings also coincided with a decrease in daylight 

hours and increase in maximum daily wave height (Figure 4). Decreasing photoperiod 

cues the release of conchospores and increases in water motion can aid in dispersal of 

propagules (Dring 1967, Sheath and Hambrook 1990, Amsler et al. 1992). The 

coinciding of available propagules and increase in water motion may have resulted in a 

competitive advantage for Porphyra following fall and winter clearings in the Mazzaella 

zone and may explain why the treatment effect on maximum Ulva cover varied with 

timing of clearing. 

Although Ulva and Porphyra have been identified as early colonizers in countless 

studies on intertidal succession, they are opportunistic in different ways. Ulva responded 

to clearings created throughout the year, had greater recruitment overall to lower 
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intertidal clearings but utilized recruitment strategies (waterborne propagules, fragments, 

& sporelings) differently depending on the time of year. Alternatively, Porphyra was 

restricted to a spring response prompted more by a life history cue than a disturbance 

event. 
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CONCLUSIONS 

Waterborne propagules are an important mechanism for recruitment of early 

colonizers to clearings created throughout the year. Ulva colonization by waterborne 

propagules was observed throughout the year, whereas Porphyra was restricted to spring 

recruitment, as expected due to temporal cues (changes in photoperiod) regulating 

propagule availability. Maximum Ulva responses varied in treatments as a function of 

timing of clearing whereas maximum Porphyra responses varied in intertidal zones as a 

function of timing of clearing but was equally abundant in control plots. Ulva and 

Porphyra had minimal responses in fall and winter clearings. Further experimentation is 

needed to rule out a negative interaction between Ulva and Porphyra in fall and winter 

disturbances. 

Understanding the mechanisms by which organisms recruit can help explain 

changes in the structure of dynamic communities. This study gives insight into the 

mechanisms by which some early recruiting species rapidly colonize disturbed substrate. 

A better understanding of how opportunistic intertidal macroalgae recruit will help to 

explain future changes in community structure; organisms adapted for recruitment after a 

disturbance give us an idea of how intertidal communities will look as anthropogenic 

disturbances increase. Lotze (1999) highlighted the importance of considering all parts 

of life cycles when investigating the effects of environmental factors (physical and 

biological) on the population dynamics of macroalgae and organisms in general. In the 

case of ephemeral species, this aspect is crucial to identifying processes regulating their 

appearance considering these thalli commonly experience local extinction. Their ability 
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to overcome local extinction makes early colonizers well suited for survival in dynamic 

environments and may make them best adapted to handle future climate changes. 
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Appendix B. ANOVA and variance components analysis followed by multiple 
comparisons' tests describing the effects of disturbance timing (T), location (Z), and 
treatment (TRT) on response variables that included: a. Ulva maximum cover and b. 
Porphyra maximum cover. Omega squared (a)2) represents the percentage variance 
explained by each source factor. 

a. Ulva maximum recruitment 

Source 
T 

Z 

TRT 

T*Z 

T*TRT 

TRT*Z 

T*Z*TRT 

Error 
Total 

S S 
T y p e 

I I I 

0 .528 

0 .547 

0 .196 

0 .233 

0 .48 

0 .059 

0 .16 

2 .855 

8 .018 

Mean 
df Square F 
3 0 .176 4 . 4 3 8 

1 0 .547 13 .786 

2 0 .098 2 .467 

3 0 .078 1.958 

6 0 .080 2 .018 

2 0 .029 0 .742 

6 0 .027 0 .673 

72 0 .040 

96 0 .084 

Sig 

0 . 0 0 6 
4 E - 0 4 
0 . 0 9 2 

0 .128 

0 . 0 7 4 

0 .480 

0 .672 

Fisher's LSD evaluation of Ulva maximum recruitment, Timir 

Timin «ro 
*Treatmentm 

August*Control 

Timings 
Treatment m 

August*Partial 
August*Complete 

November* Control 
November*Partial 

November*Complete 
January*Control 
January*Partial 

January*Complete 
May*Control 
May*Partial 

May*Complete 

Mean 
Difference 

-0.310 
-0.270 
-0.034 
-0.012 
0.038 
-0.028 
-0.010 
-0.034 
0.002 
-0.058 
-0.213 

Variance 
Component 

0.004 

0 .005 

0 .001 

0 .004 

0 .040 

CO2 

5 . 0 9 % 

6 . 3 2 % 

1 .45% 

5 . 1 3 % 

4 7 . 9 % 

ig*Treatment (T*TRT) 

P-Value 

0.003 
0.008 
0.735 
0.901 
0.707 
0.783 
0.919 
0.734 
0.987 
0.565 
0.036 
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Timing(i) 

Treatment^ 

August*Partial 

August*Complete 

November*Control 

November* Partial 

Timing^ 
*Treatment (i) 

August*Complete 
November*Control 
November* Partial 

November*Complete 
January*Control 
January*Partial 

January*Complete 
May*Control 
May*Partial 

May*Complete 

November*Control 
November* Partial 

November*Complete 
January*Control 
January*Partial 

January*Complete 
May*Control 
May*Partial 

May*Complete 

November* Partial 
November*Complete 

January*Control 
January*Partial 

January*Complete 
May*Control 
May*Partial 

May*Complete 

November*Complete 
January*Control 
January*Partial 

January*Complete 
May*Control 
May*Partial 

May*Complete 

Mean 
Difference 

0.040 
0.276 
0.298 
0.348 
0.283 
0.300 
0.276 
0.312 
0.252 
0.097 

0.236 
0.257 
0.307 
0.242 
0.260 
0.236 
0.272 
0.212 
0.057 

0.021 
0.071 
0.006 
0.024 
0.000 
0.035 
-0.024 
-0.179 

0.050 
-0.015 
0.002 
-0.021 
0.014 
-0.045 
-0.201 

P-Value 
0.687 
0.007 
0.004 
0.001 
0.006 
0.004 
0.007 
0.003 
0.013 
0.334 

0.020 
0.012 
0.003 
0.017 
0.011 
0.020 
0.008 
0.036 
0.572 

0.831 
0.476 
0.950 
0.813 
0.999 
0.723 
0.812 
0.076 

0.617 
0.880 
0.982 
0.830 
0.887 
0.652 
0.047 
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Timing(i) 

*Treatment(i) 

November*Complete 

January*Control 

January*Partial 

January*Complete 

May*Control 

May*Partial 

Timing® 
Treatment m 

January*Control 
January*Partial 

January*Complete 
May*Control 
May*Partial 

May*Complete 
January*Partial 

January*Complete 
May*Control 
May*Partial 

May*Complete 

January*Complete 
May*Control 
May*Partial 

May*Complete 

May*Control 
May*Partial 

May*Complete 

May*Partial 
May*Complete 

May*Complete 

Mean 
Difference 

-0.065 
-0.048 
-0.071 
-0.036 
-0.095 
-0.251 
0.017 
-0.006 
0.029 
-0.030 
-0.186 

-0.024 
0.012 
-0.047 
-0.203 

0.036 
-0.024 
-0.179 

-0.059 
-0.215 

-0.156 

P-Value 
0.515 
0.633 
0.475 
0.720 
0.343 
0.014 
0.862 
0.949 
0.770 
0.764 
0.066 

0.812 
0.905 
0.635 
0.045 

0.722 
0.813 
0.076 

0.554 
0.034 

0.122 
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b. Porphyra maximum recruitment 

Source 
T 

Z 

TRT 

T*Z 

T*TRT 

TRT*Z 

T*Z*TRT 

Error 
Total 

Fisher's LSD 

Timir 

S S 
Type 

I I I 

2 .809 

4 . 1 4 2 

0 .33 

2 .935 

1.056 

0 .396 

0 . 3 6 1 

9 . 5 1 1 

5 3 . 8 9 6 

df 

3 

1 

2 

3 

6 

2 

6 

72 

96 

Mean 
Square 

0 .936 

4 . 1 4 2 

0 .165 

0 .978 

0 .176 

0 .198 

0 .060 

0 .132 

0 .561 

F 

7 .087 

3 1 . 3 5 

1.25 

7 .406 

1.33 

1.50 

0 .46 

Sig 

0 . 0 0 0 

0 . 0 0 0 

0 .292 

0 . 0 0 0 

0 .254 

0 .230 

0 .839 

Variance 
Component w2 

0 .025 4 . 4 8 % 

0 .042 7 . 4 4 % 

0 .053 9 . 4 2 % 

evaluation of Porphyra maximum recruitment, Timing*Zone (T*Z) 

>gm 
*Zone(i) 

Timings 
*Zonem 

Mean 
Difference P-Value 

August* Porphyra 

August*Mazzaella 

November*Porphyra 

August*Mazzaella 
November*Porphyra 
November*Mazzaella 

January *Porphyra 
January*Mazzaella 

May*Porphyra 
May*Mazzaella 

November* Porphyra 
November*Mazzaella 

January *Porphyra 

January *Mazzaella 
May*Porphyra 
May*Mazzaella 

November*Mazzaella 
January*Porphyra 

January*Mazzaella 
May*Porphyra 
May*Mazzaella 

0.919 
0.753 
0.771 
0.341 
0.514 
0.529 
1.081 

-0.166 
-0.148 
-0.577 

-0.405 
-0.390 
0.162 

0.018 
-0.412 
-0.239 
-0.224 
0.328 

0.000 
0.000 
0.000 
0.024 
0.001 
0.001 
0.000 

0.267 
0.322 
0.000 
0.008 
0.011 
0.278 

0.904 
0.007 
0.112 
0.136 
0.030 



Timing(i) 

*Zone(i) 

November*Mazzaella 

January*Porphyra 

January*Mazzaella 

May*Porphyra 

Timing0) 

*Zone(i) 

January*Porphyra 
January*Mazzaella 

May*Porphyra 
May*Mazzaella 

January*Mazzaella 
May*Porphyra 
May*Mazzaella 

May*Porphyra 
May*Mazzaella 

May*Mazzaella 

Mean 
Difference 

-0.430 
-0.257 
-0.240 
0.310 

0.173 
0.188 
0.740 

0.015 
0.567 

0.552 

P-Value 
0.005 
0.088 
0.107 
0.040 

0.248 
0.210 
0.000 

0.920 
0.000 

0.000 
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