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ABSTRACT 

DODGE-ROMIG SAMPLING PLANS: 
MISUSE, FRIVOLOUS USE, AND EXPANSION FOR USEFULNESS 

by Avik Ganguly 

The Dodge-Romig plans and the Military Standard 105 Plans are the most popular 

published sampling plans covered in detail in many standard textbooks on statistical 

quality assurance such as Introduction to Statistical Quality Control by Douglas C. 

Montgomery. In this thesis, we focus on Dodge-Romig AOQL plans. The Dodge-Romig 

AOQL plans are designed to minimize the average total inspection (ATI) for a given 

AOQL and a specified process average. It is argued that the Dodge-Romig plans as 

currently tabulated (particularly in the standard publications or textbooks on acceptance 

sampling), are not useful. However, they can be made useful if the plans focus on ranges 

of the (incoming) process-average values that are greater than the target AOQL. Whether 

one knows the exact value of process average p or just the exact range of the process 

averages containing an uncertain p, one can use the pair of (n, c) listed under the 

corresponding range to ensure the target AOQL with the minimum ATI. The thesis 

provides example expansions of some of the published Dodge-Romig AOQL plans. A 

new concept of certainty line is also developed which is a measure of process-average (p) 

associated with gamma risk (y) whose numerical value is 0.000033. For any given lot 

size if the calculated or knowledge base process-average of a manufacturer falls below or 

equal to the value of the certainty line, then one would not be required to consider any 

sampling plan to achieve a worst case outgoing quality. 
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CHAPTER 1 

INTRODUCTION 

Although statistical process control has been the centerpiece for modern statistical 

quality assurance, acceptance sampling remains a useful tool for a company to control the 

quality of raw materials or parts shipped from the suppliers, particularly when no 

company representatives are present at the suppliers' manufacturing facilities. Among 

the categories of single, multiple, and continuous sampling plans, single sampling plans 

are effective and most popular. In addition to the fundamental single sampling where the 

sample size n and acceptance number c are to be determined by user-specified the AQL 

and LTPD and the corresponding producer's and buyer's risk levels, the Dodge-Romig 

plans and the Military Standard 105 Plans are the most popular published sampling plans 

and are covered in detail in many standard textbooks on statistical quality assurance. In 

this thesis, after pointing out a common misuse of the Dodge-Romig plans as well as a 

common frivolous use, I propose an expansion of any of the published Dodge-Romig 

plans and address the resulting usefulness. 

The thesis focuses on Dodge-Romig AOQL plans. Each of the published plan tables 

corresponds to a target AOQL and contains several columns corresponding to a set of 

non-overlapping ranges of process-average p (i.e., incoming quality or incoming 

percentage of non-conforming) and a number of rows corresponding to the same number 

of non-overlapping lot-size ranges. Note that the non-overlapping ranges of process-



average p constitute the entire interval between 0 and the target AOQL. In particular, all 

the process-average (p) values of all the listed ranges are smaller than the target AOQL. 

For illustration purposes, we focus on the single sampling plan published for AOQL = 

3.0% and focus on the lot size 8500. A single sampling is specified by a pair of n and c, 

where n denotes the sample size and c denotes the acceptance number or the critical 

number. A lot is accepted if the number of defective items among the n sampled items is 

no greater than c. Each of the pairs of (n, c) listed for lot size 8500 guarantees an AOQL 

of 3.0%, but the («, c) pair listed under the process-average range of (0.00% - 0.06%), for 

example, should be selected if the process-average p falls within this range. This 

particular pair produces the minimum ATI approximately, among all the (n, c) pairs listed 

for lot size 8500. A common misuse of this plan or any other Dodge-Romig AOQL plan 

can be illustrated as follows. "Furthermore, to use the plans, we must know the process 

average [...]." (Montgomery 682). This is a misuse, and one does not have to know 

exactly what the (incoming) process-average p is. Had one known the exact value of the 

process-average p and had one known that this process-average p is less than 3.0%, there 

is no need to conduct the sampling to begin with. This is because the 100% rectifying 

inspection of the Dodge-Romig plans guarantees that the outgoing quality will be strictly 

better than the (incoming) process-average. Note again that all the process-average 

values of all the process-average ranges of a Dodge-Romig plan are smaller than the 

target AOQL. If the process-average p is indeed 0.0006 (i.e., 0.06%), why would want to 

bother with any sampling plan at all to achieve a 0.03 (i.e., 3%) worst-case outgoing 



quality? (3.0% is 50 times worse than 0.06 %.) This misconception results from the fact 

that ATI is a function of the (incoming) process-average p and calculation of ATI for 

range selection requires the value of p. I will provide numerical examples to illustrate 

how minute the probability is for any particular lot of 8500 to have 3.0% rate of 

nonconforming (i.e., 255 defective items) if the process-average p is indeed 0.0006 (i.e., 

0.06%). 

Some theoreticians or practitioners suggest the following frivolous use of Dodge-

Romig plans. Although one does not have to know the exact value of the (incoming) 

process-average p, he/she only needs to know exactly which of the ranges listed for the 

given lot size contains p and should use the (n, c) pair of the corresponding range (i.e., 

column). In this use, although the exact knowledge of the (incoming) process-average/? 

is not needed, one must have the exact knowledge of the range. This use is frivolous 

because, once again, had one known exactly that the process-average is within a given 

listed range, there is no need for the sampling. Once again, this is because the rectifying 

inspection guarantees that the outgoing quality is strictly better than the incoming 

process-average. Note again that all the process-average values of all the process-

average ranges of a Dodge-Romig plan are smaller than the target AOQL. 



CHAPTER 2 

FUNDAMENTAL CONCEPTS 

Single-Sampling Plan 

A single-sampling is defined by the three entities namely lot size N, sample size n and 

acceptance number c. Thus for a lot size of TV a random sample of n units is inspected 

and the number of nonconforming items d is observed. If the number of nonconforming 

items d is less than or equal to acceptance number c, the lot will be accepted. On the 

other hand, if d > c then the lot will be rejected. 

Probability of Acceptance 

The probability of acceptance Pa is the probability that d < c. It is a probabilistic 

measure and the result can vary from 0 to 1. It is also used in the calculation of AOQ and 

ATI. Pa is large (in the order of 0.9 and more) when the incoming process-average is 

low. 

Percent Defective 

Percent defective is a measure of quality in terms of percentage. It can vary from 0% 

to 100%. It is also termed as fraction defective. It represents the number of defective 

items per 100 items present in a lot of size TV. In my thesis, it is mainly referred as 

incoming process-average p. This is a quality measure which defines the incoming lot 

from a supplier. 



Concept of Rectifying Inspection 

The phenomenon of 100% screening or inspection of rejected lots forms the basis of 

rectifying inspection technique. In case of a lot being sentenced, all the discovered 

defective items are either removed for subsequent work or they are returned to the 

supplier or replaced with a stock of good items. For example if the incoming lots have a 

fraction defective of p0 then some of these lots will be accepted and some of them will be 

rejected. The outgoing quality of the accepted lots will have a fraction defective of p0. 

However, the rejected lots will be screened and their final fraction defective will be zero 

which is definitely less than p0 since p0 is a positive real number. The overall outgoing 

lots thereby are combination of lots with fraction defective p0 and fraction defective zero. 

Therefore, the outgoing lots from the inspection activity will have a fraction defective 

measure of say pi which is less than p0. In short, rectifying inspection is a technique 

which guarantees an overall outgoing quality of lots which is strictly greater than the 

overall quality of the incoming ones. The Dodge-Romig sampling plans hold good only 

if rectifying inspection is adopted. 

Average Outgoing Quality (AOQ) 

AOQ is the measure of quality in the lot that results from the application of rectifying 

inspection. 

AOQ can be illustrated as follows: "It is simple to develop a formula for average 

outgoing quality (AOQ). Assume that the lot size is N and that all discovered defectives 

are replaced with good units. Then in lots of size N, we have 



1. n items in the sample that, after inspection, contain no defectives, because 

all discovered defectives are replaced. 

2. N-n items that, if the lot is rejected, also contain no defectives 

3. N-n items that, if the lot is accepted, contain p(N - n) defectives 

Thus, lots in the outgoing stage of inspection have an expected number of defective 

units equal to Pap (N-n), which we may express as an average fraction defective, called 

Pap(N - n) 
the average outgoing quality or AOQ = JJ -" (Montgomery 659). 

The AOQ varies as the fraction defective of the incoming lot varies. 

Average Outgoing Quality Limit (AOQL) 

The maximum ordinate on the AOQ curve (while varying p) is the AOQL. It 

represents the worst possible average quality that would result from the rectifying 

inspection program. For the purpose of this thesis, I have always used the target AOQL 

to be 3.0%. There are also sampling plans for different AOQL values such as 0.1%, 

0.25%, 0.5%, 0.75%, 1%, 1.5%, 2%, 2.5%, 4%, 5%, 7%, and 10%. 

Average Total Inspection (ATI) 

ATI can be illustrated as follows: "Another important measure relative to rectifying 

inspection is the total amount of inspection required by the sampling program. If the lots 

contain no defective items, no lots will be rejected, and the amount of inspection per lot 

will be the sample size n. If the items are all defective, every lot will be submitted to 



100% inspection, and the amount of inspection per lot will be the lot size N. If the lot 

quality is 0 < p < 1, the average amount of inspection per lot will vary between the 

sample size n and the lot size N. If the lot is of quality p and the probability of lot 

acceptance is Pa, then the average total inspection per lot will be: 

ATI = n + (1- PaXN-n)" (Montgomery 661). 



CHAPTER 3 

THE DODGE-ROMIG SAMPLING PLAN (AOQL): MISUSE 

The Dodge-Romig single sampling tables obtained from the book Sampling Inspection 

Tables, Single and Double Sampling by H. F. Dodge and H. G. Romig give AOQL 

sampling plans for various AOQL values ranging from 0.1% to 10%. The tables are 

provided for both single and double sampling. For illustration purpose, I have focused on 

the plan published for AOQL = 3% and for the lot sizes 8,500 and 75,000. 

Table 3.1: Single Sampling Plan for AOQL = 3.0% (Dodge and Romig 202) 

Lot Size 

7001-10.000 
50,001-100,000 

Process 
Average 

0 to 0.06% 

n 
28 
28 

c 
1 
1 

Process 
Average 

0.07 to 0.60% 

n 
46 
65 

c 
2 
3 

Process 
Average 

0.61 to 1.20% 

n 
65 
125 

c 
3 
6 

Process 
Average 

1.21 to 1.80% 

n 
105 
215 

c 
5 
10 

Process 
Average 

1.81 to 2.40% 

n 
170 
385 

c 
8 
17 

Process 
Average 

2.41 to 3.00% 

n 
280 
690 

c 
13 
29 

I have arbitrarily chosen the row 16 and 19 of the published table. For calculation purpose I 

have chosen 8,500 and 75,000 which represent the median value of the interval 7,001-10,000 

and 50,001-100,000 respectively. Each of the above pairs of (n, c) for lot sizes 8,500 and 

75,000 guarantees an AOQL of 3.0%. Also, these particular pairs of (n, c) produce the 

minimum ATI approximately, among all the (n, c) pairs listed for lot sizes 8,500 and 75,000 

respectively. However, the (n, c) pair listed under the process-average range of (0.00% -

0.06%), for example in our case (28, 1), should be selected if the process-average p falls within 

this range. In order to use the plans, the text books (Montgomery) state the necessity of having 



the knowledge of the process-average which can also be termed as average fraction 

nonconforming of the incoming product. This is a misuse of the knowledge of incoming 

process average, and I argue that one does not have to know the exact incoming process-

average p. If one knows the incoming process-average p and if/? < 3.0%, then there will not be 

any necessity to adopt any sampling plan. This is because the Dodge-Romig plan is only 

applicable when the rejected lots are subjected to 100% inspection. This rectifying inspection 

ensures the outgoing quality of the lot will always be better than the incoming process-average. 

I will use the following numerical example to defend my argument. Let us consider 

the initial range of the incoming process-average p (0 to 0.06%). 

Problem statement: Calculate the probability of a lot with lot size 8,500 to have 3% or 

more defective items given that the incoming process-average is 0.06%. 

Solution: Given lot size N = 8500 

Number of defective items = 3% of 8500 = 255 

Incoming process-average p = 0.06% = 0.0006 

Hence for a given lot size of 8,500 let us calculate the probability of having 255 or more 

number of defective items when the incoming process-average is 0.0006 

To calculate, 

P (X > 255) 

Where X is a binomial random variable with parameters N and p. 

By the principle of normal approximation to the binomial distribution (Montgomery and 

Runger 132) 



P (X> 255) = 1 -P (X< 255) = l-P(X<254) 

1 - P 
X-Np 

VWp(l-p)J 

/ 248.9 \ 
1-PlZ < 

V - 2.2576/ 

[254- (8500 x 0.0006)] 

V[8500 x 0.0006 x (1 - 0.0006)] 

1 - P ( Z < 110.2498228) 

We know that, from the cumulative standard normal distribution table (Montgomery and 

Runger 713) 

P(Z< 3.99) = 0.999967 

P(Z<110.2498228) ~ 1 

Hence P (X> 255) ~ 0 

Thus the example demonstrates that the probability of having 3.0% or more defective 

items within a lot with lot size of 8500 when the incoming process-average is 0.06% is 

approximately equal to zero. It is to be noted that all the process-average in Table 3.1 is 

less than or equal to the target AOQL. If one knows the incoming process-average p to 

be 0.06%, then one would not require consideration of any sampling plan. 



CHAPTER 4 

THE DODGE-ROMIG SAMPLING PLAN (AOQL): FRIVOLOUS USE 

The frivolous use of the Dodge-Romig sampling plan (AOQL) is quite similar to that 

of its misuse. Looking back to Table 3.1, for any given range of lot size (e.g., 7,001-

10,000) there are six different non-overlapping ranges of incoming process-average p. 

Some theoreticians or practitioners suggest the following frivolous use of Dodge-Romig 

plans. Although for a given lot size one does not have to know the exact value of the 

incoming process-average p, one must know the exact range (in our case one among the 

six non-overlapping ranges listed in Table 3.1), which contains the incoming process-

average p. In this use, one must use the (n, c) pair of the corresponding range (i.e., 

column). For example, if one knows that the incoming process-average p lies within the 

range of 1.21 to 1.80% and the lot size is 9,000, then one would choose (105, 5) as the (n, 

c) pair for the purpose of sampling. This is a frivolous use. There is no need for 

sampling if one knows that the incoming process-average p lies exactly within a given 

listed range. Once again, this is because rectifying inspection guarantees that the 

outgoing quality is always better than the incoming process-average. Note that all the 

process-average values of all the process-average ranges of a Dodge-Romig plan are 

smaller than the target AOQL. 



CHAPTER 5 

THE DODGE-ROMIG SAMPLING PLAN (AOQL): 

EXPANSION FOR USEFULNESS - CERTAINTY LINE 

Having stated the misuse and frivolous use of Dodge-Romig sampling plan, I argue 

that the currently published tables can be made more useful. In this part, I am 

introducing a concept of certainty line which is a measure of process-average p 

associated with a gamma risk (y) whose numerical value is 0.000033. For any given lot 

size if the calculated or knowledge base process-average of a manufacturer falls below or 

equal to value of the certainty line then one would not require to consider any sampling 

plan to achieve a worst case outgoing quality. The following numerical example will 

show how we can calculate the certainty line for any given lot size. 

Problem Statement: Find the process-average p such that a lot of size N will have 

number of defective items being greater than or equal to N times lot percentage (in our 

case AOQL of 3.0%). The probability of such measure should be smaller than or equal to 

the y risk which is equal to 0.000033. 

Solution: Let us consider the lot size N to be 100 

Hence, the problem can be redefined as follows. 

Find the process average p such that a lot size of 100 will have number of defective items 

being greater than or equal to 3 (i.e. 100 x 0.03). 

Given: 



N=100 

Lot Percentage or AOQL = 3.0% 

Risk (y) = 0.000033 (Smallest number in Normal Distribution Table) (Montgomery and 

Runger713) 

To calculate: 

P(c > 3) < 0.000033 

Where c is binomial random variable with parameters N and p. 

By the principle of normal approximation to the binomial distribution (Montgomery and 

Runger 132) 

1 - P ( c < 3 ) < 0.000033 

P (( *-»P ) < ( 3 - 1 0 0 ; )) < 0.000033 
\\jNp X (l-p)/ WlOOp X (l-p)/J 

Multiplying both sides by -1 , 

- 1 x ! _ P (( , x~Nv ) < ( i
 3-10°P )) 

\\jNp x (l-p)/ VVIOOP x (i-p)// 

_ 1 + p f ( X~N; ) < ( 3-10<* V\ > -0.000033 
^VV P̂ x (l-p)/ \y/l00px(l-p)JJ 

Adding 1 on both sides, 

P (? ™ * \ < ( 3-1 0 0^ V\ > 1 - 0.000033 

P (( *-»v ) < ( 3 - ! ° ° ; V\ > 0.9999667 

> - 1 x 0 . 0 0 0 0 3 3 

We know that, P (Z< x) > 0.9999667 => x> 3.99(approximately) (Montgomery and 

Runger713) 

file:////jNp
file:////jNp


3-100p K = >3.99 
VlOOpx(l-p) 

(3 - 100p)2 > [3.99 x {lOOp x (1 - p)}]2 

9 + lOOOOp2- 600p > 1592.01p - 1592.01p2 

11592.01/?2 - 2192.01p + 9 > 0 

2192.01±V2192.012-(4X11592.01X9) 
77 ~ 2X11592.01 

Therefore p = 0.184896 orp = 0.004199 

Case 1: 

Substituting p = 0.184896 in the equation (1) 

3 - 100x0.184896 
, = -3.989972 

VlOO x 0.184896 x (1 - 0.184896) 

Since -3.989972 < 3.99; 

We can disregard the value p = 0.184896 

Case 2: 

Substituting p = 0.004199 in the equation (1) 
3-100x0.004199 

, = 3.990040 
A/100X0.004199X(1-0.004199) 

Since 3.990040>3.99; 

We choose the value p = 0.004199 

Hence for a given lot size of 100 if one knows the incoming process-average p to be 

less than or equal to 0.004199 or 0.4199% then one would not require to consider any 



sampling plan. The Table 5.1 represents some examples of various lots with different lot 

size and their corresponding certainty line. Similarly, from the above numerical example 

we can draw certainty line for any given lot size. In this use, one can utilize his/her 

knowledge of incoming process average in order to decide whether or not he/she must 

consider any sampling plan. This will improve the efficiency of sampling using Dodge-

Romig sampling plan and reduce cost by considering sampling plan only when it is 

necessary in order to ensure the target AOQL. 

Table 5.1: Certainty Line for Lots with Different Lot Size. 

Lot Size 
100 
200 
300 
400 
500 
600 
800 
1000 
2000 
3000 
4000 
5000 
7000 
10000 
20000 
50000 
100000 

Certainty Line 
0.41990% 
0.68050% 
0.86581% 
1.00757% 
1.11212% 
1.21525% 
1.36383% 
1.47762% 
1.81044% 
1.98410% 
2.09620% 
2.17660% 
2.28700% 
2.39050% 
2.55483% 
2.71029% 
2.79213% 

Gamma Risk 
0.000033 
0.000033 
0.000033 
0.000033 
0.000033 
0.000033 
0.000033 
0.000033 
0.000033 
0.000033 
0.000033 
0.000033 
0.000033 
0.000033 
0.000033 
0.000033 
0.000033 

For instance, if the lot size is 100,000 then one would require considering sampling 

using Dodge-Romig sampling plan only if one knows that the incoming process-average 

p is greater than 2.79%. In a way, one does not have to even consider sampling for the 



first five columns from Table 3.1 listing five different non-overlapping ranges of 

incoming process average up to 2.40 %. 



CHAPTER 6 

THE DODGE-ROMIG SAMPLING PLAN (AOQL): EXPANSION OF TABLES 

Considering Table 5.1, it is seen that the certainty line tends to grow larger with larger 

lot sizes, leaving the initial columns of ranges of incoming process average not of any 

use. I believe that the current plans can be made useful by focusing on ranges of 

incoming process-average values that are greater than the target AOQL which is 3.0% in 

our case. In this chapter, I will provide example expansions of some of the published 

Dodge-Romig AOQL plans. Before doing that, it is necessary to select the («, c) pairs 

under different non-overlapping listing of ranges greater than the target AOQL of 3.0%. 

In this thesis, I have maintained equal width (0.6%) of non-overlapping ranges as I 

moved from the target AOQL to higher values. The (n, c) pairs must be chosen in such a 

way that each pair ensures target AOQL with minimum ATI respectively. For illustration 

purpose, I have considered the lot size of 8500(Median value of the range of 7001-10,000 

range). The table below shows different (n, c) pairs which assures the target AOQL of 

3.0% with minimum ATI respectively. 

Table 6.1: Example Expansion of Dodge-Romig AOQL Plans 

Lot Size 

7001-10.000 

Process Average 
3.01 to 3.60% 

n 
441 

c 
20 

Process Average 
3.61 to 4.20% 

n 
147 

c 
7 

Process Average 
4.21 to 4 80% 

n 
64 

c 
3 

Process Average 
4.81 to 5.40% 

n 
45 

c 
2 

Process Average 
5.41 to 6.00% 

n 
45 

c 
2 

Process Average 
6.01 to 6.60% 

n 
28 

c 
1 



A program in C (Appendix A) was written to identify (n, c) pairs which establish the 

target AOQL of 3.0%. It is to be noted that for every value of acceptance number c, there 

exists a unique sample size n whose AOQL will be approximately equal to 3.0%. 

Appendix B lists some of the («, c) pairs obtained for a given lot size of 8500, all of 

which meeting the targeted AOQL of 3.0%. Note that there are only 39 pairs of (n, c) 

obtained. The 39th pair of (n, c) is (848, 38). For c being 39 and onwards the 

corresponding unique sample size which meets the target AOQL of 3.0% are found out to 

be greater than 850. Considering those pairs for calculation and comparison of ATI adds 

complexity to the process. This is because, for a lot size of 8500 the calculation of both 

AOQL and ATI can rely upon binomial distribution only until n/N < 0.10. This is more 

of a hypergeometric phenomenon after we exceed the sample size of 850 for a lot size 

8500. Appendix C shows the sample calculation for ATI for the range of 3.01 to 3.60%. 

ATI is a function of incoming process average and hence for the column 3.01 to 3.60% 

the incoming process average p is considered as 3.305% which is the mean of the range 

3.01 to 3.60%. For all the («, c) pairs listed in Appendix B, ATI is calculated for column 

1 (3.01 to 3.60%) and each pair is compared against all the other pairs for the calculation 

of minimum ATI. In this way, I provide the example expansion of already published 

Dodge-Romig sampling plans. 



CHAPTER 7 

CONCLUSION AND FUTURE SCOPE OF RESEARCH 

Conclusion 

With the help of my numerical argument, it is evident that one does not have to know 

the exact incoming process-average p in order to adopt a sampling plan. Not only that, 

one does not even have to know the exact range which contains the incoming process-

average p in order to consider a sampling plan. However, for any given lot size N, if the 

incoming process-average p is known, then one can compare the knowledge base about 

the incoming process-average p against the certainty line for that given lot size and 

decide whether or not he/she must consider any sampling plan. This will not only save 

cost and time, but also improve the overall efficiency of a manufacturing environment. 

In the case of the supplier being remotely located, such practice will help improve the 

relationship of the supplier with the customer company. Dodge-Romig plans as currently 

tabulated can also be made more useful by focusing upon the ranges of the (incoming) 

process-average values that are greater than the target AOQL. 

Future Scope of Research 

A further study can be conducted to rethink the expansion of Dodge-Romig plans for 

those ranges of the incoming process-average (listed in Table 6.1) which is greater than 

the target AOQL. It is noteworthy that the pair of n and c which gives the minimum ATI 

for the range of p from 4.81 to 5.40% is (45, 2). The similar pair provides us with the 



minimum ATI for the ranges that are smaller than the target AOQL (Table 3.1: under the 

range of 0.07 to 0.60%). Further research can be done to determine whether one must 

consider sampling at all in cases where, for example, the required AOQL is 3% and 

incoming process-averagep is known to be in the range between 4.81% and 5.40%. In 

such cases, the rejection probability may be so close to one that virtually every lot is 

rejected, all items of a lot are inspected, and all non-conforming items are replaced by 

conforming items. Moreover, in this era of building good quality products, as opposed 

to the earlier era of screening out the bad quality ones, the supplier should improve the 

quality through statistical process control or be replaced by a better supplier. 
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APPENDIX A 

PROGRAM TO OUTPUT (n, c) PAIRS FOR ANY GIVEN LOT SIZE WHICH MEETS 

TARGET AOQL OF 3.0%. 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

#include <math.h> 

#define LINE_MAX 100 

int fileFound = 0; 

int printDetails = 0; 

double Factorial(int n){ 

double fctrl= 1; 

for (int i = n; i > 1; i—) 

{ 

fctrl = fctrl * i; 

} 

return fctrl; 

} 

double SemiFactorial(int n, int j){ 

double sFctrl= 1; 

for (int i = n; j > 0; j — , i—) 

{ 



sFctrl = sFctrl * i; 

} 

return sFctrl; 

} 

double MathematicalCombination(int sample, int acptNbr){ 

double fctrlCmb; 

double fctrlNC, fctrlC; 

switch (acptNbr) { 

case 0: 

fctrlCmb = 1; 

break; 

case 1: 

fctrlCmb = sample; 

break; 

default: 

if (acptNbr == sample) { 

fctrlCmb = 1; 

} 

else { 

fctrlNC = SemiFactorial(sample, acptNbr); 

fctrlC = Factorial(acptNbr); 

fctrlCmb = fctrlNC / fctrlC; 



} 

break; 

} 

return fctrlCmb; 

} 

double AOQ(int lotSize, double pctD, int sample, int acptNbr){ 

int sampleLessAcptNbr; 

double fctrlCmb; 

double pPower, onePPower, probabilityAcpt, totalProbabilityAcpt, lotSizeCalc, 

calculatedAOQ; 

/* don't use power function when pctD is equal to 1.00 due to significant digit 

error */ 

/* when pctD is equal to 1, AOQ is zero; (1 - pctD) raised to a power is zero when 

pctD is 1 */ 

if (1== (int) pctD) { 

calculatedAOQ = 0; 

} 

else { 

totalProbabilityAcpt = 0; 

for (int i = 0; i <= acptNbr; i++) { 

fctrlCmb = MathematicalCombination(sample, i); 

sampleLessAcptNbr = sample - i; 



pPower = pow(pctD, i); 

onePPower = pow((l - pctD), sampleLessAcptNbr); 

probabilityAcpt = fctrlCmb * pPower * onePPower; 

totalProbabilityAcpt += probabilityAcpt; 

} 

lotSizeCalc = (double) (lotSize - sample) / lotSize; 

calculatedAOQ = totalProbabilityAcpt * pctD * lotSizeCalc; 

} 

return calculatedAOQ; 

} 

double CalculateAOQL(int lotSize, double pctD, int sample, int acptNbr, FILE *fDtl, 

FILE *fC, FILE *fn){ 

double aoq, aoqMax[3]; 

int a, s, aMax[3], sMax[3]; 

double p, pMax[3]; 

charbuffer[200]; 

aoqMax[2] = pMax[2] = 0; 

aMax[2] = sMax[2] = 0; 

for (a = 0; a <= acptNbr; a++) { 

aoqMax[l] = pMax[l] = 0; 

aMax[l] = sMax[l] = 0; 



for (s = (a + 1); s <= sample; s++) { 

aoqMax[0] = pMax[0] = 0; 

aMax[0] = sMax[0] = 0; 

for (p = pctD; p < (1 + pctD); p += pctD) { 

aoq = AOQ(lotSize, p, s, a); 

if (printDetails) { 

sprintf(buffer, "%5d %5d %5d %10.61f 

%+15.10E\n", lotSize, a, s, p, aoq); 

fputs(buffer, fDtl); 

} 

if (aoq > aoqMax[0]) { 

aoqMax[0] = aoq; 

aMax[0] = a; 

sMax[0] = s; 

pMax[0] = p; 

} 

} 

sprintf(buffer, "%5d %5d %5d %10.61f %+15.10E 

MaxPerSample(Max per C=%d n=%d)\n", 

lotSize, aMax[0], sMax[0], pMax[0], aoqMax[0], a, s); 

fputs(buffer, fn); 

if (aoqMax[0] > aoqMaxfl]) { 



aoqMaxfl] = aoqMax[0]; 

aMax[l] = aMax[0]; 

sMax[l] = sMax[0]; 

pMax[l]=pMax[0]; 

} 

} 

sprintf(buffer, "%5d %5d %5d %10.61f %+15.10E 

MaxPerAcceptanceNbr(Max per C=%d)\n", 

lotSize, aMax[l], sMax[l], pMax[l], aoqMax[l], a); 

fputs(buffer, fC); 

if (aoqMax[l] > aoqMax[2]) { 

aoqMax[2] = aoqMax[l]; 

aMax[2] = aMax[l]; 

sMax[2] = sMax[l]; 

pMax[2]=pMax[l]; 

} 

} 

sprintf(buffer, "%5d %5d %5d %10.61f %+15.10E 

MaxForAllAcceptanceNbrs(Max for all C)\n", 

lotSize, aMax[2], sMax[2], pMax[2], aoqMax[2]); 

fputs(buffer, fC); 

return aoqMax[2]; 



} 

void Usage(char *programName){ 

fprintf(stderr,"Usage : %s L P S A\n",programName); 

fprintf(stderr," L is LotSize, P is PercentDefective, S is Sample and A is 

AcceptanceNumberVi"); 

fprintf(stderr," or : %s -f filename\n",programName); 

fprintf(stderr," filename contains LotSize, PercentDefective, Sample and 

AcceptanceNumberNn"); 

fprintf(stderr," or : %s -p L P S A\n",programName); 

fprintf(stderr," or : %s -p -f filename\n",programName); 

fprintf(stderr," -p causes each aoq result to be logged to outDtl.txt\n"); 

fprintf(stderr,"Output: outDtl.txt - aoq details if-p option is specified\n"); 

fprintf(stderr," outn.txt - summary for sample\n"); 

fprintf(stderr," outC.txt - summary for acceptance number\n"); 

} 

/* returns the index of the first argument that is not an option; i.e. 

does not start with a dash or a slash 

*/ 

int HandleOptions(int argc,char *argv[]){ 

int i,firstnonoption=0; 

for (i=l; i< argc;i++) { 



if (argv[i][0] == V || argv[i][0] == '-') { 

switch (argv[i][l]) { 

/* An argument -? means help is requested */ 

case '?': 

Usage(argv[0]); 

break; 

case 'h': 

case 'H': 

if (!stricmp(argv[i]+l,"help")) { 

Usage(argv[0]); 

break; 

} 

/* An argument -f means the input data is in a file */ 

case 'f: 

case 'F: 

fileFound = 1; 

break; 

/* An argument -p means the details are written to an 

output file */ 

case 'p': 

case *P': 

printDetails = 1; 



break; 

default: 

fprintf(stderr,"unknown option %s\n",argv[i]); 

break; 

} 

} 

else { 

if (firstnonoption == 0) { 

firstnonoption = i; 

} 

} 

} 

return firstnonoption; 

} 

int main(int argc,char *argv[]){ 

int arglndex, argCnt, lotSize, sample, acptNbr; 

char line[ 100]; 

FILE *f = NULL; 

FILE *fh = NULL; 

FILE *fDtl = NULL; 

FILE *fC = NULL; 

double pctD, aoqL; 



// Minimum 3 arguments - input file option 

if (argc < 3) { 

Usage(argv[0]); 

return 1; 

} 

/* handle the program options */ 

arglndex = HandleOptions(argc,argv); 

argCnt = argc - fileFound - printDetails; 

if (IfileFound && argCnt < 5) { 

Usage(argv[0]); 

return 1; 

} 

fn = fopen("outn.txt", "w"); 

if(fn==NULL) { 

fprintf(stderr, "Unable to open sample output file: outn.txtW); 

1 

fDtl = fopenCoutDtl.txt", "w"); 

if (fDtl == NULL) { 

fprintf(stderr, "Unable to open detail output file: outDtl.txt\n"); 

} 

fC = fopen("outC.txt", "w"); 

if(fC==NULL){ 



fprintf(stderr, "Unable to open acceptance number output file: 

outC.txt\n"); 

} 

if(fn&&fDtl&&fC){ 

if(fileFound){ 

f = fopen(argv[arglndex], "r"); 

if(f==NULL){ 

fprintf(stderr, "File not found: %s\n", argv[arglndex]); 

} 

else { 

while (fgets(line, LINE_MAX, f) != NULL) { 

sscanf(line, "%d %lf %d %d", &lotSize, &pctD, 

&sample, &acptNbr); 

aoqL = CalculateAOQL(lotSize, pctD, sample, 

acptNbr, fDtl, fC, fn); 

} 

fclose(f); 

} 

} 

else { 

lotSize = atoi(argv[argIndex]); 

pctD = atof(argv[++arg!ndex]); 



sample = atoi(argv[++argIndex]); 

acptNbr = atoi(argv[++argIndex]); 

aoqL = CalculateAOQL(lotSize, pctD, sample, acptNbr, fDtl, fC, 

fn); 

} 

fclose(fDtl); 

fclose(fC); 

fclose(fn); 

} 

return 0; 

} 



APPENDIX B 

LIST OF in, c) PAIRS WHICH MEET THE TARGET AOQL OF 3.0% 

FOR A GIVEN LOT SIZE OF 8500 

Lot Size 

8500 

8500 

8500 

8500 

8500 

8500 

8500 

8500 

8500 

8500 

8500 

8500 

8500 

8500 

8500 

8500 

8500 

8500 

8500 

8500 

8500 

8500 

8500 

8500 

8500 

8500 

8500 

Percent defective 

0.0370 

0.0370 

0.0370 

0.0370 

0.0370 

0.0360 

0.0360 

0.0360 

0.0360 

0.0360 

0.0360 

0.0360 

0.0360 

0.0360 

0.0360 

0.0360 

0.0360 

0.0360 

0.0360 

0.0360 

0.0360 

0.0360 

0.0360 

0.0360 

0.0360 

0.0360 

0.0360 

n 

258 

281 

303 

326 

349 

372 

395 

418 

441 

464 

487 

510 

533 

556 

579 

601 

624 

647 

669 

692 

714 

737 

759 

782 

804 

826 

848 

c 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

PA 

0.836504638 

0.837849438 

0.842323601 

0.843988359 

0.845805943 

0.871706009 

0.874156535 

0.876625478 

0.879097998 

0.881562531 

0.884010196 

0.886433959 

0.888828635 

0.891189992 

0.893514931 

0.897286594 

0.899481297 

0.901636899 

0.90508008 

0.907111406 

0.910335243 

0.912249029 

0.915269673 

0.917072594 

0.919905066 

0.922627866 

0.925246179 

A O Q L 

0.030011227 

0.029975591 

0.030054998 

0.0300299 

0.03000989 

0.030008018 

0.030007223 

0.03000658 

0.03000558 

0.030003825 

0.030001018 

0.029996926 

0.029991377 

0.029984243 

0.029975427 

0.030018354 

0.030004155 

0.029988229 

0.030018417 

0.029997427 

0.030019214 

0.02999346 

0.030007493 

0.02997727 

0.029984143 

0.029986925 

0.029985813 



APPENDIX C 

SAMPLE ATI CALCULATION FOR THE RANGE CONTAINING INCOMING 

PROCESS-AVERAGE FROM 3.01 TO 3.60% 

LOTSIZE 

8500 
8500 
8500 

8500 
8500 
8500 
8500 
8500 
8500 
8500 
8500 
8500 
8500 
8500 
8500 
8500 
8500 
8500 
8500 
8500 

8500 

8500 
8500 

8500 

8500 

8500 

8500 

8500 

8500 

8500 

8500 

8500 

8500 

8500 

8500 

8500 

8500 

8500 

8500 

n 

12 
28 
45 
64 
84 
105 
126 
147 
169 
191 
213 
235 
258 
281 
303 
326 
349 
372 
395 
418 
441 
464 
487 
510 
533 
556 
579 
601 
624 
647 
669 
692 
714 
737 
759 
782 
804 
826 
848 

c 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

AOQL 

0.0294 
0.02958 
0.03022 

0.03014 
0.03005 
0.0299 
0.02992 
0.03002 
0.02997 
0.02998 
0.03002 
0.03006 
0.03001 
0.02998 
0.03005 
0.03003 
0.03001 
0.03001 
0.03001 
0.03001 

0.03001 

0.03 
0.03 

0.03 

0.02999 

0.02998 

0.02998 

0.03002 

0.03 

0.02999 

0.03002 

0.03 

0.03002 

0.02999 

0.03001 

0.02998 

0.02998 

0.02999 

0.02999 

c/n 

0 
0.035714 
0.044444 

0.046875 
0.047619 
0.047619 
0.047619 
0.047619 
0.047337 
0.04712 
0.046948 
0.046809 
0.046512 
0.046263 
0.046205 
0.046012 
0.045845 
0.045699 
0.04557 
0.045455 

0.045351 

0.045259 
0.045175 

0.045098 

0.045028 

0.044964 

0.044905 

0.044925 

0.044872 

0.044822 

0.044843 

0.044798 

0.044818 

0.044776 

0.044796 

0.044757 

0.044776 

0.044794 

0.044811 

Pa when P = 
0.03305 

0.66811037 
0.763677409 
0.814242857 

0,838632762 
0.854570432 
0.864905104 
0.875010948 
0.884558785 
0.890555158 
0.896485981 
0.902237868 
0.907752671 
0.911013119 
0.914304547 
0.919303239 
0.92241393 
0.925463517 
0.928436448 
0.931322624 
0.934115815 

0.936812557 

0.939411375 
0.941912221 

0.944316071 

0.946624633 

0.948840127 

0.950965123 

0.953785645 

0.955697591 

0.957530335 

0.959947381 

0.961597103 

0.963767159 

0.965253113 

0.967203482 

0.968542831 

0.970297494 

0.971948479 

0.97350245 

ATI 

2829.07918 
2030.12499 
1615.57664 

1425.29402 
1307.93524 
1239.12166 
1172.65832 
1111.28047 
1080.78498 
1051.09798 
1023.15479 
997.42417 
991.429874 
985.33093 
964.471349 
960.18854 
956.546875 
953.668551 
951.630133 
950.475985 

950.227599 

950.890188 
952.457375 

954.914592 

958.241547 

962.414031 

967.405257 

966.047187 

972.925775 

980.514277 

982.652063 

991.849823 

996.1089 

1006.74009 

1012.87785 

1024.78643 

1032.59049 

1041.26737 

1050.75925 

Minimum 

950.2276 

Minimum 
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